US8013111B2 - Removal of catalyst and/or cocatalyst residues in a polyolefin manufacturing process - Google Patents
Removal of catalyst and/or cocatalyst residues in a polyolefin manufacturing process Download PDFInfo
- Publication number
- US8013111B2 US8013111B2 US12/653,774 US65377409A US8013111B2 US 8013111 B2 US8013111 B2 US 8013111B2 US 65377409 A US65377409 A US 65377409A US 8013111 B2 US8013111 B2 US 8013111B2
- Authority
- US
- United States
- Prior art keywords
- process according
- catalyst
- scrubbing
- stream
- column
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F6/00—Post-polymerisation treatments
- C08F6/02—Neutralisation of the polymerisation mass, e.g. killing the catalyst also removal of catalyst residues
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F110/00—Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F110/02—Ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F210/00—Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F210/16—Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
Definitions
- the invention relates to an improved process for the manufacture of an olefin polymer composition where corrosive trace cocatalyst and/or catalyst residues are removed from the hydrocarbon gas recycle stream prior to compression and re-use in the polymerization zone(s).
- a Zeigler-Natta type catalyst and cocatalyst are often added to one or more reaction zones to produce an olefin polymer composition which is typically withdrawn from the final reaction zone and transferred to one or more flash vessels where the product polymer composition is separated from a hydrocarbon gas stream that is predominantly comprised of a diluent and unreacted monomers.
- This hydrocarbon gas stream will typically contain trace amounts of cocatalyst (e.g. aluminum alkyls) and catalyst that remain with the vapor phase.
- This stream is typically compressed downstream so that it may be treated further in a recycle section so as to recover the monomer(s) and diluent for re-use in the reaction zone(s).
- the present invention provides an optimized process which can be used for the manufacture of an olefin polymer composition that overcomes the drawbacks of the prior art.
- the drawing is a schematic showing the reaction zone, the letdown from the reactor to a low-pressure flash vessel, the alkyls and residual catalyst removal system, and the recycle gas compression system.
- the present invention relates to an improved process for the manufacture of an olefin polymer composition where corrosive trace cocatalyst and/or catalyst residues are removed from a hydrocarbon gas recycle stream by scrubbing prior to recycle and re-use in the polymerization zone(s).
- At least one olefin e.g., ethylene
- a reactor/reaction zone in the presence of one or more monomers, inert hydrocarbons, catalyst(s), and co-catalyst(s) in order to produce solid particles of an olefin polymer, e.g., polyethylene.
- a gas phase or slurry phase process may be employed or a combination of such processes in series or parallel operation may be used.
- the olefin is further polymerized in the presence of a diluent (D), in order to produce a slurry or suspension (S) comprising the diluent (D) and solid particles of an olefin polymer, e.g., polyethylene.
- a diluent D
- S slurry or suspension
- an olefin polymer e.g., polyethylene
- a reaction effluent containing the polymer component together with a non-polymer component comprising a vapor or liquid phase reaction medium is then withdrawn from the polymerization reactor using any known technique and using one or more withdrawal lines. Where a slurry process is used, it is possible that the withdrawal is taken from a location in the loop where the reaction slurry is most concentrated and upstream of monomer and catalyst feeds.
- the non-polymer component contains one or more catalysts and/or aluminum alkyl cocatalysts.
- the process comprises the step of scrubbing at least part of the non-polymer component with an oleic acid and light-oil mixture in order to reduce the concentration of catalysts and/or aluminum alkyl cocatalysts and produce a purified stream having a relative reduction of concentration of catalysts and/or aluminum alkyl cocatalysts, wherein the olefin polymerization reactor produces more than 16,000 pounds of polymerized olefin per hour.
- the purified stream contains less than 0.5 parts per million of catalysts and less than 0.5 parts per million of cocatalysts.
- the reaction effluent is heated using an in-line slurry heater.
- each withdrawal line may be provided with a dedicated slurry heater.
- the outlet temperature of each of the parallel heaters can be independently controlled, generally to be greater than 8 degrees F., preferably greater than 18 degrees F., above the dew point for sufficient time that the suspending diluent is essentially vaporized.
- each withdrawal line may be provided with an independent parallel separation vessel.
- the primary separation vessel is maintained at a pressure of from about one (1) to less than 20 pound-force per square inch gauge (psig), and a degassed polymer is removed directly from this vessel.
- This separation vessel may also incorporate fresh or recycle gas purging facilities.
- the main separation may be at a pressure such that the overhead vapor may be condensed against available cooling water (wherein the cooling water is maintained at a temperature between about 10° C. and about 40° C.) and the condensed vapor pumped back to the reaction system.
- the product withdrawn from a high or medium pressure primary separator is then letdown continuously or intermittently to a low pressure separator operating at ⁇ 20 psig from where the final product polymer is removed.
- the product may be letdown to a purge column operating at between 5 and 30 psig, preferably less than 20 psig.
- the pressure will vary from system to system and will always be such as to ensure reliable powder flow while minimizing vapor leakage. Any or all of these separation vessels may also incorporate fresh or recycled gas purging facilities.
- hydrocarbons separated from the powder in the above vessel(s), containing inert hydrocarbons, monomer(s), comonomer(s), and other reaction components are transferred to a scrubbing column, including of one or more stages.
- a mixture of oleic acid and light oil comes into contact with the hydrocarbon vapors in the scrubbing column.
- Trace aluminum alkyls and/or catalyst residues are collected in the oil, and the purified hydrocarbon vapor stream is removed out of the top of the scrubbing column before being recycled back to the reaction system.
- the vapor stream exiting the low pressure separator is transferred to the scrubbing column and the purified gas stream from the top of the scrubbing column is compressed to at least 150 psig, and sent on for further treatment and purification and re-use in at least one reaction zone.
- the recycled gas vapors are sent from the flash vessel(s) to the bottom of the scrubbing column where they rise up the column and contact the falling oleic-acid/light oil mixture in a section of one or more stages.
- the column includes a mass-transfer section that may be filled with loose packing material, but optionally structured packing or even trays may be used. If packed, the height of the packed section is designed to allow at least one stage of, and preferably two or more stages of mass-transfer contact between the oil mixture and the recycle gas. Most preferably, the process will comprise from about two stages to about five stages.
- the oil used in the scrubbing column is a mixture of a light oil and preferably from between 0 to about 30% by weight of oleic acid, more preferably from between 5 to about 30% by weight of oleic acid.
- the light oil is preferably a mineral or vegetable oil having a viscosity of between 1 to about 13 centipoise (cP), a specific gravity of between 700 to about 1000 kg/m3, and a flash point of >175° F. Any mixture of oils that achieve the above properties can be used as the light oil.
- the oleic acid/oil mixture is pumped through the column preferably at a sufficient flowrate to achieve a mass flow ratio of circulating oil to recycle gas of >1.0.
- the oil mixture recirculates from the column bottom (liquid-sealed from the recycle gas by an oil level at the column bottom) via a pump, optionally through a downstream filter, and reenters the column through an entry pipe that introduces the oil over a liquid distributor plate just above the packed section.
- the ratio of the mass flow rate of the circulating light oil/oleic acid mixture to the mass flow rate of the recycle gases is greater than 1.0.
- the column is preferably of sufficient diameter to allow for a vapor velocity of between 0.4 and 6 ft/s, and more preferably between 1.0 and 4.0 ft/s.
- a demister pad is employed above the oil-entry level to keep the oleic acid/oil inside the scrubbing column by avoiding oil entrainment in the vapor stream.
- a bed of solid caustic pellets designed to neutralize small amounts of HCL that may form in the vapor stream by reaction of catalyst residues with the oleic acid.
- the oil in the scrubbing column is periodically removed and replaced with fresh oil. Samples of the oil are periodically removed and analyzed for aluminum and/or chloride content, preferably at least once per week of continuous operation.
- the cocatalyst and catalyst residue-free recycle gas stream is transferred to one or more gas compressor(s), where it is compressed to a pressure of at least 150 psig and sent to a recycle system for further treatment and purification. At least part of the recovered diluent and comonomer hydrocarbons are then re-introduced in at least one reaction zone.
- olefin polymers includes both the homopolymers of an olefin and the copolymers of an olefin, with one or more other olefins (or monomers) able to be copolymerized with the olefin.
- Possible olefins include ethylene, propylene, butene, pentene, hexane and octene.
- the process according to the invention is applicable to the production of an olefin polymer, and more especially to the production of an ethylene polymer composition in one or more reactors.
- a configuration is very suitable for obtaining an ethylene polymer composition comprising a polymer (A) and a polymer (B) having a different comonomer content and a different molecular mass (i.e. “bimodal” grades), but also suitable for grades that have nearly identical comonomer content and molecular mass in all polymerization zones (i.e. “monomodal” grades).
- the diluent may be any diluent (inert or reactive) that is liquid under the polymerization conditions and in which most of the polymer formed is insoluble under those conditions.
- the diluent is preferably an acyclic aliphatic hydrocarbon containing from 3 to 8 carbon atoms, and in particular may be selected from the group consisting of isobutane, pentane, hexane, propylene and propane are particularly possible diluents for use in the process of the invention.
- any catalyst allowing olefins to polymerize may be used. These may include catalysts of the Zeigler type, catalysts based on chromium or vanadium, metallocene catalysts, as well as those catalysts based on late transition metals.
- the productivity of the catalyst may be between 2000 grams of olefin polymer per gram of catalyst (g/g) to greater than 30,000 g/g. In Ziegler catalyzed reactions the productivity is typically between 5000 and 40000 g/g, preferably greater than 15,000 g/g.
- the co-catalyst may be selected from aluminum alkyls such as triethylaluminum or TEAL, triisobutylaluminum or TIBAL, ethylaluminum dichloride or EADC, and diethylaluminum chloride or DEAC.
- aluminum alkyls such as triethylaluminum or TEAL, triisobutylaluminum or TIBAL, ethylaluminum dichloride or EADC, and diethylaluminum chloride or DEAC.
- the process according to the invention allows the polymerization process to run more reliably for longer periods without failure, particularly at high production rates.
- the polymerization process according to the invention is designed to preferably run at greater than 16 kilopounds per hour (kpph), most preferably greater than 20 kpph.
- a slurry-loop reactor 1 was continuously fed with ethylene, hexene, and hydrogen. A stream of isobutane diluent and hexene recovered from a recycle section was also added directly to the reactor 1 . A Zeigler-type catalyst and an aluminum alkyls co-catalyst (tri-ethyl aluminum or TEAL) was also added to reactor 1 . The pressure and temperature conditions in reactor 1 were 185° F. and 490 psig, respectively. The hexene concentration in the reactor 1 was approximately 5.8% by weight. Some of the suspension of particles of the polymer composition was continuously drawn off from the reactor 1 via a control valve and the line 2 .
- the total flow rate of withdrawn suspension was 44 kpph, and this suspension comprised about 45% by weight of particles of a copolymer.
- the withdrawn suspension was sent to a slurry heaters where it is heated up to 145 F prior to entering the flash vessel 3 where the polymer particles are separated out.
- the pressure of the flash vessels 3 was 7 psig.
- the total rate of the polymer composition stream leaving the flash vessels via lines 4 was 20 kpph.
- the combined overhead gases composed essentially of isobutane diluent, hexene, and ethylene were sent on via line 5 to the alkyls scrubbing column 6 .
- the flowrate of this stream is 24 kpph.
- the flow rate of the oil withdrawn from the bottom of the column via line 8 to pump 7 and back to the top of the column via line 9 was 150 gpm or 68 kpph.
- the overhead gases with alkyls- and catalyst-residues removed were transferred via line 10 through compressors 11 where the stream was compressed to about 200 psig, then transferred via line 12 to the recycle section, where most of the isobutane and hexene were separated out and returned to the reactor 1 .
- the total quantity of alkyls (TEAL) in the vapor stream feeding column 6 was 0.013 pph (or 0.003 pph of Al).
- the total quantity of TEAL removed was 0.0123 pph (or 0.00283 pph of Al). This left 0.0007 pph in the outlet vapor stream entering the compressor 11 .
- the TEAL content of the vapor stream dropped from 0.54 wgt ppm to 0.029 wgt ppm.
- the total catalyst in the vapor stream feeding column 6 was 0.014 pph.
- the total catalyst removed was 0.0134 pph, leaving 0.0006 pph in the vapor stream at the outlet of column 6 via line 10 entering the compressor 11 .
- the catalyst content of this vapor stream dropped from 0.58 wgt. ppm to 0.025 wgt. ppm.
- Reliability data was collected during long-term production of various products that used TEAL and a Zeigler type catalyst prior to installation of the scrubber column or with the scrubber column 6 being bypassed.
- the mean time between failures (due to packing material or rider band problems) for the reciprocating compressor 11 was 4 months.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
Claims (10)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/653,774 US8013111B2 (en) | 2009-12-17 | 2009-12-17 | Removal of catalyst and/or cocatalyst residues in a polyolefin manufacturing process |
EP10195304A EP2336202B1 (en) | 2009-12-17 | 2010-12-16 | Removal of catalyst and cocatalyst residues in a polyolefin manufacturing process |
CN201010624984.2A CN102153682B (en) | 2009-12-17 | 2010-12-17 | Removal of catalyst and cocatalyst residues in a polyolefin manufacturing process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/653,774 US8013111B2 (en) | 2009-12-17 | 2009-12-17 | Removal of catalyst and/or cocatalyst residues in a polyolefin manufacturing process |
Publications (2)
Publication Number | Publication Date |
---|---|
US20110152476A1 US20110152476A1 (en) | 2011-06-23 |
US8013111B2 true US8013111B2 (en) | 2011-09-06 |
Family
ID=43754721
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/653,774 Active 2030-01-20 US8013111B2 (en) | 2009-12-17 | 2009-12-17 | Removal of catalyst and/or cocatalyst residues in a polyolefin manufacturing process |
Country Status (3)
Country | Link |
---|---|
US (1) | US8013111B2 (en) |
EP (1) | EP2336202B1 (en) |
CN (1) | CN102153682B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103254332B (en) * | 2012-02-20 | 2015-07-22 | 中国石油化工股份有限公司 | Polyisoprene preparation method and prepared polyisoprene |
CN105102492B (en) | 2013-03-27 | 2018-02-13 | 日本聚乙烯株式会社 | Polar functionalities olefin copolymer, polynary system polar functionalities olefin copolymer, olefin-based resin composition and the bonding agent and layered product each with it |
TW201700500A (en) | 2015-04-14 | 2017-01-01 | 林德股份有限公司 | Method and apparatus for preparation of polyolefin |
WO2017048977A1 (en) | 2015-09-15 | 2017-03-23 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | Smart carpet systems and methods of using same for monitoring physical and physiological activities |
US10195683B2 (en) * | 2016-11-14 | 2019-02-05 | Matthew Fagan | Metal analyzing plasma CNC cutting machine and associated methods |
US10300551B2 (en) * | 2016-11-14 | 2019-05-28 | Matthew Fagan | Metal analyzing plasma CNC cutting machine and associated methods |
CN114014960B (en) * | 2021-10-21 | 2023-07-11 | 金聚合科技(宁波)有限公司 | System and method for polyolefin purification |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4826665A (en) * | 1988-03-10 | 1989-05-02 | Texas Alkyls, Inc. | Removal of aluminum alkyl vapor from gas stream |
US6586537B2 (en) * | 2000-01-18 | 2003-07-01 | Solvay Polyolefins Europe-Belgium (Societe Anonyme) | Process for manufacturing an olefin polymer composition |
-
2009
- 2009-12-17 US US12/653,774 patent/US8013111B2/en active Active
-
2010
- 2010-12-16 EP EP10195304A patent/EP2336202B1/en active Active
- 2010-12-17 CN CN201010624984.2A patent/CN102153682B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4826665A (en) * | 1988-03-10 | 1989-05-02 | Texas Alkyls, Inc. | Removal of aluminum alkyl vapor from gas stream |
US6586537B2 (en) * | 2000-01-18 | 2003-07-01 | Solvay Polyolefins Europe-Belgium (Societe Anonyme) | Process for manufacturing an olefin polymer composition |
Also Published As
Publication number | Publication date |
---|---|
CN102153682B (en) | 2014-09-17 |
EP2336202B1 (en) | 2012-11-14 |
EP2336202A1 (en) | 2011-06-22 |
CN102153682A (en) | 2011-08-17 |
US20110152476A1 (en) | 2011-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2336202B1 (en) | Removal of catalyst and cocatalyst residues in a polyolefin manufacturing process | |
RU2600550C1 (en) | Treatment method of polyolefin particles produced by gas-phase polymerization | |
US8653206B2 (en) | Operation of multi-reactor polyolefin manufacturing process | |
KR101357569B1 (en) | Process for the polyolefin finishing | |
US7759457B2 (en) | Polymerisation process | |
RU2610541C2 (en) | Method of degassing and imparting intermediate properties to polyolefin particles obtained during polymerisation of olefins | |
RU2730015C1 (en) | Polymerization method involving unloading polyolefin particles from a gas-phase polymerization reactor | |
KR102648454B1 (en) | Vapor phase production method of ethylene polymer | |
WO2015128329A1 (en) | Polymerisation process and polymerisation unit comprising a degassing section | |
CN114008089A (en) | Polypropylene preparation method with improved recovery rate | |
EP3397654A1 (en) | Improved gas phase olefins polymerization process operating in condensing mode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INEOS USA LLC, ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GESSNER, MARK A.;HOCKETT, SEAN MICHAEL;REEL/FRAME:023967/0241 Effective date: 20100125 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: BARCLAYS BANK PLC, AS SECURITY AGENT, UNITED KINGD Free format text: SECURITY AGREEMENT;ASSIGNOR:INEOS TECHNOLOGIES USA LLC;REEL/FRAME:031934/0542 Effective date: 20140101 Owner name: BARCLAYS BANK PLC, AS SECURITY AGENT, UNITED KINGD Free format text: SECURITY AGREEMENT;ASSIGNOR:INEOS TECHNOLOGIES USA LLC;REEL/FRAME:031934/0553 Effective date: 20140101 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |