WO2014157407A1 - 光学材料用重合性組成物及びそれより得られる光学材料及びその製造方法 - Google Patents

光学材料用重合性組成物及びそれより得られる光学材料及びその製造方法 Download PDF

Info

Publication number
WO2014157407A1
WO2014157407A1 PCT/JP2014/058671 JP2014058671W WO2014157407A1 WO 2014157407 A1 WO2014157407 A1 WO 2014157407A1 JP 2014058671 W JP2014058671 W JP 2014058671W WO 2014157407 A1 WO2014157407 A1 WO 2014157407A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymerizable composition
alcohol
isocyanate
compound
optical material
Prior art date
Application number
PCT/JP2014/058671
Other languages
English (en)
French (fr)
Inventor
伸介 伊藤
河戸 伸雄
幸治 末杉
隈 茂教
達矢 小川
橋本 俊哉
田中 守
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2013/079790 external-priority patent/WO2014080749A1/ja
Priority claimed from PCT/JP2013/079791 external-priority patent/WO2014080750A1/ja
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to EP14775376.8A priority Critical patent/EP2980159B1/en
Priority to KR1020177003839A priority patent/KR101739248B1/ko
Priority to CN201480012069.4A priority patent/CN105143349B/zh
Priority to US14/777,783 priority patent/US10131767B2/en
Priority to BR112015024449A priority patent/BR112015024449A8/pt
Priority to KR1020157024153A priority patent/KR101739215B1/ko
Priority to JP2014543039A priority patent/JP5706052B2/ja
Publication of WO2014157407A1 publication Critical patent/WO2014157407A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7621Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring being toluene diisocyanate including isomer mixtures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3432Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3432Six-membered rings
    • C08K5/3435Piperidines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3472Five-membered rings
    • C08K5/3475Five-membered rings condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/12Polarisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2075/00Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/0034Polarising
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds

Definitions

  • the present invention relates to a polymerizable composition for an optical material that gives a urethane molded product, an optical material obtained therefrom, and a method for producing the same.
  • Plastic lenses are lighter, harder to break than inorganic lenses, and can be dyed. Therefore, plastic lenses are rapidly spreading to optical elements such as eyeglass lenses and camera lenses.
  • Various resins for eyeglass lenses have been developed so far. in use. Among them, representative examples include allyl resin obtained from diethylene glycol bisallyl carbonate and diallyl isophthalate, (meth) acrylic resin obtained from (meth) acrylate, and thiourethane resin obtained from isocyanate and thiol.
  • Patent Documents 1 to 5 urethane resins composed of isocyanate and alcohol having a lower refractive index than thiourethane resins. Although it has a lower refractive index than thiourethane resin, it is expected as a low-cost lens material.
  • Patent Document 4 describes a urethane resin obtained from 4,4′-methylene-bis (cyclohexyl isocyanate) as an isocyanate and trimethylolpropane propoxylate and trimethylolpropane as alcohols.
  • isocyanates there are tolylene diisocyanate and diphenylmethane diisocyanate which have a high refractive index and are available at low cost, and functional lenses and high refractive index lenses using these polyisocyanate compounds have been studied. Yes.
  • Patent Document 6 describes in Comparative Example 5 an example of producing a urethane resin using tolylene diisocyanate, which is inexpensive and easily available, as an isocyanate.
  • Commercially available isocyanates include m-xylylene diisocyanate, 2,5-bis (isocyanatomethyl) -bicyclo [2.2.1] heptane, 2,6-bis (isocyanatomethyl) -bicyclo [2.2. .1] heptane, 1,3-bis (isocyanatomethyl) cyclohexane, hexamethylene diisocyanate, isophorone diisocyanate, 4,4'-methylene-bis (cyclohexyl isocyanate), etc.
  • Patent Document 7 describes a plastic lens made of a thiourethane resin obtained from a composition containing a polyisocyanate compound having an aromatic ring, a polythiol compound, a benzotriazole-based compound, and phenols. . This document describes that a plastic lens having excellent weather resistance can be obtained.
  • Lenses made of a urethane resin using an aromatic polyisocyanate such as tolylene diisocyanate may cause yellowing, and there is room for improvement in quality.
  • Patent Document 7 does not describe improvement in light resistance of a plastic lens made of urethane resin.
  • the present inventors can obtain a polyurethane molded article excellent in workability at the time of preparation and casting, and excellent in refractive index, heat resistance, transparency, and light resistance. Intensive study was conducted to obtain a polymerizable composition for materials.
  • the inventors of the present invention have added a specific additive to a transparent resin polymerized under a specific condition using an aromatic isocyanate and a polyfunctional alcohol, thereby providing a refractive index, heat resistance, and transparency.
  • the present invention has been completed by finding a polyurethane molded article having excellent properties and light resistance and a method for producing the same.
  • Alcohol (B) is glycerol, diglycerol, trimethylolpropane, pentaerythritol, di (trimethylolpropane), ethylene oxide adduct of glycerol, ethylene oxide adduct of trimethylolpropane, ethylene oxide addition of pentaerythritol And a propylene oxide adduct of glycerol, a propylene oxide adduct of trimethylolpropane, and a propylene oxide adduct of pentaerythritol, and the polymerizable composition for optical materials according to [1] .
  • the alcohol (B) includes one or more compounds selected from a propylene oxide adduct of glycerol, a propylene oxide adduct of trimethylolpropane, and a propylene oxide adduct of pentaerythritol, [1] or [2 ]
  • a polymerizable composition for optical materials is 2,4-tolylene diisocyanate or a mixture of 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate.
  • a method for producing a polyurethane molded body comprising: [11] In the step of obtaining a polymerizable composition for an optical material, the alcohol (B), the acidic phosphate ester (C), the benzotriazole compound (D), and the phenol compound (E) are mixed, and then the fragrance is mixed.
  • [10] including a step of mixing one or more isocyanates (A) having two or more isocyanato groups containing a group isocyanate to obtain a polymerizable composition for an optical material according to [9].
  • the manufacturing method of the polyurethane molded object of description [12] After mixing the alcohol (B), the acidic phosphate ester (C), and the benzotriazole compound (D), one or more isocyanates (A) having two or more isocyanato groups containing an aromatic isocyanate are obtained. Mixing at 30 ° C.
  • a method for producing a plastic polarizing lens comprising: [13] In the step of obtaining a polymerizable composition for an optical material, the alcohol (B), the acidic phosphate ester (C), the benzotriazole compound (D), and the phenol compound (E) are mixed, and then the fragrance is mixed. [12] including a step of mixing one or more isocyanates (A) having two or more isocyanato groups containing a group isocyanate to obtain a polymerizable composition for an optical material according to [9].
  • the alcohol (B) is added to the isocyanate (A) so that the ratio of the hydroxyl group to the isocyanate group of the isocyanate (A) is in the range of 10 mol% to 20 mol%.
  • a benzotriazole-based compound (D) and a hindered amine-based compound are reacted with each other to obtain a prepolymer (i);
  • a process for producing a polyurethane molded product comprising: [15] In the step (i), the alcohol (B) is added to the isocyanate (A) so that the ratio of the hydroxyl group to the isocyanate group of the isocyanate (A) is in the range of 10 mol% to 20 mol%.
  • the step (ii) A cylindrical container; A shaft inserted from above the container along the central axis direction; A stirring blade wound in a screw shape along the outer peripheral surface of the shaft; A first supply unit disposed above the container and for feeding a prepolymer into the container; A second supply unit that is disposed above the container and feeds alcohol (B) into the container; A discharge unit disposed at the lower end of the container; In the container, the step of feeding the prepolymer from the first supply unit and the step of feeding alcohol (B) from the second supply unit; By rotating the shaft, the stirring blade wound in the shape of a screw along the outer peripheral surface of the shaft moves downward while mixing the prepolymer and alcohol (B) at a temperature of 30 ° C. or less.
  • the manufacturing method in any one of [14] to [18] containing this.
  • the rotation speed of the shaft is in a range of 1000 rpm to 4000 rpm, and a speed at which the polymerizable composition is discharged from the discharge portion is in a range of 0.5 g / s to 4 g / s.
  • the manufacturing method as described.
  • the production method according to [19] or [20], wherein in the step (ii), the polymerizable composition obtained has a viscosity of 500 mPa ⁇ s or less at 20 ° C.
  • the step (iii) Injecting the polymerizable composition into a mold; Polymerizing the prepolymer and alcohol (B) contained in the polymerizable composition in the mold; The production method according to [19] or [21].
  • [23] In the method for producing a polyurethane molded product according to any one of [14] to [22], Before the step (iii), including the step of fixing the polarizing film in the lens casting mold in a state where at least one surface of the polarizing film is separated from the mold, The step (iii) Injecting the polymerizable composition obtained in step (ii) into the gap between the polarizing film and the mold; Polymerizing and curing the polymerizable composition, and laminating a layer made of a polyurethane resin on at least one surface of the polarizing film; A method for producing a plastic polarizing lens, comprising: [24] A polyurethane molded product obtained by the production method according to any one of [10], [11], and [
  • the polymerizable composition for an optical material of the present invention is excellent in workability at the time of preparation and casting, and is a urethane molded article excellent in refractive index, heat resistance, transparency, and light resistance, that is, excellent in balance thereof.
  • a polyurethane molded product can be obtained.
  • Such a polyurethane molded product is suitably used in various optical materials that require high transparency.
  • the polymerizable composition for an optical material of the present embodiment is (A) one or more isocyanates having two or more isocyanato groups, including aromatic isocyanates; (B) one or more alcohols having two or more hydroxyl groups; (C) an acidic phosphate ester represented by the general formula (1); (D) a benzotriazole-based compound.
  • the ratio of secondary hydroxyl groups is 50% or more with respect to the total number of moles of primary and secondary hydroxyl groups contained in alcohol (B), and 100 parts by weight in total with isocyanate (A) and alcohol (B)
  • the benzotriazole compound (D) is contained in an amount of 1 to 11 parts by weight.
  • Isocyanate (A) is one or more isocyanates having two or more isocyanato groups and includes aromatic isocyanate.
  • the aromatic isocyanate is an isocyanate in which two or more isocyanato groups are directly bonded to an aromatic ring, and may include a dimer, a trimer, or a prepolymer. Specific examples include tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate, phenylene diisocyanate, and the like, which can be used alone or in combination.
  • Isocyanate (A) contains aromatic isocyanate in an amount of 80 to 100% by weight.
  • the aromatic isocyanate in this embodiment preferably contains tolylene diisocyanate, and more preferably consists of tolylene diisocyanate.
  • Tolylene diisocyanate is one or more isocyanates selected from 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate.
  • Tolylene diisocyanate includes 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, or a mixture of 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate.
  • the tolylene diisocyanate preferably contains 2,4-tolylene diisocyanate, specifically 2,4-tolylene diisocyanate alone, or 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate. It can be used as a mixture of range isocyanates. When the mixture is used, the mixing ratio of 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate is more preferably in the range of 75:25 to 85:15.
  • the isocyanate (A) can include an isocyanate having two or more isocyanato groups in addition to the aromatic isocyanate.
  • isocyanate include aliphatic isocyanate, alicyclic isocyanate, and heterocyclic isocyanate.
  • Aliphatic isocyanates include hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, lysine diisocyanatomethyl ester, lysine triisocyanate, m-xylylene diisocyanate, ⁇ , ⁇ , ⁇ ', ⁇ '-tetramethylxylylene diisocyanate, bis (isocyanatomethyl) naphthalene, mesitylylene triisocyanate, bis (isocyanatomethyl) sulfide, bis (isocyanatoethyl) sulfide, bis (isocyanatomethyl) ) Disulfide, Bis (isocyanatoethylthio) disulfide, Bis (isocyanatomethylthio) methane, Bis (isocyanatoethylthio) methane, Bis (isocyanatoe
  • alicyclic isocyanate examples include isophorone diisocyanate, bis (isocyanatomethyl) cyclohexane, dicyclohexylmethane diisocyanate, cyclohexane diisocyanate, methylcyclohexane diisocyanate, dicyclohexyldimethylmethane isocyanate, 2,5-bis (isocyanatomethyl) bicyclo- [2.2.
  • heterocyclic isocyanate examples include 2,5-diisocyanatothiophene, 2,5-bis (isocyanatomethyl) thiophene, 2,5-diisocyanatotetrahydrothiophene, 2,5-bis (isocyanatomethyl) tetrahydrothiophene, 3,4-bis (isocyanatomethyl) tetrahydrothiophene, 2,5-diisocyanato-1,4-dithiane, 2,5-bis (isocyanatomethyl) -1,4-dithiane, 4,5-diisocyanato-1, Examples include 3-dithiolane and 4,5-bis (isocyanatomethyl) -1,3-dithiolane.
  • the molar ratio of the isocyanate group of the isocyanate (A) to the hydroxyl group of the alcohol (B) described later is in the range of 0.8 to 1.2, preferably in the range of 0.85 to 1.2. And more preferably within the range of 0.9 to 1.2. Within the above range, it is possible to obtain an optical material excellent in optical properties such as refractive index and excellent physical property balance, particularly a resin suitably used as a spectacle lens.
  • Alcohol (B) In alcohol (B), the proportion of secondary hydroxyl groups is 50% or more with respect to the total number of moles of primary and secondary hydroxyl groups.
  • the alcohol (B) may be composed of one kind of alcohol having a secondary hydroxyl group ratio of 50% or more, or two or more compounds having a secondary hydroxyl group ratio of 50% or more. Good.
  • the ratio of secondary hydroxyl groups to the total number of moles of primary and secondary hydroxyl groups is preferably 60% or more, and more preferably 70% or more.
  • the proportion of secondary hydroxyl groups can be calculated by proton nuclear magnetic resonance spectrum 1 H-NMR.
  • the chemical shift of the proton of the methine group is usually shifted to 5.3 to 5.6 ppm, and the methylene group is shifted to 4.2 to 4.5 ppm.
  • the ratio of secondary hydroxyl groups can be calculated from the ratio of peak integration values.
  • Alcohol (B) is one or more aliphatic or alicyclic alcohols, specifically, linear or branched aliphatic alcohols, alicyclic alcohols, these alcohols and ethylene oxide, propylene oxide, Examples include alcohols to which ⁇ -caprolactone is added.
  • linear or branched aliphatic alcohols include ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, 1,3-propanediol, 2,2-dimethyl-1,3- Propanediol, 2,2-diethyl-1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 3-methyl-1,3-butanediol, , 2-pentanediol, 1,3-pentanediol, 1,5-pentanediol, 2,4-pentanediol, 2-methyl-2,4-pentanediol, 3-methyl-1,5-pentanediol, 1 , 6-hexanediol, 2,5-hexanediol, glycerol, diglycerol Polyg
  • Examples of the alicyclic alcohol include 1,2-cyclopentanediol, 1,3-cyclopentanediol, 3-methyl-1,2-cyclopentanediol, 1,2-cyclohexanediol, 1,3-cyclohexanediol, , 4-cyclohexanediol, 4,4′-bicyclohexanol, 1,4-cyclohexanedimethanol and the like.
  • a compound obtained by adding these alcohol and ethylene oxide, propylene oxide, or ⁇ -caprolactone may be used.
  • ethylene oxide adduct of glycerol, ethylene oxide adduct of trimethylolpropane, ethylene oxide adduct of pentaerythritol, propylene oxide adduct of glycerol, propylene oxide adduct of trimethylolpropane, propylene oxide adduct of pentaerythritol examples include caprolactone-modified glycerol, caprolactone-modified trimethylolpropane, and caprolactone-modified pentaerythritol.
  • the number of moles to which ethylene oxide, propylene oxide and ⁇ -caprolactone are added is preferably 0.7 to 3.0 moles per mole of hydroxyl group in the alcohol. More preferred is the addition of minutes.
  • ethylene glycol diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, glycerol, diglycerol, polyglycerol, trimethylolpropane, pentaerythritol, di (tri Methylolpropane), ethylene oxide adduct of glycerol, ethylene oxide adduct of trimethylolpropane, ethylene oxide adduct of pentaerythritol, propylene oxide adduct of glycerol, propylene oxide adduct of trimethylolpropane, and propylene oxide of pentaerythritol It is preferable to use one or more selected from adducts, Glycerol, diglycerol, trimethylolpropane, pentaerythritol, di (trimethylolpropane), glycerol ethylene oxide adduct
  • the propylene oxide adduct of glycerol is preferably one in which 0.7 to 1.3 mol of propylene oxide is added to 1 mol of hydroxyl group in glycerol, and the hydroxyl value is from 520 mgKOH / g to 810 mgKOH / g.
  • 580 mg KOH / g to 680 mg KOH / g is more preferable.
  • the propylene oxide adduct of trimethylolpropane is preferably one in which 0.8 to 1.3 mol of propylene oxide is added to 1 mol of hydroxyl group in trimethylolpropane, and has a hydroxyl value of 460 mgKOH / g to 600 mgKOH / g is preferable, and 520 mgKOH / g to 580 mgKOH / g is more preferable.
  • the hydroxyl value can be determined by a known method.
  • the acidic phosphoric acid ester (C) is represented by the general formula (1) and is conventionally used as a mold release agent. In the present embodiment, it is also used as a urethanization catalyst.
  • m represents an integer of 1 or 2
  • n represents an integer of 0 to 18
  • R 1 represents an alkyl group having 1 to 20 carbon atoms
  • R 2 and R 3 each independently represents a hydrogen atom or A methyl group and an ethyl group are shown.
  • the number of carbon atoms in m is preferably 4 to 20.
  • R 1 in the general formula (1) is, for example, linear aliphatic such as methane, ethane, propane, butane, pentane, hexane, heptane, octane, nonane, decane, undecane, dodecane, tetradecane, hexadecane, etc.
  • n is preferably 0, and the compound can be represented by general formula (2).
  • R 4 in the general formula (2) is, for example, an organic residue derived from a linear aliphatic compound such as octane, nonane, decane, undecane, dodecane, tetradecane, hexadecane, 2-ethylhexane, 3 -Ethylhexane, 2-methylheptane, 3-methylheptane, 4-methylheptane, 3-ethylheptane, 4-ethylheptane, 4-propylheptane, 2-methyloctane, 3-methyloctane, Organic residues derived from branched aliphatic compounds such as 4-methyloctane, 3-ethyloctane, 4-ethyloctane, 4-propyloctane, 1,2-dimethylcyclohexane, 1,3-dimethyl
  • Stepan's ZelecUN Mitsui Chemicals' internal release agent for MR, Johoku Chemical Industry's JP series, Toho Chemical Industry's Phosphanol series, Daihachi AP, DP series, etc. manufactured by Kagaku Kogyo Co., Ltd. can be used, and ZeleCUN manufactured by STEPAN, and an internal mold release agent for MR manufactured by Mitsui Chemicals are more preferable.
  • the addition amount of the acidic phosphate ester (C) is preferably 0.1 to 3 parts by weight, and 0.2 to 2 parts by weight with respect to 100 parts by weight of the total of the isocyanate (A) and the alcohol (B). Part is more preferred.
  • tertiary amines, amine carboxylates, metal catalysts, and the like are used as catalysts for urethane resins.
  • the reactivity increases. For this reason, the viscosity of the polymerizable composition for an optical material becomes too high at the time of casting to deteriorate workability, and striae may occur in the obtained molded product.
  • a specific cyclic amine and a specific acidic phosphate ester are used in combination, the workability at the time of preparation and casting is excellent, and the occurrence of striae is effectively suppressed. Workability and quality assurance that can be applied to spectacles using a molded body made of alcohol is preferable.
  • Specific cyclic amines include, for example, imidazoles such as imidazole, 1,2-dimethylimidazole, benzylmethylimidazole, and 2-ethyl-4-imidazole, such as 1,2,2,6,6-pentamethyl-4.
  • the acidic phosphate ester (C) can be used in combination with hindered amines, and the hindered amines are 0.1 to 2 parts by weight with respect to 100 parts by weight of the total of isocyanate (A) and alcohol (B), Preferably, it can be included in an amount of 0.2 to 1.5 parts by weight. If it is the said numerical range, the molded object which was excellent in the hue and suppressed striae can be obtained.
  • Hindered amines are also used as light stabilizers.
  • Commercially available products such as Chemuita Lowilite 76, Lowilite 92, BASF Tinuvin 144, Tinuvin 292, Tinuvin 765, ADEKA ADK STAB LA-52, LA-72, Johoku Chemical An example is JF-95 manufactured by Kogyo Co., Ltd.
  • the propylene oxide adduct of glycerol from the tolylene diisocyanate as the isocyanate (A), the propylene oxide adduct of glycerol, the propylene oxide adduct of trimethylolpropane, and the propylene oxide adduct of pentaerythritol as the alcohol (B). It is preferable to use a combination of at least one selected compound.
  • the benzotriazole-based compound (D) may be any compound having a benzotriazole skeleton, and examples thereof include 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- (2′-hydroxy-4 ′).
  • 2- (2-hydroxy-5-tert-octylphenyl) -2H-benzotriazole is preferably included from the viewpoint of solubility in the components (A) and (B) in the composition, Particularly preferred is (2-hydroxy-5-tert-octylphenyl) -2H-benzotriazole alone.
  • a phenolic compound (E) can further be included.
  • the phenolic compound (E) includes phenol, cresol, ethylphenol, isopropylphenol, tert-butylphenol, hexylphenol, cyclohexylphenol, 2-methoxyphenol, 4-methoxyphenol, 2,6-dimethyl-p-cresol, 2 , 6-diethyl-p-cresol, 2,6-di-n-propyl-p-cresol, 2,6-diisopropyl-p-cresol, 2,6-di-n-butyl-p-cresol, 2,6 Substituted phenols such as diisobutyl-p-cresol, 4-allyl-2-methoxyphenol, 2,4-bis [(octylthio) methyl] -o-cresol, hindered phenols, catechol, resorcin, hydroquinone, tert- But
  • Biphenols such as polyphenols, biphenol and dimethylbiphenol, bisphenols such as bisphenol A, bisphenol F, bisphenol S, methylene-bis (methyl-tert-butylphenol), thio-bis (methyl-tert-butylphenol), naphthol And naphthols such as dihydroxynaphthalene and halogen-substituted products thereof.
  • the (E) phenolic compound is preferably a hindered phenol, and is a (3-tert-butyl-4-hydroxy-5-alkyl) phenyl group. More preferably, the alkyl group is a methyl group or a tert-butyl group.
  • hindered phenol compounds having the above (3-tert-butyl-4-hydroxy-5-alkyl) phenyl group include 2,6-di-tert-butyl-p-cresol and 1,6-hexamethylene.
  • the content of the phenolic compound (E) is 0.5 to 5 parts by weight, preferably 0.5 to 4 parts by weight, with respect to 100 parts by weight of the total amount of the isocyanate (A) and the alcohol (B). Particularly preferred is 0.5 to 2 parts by weight.
  • the polymerizable composition for an optical material of the present embodiment can contain additives such as a light stabilizer, an ultraviolet absorber, an antioxidant, a coloring inhibitor, a dye, and a resin modifier depending on the purpose. .
  • a hindered amine compound can be used as the light stabilizer.
  • As hindered amine compounds commercially available products such as Chemila's Lowilite 76, Lowilite 92, BASF's Tinuvin 144, Tinuvin 292, Tinuvin 765, ADEKA's Adeka Stub LA-52, LA-72, Johoku Chemical Industry's JF-95, etc. Can be mentioned.
  • a triazine compound, a benzophenone compound, or a benzoate compound can be included.
  • the addition amount is preferably 0.05 to 2.0 parts by weight, more preferably 0.05 to 1.5 parts by weight, with respect to 100 parts by weight of the total of components (A) and (B).
  • the light resistance is remarkably deteriorated.
  • a primary amine or a secondary amine is added as an amine, the reaction with the isocyanate of this embodiment proceeds rapidly, so that the viscosity of the polymerizable composition for optical materials becomes too high during casting. The properties deteriorate, and striae occur in the resulting molded article.
  • the troubles when adding a metal catalyst are as described above.
  • the metal catalyst used in the thiourethane resin is mostly an organic tin compound, but the polymerizable composition for optical materials of this embodiment has a problem of harmfulness to the human body due to its high toxicity and environmental hormones.
  • a resin for spectacles can be produced without containing an organic tin compound, the safety of the molded product obtained in the production process and obtained is higher.
  • propylene oxide of tolylene diisocyanate as isocyanate (A) and glycerol as alcohol (B) from the viewpoint that it is excellent in workability at the time of preparation and casting, and generation of striae is effectively suppressed. It is preferable to use a combination of at least one compound selected from an adduct, a propylene oxide adduct of trimethylolpropane, and a propylene oxide adduct of pentaerythritol.
  • the polymerizable composition for an optical material of the present embodiment it is possible to obtain a urethane molded article that is excellent in workability during preparation and casting, and excellent in refractive index, heat resistance, transparency, and light resistance. That is, according to this embodiment, it is possible to obtain a urethane molded body excellent in these balances.
  • the urethane molded body of the present embodiment can be obtained in various shapes by changing the mold during casting polymerization.
  • the urethane molded body of this embodiment has high transparency and is used for various applications as optical resins such as plastic lenses, camera lenses, light emitting diodes (LEDs), prisms, optical fibers, information recording substrates, filters, and light emitting diodes. Is possible. Particularly, it is suitable as an optical material and an optical element such as a plastic lens, a camera lens, and a light emitting diode.
  • the plastic lens examples include a plastic spectacle lens made of polyurethane resin, and a plastic polarized lens in which a layer made of polyurethane resin is laminated on at least one surface of a polarizing film.
  • a method for producing a urethane molded body and a method for producing a plastic polarizing lens will be described using the first embodiment and the second embodiment, respectively, with appropriate drawings.
  • symbol is attached
  • the method for producing a urethane molded body comprises mixing the alcohol (B), the acidic phosphate ester (C), and the benzotriazole compound (D), and then mixing the isocyanate (A) at 30 ° C. or less.
  • Step (1) for obtaining the above-described polymerizable composition for optical material Step (2) for casting the polymerizable composition into a mold, polymerization of the polymerizable composition is started, Polymerizing step (3).
  • Step (1) When isocyanate (A) and acidic phosphate ester (C) are mixed, a white solid with low solubility may be precipitated, and as a result, the transparency of the resulting resin is impaired when polymerized as it is. It may not be suitable. Therefore, it is preferable to mix alcohol (B) and acidic phosphate ester (C) first, and then mix isocyanate (A). Thereby, generation
  • the temperature at the time of mixing of isocyanate (A) suppresses the viscosity of the polymerizable composition for an optical material, and it is possible to produce a molded product without deteriorating workability.
  • tolylene diisocyanate is used as the isocyanate (A)
  • it is particularly preferably 30 ° C. or lower.
  • the alcohol (B), the acidic phosphate ester (C), the benzotriazole compound (D), and the phenol compound are included, the phenol compound (E) is further mixed.
  • the process of mixing isocyanate (A) at 30 degrees C or less can be included.
  • the mixing apparatus is not particularly limited, and an apparatus described later can also be used.
  • Step (2) the polymerizable composition for an optical material of the present embodiment is injected into a molding mold (mold) held by a gasket or a tape.
  • a defoaming treatment under reduced pressure, a filtration treatment such as pressurization, reduced pressure, or the like, if necessary.
  • Step (3) polymerization of the polymerizable composition for an optical material cast in a molding mold is started, and the composition is polymerized.
  • the temperature at which the polymerization is started is preferably 30 ° C. or lower because the moldability after polymerization is good and the resulting molded product does not have striae.
  • the polymerization conditions are not limited because the conditions vary greatly depending on the type of isocyanate or alcohol used, the shape of the mold, etc., but the polymerization is carried out at a temperature of about 0 to 140 ° C. for 1 to 48 hours.
  • the preparation procedure varies depending on the isocyanate (A), alcohol (B), type of additive used and the amount of the additive used. Is selected as appropriate in consideration of safety, safety, convenience, and the like.
  • the urethane molded body of the present embodiment may be subjected to a treatment such as annealing as necessary.
  • the treatment temperature is usually in the range of 50 to 150 ° C., preferably 90 to 140 ° C., more preferably 100 to 130 ° C.
  • the plastic lens using the urethane molded body of the present embodiment may be used with a coating layer on one side or both sides, if necessary.
  • the coating layer include a primer layer, a hard coat layer, an antireflection layer, an antifogging coat layer, a stainproof layer, and a water repellent layer.
  • Each of these coating layers may be used alone, or a plurality of coating layers may be used in multiple layers. When a coating layer is applied to both sides, a similar coating layer or a different coating layer may be applied to each surface.
  • Each of these coating layers is an ultraviolet absorber for the purpose of protecting the lens and eyes from ultraviolet rays, an infrared absorber for the purpose of protecting the eyes from infrared rays, a light stabilizer, an antioxidant, and a lens for the purpose of improving the light resistance of the lens.
  • an ultraviolet absorber for the purpose of protecting the lens and eyes from ultraviolet rays
  • an infrared absorber for the purpose of protecting the eyes from infrared rays
  • a light stabilizer for the purpose of protecting the eyes from infrared rays
  • an antioxidant for the purpose of improving the light resistance of the lens.
  • dyes and pigments, photochromic dyes, photochromic pigments, antistatic agents, and other known additives for improving the performance of the lens may be used in combination.
  • various leveling agents for the purpose of improving coating properties may be used.
  • the primer layer is usually formed between a hard coat layer described later and the optical lens.
  • the primer layer is a coating layer for the purpose of improving the adhesion between the hard coat layer formed thereon and the lens, and in some cases, the impact resistance can also be improved.
  • Any material can be used for the primer layer as long as it has high adhesion to the obtained optical lens, but usually it is mainly composed of urethane resin, epoxy resin, polyester resin, melanin resin, and polyvinyl acetal.
  • a primer composition or the like is used.
  • the primer composition may use an appropriate solvent that does not affect the lens for the purpose of adjusting the viscosity of the composition. Of course, you may use it without a solvent.
  • the primer composition can be formed by either a coating method or a dry method.
  • a primer layer is formed by solidifying after applying to a lens by a known coating method such as spin coating or dip coating.
  • a dry method it forms by well-known dry methods, such as CVD method and a vacuum evaporation method.
  • the surface of the lens may be subjected to a pretreatment such as an alkali treatment, a plasma treatment, or an ultraviolet treatment as necessary for the purpose of improving adhesion.
  • the hard coat layer is a coating layer for the purpose of imparting functions such as scratch resistance, abrasion resistance, moisture resistance, warm water resistance, heat resistance, and light resistance to the lens surface.
  • the hard coat layer is generally composed of an organic silicon compound having a curing property and an element selected from the element group of Si, Al, Sn, Sb, Ta, Ce, La, Fe, Zn, W, Zr, In, and Ti.
  • a hard coat composition containing at least one kind of fine particles composed of one or more kinds of oxide fine particles and / or a composite oxide of two or more elements selected from these element groups is used.
  • the hard coat composition includes at least amines, amino acids, metal acetylacetonate complexes, organic acid metal salts, perchloric acids, perchloric acid salts, acids, metal chlorides and polyfunctional epoxy compounds. It is preferable to include any of them.
  • An appropriate solvent that does not affect the lens may be used in the hard coat composition. Of course, you may use it without a solvent.
  • the hard coat layer is usually formed by applying a hard coat composition by a known coating method such as spin coating or dip coating and then curing.
  • a known coating method such as spin coating or dip coating and then curing.
  • the curing method include thermal curing, a curing method by irradiation with energy rays such as ultraviolet rays and visible rays, and the like.
  • the refractive index of the hard coat layer is preferably in the range of ⁇ 0.1 in the difference in refractive index from the lens.
  • the antireflection layer is usually formed on the hard coat layer as necessary.
  • inorganic oxides such as SiO 2 and TiO 2 are used, and vacuum deposition, sputtering, ion plating, ion beam assist, and CVD are used. It is formed by the dry method.
  • an organic type it is formed by a wet method using a composition containing an organosilicon compound and silica-based fine particles having internal cavities.
  • the antireflection layer has a single layer and a multilayer, and when used in a single layer, the refractive index is preferably at least 0.1 lower than the refractive index of the hard coat layer.
  • a multilayer antireflection film is preferably used. In that case, a low refractive index film and a high refractive index film are alternately laminated. Also in this case, the refractive index difference between the low refractive index film and the high refractive index film is preferably 0.1 or more.
  • Examples of the high refractive index film include ZnO, TiO 2 , CeO 2 , Sb 2 O 5 , SnO 2 , ZrO 2 , and Ta 2 O 5, and examples of the low refractive index film include an SiO 2 film. .
  • an antifogging coat layer, a stainproof layer, and a water repellent layer may be formed as necessary.
  • a method for forming the antifogging coat layer, the antifouling layer, and the water repellent layer there is no particular limitation on the treatment method, treatment material, and the like as long as the antireflection function is not adversely affected.
  • a coating treatment method, antifouling treatment method, water repellent treatment method, and material can be used.
  • a method of covering the surface with a surfactant a method of adding a hydrophilic film to the surface to make it water-absorbing, a method of covering the surface with fine irregularities and increasing water absorption
  • examples thereof include a method of absorbing water using photocatalytic activity and a method of preventing water droplet adhesion by applying a super water-repellent treatment.
  • a water repellent treatment layer is formed by vapor deposition or sputtering of a fluorine-containing silane compound or the like, or after the fluorine-containing silane compound is dissolved in a solvent, it is coated to form a water repellent treatment layer. And the like.
  • the plastic lens using the urethane molded body of this embodiment may be dyed using a dye according to the purpose for the purpose of imparting fashionability or photochromic properties.
  • the lens can be dyed by a known dyeing method, it is usually carried out by the following method.
  • the lens is heated as necessary to obtain the dye.
  • the pigment used in the dyeing process is not particularly limited as long as it is a known pigment, but usually an oil-soluble dye or a disperse dye is used.
  • the solvent used in the dyeing process is not particularly limited as long as the dye used is soluble or can be uniformly dispersed.
  • a surfactant for dispersing the dye in the dyeing solution or a carrier for promoting dyeing may be added as necessary.
  • a dyeing bath is prepared by dispersing a dye and an optionally added surfactant in water or a mixture of water and an organic solvent, and an optical lens is immersed in the dyeing bath, and a predetermined temperature is set. And dye for a predetermined time.
  • the dyeing temperature and time vary depending on the desired color density, but it is usually from 120 ° C. or less to several minutes to several tens of hours, and the dye concentration in the dye bath is 0.01 to 10% by weight. Moreover, when dyeing is difficult, you may carry out under pressure.
  • the post-dyeing annealing step performed as necessary is a step of performing heat treatment on the dyed lens fabric.
  • the heat treatment is performed by removing water remaining on the surface of the lens fabric dyed in the dyeing process with a solvent or air-drying the solvent, and then, for example, in a furnace such as an infrared heating furnace in an atmospheric atmosphere or a resistance heating furnace. Let it stay for a predetermined time.
  • a furnace such as an infrared heating furnace in an atmospheric atmosphere or a resistance heating furnace.
  • the manufacturing method of the plastic polarizing lens of this embodiment includes the following steps.
  • the process (a) can be performed similarly to the process (1) of the above-mentioned “method for producing a urethane molded product”, the description thereof is omitted.
  • Step (b) A polarizing film made of thermoplastic polyester or the like is placed in the lens casting mold space so that at least one of the film surfaces is parallel to the opposing mold inner surface. A gap is formed between the polarizing film and the mold.
  • the polarizing film may be pre-shaped.
  • Step (c) Next, in the space of the lens casting mold, the polymerizable composition for an optical material of the present embodiment is injected into a gap between the mold and the polarizing film by a predetermined injection means.
  • Step (d) the lens casting mold to which the polarizing film into which the polymerizable composition for an optical material is injected is fixed is fixed is heated in an oven or in a heatable apparatus such as water in a predetermined temperature program over several hours to several tens of hours. Heat to mold.
  • the polymerization and curing temperature is 30 ° C. or less, and the polymerization of the polymerizable composition is started, and is performed at a temperature of 0 to 140 ° C. for 1 to 48 hours.
  • the plastic polarizing lens of this embodiment in which a layer made of polyurethane resin is laminated on at least one surface of the polarizing film can be obtained by taking out from the lens casting mold.
  • the plastic polarizing lens of the present embodiment is preferably subjected to annealing treatment by heating the released lens for the purpose of alleviating distortion due to polymerization.
  • the plastic polarizing lens of this embodiment is used with a coating layer on one side or both sides as required.
  • the coating layer include a primer layer, a hard coat layer, an antireflection layer, an antifogging coat layer, a stain proof layer, a water repellent layer, and the like, as in the case of a plastic spectacle lens.
  • plastic lenses for spectacles may be stored for a relatively long time in a packaged state, and the lens will be damaged depending on the left and right due to scratches, deformation due to moisture absorption, and differences in the storage period of the lens due to discoloration of the lens.
  • quality problems such as different.
  • it can be suppressed or improved by a known packaging technique (for example, JP-A-2007-99313, JP-A-2007-24998, JP-A-9-216674, etc.).
  • a known packaging technique for example, JP-A-2007-99313, JP-A-2007-24998, JP-A-9-216674, etc.
  • it is made of a material having a property of suppressing the permeation of oxygen or oxygen and water vapor (gas barrier property), and is stored in a packaging material filled with an inert gas, or the permeation of oxygen or oxygen and water vapor.
  • an oxygen scavenger composition that absorbs oxygen is wrapped with a breathable packaging material.
  • a composition that absorbs oxygen using an oxidation reaction of a reducing metal can be used.
  • the oxygen absorber using such an oxygen absorber composition includes a moisture-dependent oxygen absorber that needs to be replenished with water from the atmosphere in deoxidation, and a self-reaction that does not require rehydration from the atmosphere.
  • a desiccant such as silica gel
  • a desiccant is preferably enclosed in the packaging material.
  • an oxygen scavenger having both a oxygen scavenging function and a drying function may be used (for example, Pharma Keep (KD, KC type) manufactured by Mitsubishi Gas Chemical Co., Ltd.). Moreover, you may use the deoxidation agent which exhibits a deoxidation function in a dry atmosphere, without requiring a moisture donor.
  • an oxygen scavenger include an oxygen scavenger having a oxygen scavenging component made of a crosslinked polymer having a carbon-carbon unsaturated bond (see, for example, JP-A-11-70331), a transition metal supported on a carrier.
  • An oxygen scavenger mainly composed of activated metal see, for example, JP-A-8-38883, or an oxygen scavenger based on activated magnesium obtained by reduction after supporting a magnesium compound on a carrier (See, for example, JP-A-2001-37457), an oxygen scavenger having an oxygen-absorbing composition in which a liquid hydrocarbon oligomer having an unsaturated group as a main ingredient and an oxygen-absorption-promoting substance is supported on a carrier (for example, No. 10-113555).
  • Commercially available products include PharmaKeep (KH type) manufactured by Mitsubishi Gas Chemical Co., Ltd.
  • As the self-reactive oxygen absorber for example, a water donor is present in the oxygen absorber described in Japanese Patent Publication No. 57-31449, and water necessary for oxygen removal is supplied therefrom. There are also things.
  • Filling the packaging material with inert gas and sealing the packaging material is performed by replacing the air in the packaging material with inert gas by filling the inert gas after degassing the air in the packaging material. This can be done by sealing the opening of the packaging material.
  • the inert gas filled in the packaging material nitrogen, argon, helium, neon, or the like can be used. Nitrogen gas is preferably used from the economical viewpoint.
  • a desiccant such as silica gel
  • a preferable example of the packaging material is a material having a metal foil layer such as aluminum having a low oxygen permeability, which is made of a material that suppresses at least oxygen permeation.
  • the method for producing a polyurethane molded body (resin) of this embodiment includes the following steps (i) to (iii).
  • the components (A) to (D) the component (E) described later, and the other components, those described above can be used.
  • step (i) the alcohol (B) is added to the isocyanate (A) so that the ratio of the hydroxyl group to the isocyanate group of the isocyanate (A) is in the range of 10 mol% to 20 mol%, and these are reacted.
  • the reaction is carried out in the presence of an acidic phosphate ester (C), a benzotriazole compound (D) and a hindered amine compound.
  • the isocyanate (A) and the acidic phosphate ester (C) may react to precipitate a white solid with low solubility, If the polymerization is carried out as it is, the transparency of the resulting resin is impaired, and there are cases where it is not suitable for eyeglass use.
  • step (i) an isocyanate (A) and an alcohol (B) having a hydroxyl group ratio in the range of 10 mol% to 20 mol% with respect to the isocyanate group of the isocyanate (A) are converted into an acidic phosphate ester (C ), A benzotriazole-based compound (D), and a hindered amine-based compound are preferably reacted.
  • the reaction temperature is not particularly limited, but it is preferably performed at room temperature (30 ° C. or lower).
  • the prepolymer obtained in step (i) can be obtained with a viscosity of 1000 mPa ⁇ s or less at 20 ° C. If it is this viscosity range, since the handling of a prepolymer is easy and there is no trouble in the operation
  • the alcohol (B) is added to the isocyanate (A) so that the ratio of the hydroxyl group to the isocyanate group of the isocyanate (A) is in the range of 10 mol% to 20 mol%.
  • step (ii) the alcohol (B) is further added to and mixed with the prepolymer obtained in step (i) at a temperature of 30 ° C. or lower to obtain a polymerizable composition.
  • the alcohol (B) added in the step (ii) is a total amount of the alcohol (B) used for producing the polyurethane resin, and the remaining amount after subtracting the amount of alcohol used for prepolymerization is Added.
  • the mixing step of step (ii) is performed at room temperature (30 ° C. or lower), and can suppress casting traces and striae of the obtained molded body. Moreover, since the rapid increase in viscosity of the polymerizable composition can be suppressed, the viscosity of the resulting polymerizable composition is 1000 mPa ⁇ s or less at 20 ° C., and the subsequent injection into a molding mold is facilitated. In addition, in the case of using the two-liquid mixing type discharge device (dispenser), it is possible to suppress the adhesion loss and the contamination of the equipment to be used, and it is possible to prevent the clogging of piping and the failure of equipment such as the pump.
  • the two-liquid mixing type discharge device dispenser
  • the mixing device in step (ii) is not particularly limited, and the above-mentioned dynamic mixer type dispenser can be used.
  • the mixer of the dispenser includes a line mixer type having no mixer driving unit for stirring and a dynamic mixer type having a driving unit. From the viewpoint of stirring efficiency of the polymerizable composition of the present embodiment, a dynamic mixer type dispenser is used. More preferred.
  • the mixing device 10 of the present embodiment includes a cylindrical container 12, a shaft 14 inserted along the central axis direction from above the container 12, and an outer peripheral surface of the shaft 14.
  • positioned at the lower end of the container 12 are provided.
  • the container 12 may be provided with a cooling means, and can be cooled to 30 ° C. or lower when mixing the prepolymer supplied into the container 12 and the alcohol (B).
  • the upper part of the shaft 14 is connected to the mixer drive unit, and can be rotated at a predetermined rotational speed.
  • the first supply unit 18 includes supply means such as a pump (not shown) and a tank, and can supply the prepolymer into the container 12 at a predetermined speed.
  • the second supply unit 20 includes supply means such as a pump (not shown) and a tank, and can supply the alcohol (B) into the container 12 at a predetermined speed.
  • a dynamic mixer type dispenser (mixing device 10), a two-component mixing type discharge device (product name: Super Shot Series (manufactured by Sosei Kogyo Co., Ltd.), product name: MAK series (manufactured by M & K Corporation), etc. ) And the like.
  • step (ii) includes the following steps.
  • Step a In the container 12, the prepolymer is fed from the first supply unit 18 and the alcohol (B) is fed from the second supply unit 20.
  • Step b By rotating the shaft 14, the stirring blade 16 wound in a screw shape along the outer peripheral surface of the shaft 14 mixes the prepolymer and the alcohol (B) at a temperature of 30 ° C. or less.
  • the polymerizable composition is prepared by moving downward while discharging, and the obtained polymerizable composition is discharged from the discharge portion 22.
  • the order in which the prepolymer and alcohol (B) are fed into the container 12 is not particularly limited, but is preferably simultaneous. Further, the place for feeding the liquid is not particularly limited, and is preferably perpendicular to the blade. In addition, it is more preferable to supply a highly viscous liquid along the shaft because the stirring efficiency can be improved.
  • the number of rotations of the mixer of the dispenser (the number of rotations of the shaft 14) is in the range of 1000 rpm to 4000 rpm, preferably in the range of 1500 rpm to 3500 rpm, and more preferably in the range of 2000 rpm to 3000 rpm. If it is the said range, since it can mix uniformly, the stripe-shaped nonuniformity which arises by mixing shortage to the molded object obtained can be suppressed.
  • the rate at which the polymerizable composition is discharged from the discharge portion 22 is in the range of 0.5 g / s to 4.0 g / s, preferably in the range of 0.5 g / s to 3.0 g / s, and 1.0 g
  • the range of / s to 3.0 g / s is more preferable. If it is the said range, a cast mark and striae can be suppressed by controlling the stripe-like nonuniformity and polymerizability which arise by mixing shortage to the molded object obtained.
  • the viscosity of the resulting polymerizable composition can be further reduced by using a dynamic mixer-type dispenser, it is more preferable because it can effectively suppress mass production and cast marks and striae of the molded product.
  • the viscosity of the polymerizable composition obtained in step b can be 500 mPa ⁇ s or less at 20 ° C.
  • step (iii) a polyurethane resin is produced by polymerizing the prepolymer and alcohol (B) contained in the polymerizable composition.
  • a method for obtaining a molded body made of a polyurethane resin will be described as an example.
  • the polymerizable composition obtained in the present embodiment is injected into a molding mold (mold) held by a gasket or a tape. Since the polymerizable composition obtained by the production method of the present embodiment has a viscosity of 1000 mPa ⁇ s or less and can be easily handled at room temperature (30 ° C. or less), the casting temperature is 30 ° C. or less. It is possible. At this time, depending on the physical properties required for the obtained molded article, it is preferable to perform a defoaming treatment under reduced pressure, a filtration treatment such as pressurization, reduced pressure, or the like, if necessary.
  • the heating start temperature is set to 30 ° C. or less, and the temperature is gradually raised from the temperature to polymerize the polymerizable composition.
  • the heating start temperature exceeds 30 ° C., the mold release property of the molded product after polymerization is remarkably deteriorated, and striae are easily generated in the obtained molded product.
  • the heating start temperature of the polymerizable composition is preferably 30 ° C. or less.
  • the polymerization conditions are not limited because the conditions vary greatly depending on the type of isocyanate or alcohol used, the shape of the mold, etc., but the polymerization is carried out at a temperature of about 0 to 140 ° C. for 1 to 48 hours.
  • the molded body made of the polyurethane resin according to this embodiment may be subjected to a treatment such as annealing as necessary.
  • the treatment temperature is usually in the range of 50 to 150 ° C., preferably 90 to 140 ° C., more preferably 100 to 130 ° C.
  • the plastic lens using the polyurethane molded body of the present embodiment may be used with a coating layer on one side or both sides, if necessary.
  • the coating layer include a primer layer, a hard coat layer, an antireflection layer, an antifogging coat layer, a stainproof layer, and a water repellent layer.
  • Each of these coating layers may be used alone, or a plurality of coating layers may be used in multiple layers. When a coating layer is applied to both sides, a similar coating layer or a different coating layer may be applied to each surface.
  • description is abbreviate
  • the plastic lens using the polyurethane molded product of the present embodiment may be dyed using a dye according to the purpose for the purpose of imparting fashionability or photochromic properties.
  • a dye according to the purpose for the purpose of imparting fashionability or photochromic properties.
  • staining method are the same as that of 1st Embodiment, description is abbreviate
  • step (iii) includes the following step (b) and step (c).
  • step (b): The polymerizable composition of this embodiment is injected into the gap between the polarizing film and the mold.
  • it demonstrates in order along each process.
  • Step (a) A polarizing film made of thermoplastic polyester or the like is placed in the lens casting mold space so that at least one of the film surfaces is parallel to the opposing mold inner surface. A gap is formed between the polarizing film and the mold.
  • the polarizing film may be pre-shaped.
  • Step (b) Next, in the space of the lens casting mold, the polymerizable composition of the present embodiment is injected into a gap between the mold and the polarizing film by a predetermined injection means.
  • Step (c) the lens casting mold to which the polarizing film into which the polymerizable composition has been injected is fixed is heated in a heatable apparatus such as an oven or in water for several hours to several tens of hours with a predetermined temperature program. Cured and molded.
  • the polymerization curing temperature is preferably 30 ° C. or less.
  • the polymerization conditions are not limited because the conditions vary greatly depending on the type of isocyanate or alcohol used, the shape of the mold, etc., but the polymerization is carried out at a temperature of about 0 to 140 ° C. for 1 to 48 hours.
  • the plastic polarizing lens of this embodiment in which a layer made of polyurethane resin is laminated on at least one surface of the polarizing film can be obtained by taking out from the lens casting mold.
  • the plastic polarizing lens of the present embodiment is preferably subjected to annealing treatment by heating the released lens for the purpose of alleviating distortion due to polymerization.
  • the plastic polarizing lens of this embodiment is used with a coating layer on one side or both sides as required.
  • the coating layer include a primer layer, a hard coat layer, an antireflection layer, an antifogging coat layer, a stain proof layer, a water repellent layer, and the like, as in the case of a plastic spectacle lens.
  • these coating layers in this embodiment are the same as that of 1st Embodiment, description is abbreviate
  • plastic lenses for spectacles may be stored for a relatively long time in a packaged state, and the lens will be damaged depending on the left and right due to scratches, deformation due to moisture absorption, and differences in the storage period of the lens due to discoloration of the lens.
  • quality problems such as different.
  • it can be suppressed or improved by a known packaging technique (for example, JP-A-2007-99313, JP-A-2007-24998, JP-A-9-216674, etc.).
  • the packaging technique in this embodiment is the same as that of 1st Embodiment, description is abbreviate
  • the mixing apparatus of FIG. 1 only needs to include each component, and is not particularly limited in shape, position in the apparatus, and the like.
  • the ratio of secondary hydroxyl groups to the total number of moles of primary and secondary hydroxyl groups contained in the alcohol was calculated using proton nuclear magnetic resonance spectrum 1 H-NMR (400 MHz).
  • the measurement conditions are as follows. Apparatus: ECP-400P (manufactured by JEOL Ltd.), integration count: 16 times, observation range: 8000 Hz After diluting the alcohol to be measured with deuterated chloroform, an excess of trifluoroacetic anhydride was charged with respect to the number of moles of primary and secondary hydroxyl groups contained in the alcohol at 20 to 25 ° C. for 1 hour. It was made to react and it was confirmed that reaction was complete.
  • the refractive index, specific gravity, transparency, striae, heat resistance, and YI value were evaluated by the following methods.
  • Refractive index (ne) Measured at 20 ° C. using a Purfrich refractometer.
  • -Transparency The obtained lens was irradiated on a projector in a dark place, and the presence or absence of cloudiness, opaque material, and adhesion component elution from the tape was visually determined. Cloudy, opaque substances, and those in which no elution from the tape was confirmed were “transparent”, and those that were confirmed were “not transparent”.
  • Example 1 58.8 g of trimethylolpropane propylene oxide adduct (manufactured by Bayer; Desmophen 4011T) (ratio of secondary hydroxyl groups determined by the above measurement method: 70%), ZelecUN (manufactured by STEPAN; acid phosphate ester) 0.6 g TINUVIN292 (manufactured by BASF; light stabilizer) was mixed and dissolved to obtain a uniform solution.
  • trimethylolpropane propylene oxide adduct manufactured by Bayer; Desmophen 4011T
  • ZelecUN manufactured by STEPAN; acid phosphate ester
  • TINUVIN292 manufactured by BASF; light stabilizer
  • the evaluation results of the molded products are shown in Table 1.
  • a 1 H-NMR measurement chart of the propylene oxide adduct of trimethylolpropane is shown in FIG. In FIG. 2, “A” indicates a peak with a chemical shift of 5.3 to 5.6 ppm, and “B” indicates a peak with a chemical shift of 4.2 to 4.5 ppm.
  • Example 2 56.22 g of trimethylolpropane propylene oxide adduct (manufactured by Bayer; Desmophen 4011T) (ratio of secondary hydroxyl groups determined by the above measurement method: 70%), ZelecUN (manufactured by STEPAN; acid phosphate ester) 0.6 g TINUVIN292 (manufactured by BASF; light stabilizer) was mixed and dissolved to obtain a uniform solution.
  • trimethylolpropane propylene oxide adduct manufactured by Bayer; Desmophen 4011T
  • ZelecUN manufactured by STEPAN; acid phosphate ester
  • TINUVIN292 manufactured by BASF; light stabilizer
  • the obtained molded body was further annealed at 120 ° C. for 2 hours.
  • the obtained molded body was transparent, no striae were observed, the refractive index (ne) was 1.54, and Tg was 105 ° C., which was suitable for use as an optical material.
  • the evaluation results of the molded products are shown in Table 1.
  • Example 3 A molded product was obtained in the same procedure as in Example 2, except that the amount of benzotriazole compound (manufactured by Kyodo Yakuhin; Biosorb 583) was changed to 3.00 g. The evaluation results of the molded products are shown in Table 1.
  • Example 4 A molded product was obtained in the same procedure as in Example 2, except that the amount of benzotriazole compound (manufactured by Kyodo Yakuhin; Biosorb 583) was changed to 10.00 g. The evaluation results of the molded products are shown in Table 1.
  • Example 5 Propylene oxide adduct of glycerol (Mitsui Chemicals; Actol T250) 50.75 g (ratio of secondary hydroxyl groups determined by the above measurement method: 88%), ZelecUN (STEPAN; acid phosphate ester) 0.6 g TINUVIN292 (manufactured by BASF; light stabilizer) was mixed and dissolved to obtain a homogeneous solution, and the blending amount of the mixture of 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate was changed to 49.25 g. Except for the above, a molded body was obtained in the same procedure as in Example 2. The evaluation results of the molded products are shown in Table 1.
  • Example 6 A molded body was obtained in the same procedure as in Example 5, except that the amount of benzotriazole compound (manufactured by Kyodo Yakuhin; Biosorb 583) was changed to 3.00 g. The evaluation results of the molded products are shown in Table 1.
  • Example 7 A molded body was obtained in the same procedure as in Example 5 except that the amount of benzotriazole compound (manufactured by Kyodo Yakuhin; Biosorb 583) was changed to 10.00 g. The evaluation results of the molded products are shown in Table 1.
  • Example 8 The molded product was obtained in the same procedure as in Example 2, except that 53.94 g of the propylene oxide adduct of trimethylolpropane was changed to 46.06 g of the mixture of 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate. Obtained.
  • the evaluation results of the molded products are shown in Table 1.
  • Example 9 A molded body was obtained in the same procedure as in Example 8, except that the amount of benzotriazole compound (manufactured by Kyodo Yakuhin; Biosorb 583) was changed to 3.00 g. The evaluation results of the molded products are shown in Table 1.
  • Example 10 A molded body was obtained in the same procedure as in Example 8 except that the amount of benzotriazole compound (manufactured by Kyodo Yakuhin; Biosorb 583) was changed to 10.00 g. The evaluation results of the molded products are shown in Table 1.
  • Example 11 A molded body was obtained in the same procedure as in Example 9, except that 1.5 g of 2,6-di-tert-butyl-p-cresol was added. The evaluation results of the molded products are shown in Table 1.
  • Example 12 A molded body was obtained in the same procedure as in Example 10 except that 1.5 g of 2,6-di-tert-butyl-p-cresol was added. The evaluation results of the molded products are shown in Table 1.
  • Example 13 A molded product was obtained in the same procedure as in Example 2, except that 48.37 g of propylene oxide adduct of glycerol and 51.63 g of a mixture of 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate were changed. .
  • the evaluation results of the molded products are shown in Table 1.
  • Example 14 A molded body was obtained in the same procedure as in Example 13 except that the addition amount of the benzotriazole compound (manufactured by Kyodo Yakuhin; Biosorb 583) was changed to 3.00 g. The evaluation results of the molded products are shown in Table 1.
  • Example 15 A molded article was obtained in the same procedure as in Example 13 except that the amount of benzotriazole compound (manufactured by Kyodo Yakuhin; Biosorb 583) was changed to 10.00 g. The evaluation results of the molded products are shown in Table 1.
  • Example 16 A molded body was obtained in the same procedure as in Example 14 except that 1.5 g of 2,6-di-tert-butyl-p-cresol was added. The evaluation results of the molded products are shown in Table 1.
  • Example 17 A molded body was obtained in the same procedure as in Example 16 except that the amount of benzotriazole compound (manufactured by Kyodo Yakuhin; Biosorb 583) was changed to 10.00 g. The evaluation results of the molded products are shown in Table 1.
  • Example 18 Except that the mixture of 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate was changed to 48.25 g and the trimethylol propane propylene oxide adduct 51.75 g, the molded product was processed in the same procedure as in Example 1. Obtained. The evaluation results of the molded products are shown in Table 1.
  • Example 19 46.06 g of a mixture of 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate, 3.0 g of a benzotriazole compound (manufactured by Kyodo Yakuhin; Biosorb 583), ZelecUN (manufactured by STEPAN; acidic phosphate ester) 0.6 g and 0.40 g of TINUVIN292 (manufactured by BASF; hindered amine compound) were mixed and dissolved to obtain a uniform solution.
  • a benzotriazole compound manufactured by Kyodo Yakuhin; Biosorb 583
  • ZelecUN manufactured by STEPAN; acidic phosphate ester
  • TINUVIN292 manufactured by BASF; hindered amine compound
  • step (ii) After maintaining at 20 ° C., 45.85 g of a propylene oxide adduct of trimethylolpropane (manufactured by Bayer; Desmophen 4011T) was uniformly mixed at 20 ° C. with a stirrer bar (step (ii)).
  • the resulting polymerizable composition had a viscosity at 20 ° C. of 400 mPa ⁇ s, and it was confirmed that there was no problem in operation.
  • this polymerizable composition was poured into a cavity having a 2 mm-thick gap consisting of two opposing glass flat plates called a mold, put into a polymerization oven, and gradually raised from 30 ° C. to 130 ° C.
  • Example 20 A molded product was obtained in the same procedure as in Example 9, except that 2.0 g of 2,6-di-tert-butyl-p-cresol was added. The evaluation results of the molded products are shown in Table 1.
  • Example 21 The same method as in Example 19 except that the mixing in the step (ii) was performed at 30 ° C. using a super shot series (product name) which is a two-component mixing type discharge device manufactured by Nippon Sosei Kogyo Co., Ltd. Then, the polymerizable composition was prepared. The mixer was rotated at 2500 rpm and the discharge speed was 1.0 g / s. The resulting polymerizable composition had a viscosity at 20 ° C. of 300 mPa ⁇ s, and it was confirmed that there was no problem in operation.
  • a super shot series product name
  • the discharge speed was 1.0 g / s.
  • the resulting polymerizable composition had a viscosity at 20 ° C. of 300 mPa ⁇ s, and it was confirmed that there was no problem in operation.
  • the polymerizable composition was poured into a cavity having a 2 mm-thick gap made of two opposing glass plates called molds, placed in a polymerization oven, and gradually heated from 30 ° C. to 130 ° C. over 24 hours. Polymerized. After the polymerization was completed, the product was taken out from the oven and released from the mold. The releasability was good and no peeling from the mold was observed.
  • the obtained molded body was further annealed at 120 ° C. for 2 hours. The obtained molded body was transparent, no striae were observed, the refractive index (ne) was 1.55, and Tg was 101 ° C., which was suitable for use as an optical material.
  • the ⁇ YI value of this resin in the QUV irradiation test was 3.5, indicating good light resistance. The results are shown in Table 1.
  • Example 7 A molded body was obtained in the same procedure as in Example 13, except that the benzotriazole-based compound (manufactured by Kyodo Yakuhin; Biosorb 583) was changed to 12.00 g. This molded body was opaque. Moreover, since precipitates and the like were also observed, it was impossible to measure the refractive index.
  • Comparative Example 8 A molded article was obtained in the same manner as in Example 8, except that the benzotriazole compound was changed to 2,2 ′, 4,4′-tetrahydroxybenzophenone. This molded body was opaque. Moreover, since precipitates and the like were also observed, it was impossible to measure the refractive index.
  • Example 9 A molded article was obtained in the same procedure as in Example 9, except that the benzotriazole compound was changed to 2,2 ′, 4,4′-tetrahydroxybenzophenone. This molded body was opaque. Moreover, since precipitates and the like were also observed, it was impossible to measure the refractive index.
  • Comparative Example 10 A molded article was obtained in the same manner as in Example 13 except that the benzotriazole compound was changed to 2,2 ′, 4,4′-tetrahydroxybenzophenone. This molded body was opaque. Moreover, since precipitates and the like were also observed, it was impossible to measure the refractive index.
  • Example 15 A molded product was obtained in the same manner as in Example 14, except that 4-methoxycinnamic acid-2-ethylhexyl was used instead of the benzotriazole compound. The result was poor light resistance. The evaluation results of the molded products are shown in Table 1.
  • Example 16 A molded product was obtained in the same procedure as in Example 9, except that 6.0 g of 4-methoxycinnamic acid-2-ethylhexyl was added instead of 3.0 g of the benzotriazole compound. This molded body was opaque. Moreover, since precipitates and the like were also observed, it was impossible to measure the refractive index.
  • ii-1 Mixture of 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate
  • ii-1 Propylene oxide adduct of trimethylolpropane (Bayer, Desmophen 4011T)
  • ii-2 Propylene oxide adduct of glycerol (manufactured by Mitsui Chemicals, Actol T250)
  • iii-1 2- (2-hydroxy-5-tert-octylphenyl) -2H-benzotriazole
  • iii-2 2,2 ', 4,4'-tetrahydroxybenzophenone
  • iii-3 2-Ethylhexyl 4-methoxycinnamate iv-1: 2,6-di-tert-butyl-p-cresol
  • the urethane molded product obtained from the polymerizable composition for an optical material of the present invention can be suitably used in various optical materials that are required to have high transparency, particularly spectacle lenses.
  • the present invention can also take the following aspects.
  • A one or more isocyanates containing two or more isocyanato groups, including aromatic isocyanates;
  • C The following general formula (1) (Wherein m represents an integer of 1 or 2, n represents an integer of 0 to 18, R 1 represents an alkyl group having 1 to 20 carbon atoms, R 2 and R 3 each independently represents a hydrogen atom, Represents a methyl group or an ethyl group.)
  • An acidic phosphate ester represented by A polymerizable composition for an optical material, wherein the ratio of secondary hydroxyl groups is 50% or more with respect to the total number of moles of primary and secondary hydroxyl groups contained in the alcohol (B).
  • Alcohol (B) is glycerol, diglycerol, trimethylolpropane, pentaerythritol, di (trimethylolpropane), ethylene oxide adduct of glycerol, ethylene oxide adduct of trimethylolpropane, ethylene oxide addition of pentaerythritol , A propylene oxide adduct of glycerol, a propylene oxide adduct of trimethylolpropane, and a propylene oxide adduct of pentaerythritol, and the polymerizable composition for an optical material according to [a1] .
  • the alcohol (B) includes one or more compounds selected from a propylene oxide adduct of glycerol, a propylene oxide adduct of trimethylolpropane, and a propylene oxide adduct of pentaerythritol, [a1] or [ a2] A polymerizable composition for an optical material.
  • the aromatic isocyanate is 2,4-tolylene diisocyanate, or a mixture of 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate, according to any one of [a1] to [a3] Polymerizable composition for optical material.
  • the acidic phosphate ester (C) is contained in an amount of 0.1 to 3.0 parts by weight with respect to 100 parts by weight of the total of the isocyanate (A) and the alcohol (B).
  • [A7] A molded product obtained from the polymerizable composition for optical materials according to any one of [a1] to [a6].
  • [A8] An optical material comprising the molded article according to [a7].
  • [A9] A plastic lens made of the optical material according to [a8].
  • the present invention can also take the following aspects.
  • the alcohol (B) is glycerol, diglycerol, trimethylolpropane, pentaerythritol, di (trimethylolpropane), glycerol ethylene oxide adduct, trimethylolpropane ethylene oxide adduct, pentaerythritol ethylene oxide addition , A propylene oxide adduct of glycerol, a propylene oxide adduct of trimethylolpropane, and a propylene oxide adduct of pentaerythritol, and the polymerizable composition for optical materials according to [b1] .
  • the alcohol (B) includes one or more compounds selected from a propylene oxide adduct of glycerol, a propylene oxide adduct of trimethylolpropane, and a propylene oxide adduct of pentaerythritol, [b1] or [ b2] polymerizable composition for optical materials.
  • [B4] The any one of [b1] to [b3], wherein the aromatic isocyanate is 2,4-tolylene diisocyanate or a mixture of 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate.
  • a polymerizable composition for optical materials is 2,4-tolylene diisocyanate or a mixture of 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate.
  • the acidic phosphate ester (C) is contained in an amount of 0.1 to 3.0 parts by weight with respect to 100 parts by weight of the total of the isocyanate (A) and the alcohol (B).
  • the present invention can also take the following aspects.
  • the following alcohol (B) is added to the following isocyanate (A) so that the ratio of the hydroxyl group to the isocyanate group of the isocyanate (A) is in the range of 10 mol% to 20 mol%.
  • a process for producing a polyurethane resin comprising: Isocyanate (A): one or more isocyanates having two or more isocyanato groups, including aromatic isocyanates, Alcohol (B): composed of one or more alcohols having two or more hydroxyl groups, and the ratio of secondary hydroxyl groups to 50 moles of the total number of primary and secondary hydroxyl groups contained in alcohol (B) % Or more.
  • Step (ii) A cylindrical container; A shaft inserted from above the container along the central axis direction; A stirring blade wound in a screw shape along the outer peripheral surface of the shaft; A first supply unit disposed above the container and for feeding a prepolymer into the container; A second supply unit that is disposed above the container and feeds alcohol (B) into the container; A discharge unit disposed at the lower end of the container; In the container, a step of feeding a prepolymer from the first supply unit and a step of feeding alcohol (B) from the second supply unit; By rotating the shaft, the stirring blade wound in a screw shape along the outer peripheral surface of the shaft moves downward while mixing the prepolymer and alcohol (B) at a temperature of 30 ° C. or less.
  • the aromatic isocyanate contained in the isocyanate (A) is 2,4-tolylene diisocyanate or a mixture of 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate, [c1] to [c7 ]
  • the manufacturing method in any one of.
  • Alcohol (B) is glycerol, diglycerol, trimethylolpropane, pentaerythritol, di (trimethylolpropane), ethylene oxide adduct of glycerol, ethylene oxide adduct of trimethylolpropane, ethylene oxide addition of pentaerythritol , A propylene oxide adduct of glycerol, a propylene oxide adduct of trimethylolpropane, and a propylene oxide adduct of pentaerythritol, or any one of [c1] to [c8] Production method.
  • the alcohol (B) contains one or more compounds selected from a propylene oxide adduct of glycerol, a propylene oxide adduct of trimethylolpropane, and a propylene oxide adduct of pentaerythritol, from [c1] to [c1] c9].
  • the acidic phosphate ester (C) is contained in an amount of 0.1 to 3.0 parts by weight with respect to 100 parts by weight of the total of the isocyanate (A) and the alcohol (B), [c1] To [c10].
  • [C14] A polyurethane resin obtained by the production method according to any one of [c1] to [c13].
  • the step (iii) In the method for producing a polyurethane resin according to any one of [c1] to [c13], The step (iii) Injecting the polymerizable composition into a mold; Polymerizing the prepolymer and alcohol (B) contained in the polymerizable composition in the mold; A process for producing a polyurethane molded product, comprising: [C16] A polyurethane molded product obtained by the production method according to [c15].
  • [C17] An optical material comprising the polyurethane molded product according to [c16].
  • [C18] A plastic lens made of the optical material according to [c17].
  • step (iii) Injecting the polymerizable composition obtained in step (ii) into the gap between the polarizing film and the mold; Polymerizing and curing the polymerizable composition, and laminating a layer made of a polyurethane resin on at least one surface of the polarizing film;
  • a method for producing a plastic polarizing lens comprising: [C20] A plastic polarizing lens obtained by the production method according to [c19].

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 本発明の光学材料用重合性組成物は、(A)芳香族イソシアネートを含む、イソシアナト基を二つ以上有する一種以上のイソシアネートと、(B)水酸基を二つ以上有する一種以上のアルコールと、(C)下記一般式(1)で表される酸性リン酸エステルと、(D)ベンゾトリアゾール系化合物と、を含んでなり、アルコール(B)に含まれる1級と2級の水酸基の合計モル数に対して、2級の水酸基の割合が50%以上であり、イソシアネート(A)およびアルコール(B)との合計100重量部に対して、ベンゾトリアゾール系化合物(D)を1~11重量部の量で含む。

Description

光学材料用重合性組成物及びそれより得られる光学材料及びその製造方法
 本発明は、ウレタン成形体を与える光学材料用重合性組成物及びそれより得られる光学材料及びその製造方法に関するものである。
 プラスチックレンズは、無機レンズに比べ、軽量で割れ難く、染色が可能なため、眼鏡レンズ、カメラレンズ等の光学素子に急速に普及してきており、これまでに様々な眼鏡レンズ用の樹脂が開発され使用されている。その中でも代表的な例として、ジエチレングリコールビスアリルカーボネートやジアリルイソフタレートから得られるアリル樹脂や、(メタ)アクリレートから得られる(メタ)アクリル樹脂、イソシアネートとチオールから得られるチオウレタン樹脂が挙げられる。
 近年、チオウレタン樹脂よりも低屈折率である、イソシアネートとアルコールからなるウレタン樹脂が開発されている(特許文献1~5)。チオウレタン樹脂よりも低屈折率であるものの、低価格なレンズ材料として期待されている。例えば、特許文献4には、イソシアネートとして4,4'-メチレン-ビス(シクロヘキシルイソシアネート)と、アルコールとしてトリメチロールプロパンプロポキシレートとトリメチロールプロパンから得られたウレタン樹脂が記載されている。
 また、イソシアネートとして、高屈折率を有しなおかつ安価で入手可能なものとしてトリレンジイソシアネートやジフェニルメタンジイソシアネートがあり、これらのポリイソシアネート化合物を用いた機能性レンズや高屈折率レンズの研究が行われている。
 特許文献6には、イソシアネートとして、安価で入手容易なトリレンジイソシアネートを使用したウレタン樹脂を製造した例が、比較例5に記載されている。市販品のイソシアネートとしては、m-キシリレンジイソシアネート、2,5-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタン、2,6-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタン、1,3-ビス(イソシアナトメチル)シクロヘキサン、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、4,4'-メチレン-ビス(シクロヘキシルイソシアネート)などが挙げられるが、トリレンジイソシアネートの市場価格はこれら市販品の中でも最も安価であり、トリレンジイソシアネートを使用することでより安価な眼鏡レンズを市場に提供できるため産業上にも大きく貢献できる。しかし、トリレンジイソシアネートを使用してウレタン樹脂を製造した例が記載されている比較例5には、成形不良により硬化物が得られなかったことが記載されている。
 特許文献7には、芳香環を有するポリイソシアナート化合物と、ポリチオール化合物と、ベンゾトリアゾール系化合物と、フェノール類とを含有する組成物から得られる、チオウレタン樹脂からなるプラスチックレンズが記載されている。当該文献には、耐候性に優れるプラスチックレンズを得られることが記載されている。
国際公開2008/92597号パンフレット 特表2009-520057号公報 国際公開2010/43392号パンフレット 特開2011-012141号公報 特表2012-521478号公報 特開2008-144154号公報 特開2012-181268号公報
 トリレンジイソシアネートのような芳香族ポリイソシアネートを使用したウレタン樹脂からなるレンズは黄変の発生が認められることがあり、品質に改善の余地があった。
 また、特許文献6の比較例5には、芳香族イソシアネートであるトリレンジイソシアネートとアルコールとの重合において、反応が速すぎるために成形体を得られなかったことが記載されている。ウレタン組成物の硬化速度はチオウレタン組成物と比較して反応性が高く、特に芳香族イソシアネートを使用した場合はさらに反応性が高いため、調合中に発熱を伴いながら急激に粘度が上がり成型モールドに注型することが困難であり、調合や注型時の作業性に問題があった。
 特許文献7には、ウレタン樹脂からなるプラスチックレンズについて、耐光性改善に関して記載されていない。
 このような従来技術の問題点に鑑み、本発明者らは、調合や注型時における作業性に優れ、屈折率、耐熱性、透明性、耐光性に優れたポリウレタン成形体が得られる、光学材料用重合性組成物を得るべく鋭意検討を行った。
 本発明者らは鋭意検討した結果、芳香族イソシアネートおよび多官能アルコールを用い、特定の条件のもと重合させた透明樹脂において、特定の添加剤を配合させることにより、屈折率、耐熱性、透明性、耐光性に優れたポリウレタン成形体およびその製造方法を見出し発明を完成させるに至った。
 即ち、本発明は以下に示される。
[1](A)芳香族イソシアネートを含む、イソシアナト基を二つ以上有する一種以上のイソシアネートと、
(B)水酸基を二つ以上有する一種以上のアルコールと、
(C)下記一般式(1)
Figure JPOXMLDOC01-appb-C000002
(式中、mは1または2の整数を示し、nは0~18の整数を示し、Rは炭素数1~20のアルキル基を示し、R、Rはそれぞれ独立に水素原子、メチル基またはエチル基を示す。)
で表される酸性リン酸エステルと、
(D)ベンゾトリアゾール系化合物と、を含んでなり、
 アルコール(B)に含まれる1級と2級の水酸基の合計モル数に対して、2級の水酸基の割合が50%以上であり、
 イソシアネート(A)およびアルコール(B)との合計100重量部に対して、ベンゾトリアゾール系化合物(D)を1~11重量部の量で含む、光学材料用重合性組成物。
[2] アルコール(B)が、グリセロール、ジグリセロール、トリメチロールプロパン、ペンタエリスリトール、ジ(トリメチロールプロパン)、グリセロールのエチレンオキサイド付加体、トリメチロールプロパンのエチレンオキサイド付加体、ペンタエリスリトールのエチレンオキサイド付加体、グリセロールのプロピレンオキサイド付加体、トリメチロールプロパンのプロピレンオキサイド付加体、およびペンタエリスリトールのプロピレンオキサイド付加体から選ばれる1種以上の化合物を含む、[1]に記載の光学材料用重合性組成物。
[3] アルコール(B)が、グリセロールのプロピレンオキサイド付加体、トリメチロールプロパンのプロピレンオキサイド付加体、およびペンタエリスリトールのプロピレンオキサイド付加体から選ばれる1種以上の化合物を含む、[1]または[2]に記載の光学材料用重合性組成物。
[4] 前記芳香族イソシアネートが、2,4-トリレンジイソシアネート、または2,4-トリレンジイソシアネートと2,6-トリレンジイソシアネートの混合物である、[1]から[3]のいずれかに記載の光学材料用重合性組成物。
[5] アルコール(B)の水酸基に対するイソシアネート(A)のイソシアナト基のモル比が、0.8~1.2である、[1]から[4]のいずれかに記載の光学材料用重合性組成物。
[6] 酸性リン酸エステル(C)が、イソシアネート(A)とアルコール(B)の合計100重量部に対して、0.1重量部~3重量部の量で含まれる、[1]から[5]のいずれかに記載の光学材料用重合性組成物。
[7] ヒンダードアミン系化合物をさらに含み、
 該ヒンダードアミン系化合物が、イソシアネート(A)とアルコール(B)の合計100重量部に対して、0.1重量部~2重量部の量で含まれる、[1]から[6]のいずれかに記載の光学材料用重合性組成物。
[8] ベンゾトリアゾール系化合物(D)が、イソシアネート(A)およびアルコール(B)との合計100重量部に対して2.1~10重量部の量で含まれる、[1]から[7]のいずれかに記載の光学材料用重合性組成物。
[9] フェノール系化合物(E)をさらに含み、
 該フェノール系化合物(E)が、イソシアネート(A)およびアルコール(B)との合計100重量部に対して、0.5~5重量部の量で含まれる、[1]から[8]のいずれかに記載の光学材料用重合性組成物。
[10] アルコール(B)と酸性リン酸エステル(C)とベンゾトリアゾール系化合物(D)とを混合した後に、芳香族イソシアネートを含む、イソシアナト基を二つ以上有する一種以上のイソシアネート(A)を30℃以下で混合し、[1]から[8]のいずれかに記載の光学材料用重合性組成物を得る工程と、
 前記重合性組成物を鋳型内に注型する工程と、
 30℃以下から前記重合性組成物の重合を開始し、該組成物を重合する工程と、
を含むポリウレタン成形体の製造方法。
[11] 光学材料用重合性組成物を得る前記工程は、アルコール(B)と酸性リン酸エステル(C)とベンゾトリアゾール系化合物(D)とフェノール系化合物(E)とを混合した後に、芳香族イソシアネートを含む、イソシアナト基を二つ以上有する一種以上のイソシアネート(A)を30℃以下で混合し、[9]に記載の光学材料用重合性組成物を得る工程を含む、[10]に記載のポリウレタン成形体の製造方法。
[12] アルコール(B)と酸性リン酸エステル(C)とベンゾトリアゾール系化合物(D)とを混合した後に、芳香族イソシアネートを含む、イソシアナト基を二つ以上有する一種以上のイソシアネート(A)を30℃以下で混合し、[1]から[8]のいずれかに記載の光学材料用重合性組成物を得る工程と、
 レンズ注型用鋳型内に、偏光フィルムの少なくとも一方の面がモールドから離隔した状態で、該偏光フィルムを固定する工程と、
 前記偏光フィルムと前記モールドとの間の空隙に、前記重合性組成物を注入する工程と、
 30℃以下から前記重合性組成物の重合を開始し、該組成物を重合硬化して、前記偏光フィルムの少なくとも一方の面にポリウレタン樹脂からなる層を積層する工程と、
を含む、プラスチック偏光レンズの製造方法。
[13] 光学材料用重合性組成物を得る前記工程は、アルコール(B)と酸性リン酸エステル(C)とベンゾトリアゾール系化合物(D)とフェノール系化合物(E)とを混合した後に、芳香族イソシアネートを含む、イソシアナト基を二つ以上有する一種以上のイソシアネート(A)を30℃以下で混合し、[9]に記載の光学材料用重合性組成物を得る工程を含む、[12]に記載のプラスチック偏光レンズの製造方法。
 [14] イソシアネート(A)に、該イソシアネート(A)のイソシアナト基に対する水酸基の割合が10モル%から20モル%の範囲となるように、アルコール(B)を添加し、酸性リン酸エステル(C)およびベンゾトリアゾール系化合物(D)およびヒンダードアミン系化合物の存在下でこれらを反応させ、プレポリマーを得る工程(i)と、
 30℃以下の温度で、前記プレポリマーに、さらにアルコール(B)を添加混合し、[1]から[8]のいずれかに記載の光学材料用重合性組成物を得る工程(ii)と、
 前記重合性組成物に含まれる前記プレポリマーとアルコール(B)とを重合する工程(iii)と、
を含む、ポリウレタン成形体の製造方法。
[15] 前記工程(i)は、イソシアネート(A)に、該イソシアネート(A)のイソシアナト基に対する水酸基の割合が10モル%から20モル%の範囲となるように、アルコール(B)を添加し、酸性リン酸エステル(C)、ベンゾトリアゾール系化合物(D)およびフェノール系化合物(E)およびヒンダードアミン系化合物の存在下でこれらを反応させ、プレポリマーを得る工程を含む、[14]に記載の製造方法。
[16] 前記工程(i)において、反応温度が30℃以下である、[14]または[15]に記載の製造方法。
[17] 前記工程(iii)において、前記プレポリマーとアルコール(B)とを重合するに際し、加熱開始温度が30℃以下である、[14]から[16]のいずれかに記載の製造方法。
[18] 前記プレポリマーおよび前記重合性組成物の粘度が、20℃で1000mPa・s以下であることを特徴とする、[14]から[17]のいずれかに記載の製造方法。
[19] 前記工程(ii)は、
 円柱状の容器と、
 前記容器の上方から中心軸方向に沿って挿入されたシャフトと、
 該シャフトの外周面に沿って、スクリュー状に巻き回された攪拌翼と、
 前記容器の上方に配置され、該容器内にプレポリマーを送液する第1供給部と、
 前記容器の上方に配置され、該容器内にアルコール(B)を送液する第2供給部と、
 前記容器の下端に配置された吐出部と、を備える混合装置により行われ、
 前記容器内に、前記第1供給部から前記プレポリマーを送液するとともに、前記第2供給部からアルコール(B)を送液する工程と、
 前記シャフトを回転することにより、該シャフトの外周面に沿って、スクリュー状に巻き回された前記攪拌翼が、30℃以下の温度で、前記プレポリマーとアルコール(B)とを混合しながら下方に移動させて重合性組成物を調製し、得られた該重合性組成物を前記吐出部から吐出する工程と、
を含む、[14]から[18]のいずれかに記載の製造方法。
[20] 前記シャフトの回転数が1000rpmから4000rpmの範囲であり、前記吐出部から前記重合性組成物が吐出される速度が0.5g/sから4g/sの範囲である、[19]に記載の製造方法。
[21] 前記工程(ii)において、得られる重合性組成物の粘度が、20℃で500mPa・s以下であることを特徴とする、[19]または[20]に記載の製造方法。
[22] 前記工程(iii)は、
 前記重合性組成物をモールド内に注入する工程と、
 前記重合性組成物に含まれる前記プレポリマーとアルコール(B)とを、前記モールド内で重合する工程と、
を含む、[19]または[21]に記載の製造方法。
[23] [14]から[22]のいずれかに記載のポリウレタン成形体の製造方法において、
 前記工程(iii)の前に、レンズ注型用鋳型内に、偏光フィルムの少なくとも一方の面がモールドから離隔した状態で、該偏光フィルムを固定する工程を含み、
 前記工程(iii)は、
 前記偏光フィルムと前記モールドとの間の空隙に、工程(ii)で得られた重合性組成物を注入する工程と、
 前記重合性組成物を重合硬化して、前記偏光フィルムの少なくとも一方の面にポリウレタン樹脂からなる層を積層する工程と、
を含む、プラスチック偏光レンズの製造方法。
[24] [10]、[11]、[14]から[22]のいずれかに記載の製造方法により得られたポリウレタン成形体。
[25] [24]に記載のポリウレタン成形体からなる光学材料。
[26] [25]に記載の光学材料からなるプラスチックレンズ。
[27] [12]、[13]または[23]に記載の製造方法により得られたプラスチック偏光レンズ。
 本発明の光学材料用重合性組成物によれば、調合や注型時における作業性に優れ、屈折率、耐熱性、透明性、耐光性に優れたウレタン成形体、すなわちこれらのバランスに優れたポリウレタン成形体を得ることができる。このようなポリウレタン成形体は、高い透明性が要求される各種光学材料において好適に使用される。
本実施形態における混合装置の概略断面図である。 トリメチロールプロパンのプロピレンオキサイド付加体のH-NMR測定チャートである。
 以下、本発明の光学材料用重合性組成物の実施の形態について、具体例を用いて説明する。
 本実施形態の光学材料用重合性組成物は、
(A)芳香族イソシアネートを含む、イソシアナト基を二つ以上有する一種以上のイソシアネートと、
(B)水酸基を二つ以上有する一種以上のアルコールと、
(C)一般式(1)で表される酸性リン酸エステルと、
(D)ベンゾトリアゾール系化合物と、を含む。
 アルコール(B)に含まれる1級と2級の水酸基の合計モル数に対して、2級の水酸基の割合が50%以上であり、イソシアネート(A)およびアルコール(B)との合計100重量部に対して、ベンゾトリアゾール系化合物(D)を1~11重量部の量で含む。
 以下、各成分について説明する。
[イソシアネート(A)]
 イソシアネート(A)は、イソシアナト基を二つ以上有する一種以上のイソシアネートであり、芳香族イソシアネートを含む。
芳香族イソシアネートは、芳香環に二つ以上のイソシアナト基が直接結合したイソシアネートであり、なお、二量体、三量体、プレポリマーを含んでもよい。
具体的には、トリレンジイソシアネート、4,4'-ジフェニルメタンジイソシアネート、フェニレンジイソシアネート等を挙げることができ、1種又は2種以上組み合わせて用いることができる。イソシアネート(A)は、芳香族イソシアネートを80~100重量%となる量で含む。
 本実施形態における芳香族イソシアネートは、トリレンジイソシアネートを含むことが好ましく、トリレンジイソシアネートからなることがより好ましい。トリレンジイソシアネートは、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネートより選ばれる1種以上のイソシアネートである。トリレンジイソシアネートとしては、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、または2,4-トリレンジイソシアネートと2,6-トリレンジイソシアネートとの混合物が挙げられる。
 本実施形態において、トリレンジイソシアネートは、2,4-トリレンジイソシアネートを含むことが好ましく、具体的には2,4-トリレンジイソシアネート単独、または2,4-トリレンジイソシアネートと2,6-トリレンジイソシアネートの混合物として用いることができる。当該混合物を用いる場合、2,4-トリレンジイソシアネートと2,6-トリレンジイソシアネートの混合比が、75:25~85:15である範囲がより好ましい。
 本実施形態において、イソシアネート(A)は、芳香族イソシアネート以外に、イソシアナト基を二つ以上有するイソシアネートを含むこともできる。そのようなイソシアネートとしては、脂肪族イソシアネート、脂環族イソシアネート、複素環イソシアネート等が挙げられる。
 脂肪族イソシアネートとしては、ヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、リジンジイソシアナトメチルエステル、リジントリイソシアネート、m-キシリレンジイソシアネート、α,α,α′,α′-テトラメチルキシリレンジイソシアネート、ビス(イソシアナトメチル)ナフタリン、メシチリレントリイソシアネート、ビス(イソシアナトメチル)スルフィド、ビス(イソシアナトエチル)スルフィド、ビス(イソシアナトメチル)ジスルフィド、ビス(イソシアナトエチル)ジスルフィド、ビス(イソシアナトメチルチオ)メタン、ビス(イソシアナトエチルチオ)メタン、ビス(イソシアナトエチルチオ)エタン、ビス(イソシアナトメチルチオ)エタン等が挙げられる。
 脂環族イソシアネートとしては、イソホロンジイソシアネート、ビス(イソシアナトメチル)シクロヘキサン、ジシクロヘキシルメタンジイソシアネート、シクロヘキサンジイソシアネート、メチルシクロヘキサンジイソシアネート、ジシクロヘキシルジメチルメタンイソシアネート、2,5-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、2,6-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、3,8-ビス(イソシアナトメチル)トリシクロデカン、3,9-ビス(イソシアナトメチル)トリシクロデカン、4,8-ビス(イソシアナトメチル)トリシクロデカン、4,9-ビス(イソシアナトメチル)トリシクロデカン等が挙げられる。
 複素環イソシアネートとしては、2,5-ジイソシアナトチオフェン、2,5-ビス(イソシアナトメチル)チオフェン、2,5-ジイソシアナトテトラヒドロチオフェン、2,5-ビス(イソシアナトメチル)テトラヒドロチオフェン、3,4-ビス(イソシアナトメチル)テトラヒドロチオフェン、2,5-ジイソシアナト-1,4-ジチアン、2,5-ビス(イソシアナトメチル)-1,4-ジチアン、4,5-ジイソシアナト-1,3-ジチオラン、4,5-ビス(イソシアナトメチル)-1,3-ジチオラン等が挙げられる。
 本実施形態において、後述するアルコール(B)の水酸基に対する、イソシアネート(A)のイソシアナト基のモル比は0.8~1.2の範囲内であり、好ましくは0.85~1.2の範囲内であり、さらに好ましくは0.9~1.2の範囲内である。前記範囲内で、屈折率などの光学特性に優れ、物性バランスに優れた光学材料、特に眼鏡レンズとして好適に使用される樹脂を得ることができる。
[アルコール(B)]
 アルコール(B)は、1級と2級の水酸基の合計モル数に対して2級の水酸基の割合が50%以上である。アルコール(B)は、2級の水酸基の割合が50%以上である1種のアルコールから構成されていてもよく、2種以上の化合物で2級の水酸基の割合が50%以上であってもよい。作業性を考慮すると、1級と2級の水酸基の合計モル数に対して2級の水酸基の割合は60%以上が好ましく、70%以上がさらに好ましい場合がある。
 2級の水酸基の割合は、プロトン核磁気共鳴スペクトルH-NMRにより算出することができる。水酸基が隣接する、メチレン基(-CH2-(OH))、メチン基(-CH(R)-(OH))のプロトンの化学シフトはブロード状に重なり合うためにそれぞれを判別することができない。しかしトリフルオロ酢酸等の電子吸引基を有するカルボン酸で水酸基をエステル化することでより低磁場シフトさせ、メチレン基、メチン基のプロトンを識別することができる。例えば、トリフルオロ酢酸無水物によりエステル化したものは、通常の場合、メチン基のプロトンの化学シフトは5.3~5.6ppm、メチレン基は4.2~4.5ppmにシフトするため、そのピークの積分値の割合により2級の水酸基の割合を算出できる。化学シフト5.3~5.6ppmの積分値をA、化学シフト4.2~4.5ppmの積分値をBとした場合、2級水酸基の割合Xは、次式
X=A/(A+B/2)×100により算出できる。
 アルコール(B)は、1種以上の脂肪族または脂環族アルコールであり、具体的には、直鎖または分枝鎖の脂肪族アルコール、脂環族アルコール、これらアルコールとエチレンオキサイド、プロピレンオキサイド、ε-カプロラクトンを付加させたアルコール等が挙げられる。
 直鎖または分枝鎖の脂肪族アルコールとしては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、1,3-プロパンジオール、2,2-ジメチル-1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、3-メチル-1,3-ブタンジオ-ル、1,2-ペンタンジオール、1,3-ペンタンジオール、1,5-ペンタンジオール、2,4-ペンタンジオール、2-メチル-2,4-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、2,5-ヘキサンジオール、グリセロール、ジグリセロール、ポリグリセロール、トリメチロールプロパン、ペンタエリスリトール、ジ(トリメチロールプロパン)等が挙げられる。
 脂環族アルコールとしては、1,2-シクロペンタンジオール、1,3-シクロペンタンジオール、3-メチル-1,2-シクロペンタンジオール、1,2-シクロヘキサンジオール、1,3-シクロヘキサンジオール、1,4-シクロヘキサンジオール、4,4'-ビシクロヘキサノール、1,4-シクロヘキサンジメタノール等が挙げられる。
 これらアルコールとエチレンオキサイド、プロピレンオキサイド、ε-カプロラクトンを付加させた化合物でもよい。例えば、グリセロールのエチレンオキサイド付加体、トリメチロールプロパンのエチレンオキサイド付加体、ペンタエリスリトールのエチレンオキサイド付加体、グリセロールのプロピレンオキサイド付加体、トリメチロールプロパンのプロピレンオキサイド付加体、ペンタエリスリトールのプロピレンオキサイド付加体、カプロラクトン変性グリセロール、カプロラクトン変性トリメチロールプロパン、カプロラクトン変性ペンタエリスリトール等が挙げられる。
 エチレンオキサイド、プロピレンオキサイド、ε-カプロラクトンを付加させるモル数は、アルコール中の水酸基1モルに対して、0.7から3.0モル分を付加したものが好ましく、0.7から2.0モル分を付加したものがより好ましい。
 本実施形態においては、アルコール(B)として、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、グリセロール、ジグリセロール、ポリグリセロール、トリメチロールプロパン、ペンタエリスリトール、ジ(トリメチロールプロパン)、グリセロールのエチレンオキサイド付加体、トリメチロールプロパンのエチレンオキサイド付加体、ペンタエリスリトールのエチレンオキサイド付加体、グリセロールのプロピレンオキサイド付加体、トリメチロールプロパンのプロピレンオキサイド付加体、およびペンタエリスリトールのプロピレンオキサイド付加体から選ばれる1種以上を用いることが好ましく、
 グリセロール、ジグリセロール、トリメチロールプロパン、ペンタエリスリトール、ジ(トリメチロールプロパン)、グリセロールのエチレンオキサイド付加体、トリメチロールプロパンのエチレンオキサイド付加体、ペンタエリスリトールのエチレンオキサイド付加体、グリセロールのプロピレンオキサイド付加体、トリメチロールプロパンのプロピレンオキサイド付加体、およびペンタエリスリトールのプロピレンオキサイド付加体から選ばれる1種以上を用いることがより好ましい。
 本実施形態においては、グリセロールのプロピレンオキサイド付加体、トリメチロールプロパンのプロピレンオキサイド付加体、およびペンタエリスリトールのプロピレンオキサイド付加体から選択される少なくとも一種を含むことが特に好ましい。
 グリセロールのプロピレンオキサイド付加体は、グリセロール中の水酸基1モルに対して、0.7から1.3モル分のプロピレンオキサイドが付加したものが好ましく、水酸基価では520mgKOH/gから810mgKOH/gのものが好ましく、580mgKOH/gから680mgKOH/gのものがさらに好ましい。トリメチロールプロパンのプロピレンオキサイド付加体は、トリメチロールプロパン中の水酸基1モルに対して、0.8から1.3モル分のプロピレンオキサイドが付加したものが好ましく、水酸基価では460mgKOH/gから600mgKOH/gのものが好ましく、520mgKOH/gから580mgKOH/gのものがさらに好ましい。水酸基価は、公知の方法で求めることができる。
[酸性リン酸エステル(C)]
 酸性リン酸エステル(C)は、一般式(1)で表され、離型剤として従来使用されるものであるが、本実施形態では同時にウレタン化触媒としても使用される。
Figure JPOXMLDOC01-appb-C000003
 式中、mは1または2の整数を示し、nは0~18の整数を示し、Rは炭素数1~20のアルキル基を示し、R、Rはそれぞれ独立に水素原子または、メチル基、エチル基を示す。[ ]m内の炭素数は4から20であることが好ましい。
 一般式(1)中のRとしては、例えば、メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン、へプタン、オクタン、ノナン、デカン、ウンデカン、ドデカン、テトラデカン、へキサデカン等の直鎖の脂肪族化合物から誘導される有機残基、2-メチルプロパン、2-メチルブタン、2-メチルペンタン、3-メチルペンタン、3-エチルペンタン、2-メチルヘキサン、3-メチルヘキサン、3-エチルヘキサン、2-メチルへプタン、3-メチルへプタン、4-メチルへプタン、3-エチルへプタン、4-エチルへプタン、4-プロピルへプタン、2-メチルオクタン、3-メチルオクタン、4-メチルオクタン、3-エチルオクタン、4-エチルオクタン、4-プロピルオクタン等の分岐鎖の脂肪族化合物から誘導される有機残基、シクロペンタン、シクロへキサン、1,2-ジメチルシクロヘキサン、1,3-ジメチルシクロヘキサン、1,4-ジメチルシクロヘキサン等の脂環族化合物から誘導される有機残基等を挙げることができるが、これら例示化合物のみに限定されるものではなく、これらの混合物であってもよい。
 また、式(1)中、nは0が好ましく、当該化合物は一般式(2)で表すことができる。
Figure JPOXMLDOC01-appb-C000004
 式(2)中、xは1または2の整数を示し、Rは炭素数8~16のアルキル基を示す。
 一般式(2)中のRとしては、例えば、オクタン、ノナン、デカン、ウンデカン、ドデカン、テトラデカン、へキサデカン等の直鎖の脂肪族化合物から誘導される有機残基、2-エチルヘキサン、3-エチルヘキサン、2-メチルへプタン、3-メチルへプタン、4-メチルへプタン、3-エチルへプタン、4-エチルへプタン、4-プロピルへプタン、2-メチルオクタン、3-メチルオクタン、4-メチルオクタン、3-エチルオクタン、4-エチルオクタン、4-プロピルオクタン等の分岐鎖の脂肪族化合物から誘導される有機残基、1,2-ジメチルシクロヘキサン、1,3-ジメチルシクロヘキサン、1,4-ジメチルシクロヘキサン等の脂環族化合物から誘導される有機残基等を挙げることができるが、これら例示化合物のみに限定されるものではなく、これらの混合物であってもよい。
 酸性リン酸エステル(C)としては、STEPAN社製のZelecUN、三井化学社製のMR用内部離型剤、城北化学工業社製のJPシリーズ、東邦化学工業社製のフォスファノールシリーズ、大八化学工業社製のAP、DPシリーズ等を用いることができ、STEPAN社製のZelecUN、三井化学社製のMR用内部離型剤がより好ましい。
 酸性リン酸エステル(C)の添加量は、イソシアネート(A)とアルコール(B)の合計100重量部に対して、0.1重量部から3重量部が好ましく、0.2重量部から2重量部がより好ましい。
 一般的にウレタン樹脂の触媒としては、3級アミン、アミンカルボン酸塩、金属触媒等が使用されるが、本実施形態の光学材料用重合性組成物の触媒として使用すると、反応性が高くなるため、注型時に光学材料用重合性組成物の粘性が高くなりすぎて作業性を悪化させ、また得られる成形体に脈理が発生する場合がある。本実施形態においては、特定の環状アミン類と特定の酸性リン酸エステルを併用すると、調合や注型時における作業性により優れ、脈理の発生が効果的に抑制され、本実施形態のイソシアネートとアルコールからなる成形体を眼鏡用途に適用可能な、作業性と品質確保を実現することができ、好ましい。
 特定の環状アミン類としては、例えば、イミダゾール、1,2-ジメチルイミダゾール、ベンジルメチルイミダゾール、2-エチル-4-イミダゾール等のイミダゾール類、例えば、1,2,2,6,6-ペンタメチル-4-ピペリジノール、1,2,2,6,6-ペンタメチル-4-ヒドロキシエチル-4-ピペリジノール、メチル-1,2,2,6,6-ペンタメチル-4-ピペリジルセバケート、メチル-1,2,2,6,6-ペンタメチル-4-ピペリジルセバケートとビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケートとの混合物、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、ビス(2,2,6,6-テトラメチル-1-(オクチルオキシ)-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)[[3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル]メチル]ブチルマロネート、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)ブタン-1,2,3,4-テトラカルボキシレート等の1,2,2,6,6-ピペリジン化合物であるヒンダードアミン類が挙げられる。
 環状アミン類としては、イミダゾール類、ヒンダードアミン類などが好ましく、ヒンダードアミン類がより好ましい。
 酸性リン酸エステル(C)は、ヒンダードアミン類を併用することができ、ヒンダードアミン類を、イソシアネート(A)とアルコール(B)の合計100重量部に対して、0.1重量部から2重量部、好ましくは0.2重量部から1.5重量部の量で含むことができる。上記数値範囲であれば、色相に優れ、脈理が抑制された成形体を得ることができる。
 ヒンダードアミンは光安定化剤としても使用されるもので、市販品としてChemtura社製のLowilite76、Lowilite92、BASF社製のTinuvin144、Tinuvin292、Tinuvin765、ADEKA社製のアデカスタブLA-52、LA-72、城北化学工業社製のJF-95等を挙げることができる。
 本実施形態においては、上記効果の観点から、イソシアネート(A)としてトリレンジイソシアネート、アルコール(B)としてグリセロールのプロピレンオキサイド付加体、トリメチロールプロパンのプロピレンオキサイド付加体、ペンタエリスリトールのプロピレンオキサイド付加体から選択される少なくとも一種の化合物を組み合わせて用いることが好ましい。
[ベンゾトリアゾール系化合物(D)]
 ベンゾトリアゾール系化合物(D)は、ベンゾトリアゾール骨格を有す化合物であればよく、例えば、2-(2'-ヒドロキシ-5'-メチルフェニル)ベンゾトリアゾール、2-(2'-ヒドロキシ-4'-エトキシフェニル)ベンゾトリアゾール、2-(2'-ヒドロキシ-5'-tert-ブチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-5-tert-オクチルフェニル)-2H-ベンゾトリアゾール、2-(2'-ヒドロキシ-3',5'-ジ-tert-ブチルフェニル)ベンゾトリアゾール、2-(2'-ヒドロキシ-3',5'-ジ-tert-アミルフェニル)ベンゾトリアゾール、2-(2'-ヒドロキシ-4'-オクチルオキシフェニル)ベンゾトリアゾール、2-(2'-ヒドロキシ-3',5'-ビス(ジメチルベンジル)フェニル)ベンゾトリアゾール、2-(2'-ヒドロキシ-3'-tert-ブチル-5'-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2'-ヒドロキシ-3',5'-ジ-tert-ブチルフェニル)-5-クロロベンゾトリアゾール、2-(2'-ヒドロキシ-3'-ドデシル-5'-メチルフェニル)ベンゾトリアゾール、2-{2'-ヒドロキシ-3'-ジメチルベンジル-5'-(1,1,3,3-テトラメチル)フェニル}ベンゾトリアゾール等が挙げられる。
 これらのベンゾトリアゾール系化合物は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 上記のうち、組成物中の(A)及び(B)成分への溶解性の観点から2-(2-ヒドロキシ-5-tert-オクチルフェニル)-2H-ベンゾトリアゾールを含むことが好ましく、2-(2-ヒドロキシ-5-tert-オクチルフェニル)-2H-ベンゾトリアゾールのみであることが特に好ましい。
 イソシアネート(A)およびアルコール(B)との合計100重量部に対して、ベンゾトリアゾール系化合物(D)を1~11重量部、好ましくは、1~10重量部、更に好ましくは2.1~10重量部、特に好ましくは2.5~10重量部の量で含むことができる。ベンゾトリアゾール系化合物(D)を上記範囲で含むことにより、調合や注型時における作業性に優れ、屈折率、耐熱性、透明性、耐光性に優れたウレタン成形体、すなわちこれらのバランスに優れたウレタン成形体を得ることができる。このようなウレタン成形体は、特に眼鏡レンズとして好適に使用される。
[フェノール系化合物(E)]
 本実施形態においては、フェノール系化合物(E)をさらに含むことができる。
 フェノール系化合物(E)としては、フェノール、クレゾール、エチルフェノール、イソプロピルフェノール、tert-ブチルフェノール、ヘキシルフェノール、シクロヘキシルフェノール、2-メトキシフェノール、4-メトキシフェノール、2,6-ジメチル-p-クレゾール、2,6-ジエチル-p-クレゾール、2,6-ジ-n-プロピル-p-クレゾール、2,6-ジイソプロピル-p-クレゾール、2,6-ジ-n-ブチル-p-クレゾール、2,6-ジイソブチル-p-クレゾール、4-アリル-2-メトキシフェノール、2,4-ビス[(オクチルチオ)メチル]-o-クレゾール等の置換フェノール類、ヒンダードフェノール類、カテコール、レゾルシン、ヒドロキノン、tert-ブチルカテコール、ピロガロール等の多価フェノール類、ビフェノール、ジメチルビフェノール等のビフェノール類、ビスフェノールA、ビスフェノールF、ビスフェノールS、メチレン-ビス(メチル-tert-ブチルフェノール)、チオ-ビス(メチル-tert-ブチルフェノール)等のビスフェノール類、ナフトール、ジヒドロキシナフタレン等のナフトール類や、これらのハロゲン置換体等が挙げられる。
 上記のうち、得られるプラスチックレンズの外観性の観点から、(E)フェノール系化合物が、ヒンダードフェノール類であることが好ましく、(3-tert-ブチル-4-ヒドロキシ-5-アルキル)フェニル基を有し、アルキル基はメチル基又はtert-ブチル基であることが更に好ましい。
 上記の(3-tert-ブチル-4-ヒドロキシ-5-アルキル)フェニル基を有するヒンダードフェノール系化合物としては、例えば2,6-ジ-tert-ブチル-p-クレゾール、1,6-ヘキサメチレン-ビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,4-ビス(オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-tert-ブチルアミノ)-1,3,5-トリアジン、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート]、トリエチレングリコール-ビス[3-(3-tert-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、2,2-チオ-ジエチレン-ビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、N-N'-ヘキサメチレンビス(3,5-ジ-tert-ブチル-4-ヒドロキシ-ヒドロシンナムアミド)、3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスフォネートジエチルエステル、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼン、トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)イソシアヌレート、イソオクチル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート等が挙げられる。
 上記のうち、組成物中の(A)及び(B)成分への溶解性の観点から、2,6-ジ-tert-ブチル-p-クレゾールを用いることが好ましい。
 これらのフェノール系化合物は単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 フェノール系化合物(E)の含有量は、イソシアネート(A)及びアルコール(B)の合計量100重量部に対して、0.5~5重量部であり、好ましくは0.5~4重量部、特に好ましくは、0.5~2重量部である。
[成分(A)~(E)以外の成分]
 本実施形態の光学材料用重合性組成物は、目的に応じて、光安定化剤、紫外線吸収剤、酸化防止剤、着色防止剤、染料、樹脂改質剤等の添加剤を含むことができる。
 光安定化剤としては、ヒンダードアミン系化合物を用いることができる。ヒンダードアミン系化合物は、市販品としてChemtura社製のLowilite76、Lowilite92、BASF社製のTinuvin144、Tinuvin292、Tinuvin765、ADEKA社製のアデカスタブLA-52、LA-72、城北化学工業社製のJF-95等を挙げることができる。
 紫外線吸収剤としては、トリアジン系化合物、ベンゾフェノン系化合物、ベンゾエート系化合物を含むことができる。添加量は成分(A)および(B)の合計100重量部に対して、0.05重量部から2.0重量部が好ましく、0.05重量部から1.5重量部がより好ましい。
 本実施形態の光学材料用重合性組成物には、添加剤としてチオールを加えた場合は、著しく耐光性が悪化する。アミン類として、1級アミン、2級アミンを加えた場合は、本実施形態のイソシアネートとの反応が急激に進行するため、注型時に光学材料用重合性組成物の粘性が高くなりすぎて作業性を悪化させ、また得られる成形体に脈理が発生する。金属触媒を加えた場合の不具合は、前述の通りである。チオウレタン樹脂において使用される金属触媒は有機スズ化合物が多いが、本実施形態の光学材料用重合性組成物は、その毒性の高さと環境ホルモン等の理由で人体への有害性が問題となっている、有機スズ化合物を含まずに、眼鏡用途の樹脂を製造することができるため、製造工程上や得られる成形体の安全性はより高い。
 本実施形態においては、調合や注型時における作業性により優れ、脈理の発生が効果的に抑制されるという観点から、イソシアネート(A)としてトリレンジイソシアネート、アルコール(B)としてグリセロールのプロピレンオキサイド付加体、トリメチロールプロパンのプロピレンオキサイド付加体、ペンタエリスリトールのプロピレンオキサイド付加体から選択される少なくとも一種の化合物を組み合わせて用いることが好ましい。
 本実施形態の光学材料用重合性組成物によれば、調合や注型時における作業性に優れ、屈折率、耐熱性、透明性、耐光性に優れたウレタン成形体を得ることができる。すなわち、本実施形態によればこれらのバランスに優れたウレタン成形体を得ることができる。
[用途]
 本実施形態のウレタン成形体は、注型重合時のモールドを変えることにより種々の形状として得ることができる。本実施形態のウレタン成形体は、高い透明性を備え、プラスチックレンズ、カメラレンズ、発光ダイオード(LED)、プリズム、光ファイバー、情報記録基板、フィルター、発光ダイオード等の光学用樹脂としての各種用途に使用することが可能である。特に、プラスチックレンズ、カメラレンズ、発光ダイオード等の光学材料、光学素子として好適である。
 プラスチックレンズとしては、ポリウレタン樹脂からなるプラスチック眼鏡レンズ、偏光フィルムの少なくとも一方の面に、ポリウレタン樹脂からなる層が積層しているプラスチック偏光レンズを挙げることができる。
 以下、ウレタン成形体の製造方法およびプラスチック偏光レンズの製造方法を、適宜図面を用いて、それぞれ第1の実施形態および第2の実施形態により説明する。なお、同様な構成要素には同様の符号を付し、適宜説明を省略する。
<第1の実施形態>
[ウレタン成形体の製造方法]
 本実施形態のウレタン成形体の製造方法は、アルコール(B)と酸性リン酸エステル(C)とベンゾトリアゾール系化合物(D)とを混合した後に、イソシアネート(A)を30℃以下で混合し、上記の光学材料用重合性組成物を得る工程(1)と、前記重合性組成物を鋳型内に注型する工程(2)と、前記重合性組成物の重合を開始し、該組成物を重合する工程(3)と、を含む。
[工程(1)]
 イソシアネート(A)と酸性リン酸エステル(C)を混合すると、溶解性の低い白色の固形物が析出する場合があるため、そのまま重合すると得られる樹脂の透明性が損なわれて、眼鏡用途としては適さない場合がある。したがって、アルコール(B)と酸性リン酸エステル(C)とを先に混合し、次いでイソシアネート(A)を混合することが好ましい。これにより、溶解性の低い白色の固形物の発生が抑制され、透明性良好な成形体が得られる。
 また、イソシアネート(A)の混合時の温度は、光学材料用重合性組成物の粘性を抑え、作業性を悪化させることなく成形体の製造が可能であるため、30℃以下とすることが好ましい。イソシアネート(A)として、トリレンジイソシアネートを用いる場合、30℃以下とすることが特に好ましい。
 なお、工程(1)は、アルコール(B)と酸性リン酸エステル(C)とベンゾトリアゾール系化合物(D)と、フェノール系化合物を含む場合には、さらにフェノール系化合物(E)とを混合した後に、イソシアネート(A)を30℃以下で混合する工程を含むことができる。
 混合装置は、特に限定されるものではなく、後述記載の装置なども用いることができる。
[工程(2)]
 本工程においては、ガスケットまたはテープ等で保持された成型モールド(鋳型)内に、本実施形態の光学材料用重合性組成物を注入する。この時、得られる成形体に要求される物性によっては、必要に応じて、減圧下での脱泡処理や加圧、減圧等の濾過処理等を行うことが好ましい。
[工程(3)]
 本工程においては、成型モールド内に注型された光学材料用重合性組成物の重合を開始し、該組成物を重合する。重合を開始する温度は、重合後の成形体の離型性が良く、得られる成形体に脈理が発生しないことから、30℃以下が好ましい。重合条件については、使用するイソシアネートやアルコールの種類、モールドの形状等によって大きく条件が異なるため限定されるものではないが、およそ0~140℃の温度で1~48時間かけて行われる。
 添加剤の添加方法に関しては、使用するイソシアネート(A)、アルコール(B)、添加剤の種類と使用量により調製手順は異なるため、一概に限定されるものではなく、添加剤の溶解性、操作性、安全性、便宜性等を考慮して、適宜選ばれる。
 本実施形態のウレタン成形体は、必要に応じて、アニール等の処理を行ってもよい。処理温度は通常50~150℃の範囲で行われるが、90~140℃で行うことが好ましく、100~130℃で行うことがより好ましい。
 本実施形態のウレタン成形体を用いたプラスチックレンズは必要に応じて、片面又は両面にコーティング層を施して用いてもよい。コーティング層としては、プライマー層、ハードコート層、反射防止層、防曇コート層、防汚染層、撥水層等が挙げられる。これらのコーティング層はそれぞれ単独で用いることも複数のコーティング層を多層化して使用してもよい。両面にコーティング層を施す場合、それぞれの面に同様なコーティング層を施しても、異なるコーティング層を施してもよい。
 これらのコーティング層はそれぞれ、紫外線からレンズや目を守る目的で紫外線吸収剤、赤外線から目を守る目的で赤外線吸収剤、レンズの耐光性を向上する目的で光安定化剤や酸化防止剤、レンズのファッション性を高める目的で染料や顔料、さらにフォトクロミック染料やフォトクロミック顔料、帯電防止剤、その他、レンズの性能を高めるための公知の添加剤を併用してもよい。塗布によるコーティングを行う層に関しては塗布性の改善を目的とした各種レベリング剤を使用してもよい。
 プライマー層は通常、後述するハードコート層と光学レンズとの間に形成される。プライマー層は、その上に形成するハードコート層とレンズとの密着性を向上させることを目的とするコーティング層であり、場合により耐衝撃性を向上させることも可能である。プライマー層には得られた光学レンズに対する密着性の高いものであればいかなる素材でも使用できるが、通常、ウレタン系樹脂、エポキシ系樹脂、ポリエステル系樹脂、メラニン系樹脂、ポリビニルアセタールを主成分とするプライマー組成物などが使用される。プライマー組成物は組成物の粘度を調整する目的でレンズに影響を及ぼさない適当な溶剤を用いてもよい。無論、無溶剤で使用してもよい。
 プライマー組成物は塗布法、乾式法のいずれの方法によっても形成させることができる。塗布法を用いる場合、レンズへスピンコート、ディップコートなど公知の塗布方法で塗布された後、固化させることによりプライマー層が形成される。乾式法で行う場合は、CVD法や真空蒸着法などの公知の乾式法で形成される。プライマー層を形成するに際し、密着性の向上を目的として、必要に応じてレンズの表面は、アルカリ処理、プラズマ処理、紫外線処理などの前処理を行っておいてもよい。
 ハードコート層は、レンズ表面に耐擦傷性、耐摩耗性、耐湿性、耐温水性、耐熱性、耐光性等機能を与えることを目的としたコーティング層である。
 ハードコート層は、一般的には硬化性を有する有機ケイ素化合物とSi,Al,Sn,Sb,Ta,Ce,La,Fe,Zn,W,Zr,InおよびTiの元素群から選ばれる元素の酸化物微粒子の1種以上および/またはこれら元素群から選ばれる2種以上の元素の複合酸化物から構成される微粒子の1種以上を含むハードコート組成物が使用される。
 ハードコート組成物には前記成分以外にアミン類、アミノ酸類、金属アセチルアセトネート錯体、有機酸金属塩、過塩素酸類、過塩素酸類の塩、酸類、金属塩化物および多官能性エポキシ化合物の少なくともいずれかを含むことが好ましい。ハードコート組成物にはレンズに影響を及ぼさない適当な溶剤を用いてもよい。無論、無溶剤で使用してもよい。
 ハードコート層は、通常、ハードコート組成物をスピンコート、ディップコートなど公知の塗布方法で塗布した後、硬化して形成される。硬化方法としては、熱硬化、紫外線や可視光線などのエネルギー線照射による硬化方法等が挙げられる。干渉縞の発生を抑制するため、ハードコート層の屈折率は、レンズとの屈折率の差が±0.1の範囲にあるのが好ましい。
 反射防止層は、通常、必要に応じて前記ハードコート層の上に形成される。反射防止層には無機系および有機系があり、無機系の場合、SiO、TiO等の無機酸化物を用い、真空蒸着法、スパッタリング法、イオンプレーティング法、イオンビ-ムアシスト法、CVD法などの乾式法により形成される。有機系の場合、有機ケイ素化合物と、内部空洞を有するシリカ系微粒子とを含む組成物を用い、湿式により形成される。
 反射防止層は単層および多層があり、単層で用いる場合はハードコート層の屈折率よりも屈折率が少なくとも0.1以上低くなることが好ましい。効果的に反射防止機能を発現するには多層膜反射防止膜とすることが好ましく、その場合、低屈折率膜と高屈折率膜とを交互に積層する。この場合も低屈折率膜と高屈折率膜との屈折率差は0.1以上であることが好ましい。高屈折率膜としては、ZnO、TiO、CeO、Sb、SnO、ZrO、Ta等の膜があり、低屈折率膜としては、SiO膜等が挙げられる。
 反射防止層の上には、必要に応じて防曇コート層、防汚染層、撥水層を形成させてもよい。防曇コート層、防汚染層、撥水層を形成する方法としては、反射防止機能に悪影響をもたらすものでなければ、その処理方法、処理材料等については特に限定されずに、公知の防曇コート処理方法、防汚染処理方法、撥水処理方法、材料を使用することができる。例えば、防曇コート、防汚染処理方法では、表面を界面活性剤で覆う方法、表面に親水性の膜を付加して吸水性にする方法、表面を微細な凹凸で覆い吸水性を高める方法、光触媒活性を利用して吸水性にする方法、超撥水性処理を施して水滴の付着を防ぐ方法などが挙げられる。また、撥水処理方法では、フッ素含有シラン化合物等を蒸着やスパッタすることによって撥水処理層を形成する方法や、フッ素含有シラン化合物を溶媒に溶解したあと、コーティングして撥水処理層を形成する方法等が挙げられる。
 本実施形態のウレタン成形体を用いたプラスチックレンズはファッション性やフォトクロミック性の付与などを目的として、目的に応じた色素を用い、染色して使用してもよい。レンズの染色は公知の染色方法で実施可能であるが、通常、以下に示す方法で実施される。
 一般的には、使用する色素を溶解または均一に分散させた染色液中に所定の光学面に仕上げられたレンズ生地を浸漬(染色工程)した後、必要に応じてレンズを加熱して色素を固定化(染色後アニール工程)する方法である。染色工程に用いられる色素は公知の色素であれば特に限定されないが、通常は油溶染料もしくは分散染料が使用される。染色工程で使用される溶剤は用いる色素が溶解可能もしくは均一に分散可能なものであれば特に限定されない。この染色工程では、必要に応じて染色液に色素を分散させるための界面活性剤や、染着を促進するキャリアを添加してもよい。染色工程は、色素及び必要に応じて添加される界面活性剤を水又は水と有機溶媒との混合物中に分散させて染色浴を調製し、この染色浴中に光学レンズを浸漬し、所定温度で所定時間染色を行う。染色温度及び時間は、所望の着色濃度により変動するが、通常、120℃以下で数分から数十時間程度でよく、染色浴の染料濃度は0.01~10重量%で実施される。また、染色が困難な場合は加圧下で行ってもよい。必要に応じて実施される染色後アニール工程は、染色されたレンズ生地に加熱処理を行う工程である。加熱処理は、染色工程で染色されたレンズ生地の表面に残る水を溶剤等で除去したり、溶媒を風乾したりした後に、例えば大気雰囲気の赤外線加熱炉、あるいは抵抗加熱炉等の炉中に所定時間滞留させる。染色後アニール工程は、染色されたレンズ生地の色抜けを防止する(色抜け防止処理)と共に、染色時にレンズ生地の内部に浸透した水分の除去が行われる。
[プラスチック偏光レンズの製造方法]
 本実施形態のプラスチック偏光レンズの製造方法は、以下の工程を備える。
工程(a):アルコール(B)と酸性リン酸エステル(C)とベンゾトリアゾール系化合物(D)とを混合した後に、芳香族イソシアネートを含む、イソシアナト基を二つ以上有する一種以上のイソシアネート(A)を30℃以下で混合し、前述の重合性組成物を得る。
工程(b):レンズ注型用鋳型内に、偏光フィルムの少なくとも一方の面がモールドから離隔した状態で、該偏光フィルムを固定する。
工程(c):前記偏光フィルムと前記モールドとの間の空隙に、本実施形態の重合性組成物を注入する。
工程(d):30℃以下から前記重合性組成物の重合を開始し、該組成物を重合硬化して、前記偏光フィルムの少なくとも一方の面にポリウレタン樹脂からなる層を積層する。
 以下、各工程に沿って順に説明する。なお、工程(a)は、前述の「ウレタン成形体の製造方法」の工程(1)と同様に行うことができるため説明を省略する。
[工程(b)]
 レンズ注型用鋳型の空間内に、熱可塑性ポリエステル等からなる偏光フィルムを、フィルム面の少なくとも一方が対向するモールド内面と並行となるように設置する。偏光フィルムとモールドとの間には、空隙部が形成される。偏光フィルムは予め附形されていてもよい。
[工程(c)]
 次いで、レンズ注型用鋳型の空間内において、モールドと偏光フィルムとの間の空隙部に、所定の注入手段により本実施形態の光学材料用重合性組成物を注入する。
[工程(d)]
 次いで、光学材料用重合性組成物が注入された偏光フィルムが固定されたレンズ注型用鋳型をオーブン中または水中等の加熱可能装置内で所定の温度プログラムにて数時間から数十時間かけて加熱して硬化成型する。
 重合硬化の温度は、30℃以下から前記重合性組成物の重合を開始し、0~140℃の温度で1~48時間かけて行われる。
 硬化成形終了後、レンズ注型用鋳型から取り出すことで、偏光フィルムの少なくとも一方の面にポリウレタン樹脂からなる層が積層された、本実施形態のプラスチック偏光レンズを得ることができる。
 本実施形態のプラスチック偏光レンズは、重合による歪みを緩和することを目的として、離型したレンズを加熱してアニール処理を施すことが望ましい。
 本実施形態のプラスチック偏光レンズは、必要に応じ、片面又は両面にコーティング層を施して用いられる。コーティング層としては、プラスチック眼鏡レンズと同様の、プライマー層、ハードコート層、反射防止層、防曇コート層、防汚染層、撥水層等を挙げることができる。
 また、眼鏡用プラスチックレンズは、包装された状態で比較的長期間保管されることがあり、レンズ保管中に、傷つき、吸湿による変形や、レンズが変色によりレンズの保管期間の違いによって左右で色が異なってしまうなど品質上の問題が生じる場合がある。
 その場合、公知(例えば、特開2007-99313公報、特開2007-24998公報、特開平9-216674など)の包装技術により抑制、改善することができる。
 具体的には、酸素もしくは酸素および水蒸気の透過を抑制する性質(ガスバリア性)を有する材質からなり、不活性ガスが充填された包装材中に密閉保存する方法や、酸素もしくは酸素および水蒸気の透過を抑制する性質(ガスバリア性)を有する材質からなる包装材中に、脱酸素剤とともに密閉保存する方法、レンズを真空に密封する方法などがある。
 脱酸素剤としては、公知のものを使用することができ、例えば、酸素を吸収する脱酸素剤組成物を、通気性を有する包装材で包装したものをあげることができる。脱酸素剤組成物としては、例えば、還元性金属の酸化反応を利用して酸素を吸収するものを用いるこができる。このような脱酸素剤組成物を用いた脱酸素剤には、脱酸素に当たって雰囲気中から水分を補給する必要がある水分依存型脱酸素剤と、雰囲気中からの水分補給を必要としない自力反応型脱酸素剤とがある。自力反応型の脱酸素剤も用いる際はともに乾燥剤(例えばシリカゲルなど)を包装材中に同封すると良い。また、脱酸素機能と乾燥機能を合わせ持つ脱酸素剤を用いても良い(例えば三菱ガス化学株式会社製ファーマキープ(KD、KCタイプ))。また、水分供与体を必要とせずに乾燥雰囲気中で脱酸素機能を発揮する脱酸素剤を用いてもよい。そのような脱酸素剤としては、炭素-炭素不飽和結合を有する架橋高分子からなる脱酸素成分を有する脱酸素剤(例えば特開平11-70331号公報参照)や、遷移金属を担体に担持して活性化してなる金属を主剤とする脱酸素剤(例えば特開平8-38883号公報参照)や、マグネシウム化合物を担体に担持後、還元することにより得られる活性化マグネシウムを主剤とする脱酸素剤(例えば特開2001-37457号公報参照)、不飽和基を有した液状炭化水素オリゴマーを主剤とし酸素吸収促進物質を含むものを担体に担持した酸素吸収組成物を有する脱酸素剤(例えば特開平10-113555号公報参照)等がある。市販されている製品としては、三菱ガス化学株式会社製ファーマキープ(KHタイプ)を挙げることができる。
 また、自力反応型脱酸素剤としては、例えば特公昭57-31449号公報に記載された脱酸素剤中に水分供与体を存在させて、そこから脱酸素に必要な水分を供給するようにしたものもある。
 包装材中への不活性ガスの充填および包装材の密閉は、包装材内の空気を脱気した後に不活性ガスを充填することにより包装材内の空気を不活性ガスに置換し、その状態で包装材の開口部を密閉することにより行うことができる。
 包装材内に充填される不活性ガスとしては、窒素、アルゴン、ヘリウム、ネオン等を用いることができる。経済性の観点から窒素ガスを使用することが好ましい。
 水分によるレンズ変形などの劣化防止や包装材中に残存した空気中の水分を除去するために、乾燥剤(例えばシリカゲルなど)を包装材中にレンズとともに同封してもよい。
 包装材としては、少なくとも酸素の透過を抑制する材質からなる、酸素透過率の低いアルミニウムなどの金属箔層を有するものが好ましい例としてあげられる。
<第2の実施形態>
 本実施形態のポリウレタン成形体(樹脂)の製造方法は、以下の工程(i)~(iii)を備える。
工程(i):イソシアネート(A)に、該イソシアネート(A)のイソシアナト基に対する水酸基の割合が10モル%から20モル%の範囲となるようにアルコール(B)を添加し、酸性リン酸エステル(C)、ベンゾトリアゾール系化合物(D)及びヒンダードアミン系化合物の存在下でこれらを反応させ、プレポリマーを得る。
工程(ii):30℃以下の温度で、前記プレポリマーに、さらに下記アルコール(B)を添加混合し、重合性組成物を得る。
工程(iii):前記重合性組成物に含まれる前記プレポリマーとアルコール(B)とを重合する。
 本実施形態において、(A)~(D)成分、後述する(E)成分、その他の成分としては、前述のものを用いることができる。
[工程(i)]
 工程(i)においては、イソシアネート(A)に、イソシアネート(A)のイソシアナト基に対する水酸基の割合が10モル%から20モル%の範囲となるようにアルコール(B)を添加し、これらを反応させてプレポリマー化させる。反応は、酸性リン酸エステル(C)、ベンゾトリアゾール系化合物(D)およびヒンダードアミン系化合物の存在下で行う。
 触媒として酸性リン酸エステル(C)のみを添加して反応を実施すると、イソシアネート(A)と酸性リン酸エステル(C)が反応して溶解性の低い白色の固形物が析出する場合があり、そのまま重合すると得られる樹脂の透明性が損なわれて、眼鏡用途としては適さない場合がある。
 しかしながら、同時にヒンダードアミン系化合物も添加してプレポリマー化を実施すると、イソシアネート(A)と酸性リン酸エステル(C)との反応は抑制され、溶解性の低い白色の固形物の析出が抑制される。したがって、工程(i)はイソシアネート(A)と、イソシアネート(A)のイソシアナト基に対して水酸基の割合が10モル%から20モル%の範囲であるアルコール(B)を、酸性リン酸エステル(C)と、ベンゾトリアゾール系化合物(D)と、ヒンダードアミン系化合物の存在下で反応させることが好ましい。
 また、反応温度は、特に限定されるものではないが、室温(30℃以下)で行うことが好ましい。
 工程(i)で得られるプレポリマーは、その粘度が20℃で1000mPa・s以下のものとして得ることができる。この粘度範囲であれば、プレポリマーの取り扱いが容易であり、室温での作業に支障がないため好ましい。
 なお、工程(i)は、イソシアネート(A)に、該イソシアネート(A)のイソシアナト基に対する水酸基の割合が10モル%から20モル%の範囲となるように、アルコール(B)を添加し、酸性リン酸エステル(C)、ベンゾトリアゾール系化合物(D)、ヒンダードアミン系化合物の存在下で、フェノール系化合物を含む場合には、さらにフェノール系化合物(E)の存在下でこれらを反応させ、プレポリマーを得る工程を含むことができる。
[工程(ii)]
 工程(ii)においては、30℃以下の温度で、工程(i)で得られたプレポリマーに、さらにアルコール(B)を添加混合し、重合性組成物を得る。工程(ii)において添加されるアルコール(B)は、ポリウレタン樹脂を製造するのに用いられるアルコール(B)の総量のうち、プレポリマー化する際に用いられたアルコール量を差し引いた残りの量が添加される。
 工程(ii)の混合工程は、室温(30℃以下)で行われ、得られる成形体の注型痕や脈理を抑制することができる。また重合性組成物の急増粘を抑えることができるため、得られる重合性組成物の粘度は20℃で1000mPa・s以下であり、その後の成形モールドへの注入も容易となる。加えて、2液混合型吐出装置(ディスペンサー)を用いる場合では、付着ロスや使用する機器の汚れを抑制することができ、配管の閉塞やポンプなどの機器の故障を防ぐことができる。
 工程(ii)の混合装置は、特に限定されるものではなく、前述のダイナミックミキサー型のディスペンサーを用いることができる。ディスペンサーのミキサーには、攪拌するためのミキサー駆動部がないラインミキサー型と駆動部があるダイナミックミキサー型があるが、本実施形態の重合性組成物の攪拌効率の観点からダイナミックミキサー型のディスペンサーがより好ましい。
 本実施形態におけるダイナミックミキサー型のディスペンサー(混合装置)を、図面を用い説明する。
 図1に示すように、本実施形態の混合装置10は、円柱状の容器12と、容器12の上方から中心軸方向に沿って挿入されたシャフト14と、シャフト14の外周面に沿って、スクリュー状に巻き回された攪拌翼16と、容器12の上方に配置され、容器12内にプレポリマーを送液する第1供給部18と、容器12の上方に配置され、容器12内にアルコール(B)を送液する第2供給部20と、容器12の下端に配置された吐出部22と、を備える。
 容器12は冷却手段を備えていてもよく、容器12内に供給されたプレポリマーとアルコール(B)とを混合する際に30℃以下に冷却することができる。
 シャフト14は上部がミキサー駆動部に接続されており、所定の回転数で回転させることができる。
 第1供給部18は、図示しないポンプ等の供給手段や、タンクを備えており、所定の速度でプレポリマーを容器12内に供給することができる。第2供給部20は、図示しないポンプ等の供給手段や、タンクを備えており、所定の速度でアルコール(B)を容器12内に供給することができる。
 本実施形態において、ダイナミックミキサー型のディスペンサー(混合装置10)としては、2液混合型吐出装置(製品名:スーパーショットシリーズ(日本ソセー工業社製)、製品名:MAKシリーズ(エムアンドケー社製)等)などを挙げることができる。
 図1に示す混合装置10を用いる場合、工程(ii)は以下の工程を含む。
工程a:容器12内に、第1供給部18からプレポリマーを送液するとともに、第2供給部20からアルコール(B)を送液する。
工程b:シャフト14を回転することにより、シャフト14の外周面に沿って、スクリュー状に巻き回された攪拌翼16が、30℃以下の温度で、プレポリマーとアルコール(B)とを混合しながら下方に移動させて重合性組成物を調製し、得られた該重合性組成物を吐出部22から吐出する。
(工程a)
 プレポリマーとアルコール(B)を容器12内に送液する順番は、特に限定されるものではないが、同時が好ましい。また、送液する場所についても特に限定されるものではなく、羽根に対して垂直であることが好ましい。また粘性が高い液をシャフトに沿わせて送液すると、攪拌効率を向上させることができるためにより好ましい。
(工程b)
 ディスペンサーのミキサーの回転数(シャフト14の回転数)としては、1000rpmから4000rpmの範囲であり、1500rpmから3500rpmの範囲が好ましく、2000rpmから3000rpmの範囲がさらに好ましい。前記範囲であれば、均一に混合することができるため、得られる成形体に混合不足により生じる筋状のムラを抑制することができる。
 吐出部22から重合性組成物を吐出する速度としては、0.5g/sから4.0g/sの範囲であり、0.5g/sから3.0g/sの範囲が好ましく、1.0g/sから3.0g/sの範囲がさらに好ましい。前記範囲であれば、得られる成形体に混合不足により生じる筋状のムラや重合性を制御することで注型痕や脈理を抑制することができる。
 ダイナミックミキサー型のディスペンサーの使用により、得られる重合性組成物の粘度をさらに低下することが可能なので、量産化や、成形体の注型痕や脈理を効果的に抑制できるため、より好ましい。本実施形態においては、工程bで得られる重合性組成物の粘度を、20℃で500mPa・s以下とすることができる。
[工程(iii)]
 工程(iii)においては、重合性組成物に含まれる前記プレポリマーとアルコール(B)とを重合することにより、ポリウレタン樹脂を製造する。本実施形態においては、ポリウレタン樹脂からなる成形体を得る方法を例に説明する。
 本実施形態において得られた重合性組成物は、ガスケットまたはテープ等で保持された成型モールド(鋳型)内に、注入する。本実施形態の製造方法で得られた重合性組成物は、粘度が1000mPa・s以下であり、室温(30℃以下)で容易に取り扱うことができるため、注型温度は30℃以下で実施することが可能である。この時、得られる成形体に要求される物性によっては、必要に応じて、減圧下での脱泡処理や加圧、減圧等の濾過処理等を行うことが好ましい。
 重合性組成物に含まれる前記プレポリマーとアルコール(B)とを重合するに際し、加熱開始温度を30℃以下とし、当該温度から徐々に昇温して重合性組成物を重合する。加熱開始温度が30℃を超える場合は、重合後の成形体の離型性が著しく悪化し、また得られる成形体に脈理が発生しやすくなる。このような観点から、前記重合性組成物の加熱開始温度は、30℃以下が好ましい。重合条件については、使用するイソシアネートやアルコールの種類、モールドの形状等によって大きく条件が異なるため限定されるものではないが、およそ0~140℃の温度で1~48時間かけて行われる。
 本実施形態のポリウレタン樹脂からなる成形体は、必要に応じて、アニール等の処理を行ってもよい。処理温度は通常50~150℃の範囲で行われるが、90~140℃で行うことが好ましく、100~130℃で行うことがより好ましい。
 本実施形態のポリウレタン成形体を用いたプラスチックレンズは必要に応じて、片面又は両面にコーティング層を施して用いてもよい。コーティング層としては、プライマー層、ハードコート層、反射防止層、防曇コート層、防汚染層、撥水層等が挙げられる。これらのコーティング層はそれぞれ単独で用いることも複数のコーティング層を多層化して使用してもよい。両面にコーティング層を施す場合、それぞれの面に同様なコーティング層を施しても、異なるコーティング層を施してもよい。
 なお、本実施形態における、これらのコーティング層は第1実施形態と同様であるので、説明を省略する。
 本実施形態のポリウレタン成形体を用いたプラスチックレンズはファッション性やフォトクロミック性の付与などを目的として、目的に応じた色素を用い、染色して使用してもよい。
 なお、本実施形態で用いられる色素、染色方法は第1実施形態と同様であるので、説明を省略する。
[プラスチック偏光レンズの製造方法]
 本実施形態のポリウレタン樹脂の製造方法により、プラスチック偏光レンズを製造する場合、工程(iii)の前に、下記の工程(a)を含む。さらに、工程(iii)は、下記の工程(b)および工程(c)を含む。
工程(a):レンズ注型用鋳型内に、偏光フィルムの少なくとも一方の面がモールドから離隔した状態で、該偏光フィルムを固定する。
工程(b):前記偏光フィルムと前記モールドとの間の空隙に、本実施形態の重合性組成物を注入する。
工程(c):前記重合性組成物を重合硬化して、前記偏光フィルムの少なくとも一方の面にポリウレタン樹脂からなる層を積層する。
 以下、各工程に沿って順に説明する。
工程(a)
 レンズ注型用鋳型の空間内に、熱可塑性ポリエステル等からなる偏光フィルムを、フィルム面の少なくとも一方が対向するモールド内面と並行となるように設置する。偏光フィルムとモールドとの間には、空隙部が形成される。偏光フィルムは予め附形されていてもよい。
工程(b)
 次いで、レンズ注型用鋳型の空間内において、モールドと偏光フィルムとの間の空隙部に、所定の注入手段により本実施形態の重合性組成物を注入する。
工程(c)
 次いで、重合性組成物が注入された偏光フィルムが固定されたレンズ注型用鋳型をオーブン中または水中等の加熱可能装置内で所定の温度プログラムにて数時間から数十時間かけて加熱して硬化成型する。
 重合硬化の温度は、加熱開始温度は、30℃以下が好ましい。重合条件については、使用するイソシアネートやアルコールの種類、モールドの形状等によって大きく条件が異なるため限定されるものではないが、およそ0~140℃の温度で1~48時間かけて行われる。
 硬化成形終了後、レンズ注型用鋳型から取り出すことで、偏光フィルムの少なくとも一方の面にポリウレタン樹脂からなる層が積層された、本実施形態のプラスチック偏光レンズを得ることができる。
 本実施形態のプラスチック偏光レンズは、重合による歪みを緩和することを目的として、離型したレンズを加熱してアニール処理を施すことが望ましい。
 本実施形態のプラスチック偏光レンズは、必要に応じ、片面又は両面にコーティング層を施して用いられる。コーティング層としては、プラスチック眼鏡レンズと同様の、プライマー層、ハードコート層、反射防止層、防曇コート層、防汚染層、撥水層等を挙げることができる。
 なお、本実施形態における、これらのコーティング層は第1実施形態と同様であるので、説明を省略する。
 また、眼鏡用プラスチックレンズは、包装された状態で比較的長期間保管されることがあり、レンズ保管中に、傷つき、吸湿による変形や、レンズが変色によりレンズの保管期間の違いによって左右で色が異なってしまうなど品質上の問題が生じる場合がある。
 その場合、公知(例えば、特開2007-99313公報、特開2007-24998公報、特開平9-216674など)の包装技術により抑制、改善することができる。
 なお、本実施形態における包装技術は第1実施形態と同様であるので、説明を省略する。
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することができる。
 図1の混合装置は各構成を含んでいればよく、形状、装置内の位置など、特に限定されるものではない。
 以下、本発明を実施例により具体的に説明する。
 アルコールに含まれる1級と2級の水酸基の合計モル数に対する2級の水酸基の割合は、プロトン核磁気共鳴スペクトルH-NMR(400MHz)を用いて算出した。測定条件は以下のとおりである。
 装置:ECP-400P(日本電子社製)、積算回数:16回、観測範囲:8000Hz
 測定するアルコールを重クロロホルムで希釈した後に、アルコールに含まれる1級と2級の水酸基のモル数に対して、過剰モル数のトリフルオロ酢酸無水物を装入して20~25℃で1時間反応させ、反応が完結していることを確認した。その後、H-NMRを測定して、次式から2級水酸基の割合を算出した。
X=A/(A+B/2)×100
 X:2級水酸基の割合、A:化学シフト5.3~5.6ppmの積分値、B:化学シフト4.2~4.5ppmの積分値。
 樹脂の性能試験において、屈折率、比重、透明性、脈理、耐熱性、YI値は、以下の方法により評価した。
・屈折率(ne):プルフリッヒ屈折計を用い、20℃で測定した。
・透明性:得られたレンズを暗所にてプロジェクターに照射して、曇り、不透明物質、テープからの粘着成分の溶出の有無を目視にて判断した。曇り、不透明物質、テープからの溶出が確認されないものを「透明性あり」、確認されたものを「透明性なし」とした。
・脈理:得られたレンズを高圧水銀ランプに投影して、レンズ内に歪みが見られてないものを「脈理なし」、見られるものを「脈理あり」とした。
・耐熱性:TMAペネートレーション法(50g荷重、ピン先0.5mmφ、昇温速度10℃/min)でのガラス転移温度Tgを測定した。
・YI値(耐光性):2mm厚平板を用いてQ-Lab製促進耐光性試験機にてQUV試験(光源:UVA-340、強度:0.51W/m2、試験条件:50℃×48時間)を実施し、照射前後の色相変化(ΔYI)を測定した。以下の基準に基づいて評価した。
◎:1.0以下
○:1.0を超え、5.0以下
△:5.0を超え、10.0以下
×:10.0を超える
[実施例1]
 トリメチロールプロパンのプロピレンオキサイド付加体(Bayer社製;Desmophen 4011T)58.8g(上記測定法により求めた2級水酸基の割合:70%)、ZelecUN(STEPAN社製;酸性リン酸エステル)0.6g、TINUVIN292(BASF社製;光安定化剤)0.4gを混合溶解し、均一溶液とした。2,4-トリレンジイソシアネートと2,6-トリレンジイソシアネートの混合物41.20gに、ベンゾトリアゾール系化合物(共同薬品社製;バイオソーブ583(2-(2'-ヒドロキシ-5'-tert-オクチルフェニル)ベンゾトリアゾール))3.00gを混合溶解し、均一溶液とした。それぞれの溶液を20℃で混合して、400Paにて脱泡を行った後に成型モールドへ注入した。これを重合オーブンへ投入して、15℃~120℃まで24時間かけて徐々に昇温して重合した。重合終了後、オーブンから取り出して成型モールドからの離型作業を行った。離型性は良好であり、モールドの剥離は見られなかった。得られた成形体をさらに120℃で2時間アニール処理を行った。得られた成形体は透明性があり、脈理は認められず、屈折率(ne)1.54、Tgは81℃であり、光学材料用途として好適であった。
 また、この成形体のΔYI値は0.1となり良好な耐光性を示した。成形体の評価結果を表-1に示す。
 また、トリメチロールプロパンのプロピレンオキサイド付加体のH-NMR測定チャートを図2に示す。図2中、「A」は化学シフト5.3~5.6ppmのピークを示し、「B」は化学シフト4.2~4.5ppmのピークを示す。
[実施例2]
 トリメチロールプロパンのプロピレンオキサイド付加体(Bayer社製;Desmophen 4011T)56.22g(上記測定法により求めた2級水酸基の割合:70%)、ZelecUN(STEPAN社製;酸性リン酸エステル)0.6g、TINUVIN292(BASF社製;光安定化剤)0.4gを混合溶解し、均一溶液とした。2,4-トリレンジイソシアネートと2,6-トリレンジイソシアネートの混合物43.78gに、ベンゾトリアゾール系化合物(共同薬品社製;バイオソーブ583)1.00gを混合溶解し、均一溶液とした。それぞれの溶液を20℃で混合して、400Paにて脱泡を行った後に成型モールドへ注入した。これを重合オーブンへ投入して、15℃~120℃まで24時間かけて徐々に昇温して重合した。重合終了後、オーブンから取り出して成型モールドからの離型作業を行った。離型性は良好であり、モールドの剥離は見られなかった。得られた成形体をさらに120℃で2時間アニール処理を行った。得られた成形体は透明性があり、脈理は認められず、屈折率(ne)1.54、Tgは105℃であり、光学材料用途として好適であった。成形体の評価結果を表-1に示す。
[実施例3]
 ベンゾトリアゾール系化合物(共同薬品社製;バイオソーブ583)の添加量を3.00gに変更した以外は実施例2と同様の手順で成形体を得た。成形体の評価結果を表-1に示す。
[実施例4]
 ベンゾトリアゾール系化合物(共同薬品社製;バイオソーブ583)の添加量を10.00gに変更した以外は実施例2と同様の手順で成形体を得た。成形体の評価結果を表-1に示す。
[実施例5]
 グリセロールのプロピレンオキサイド付加体(三井化学社製;アクトコールT250)50.75g(上記測定法により求めた2級水酸基の割合:88%)、ZelecUN(STEPAN社製;酸性リン酸エステル)0.6g、TINUVIN292(BASF社製;光安定化剤)0.4gを混合溶解し均一溶液とし、2,4-トリレンジイソシアネートと2,6-トリレンジイソシアネートの混合物の配合量を49.25gに変更した以外は実施例2と同様の手順で成形体を得た。成形体の評価結果を表-1に示す。
[実施例6]
 ベンゾトリアゾール系化合物(共同薬品社製;バイオソーブ583)の添加量を3.00gに変更した以外は実施例5と同様の手順で成形体を得た。成形体の評価結果を表-1に示す。
[実施例7]
 ベンゾトリアゾール系化合物(共同薬品社製;バイオソーブ583)の添加量を10.00gに変更した以外は実施例5と同様の手順で成形体を得た。成形体の評価結果を表-1に示す。
[実施例8]
 トリメチロールプロパンのプロピレンオキサイド付加体を53.94g、2,4-トリレンジイソシアネートと2,6-トリレンジイソシアネートの混合物を46.06gに変更した以外は実施例2と同様の手順で成形体を得た。成形体の評価結果を表-1に示す。
[実施例9]
 ベンゾトリアゾール系化合物(共同薬品社製;バイオソーブ583)の添加量を3.00gに変更した以外は実施例8と同様の手順で成形体を得た。成形体の評価結果を表-1に示す。
[実施例10]
 ベンゾトリアゾール系化合物(共同薬品社製;バイオソーブ583)の添加量を10.00gに変更した以外は実施例8と同様の手順で成形体を得た。成形体の評価結果を表-1に示す。
[実施例11]
 2,6-ジ-tert-ブチル-p-クレゾールを1.5g添加した以外は実施例9と同様の手順で成形体を得た。成形体の評価結果を表-1に示す。
[実施例12]
 2,6-ジ-tert-ブチル-p-クレゾールを1.5g添加した以外は実施例10と同様の手順で成形体を得た。成形体の評価結果を表-1に示す。
[実施例13]
グリセロールのプロピレンオキサイド付加体を48.37g、2,4-トリレンジイソシアネートと2,6-トリレンジイソシアネートの混合物を51.63gに変更した以外は実施例2と同様の手順で成形体を得た。成形体の評価結果を表-1に示す。
[実施例14]
 ベンゾトリアゾール系化合物(共同薬品社製;バイオソーブ583)の添加量を3.00gに変更した以外は実施例13と同様の手順で成形体を得た。成形体の評価結果を表-1に示す。
[実施例15]
 ベンゾトリアゾール系化合物(共同薬品社製;バイオソーブ583)の添加量を10.00gに変更した以外は実施例13と同様の手順で成形体を得た。成形体の評価結果を表-1に示す。
[実施例16]
 2,6-ジ-tert-ブチル-p-クレゾールを1.5g添加した以外は、実施例14と同様の手順で成形体を得た。成形体の評価結果を表-1に示す。
[実施例17]
 ベンゾトリアゾール系化合物(共同薬品社製;バイオソーブ583)の添加量を10.00gに変更した以外は実施例16と同様の手順で成形体を得た。成形体の評価結果を表-1に示す。
[実施例18]
 2,4-トリレンジイソシアネートと2,6-トリレンジイソシアネートの混合物を48.25g、トリメチロールのプロパンプロピレンオキサイド付加体51.75gに変更した以外は、実施例1と同様の手順で成形体を得た。成形体の評価結果を表-1に示す。
[実施例19]
 2,4-トリレンジイソシアネートと2,6-トリレンジイソシアネートの混合物46.06gに、ベンゾトリアゾール系化合物(共同薬品社製;バイオソーブ583)3.0g、ZelecUN(STEPAN社製;酸性リン酸エステル)0.6g、TINUVIN292(BASF社製;ヒンダードアミン系化合物)0.40gを混合溶解し、均一溶液とした。20℃で保持した後に、トリメチロールプロパンのプロピレンオキサイド付加体(Bayer社製;Desmophen 4011T)8.09g(上記測定法により求めた2級水酸基の割合:70%)を添加して、20℃で3時間反応させた(工程(i))。得られたプレポリマーの20℃での粘度は100mPa・sと、作業上全く支障が無いことを確認した。続いて、20℃で保持した後に、トリメチロールプロパンのプロピレンオキサイド付加体(Bayer社製;Desmophen 4011T)45.85gを、20℃で、スターラーバーにて均一に混合した(工程(ii))。得られた重合性組成物の20℃での粘度は400mPa・sと、作業上全く支障が無いことを確認した。引き続き、この重合性組成物をモールドと称する2枚の向かい合うガラス平板からなる2mm厚の空隙を有するキャビティーに注入し重合オーブンへ投入して、30℃~130℃まで24時間かけて徐々に昇温して重合した(工程(iii))。重合終了後、オーブンから取り出してモールドからの離型作業を行った。離型性は良好であり、モールドの剥離は見られなかった。得られた成形体をさらに120℃で2時間アニール処理を行った。得られた成形体は透明性があり、脈理は認められず、屈折率(ne)1.55、Tgは103℃であり、光学材料用途として好適であった。
 この樹脂のQUV照射試験によるΔYI値は3.5となり、良好な耐光性を示した。結果を表-1に示す。
[実施例20]
 2,6-ジ-tert-ブチル-p-クレゾールを2.0g添加した以外は実施例9と同様の手順で成形体を得た。成形体の評価結果を表-1に示す。
[実施例21]
 工程(ii)での混合を、日本ソセー工業社製の2液混合型吐出装置である、スーパーショットシリーズ(製品名)を用いて、30℃で行った以外は、実施例19と同様な方法で、重合性組成物の調合を行った。ミキサーの回転数は2500rpm、吐出速度は1.0g/sで行った。得られた重合性組成物の20℃での粘度は300mPa・sと、作業上全く支障が無いことを確認した。重合性組成物をモールドと称する2枚の向かい合うガラス平板からなる2mm厚の空隙を有するキャビティーに注入し重合オーブンへ投入して、30℃~130℃まで24時間かけて徐々に昇温して重合した。重合終了後、オーブンから取り出して成型モールドからの離型作業を行った。離型性は良好であり、モールドからの剥離は見られなかった。得られた成形体をさらに120℃で2時間アニール処理を行った。得られた成形体は透明性があり、脈理は認められず、屈折率(ne)1.55、Tgは101℃であり、光学材料用途として好適であった。
 この樹脂のQUV照射試験によるΔYI値は3.5となり、良好な耐光性を示した。結果を表-1に示す。
[比較例1]
 ベンゾトリアゾール系化合物を添加しない以外は実施例1と同様の手順で成形体を得た。ΔYI値は7.5となり耐光性が悪い結果となった。成形体の評価結果を表-1に示す。
[比較例2]
 ベンゾトリアゾール系化合物を添加しない以外は実施例8と同様の手順で成形体を得た。成形体の評価結果を表-1に示す。
[比較例3]
 ベンゾトリアゾール系化合物を添加しない以外は実施例13と同様の手順で成形体を得た。成形体の評価結果を表-1に示す。
[比較例4]
 ベンゾトリアゾール系化合物を添加しない以外は実施例18と同様の手順で成形体を得た。成形体の評価結果を表-1に示す。
[比較例5]
 ベンゾトリアゾール系化合物(共同薬品社製;バイオソーブ583)を12.00gに変更した以外は実施例8と同様の手順で成形体を得た。この成形体は、不透明であった。また、析出物なども観察されたことから、屈折率等の測定は不可能であった。
[比較例6]
 ベンゾトリアゾール系化合物(共同薬品社製;バイオソーブ583)を12.00gに変更した以外は実施例18と同様の手順で成形体を得た。この成形体は、不透明であった。また、析出物なども観察されたことから、屈折率等の測定は不可能であった。
[比較例7]
 ベンゾトリアゾール系化合物(共同薬品社製;バイオソーブ583)を12.00gに変更した以外は実施例13と同様の手順で成形体を得た。この成形体は、不透明であった。また、析出物なども観察されたことから、屈折率等の測定は不可能であった。
[比較例8]
 ベンゾトリアゾール系化合物に変えて、2,2',4,4'-テトラヒドロキシベンゾフェノンに変更した以外は実施例8と同様の手順で成形体を得た。この成形体は不透明であった。また、析出物なども観察されたことから、屈折率等の測定は不可能であった。
[比較例9]
 ベンゾトリアゾール系化合物に変えて、2,2',4,4'-テトラヒドロキシベンゾフェノンに変更した以外は実施例9と同様の手順で成形体を得た。この成形体は不透明であった。また、析出物なども観察されたことから、屈折率等の測定は不可能であった。
[比較例10]
 ベンゾトリアゾール系化合物に変えて、2,2',4,4'-テトラヒドロキシベンゾフェノンに変更した以外は実施例13と同様の手順で成形体を得た。この成形体は不透明であった。また、析出物なども観察されたことから、屈折率等の測定は不可能であった。
[比較例11]
 ベンゾトリアゾール系化合物に変えて2,2',4,4'-テトラヒドロキシベンゾフェノンに変更した以外は実施例14と同様の手順で成形体を得た。この成形体は不透明であった。また、析出物なども観察されたことから、屈折率等の測定は不可能であった。
[比較例12]
 ベンゾトリアゾール系化合物に変えて4-メトキシ桂皮酸-2-エチルヘキシルに変更した以外は実施例8と同様の手順で成形体を得た。耐光性の悪い結果となった。成形体の評価結果を表-1に示す。
[比較例13]
 ベンゾトリアゾール系化合物に変えて4-メトキシ桂皮酸-2-エチルヘキシルに変更した以外は実施例9と同様の手順で成形体を得た。耐光性の悪い結果となった。成形体の評価結果を表-1に示す。
[比較例14]
 ベンゾトリアゾール系化合物に変えて4-メトキシ桂皮酸-2-エチルヘキシルに変更した以外は実施例13と同様の手順で成形体を得た。耐光性の悪い結果となった。成形体の評価結果を表-1に示す。
[比較例15]
 ベンゾトリアゾール系化合物に変えて4-メトキシ桂皮酸-2-エチルヘキシルに変更した以外は実施例14と同様の手順で成形体を得た。耐光性の悪い結果となった。成形体の評価結果を表-1に示す。
[比較例16]
 ベンゾトリアゾール系化合物3.0gに変えて4-メトキシ桂皮酸-2-エチルヘキシルを6.0g添加した以外は実施例9と同様の手順で成形体を得た。この成形体は不透明であった。また、析出物なども観察されたことから、屈折率等の測定は不可能であった。
Figure JPOXMLDOC01-appb-T000005
i-1: 2,4-トリレンジイソシアネートと2,6-トリレンジイソシアネートの混合物
ii-1: トリメチロールプロパンのプロピレンオキサイド付加体(Bayer社製、Desmophen 4011T)
ii-2: グリセロールのプロピレンオキサイド付加体(三井化学社製;アクトコールT250)
iii-1: 2-(2-ヒドロキシ-5-tert-オクチルフェニル)-2H-ベンゾトリアゾール
iii-2: 2,2',4,4'-テトラヒドロキシベンゾフェノン
iii-3: 4-メトキシ桂皮酸-2-エチルヘキシル
iv-1:  2,6-ジ-tert-ブチル-p-クレゾール
 実施例と比較例の結果から、ベンゾトリアゾール系化合物(D)を所定の量含むことで、耐光性や光学物性、耐熱性などのバランスに優れた成形体を得ることができることが分かった。さらに、実施例10、11の結果より、フェノール系化合物(E)を所定量含むことにより、ベンゾトリアゾール系化合物(D)が少ない添加量であっても、優れた耐光性の改善効果を示すことが分かった。
 本発明の光学材料用重合性組成物から得られるウレタン成形体は、高い透明性が要求される各種光学材料、特に眼鏡レンズにおいて好適に使用することができる。
 この出願は、2013年3月26日に出願された日本出願特願2013-063478を基礎とする優先権、2013年6月10日に出願された日本出願特願2013-121627を基礎とする優先権、2013年11月1日に出願された国際特許出願PCT/JP2013/079790を基礎とする優先権、および2013年11月1日に出願された国際特許出願PCT/JP2013/079791を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 本発明は以下の態様も取り得る。
[a1](A)芳香族イソシアネートを含む、イソシアナト基を二つ以上有する一種以上のイソシアネートと、
(B)水酸基を二つ以上有する一種以上のアルコールと、
(C)下記一般式(1)
Figure JPOXMLDOC01-appb-C000006
(式中、mは1または2の整数を示し、nは0~18の整数を示し、Rは炭素数1~20のアルキル基を示し、R、Rはそれぞれ独立に水素原子、メチル基またはエチル基を示す。)
で表される酸性リン酸エステルと、を含んでなり、
 アルコール(B)に含まれる1級と2級の水酸基の合計モル数に対して、2級の水酸基の割合が50%以上である、光学材料用重合性組成物。
[a2] アルコール(B)が、グリセロール、ジグリセロール、トリメチロールプロパン、ペンタエリスリトール、ジ(トリメチロールプロパン)、グリセロールのエチレンオキサイド付加体、トリメチロールプロパンのエチレンオキサイド付加体、ペンタエリスリトールのエチレンオキサイド付加体、グリセロールのプロピレンオキサイド付加体、トリメチロールプロパンのプロピレンオキサイド付加体、およびペンタエリスリトールのプロピレンオキサイド付加体から選ばれる1種以上の化合物を含む、[a1]に記載の光学材料用重合性組成物。
[a3] アルコール(B)が、グリセロールのプロピレンオキサイド付加体、またはトリメチロールプロパンのプロピレンオキサイド付加体、およびペンタエリスリトールのプロピレンオキサイド付加体から選ばれる1種以上の化合物を含む、[a1]または[a2]に記載の光学材料用重合性組成物。
[a4] 芳香族イソシアネートが、2,4-トリレンジイソシアネート、または2,4-トリレンジイソシアネートと2,6-トリレンジイソシアネートの混合物である、[a1]から[a3]のいずれかに記載の光学材料用重合性組成物。
[a5] 酸性リン酸エステル(C)が、イソシアネート(A)とアルコール(B)の合計100重量部に対して、0.1重量部~3.0重量部の量で含まれる、[a1]から[a4]のいずれかに記載の光学材料用重合性組成物。
[a6] ヒンダードアミン系化合物をさらに含み、
 該ヒンダードアミン系化合物が、イソシアネート(A)とアルコール(B)の合計100重量部に対して、0.1重量部~2.0重量部の量で含まれる、[a1]から[a5]のいずれかに記載の光学材料用重合性組成物。
[a7] [a1]から[a6]のいずれかに記載の光学材料用重合性組成物で得られる成形体。
[a8] [a7]に記載の成形体からなる光学材料。
[a9] [a8]に記載の光学材料からなるプラスチックレンズ。
 本発明は以下の態様も取り得る。
[b1] (A)芳香族イソシアネートを含む、イソシアナト基を二つ以上有する一種以上のイソシアネートと、
(B)水酸基を二つ以上有する一種以上のアルコールと、
(C)下記一般式(1)
Figure JPOXMLDOC01-appb-C000007
(式中、mは1または2の整数を示し、nは0~18の整数を示し、Rは炭素数1~20のアルキル基を示し、R、Rはそれぞれ独立に水素原子、メチル基またはエチル基を示す。)
で表される酸性リン酸エステルと、を含んでなり、
 アルコール(B)に含まれる1級と2級の水酸基の合計モル数に対して、2級の水酸基の割合が50%以上である、光学材料用重合性組成物。
[b2] アルコール(B)が、グリセロール、ジグリセロール、トリメチロールプロパン、ペンタエリスリトール、ジ(トリメチロールプロパン)、グリセロールのエチレンオキサイド付加体、トリメチロールプロパンのエチレンオキサイド付加体、ペンタエリスリトールのエチレンオキサイド付加体、グリセロールのプロピレンオキサイド付加体、トリメチロールプロパンのプロピレンオキサイド付加体、およびペンタエリスリトールのプロピレンオキサイド付加体から選ばれる1種以上の化合物を含む、[b1]に記載の光学材料用重合性組成物。
[b3] アルコール(B)が、グリセロールのプロピレンオキサイド付加体、またはトリメチロールプロパンのプロピレンオキサイド付加体、およびペンタエリスリトールのプロピレンオキサイド付加体から選ばれる1種以上の化合物を含む、[b1]または[b2]に記載の光学材料用重合性組成物。
[b4] 前記芳香族イソシアネートが、2,4-トリレンジイソシアネート、または2,4-トリレンジイソシアネートと2,6-トリレンジイソシアネートの混合物である、[b1]から[b3]のいずれかに記載の光学材料用重合性組成物。
[b5] 酸性リン酸エステル(C)が、イソシアネート(A)とアルコール(B)の合計100重量部に対して、0.1重量部~3.0重量部の量で含まれる、[b1]から[b4]のいずれかに記載の光学材料用重合性組成物。
[b6] ヒンダードアミン系化合物をさらに含み、
 該ヒンダードアミン系化合物が、イソシアネート(A)とアルコール(B)の合計100重量部に対して、0.1重量部~2.0重量部の量で含まれる、[b1]から[b5]のいずれかに記載の光学材料用重合性組成物。
[b7] アルコール(B)と酸性リン酸エステル(C)とを混合した後に、芳香族イソシアネートを含む、イソシアナト基を二つ以上有する一種以上のイソシアネート(A)を30℃以下で混合し、[b1]から[b6]のいずれかに記載の重合性組成物を得る工程と、
 前記重合性組成物を鋳型内に注型する工程と、
 30℃以下から前記重合性組成物の重合を開始し、該組成物を重合する工程と、
を含む成形体の製造方法。
[b8] [b1]から[b7]のいずれかに記載の光学材料用重合性組成物で得られる成形体。
[b9] [b8]に記載の成形体からなる光学材料。
[b10] [b9]に記載の光学材料からなるプラスチックレンズ。
[b11] アルコール(B)と酸性リン酸エステル(C)とを混合した後に、芳香族イソシアネートを含む、イソシアナト基を二つ以上有する一種以上のイソシアネート(A)を30℃以下で混合し、[b1]から[b6]のいずれかに記載の重合性組成物を得る工程と、
 レンズ注型用鋳型内に、偏光フィルムの少なくとも一方の面がモールドから離隔した状態で、該偏光フィルムを固定する工程と、
 前記偏光フィルムと前記モールドとの間の空隙に、前記重合性組成物を注入する工程と、
 30℃以下から前記重合性組成物の重合を開始し、該組成物を重合硬化して、前記偏光フィルムの少なくとも一方の面にポリウレタン樹脂からなる層を積層する工程と、
を含む、プラスチック偏光レンズの製造方法。
[b12] [b11]に記載の製造方法により得られたプラスチック偏光レンズ。
 本発明は以下の態様も取り得る。
[c1] 下記イソシアネート(A)に、該イソシアネート(A)のイソシアナト基に対する水酸基の割合が10モル%から20モル%の範囲となるように、下記アルコール(B)を添加し、酸性リン酸エステル(C)およびヒンダードアミン系化合物(D)の存在下でこれらを反応させ、プレポリマーを得る工程(i)と、
 30℃以下の温度で、前記プレポリマーに、さらに下記アルコール(B)を添加混合し、重合性組成物を得る工程(ii)と、
 前記重合性組成物に含まれる前記プレポリマーとアルコール(B)とを重合する工程(iii)と、
を含む、ポリウレタン樹脂の製造方法;
 イソシアネート(A):芳香族イソシアネートを含む、イソシアナト基を2つ以上有する1種以上のイソシアネート、
 アルコール(B):水酸基を2つ以上有する1種以上のアルコールからなり、アルコール(B)に含まれる1級と2級の水酸基の合計モル数に対して、2級の水酸基の割合が50モル%以上である。
[c2] 工程(i)の反応温度が30℃以下である、[c1]に記載の製造方法。
[c3] 工程(iii)において、前記プレポリマーとアルコール(B)とを重合するに際し、加熱開始温度が30℃以下である、[c1]または[c2]に記載の製造方法。
[c4] 前記プレポリマーおよび前記重合性組成物の粘度が、20℃で1000mPa・s以下であることを特徴とする、[c1]から[c3]のいずれかに記載の製造方法。
[c5] 工程(ii)は、
 円柱状の容器と、
 前記容器の上方から中心軸方向に沿って挿入されたシャフトと、
 該シャフトの外周面に沿って、スクリュー状に巻き回された攪拌翼と、
 前記容器の上方に配置され、該容器内にプレポリマーを送液する第1供給部と、
 前記容器の上方に配置され、該容器内にアルコール(B)を送液する第2供給部と、
 前記容器の下端に配置された吐出部と、を備える混合装置により行われ、
 前記容器内に、前記第1供給部からプレポリマーを送液するとともに、前記第2供給部からアルコール(B)を送液する工程と、
 前記シャフトを回転することにより、該シャフトの外周面に沿って、スクリュー状に巻き回された前記攪拌翼が、30℃以下の温度で、プレポリマーとアルコール(B)とを混合しながら下方に移動させて重合性組成物を調製し、得られた該重合性組成物を吐出部から吐出する工程と、
を含む、[c1]から[c4]のいずれかに記載の製造方法。
[c6] 前記シャフトの回転数が1000rpmから4000rpmの範囲であり、前記吐出部から前記重合性組成物が吐出される速度が0.5g/sから4.0g/sの範囲である、[c5]に記載の製造方法。
[c7] 工程(ii)で得られる重合性組成物の粘度が、20℃で500mPa・s以下であることを特徴とする、[c5]または[c6]に記載の製造方法。
[c8] イソシアネート(A)に含まれる芳香族イソシアネートが、2,4-トリレンジイソシアネート、または2,4-トリレンジイソシアネートと2,6-トリレンジイソシアネートの混合物である、[c1]から[c7]のいずれかに記載の製造方法。
[c9] アルコール(B)が、グリセロール、ジグリセロール、トリメチロールプロパン、ペンタエリスリトール、ジ(トリメチロールプロパン)、グリセロールのエチレンオキサイド付加体、トリメチロールプロパンのエチレンオキサイド付加体、ペンタエリスリトールのエチレンオキサイド付加体、グリセロールのプロピレンオキサイド付加体、トリメチロールプロパンのプロピレンオキサイド付加体、およびペンタエリスリトールのプロピレンオキサイド付加体から選ばれる1種以上の化合物を含む、[c1]から[c8]のいずれかに記載の製造方法。
[c10] アルコール(B)が、グリセロールのプロピレンオキサイド付加体、またはトリメチロールプロパンのプロピレンオキサイド付加体、およびペンタエリスリトールのプロピレンオキサイド付加体から選ばれる1種以上の化合物を含む、[c1]から[c9]のいずれかに記載の製造方法。
[c11] 酸性リン酸エステル(C)が、イソシアネート(A)とアルコール(B)の合計100重量部に対して、0.1重量部から3.0重量部の量で含まれる、[c1]から[c10]のいずれかに記載の製造方法。
[c12] 酸性リン酸エステル(C)が、一般式(1)で表される酸性リン酸エステルである、[c1]から[c11]のいずれかに記載の製造方法。
Figure JPOXMLDOC01-appb-C000008
(式中、mは1または2の整数を示し、nは0~18の整数を示し、Rは炭素数1~20のアルキル基を示し、R、Rはそれぞれ独立に水素原子、メチル基またはエチル基を示す。)
[c13] ヒンダードアミン系化合物(D)が、イソシアネート(A)とアルコール(B)の合計100重量部に対して、0.1重量部から2.0重量部の量で含まれる、[c1]から[c12]のいずれかに記載の製造方法。
[c14] [c1]から[c13]のいずれかに記載の製造方法により得られたポリウレタン樹脂。
[c15] [c1]から[c13]のいずれかに記載のポリウレタン樹脂の製造方法において、
 前記工程(iii)は、
 前記重合性組成物をモールド内に注入する工程と、
 前記重合性組成物に含まれる前記プレポリマーとアルコール(B)とを、前記モールド内で重合する工程と、
を含む、ポリウレタン成形体の製造方法。
[c16] [c15]に記載の製造方法により得られたポリウレタン成形体。
[c17] [c16]に記載のポリウレタン成形体からなる光学材料。
[c18] [c17]に記載の光学材料からなるプラスチックレンズ。
[c19] [c1]から[c13]のいずれかに記載のポリウレタン樹脂の製造方法において、
 前記工程(iii)の前に、レンズ注型用鋳型内に、偏光フィルムの少なくとも一方の面がモールドから離隔した状態で、該偏光フィルムを固定する工程を含み、
 前記工程(iii)は、
 前記偏光フィルムと前記モールドとの間の空隙に、工程(ii)で得られた重合性組成物を注入する工程と、
 前記重合性組成物を重合硬化して、前記偏光フィルムの少なくとも一方の面にポリウレタン樹脂からなる層を積層する工程と、
を含む、プラスチック偏光レンズの製造方法。
[c20] [c19]に記載の製造方法により得られたプラスチック偏光レンズ。

Claims (27)

  1. (A)芳香族イソシアネートを含む、イソシアナト基を二つ以上有する一種以上のイソシアネートと、
    (B)水酸基を二つ以上有する一種以上のアルコールと、
    (C)下記一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式中、mは1または2の整数を示し、nは0~18の整数を示し、Rは炭素数1~20のアルキル基を示し、R、Rはそれぞれ独立に水素原子、メチル基またはエチル基を示す。)
    で表される酸性リン酸エステルと、
    (D)ベンゾトリアゾール系化合物と、を含んでなり、
     アルコール(B)に含まれる1級と2級の水酸基の合計モル数に対して、2級の水酸基の割合が50%以上であり、
     イソシアネート(A)およびアルコール(B)との合計100重量部に対して、ベンゾトリアゾール系化合物(D)を1~11重量部の量で含む、光学材料用重合性組成物。
  2.  アルコール(B)が、グリセロール、ジグリセロール、トリメチロールプロパン、ペンタエリスリトール、ジ(トリメチロールプロパン)、グリセロールのエチレンオキサイド付加体、トリメチロールプロパンのエチレンオキサイド付加体、ペンタエリスリトールのエチレンオキサイド付加体、グリセロールのプロピレンオキサイド付加体、トリメチロールプロパンのプロピレンオキサイド付加体、およびペンタエリスリトールのプロピレンオキサイド付加体から選ばれる1種以上の化合物を含む、請求項1に記載の光学材料用重合性組成物。
  3.  アルコール(B)が、グリセロールのプロピレンオキサイド付加体、トリメチロールプロパンのプロピレンオキサイド付加体、およびペンタエリスリトールのプロピレンオキサイド付加体から選ばれる1種以上の化合物を含む、請求項1または2に記載の光学材料用重合性組成物。
  4.  前記芳香族イソシアネートが、2,4-トリレンジイソシアネート、または2,4-トリレンジイソシアネートと2,6-トリレンジイソシアネートの混合物である、請求項1から3のいずれかに記載の光学材料用重合性組成物。
  5.  アルコール(B)の水酸基に対するイソシアネート(A)のイソシアナト基のモル比が、0.8~1.2である、請求項1から4のいずれかに記載の光学材料用重合性組成物。
  6.  酸性リン酸エステル(C)が、イソシアネート(A)とアルコール(B)の合計100重量部に対して、0.1重量部~3重量部の量で含まれる、請求項1から5のいずれかに記載の光学材料用重合性組成物。
  7.  ヒンダードアミン系化合物をさらに含み、
     該ヒンダードアミン系化合物が、イソシアネート(A)とアルコール(B)の合計100重量部に対して、0.1重量部~2重量部の量で含まれる、請求項1から6のいずれかに記載の光学材料用重合性組成物。
  8.  ベンゾトリアゾール系化合物(D)が、イソシアネート(A)およびアルコール(B)との合計100重量部に対して2.1~10重量部の量で含まれる、請求項1から7のいずれかに記載の光学材料用重合性組成物。
  9.  フェノール系化合物(E)をさらに含み、
     該フェノール系化合物(E)が、イソシアネート(A)およびアルコール(B)との合計100重量部に対して、0.5~5重量部の量で含まれる、請求項1から8のいずれかに記載の光学材料用重合性組成物。
  10.  アルコール(B)と酸性リン酸エステル(C)とベンゾトリアゾール系化合物(D)とを混合した後に、芳香族イソシアネートを含む、イソシアナト基を二つ以上有する一種以上のイソシアネート(A)を30℃以下で混合し、請求項1から8のいずれかに記載の光学材料用重合性組成物を得る工程と、
     前記重合性組成物を鋳型内に注型する工程と、
     30℃以下から前記重合性組成物の重合を開始し、該組成物を重合する工程と、
    を含むポリウレタン成形体の製造方法。
  11.  光学材料用重合性組成物を得る前記工程は、アルコール(B)と酸性リン酸エステル(C)とベンゾトリアゾール系化合物(D)とフェノール系化合物(E)とを混合した後に、芳香族イソシアネートを含む、イソシアナト基を二つ以上有する一種以上のイソシアネート(A)を30℃以下で混合し、請求項9に記載の光学材料用重合性組成物を得る工程を含む、請求項10に記載のポリウレタン成形体の製造方法。
  12.  アルコール(B)と酸性リン酸エステル(C)とベンゾトリアゾール系化合物(D)とを混合した後に、芳香族イソシアネートを含む、イソシアナト基を二つ以上有する一種以上のイソシアネート(A)を30℃以下で混合し、請求項1から8のいずれかに記載の光学材料用重合性組成物を得る工程と、
     レンズ注型用鋳型内に、偏光フィルムの少なくとも一方の面がモールドから離隔した状態で、該偏光フィルムを固定する工程と、
     前記偏光フィルムと前記モールドとの間の空隙に、前記重合性組成物を注入する工程と、
     30℃以下から前記重合性組成物の重合を開始し、該組成物を重合硬化して、前記偏光フィルムの少なくとも一方の面にポリウレタン樹脂からなる層を積層する工程と、
    を含む、プラスチック偏光レンズの製造方法。
  13.  光学材料用重合性組成物を得る前記工程は、アルコール(B)と酸性リン酸エステル(C)とベンゾトリアゾール系化合物(D)とフェノール系化合物(E)とを混合した後に、芳香族イソシアネートを含む、イソシアナト基を二つ以上有する一種以上のイソシアネート(A)を30℃以下で混合し、請求項9に記載の光学材料用重合性組成物を得る工程を含む、請求項12に記載のプラスチック偏光レンズの製造方法。
  14.  イソシアネート(A)に、該イソシアネート(A)のイソシアナト基に対する水酸基の割合が10モル%から20モル%の範囲となるように、アルコール(B)を添加し、酸性リン酸エステル(C)およびベンゾトリアゾール系化合物(D)およびヒンダードアミン系化合物の存在下でこれらを反応させ、プレポリマーを得る工程(i)と、
     30℃以下の温度で、前記プレポリマーに、さらにアルコール(B)を添加混合し、請求項1から8のいずれかに記載の光学材料用重合性組成物を得る工程(ii)と、
     前記重合性組成物に含まれる前記プレポリマーとアルコール(B)とを重合する工程(iii)と、
    を含む、ポリウレタン成形体の製造方法。
  15.  前記工程(i)は、イソシアネート(A)に、該イソシアネート(A)のイソシアナト基に対する水酸基の割合が10モル%から20モル%の範囲となるように、アルコール(B)を添加し、酸性リン酸エステル(C)、ベンゾトリアゾール系化合物(D)およびフェノール系化合物(E)およびヒンダードアミン系化合物の存在下でこれらを反応させ、プレポリマーを得る工程を含む、請求項14に記載の製造方法。
  16.  前記工程(i)において、反応温度が30℃以下である、請求項14または15に記載の製造方法。
  17.  前記工程(iii)において、前記プレポリマーとアルコール(B)とを重合するに際し、加熱開始温度が30℃以下である、請求項14から16のいずれかに記載の製造方法。
  18.  前記プレポリマーおよび前記重合性組成物の粘度が、20℃で1000mPa・s以下であることを特徴とする、請求項14から17のいずれかに記載の製造方法。
  19.  前記工程(ii)は、
     円柱状の容器と、
     前記容器の上方から中心軸方向に沿って挿入されたシャフトと、
     該シャフトの外周面に沿って、スクリュー状に巻き回された攪拌翼と、
     前記容器の上方に配置され、該容器内にプレポリマーを送液する第1供給部と、
     前記容器の上方に配置され、該容器内にアルコール(B)を送液する第2供給部と、
     前記容器の下端に配置された吐出部と、を備える混合装置により行われ、
     前記容器内に、前記第1供給部から前記プレポリマーを送液するとともに、前記第2供給部からアルコール(B)を送液する工程と、
     前記シャフトを回転することにより、該シャフトの外周面に沿って、スクリュー状に巻き回された前記攪拌翼が、30℃以下の温度で、前記プレポリマーとアルコール(B)とを混合しながら下方に移動させて重合性組成物を調製し、得られた該重合性組成物を前記吐出部から吐出する工程と、
    を含む、請求項14から18のいずれかに記載の製造方法。
  20.  前記シャフトの回転数が1000rpmから4000rpmの範囲であり、前記吐出部から前記重合性組成物が吐出される速度が0.5g/sから4g/sの範囲である、請求項19に記載の製造方法。
  21.  前記工程(ii)において、得られる前記重合性組成物の粘度が、20℃で500mPa・s以下であることを特徴とする、請求項19または20に記載の製造方法。
  22.  前記工程(iii)は、
     前記重合性組成物をモールド内に注入する工程と、
     前記重合性組成物に含まれる前記プレポリマーとアルコール(B)とを、前記モールド内で重合する工程と、
    を含む、請求項19または21に記載の製造方法。
  23.  請求項14から22のいずれかに記載のポリウレタン成形体の製造方法において、
     前記工程(iii)の前に、レンズ注型用鋳型内に、偏光フィルムの少なくとも一方の面がモールドから離隔した状態で、該偏光フィルムを固定する工程を含み、
     前記工程(iii)は、
     前記偏光フィルムと前記モールドとの間の空隙に、工程(ii)で得られた重合性組成物を注入する工程と、
     前記重合性組成物を重合硬化して、前記偏光フィルムの少なくとも一方の面にポリウレタン樹脂からなる層を積層する工程と、
    を含む、プラスチック偏光レンズの製造方法。
  24.  請求項10、11、14から22のいずれかに記載の製造方法により得られたポリウレタン成形体。
  25.  請求項24に記載のポリウレタン成形体からなる光学材料。
  26.  請求項25に記載の光学材料からなるプラスチックレンズ。
  27.  請求項12、13または23に記載の製造方法により得られたプラスチック偏光レンズ。
PCT/JP2014/058671 2013-03-26 2014-03-26 光学材料用重合性組成物及びそれより得られる光学材料及びその製造方法 WO2014157407A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP14775376.8A EP2980159B1 (en) 2013-03-26 2014-03-26 Polymerizable composition for optical materials, optical material obtained from same, and method for producing optical material
KR1020177003839A KR101739248B1 (ko) 2013-03-26 2014-03-26 광학 재료용 중합성 조성물 및 그로부터 얻어지는 광학 재료 및 그 제조 방법
CN201480012069.4A CN105143349B (zh) 2013-03-26 2014-03-26 光学材料用聚合性组合物以及由该组合物得到的光学材料及其制造方法
US14/777,783 US10131767B2 (en) 2013-03-26 2014-03-26 Polymerizable composition for optical material, optical material obtained from polymerizable composition, and manufacturing method of optical material
BR112015024449A BR112015024449A8 (pt) 2013-03-26 2014-03-26 composição polimerizável para material óptico, material óptico. produto de poliuretano moldado, lente plástica, lente de polarização plástica e seus métodos de fabricação
KR1020157024153A KR101739215B1 (ko) 2013-03-26 2014-03-26 광학 재료용 중합성 조성물 및 그로부터 얻어지는 광학 재료 및 그 제조 방법
JP2014543039A JP5706052B2 (ja) 2013-03-26 2014-03-26 ポリウレタン成形体の製造方法およびプラスチック偏光レンズの製造方法

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2013-063478 2013-03-26
JP2013063478 2013-03-26
JP2013121627 2013-06-10
JP2013-121627 2013-06-10
JPPCT/JP2013/079790 2013-11-01
PCT/JP2013/079790 WO2014080749A1 (ja) 2012-11-21 2013-11-01 光学材料用重合性組成物
PCT/JP2013/079791 WO2014080750A1 (ja) 2012-11-21 2013-11-01 ポリウレタン樹脂の製造方法
JPPCT/JP2013/079791 2013-11-01

Publications (1)

Publication Number Publication Date
WO2014157407A1 true WO2014157407A1 (ja) 2014-10-02

Family

ID=51624370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058671 WO2014157407A1 (ja) 2013-03-26 2014-03-26 光学材料用重合性組成物及びそれより得られる光学材料及びその製造方法

Country Status (7)

Country Link
US (1) US10131767B2 (ja)
EP (1) EP2980159B1 (ja)
JP (2) JP5706052B2 (ja)
KR (2) KR101739248B1 (ja)
CN (1) CN105143349B (ja)
BR (1) BR112015024449A8 (ja)
WO (1) WO2014157407A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5666060B2 (ja) * 2012-11-21 2015-02-12 三井化学株式会社 ポリウレタン樹脂組成物の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4332140A3 (en) * 2020-01-27 2024-04-10 Mitsui Chemicals, Inc. Polymerizable composition for optical material, polymerizable prepolymer composition for optical material, cured product, and method of producing optical material

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5731449B2 (ja) 1978-08-04 1982-07-05
JPS60194401A (ja) * 1984-03-16 1985-10-02 Asahi Glass Co Ltd 光学素子
JPH01302202A (ja) * 1988-02-17 1989-12-06 Mitsui Toatsu Chem Inc 高屈折率プラスチックレンズ及びその製造方法
JPH03287641A (ja) * 1990-04-05 1991-12-18 Asahi Optical Co Ltd プラスチックレンズ成形用内部離型剤及びプラスチックレンズの製造方法
JPH0838883A (ja) 1994-07-28 1996-02-13 Mitsubishi Gas Chem Co Inc 脱酸素剤
JPH08208794A (ja) * 1995-02-03 1996-08-13 Mitsui Toatsu Chem Inc 含硫ウレタン系プラスチックレンズの製造方法
JPH09216674A (ja) 1996-02-09 1997-08-19 Hoya Corp レンズ用収納袋
JPH10113555A (ja) 1996-10-14 1998-05-06 Mitsubishi Gas Chem Co Inc 酸素吸収用組成物
JPH1170331A (ja) 1997-06-30 1999-03-16 Mitsubishi Gas Chem Co Inc 脱酸素成分
JPH11231102A (ja) * 1998-02-10 1999-08-27 Asahi Optical Co Ltd プラスチックレンズ
JP2001037457A (ja) 1999-07-27 2001-02-13 Mitsubishi Gas Chem Co Inc 脱酸素剤
JP2007024998A (ja) 2005-07-12 2007-02-01 Hoya Corp 眼鏡用プラスチックレンズの保存方法
JP2007099313A (ja) 2005-09-30 2007-04-19 Hoya Corp 眼鏡用プラスチックレンズの保存方法、包装された眼鏡用プラスチックレンズ、および眼鏡用プラスチックレンズ包装体
WO2008018168A1 (fr) * 2006-08-10 2008-02-14 Mitsui Chemicals, Inc. Lentille polarisante en plastique et procédé servant à produire celle-ci
JP2008056854A (ja) * 2006-09-01 2008-03-13 Mitsui Chemicals Inc ポリチオール化合物とポリイソ(チオ)シアナート化合物からなる重合性組成物
JP2008144154A (ja) 2006-11-17 2008-06-26 Mitsui Chemicals Polyurethanes Inc 光学用ポリウレタン樹脂組成物および光学用ポリウレタン樹脂
WO2008092597A2 (en) 2007-01-30 2008-08-07 Acomon Ag Polymerizable liquid composition and process for the production of organic glass of the polyurethane type
JP2009520057A (ja) 2005-12-16 2009-05-21 ピーピージー インダストリーズ オハイオ, インコーポレイテッド ポリウレタン、ポリウレタン(ウレア)、硫黄含有ポリウレタンおよび硫黄含有ポリウレタン(ウレア)ならびに調製方法
WO2010043392A1 (en) 2008-10-16 2010-04-22 Acomon Ag Polymerizable liquid composition and process for the production of organic glass starting from polymerizable liquid compositions of the polyurethane type
JP2011012141A (ja) 2009-06-30 2011-01-20 Mitsui Chemicals Inc 光学用ポリウレタン樹脂組成物、光学用ポリウレタン樹脂およびその製造方法
JP2012521478A (ja) 2009-03-24 2012-09-13 ピーピージー インダストリーズ オハイオ,インコーポレイテッド ポリウレタン、ポリウレタンから調製される物品およびコーティング、ならびにこれらの製造方法
JP2012181268A (ja) 2011-02-28 2012-09-20 Hoya Corp プラスチックレンズ
WO2014080750A1 (ja) * 2012-11-21 2014-05-30 三井化学株式会社 ポリウレタン樹脂の製造方法
WO2014080749A1 (ja) * 2012-11-21 2014-05-30 三井化学株式会社 光学材料用重合性組成物

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5594088A (en) 1986-12-15 1997-01-14 Mitsui Toatsu Chemicals, Inc. Plastic lenses having a high-refractive index, process for the preparation thereof and casting polymerization process for preparing sulfur containing urethane resin lens and lens prepared thereby
US5753730A (en) 1986-12-15 1998-05-19 Mitsui Toatsu Chemicals, Inc. Plastic lenses having a high-refractive index, process for the preparation thereof and casting polymerization process for preparing sulfur-containing urethane resin lens and lens prepared thereby
JP3263150B2 (ja) * 1992-10-27 2002-03-04 三井化学株式会社 ウレタン樹脂の成形方法及び透明ウレタン樹脂成形物
WO1998003582A1 (en) * 1996-07-17 1998-01-29 Essilor International Compagnie Generale D'optique Internal mold release compositions containing phosphate esters
US6187844B1 (en) 1998-02-10 2001-02-13 Asahi Kogaku Kogyo Kabushiki Kaisha Plastic lens
EP1138670B1 (en) 2000-03-27 2005-05-25 Mitsui Chemicals, Inc. Polythiol, polymerizable composition, resin and lens, and process for preparing thiol compound
US6770734B2 (en) 2000-03-27 2004-08-03 Mitsui Chemicals, Inc. Polythiol compound
US7465414B2 (en) 2002-11-14 2008-12-16 Transitions Optical, Inc. Photochromic article
JP5545296B2 (ja) 2009-07-22 2014-07-09 日立化成株式会社 光硬化性樹脂組成物とその硬化物、樹脂シートとその製造法、及び表示装置
JP5602741B2 (ja) * 2009-08-05 2014-10-08 三井化学株式会社 光学材料用重合性組成物、光学材料および光学材料の製造方法

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5731449B2 (ja) 1978-08-04 1982-07-05
JPS60194401A (ja) * 1984-03-16 1985-10-02 Asahi Glass Co Ltd 光学素子
JPH01302202A (ja) * 1988-02-17 1989-12-06 Mitsui Toatsu Chem Inc 高屈折率プラスチックレンズ及びその製造方法
JPH03287641A (ja) * 1990-04-05 1991-12-18 Asahi Optical Co Ltd プラスチックレンズ成形用内部離型剤及びプラスチックレンズの製造方法
JPH0838883A (ja) 1994-07-28 1996-02-13 Mitsubishi Gas Chem Co Inc 脱酸素剤
JPH08208794A (ja) * 1995-02-03 1996-08-13 Mitsui Toatsu Chem Inc 含硫ウレタン系プラスチックレンズの製造方法
JPH09216674A (ja) 1996-02-09 1997-08-19 Hoya Corp レンズ用収納袋
JPH10113555A (ja) 1996-10-14 1998-05-06 Mitsubishi Gas Chem Co Inc 酸素吸収用組成物
JPH1170331A (ja) 1997-06-30 1999-03-16 Mitsubishi Gas Chem Co Inc 脱酸素成分
JPH11231102A (ja) * 1998-02-10 1999-08-27 Asahi Optical Co Ltd プラスチックレンズ
JP2001037457A (ja) 1999-07-27 2001-02-13 Mitsubishi Gas Chem Co Inc 脱酸素剤
JP2007024998A (ja) 2005-07-12 2007-02-01 Hoya Corp 眼鏡用プラスチックレンズの保存方法
JP2007099313A (ja) 2005-09-30 2007-04-19 Hoya Corp 眼鏡用プラスチックレンズの保存方法、包装された眼鏡用プラスチックレンズ、および眼鏡用プラスチックレンズ包装体
JP2009520057A (ja) 2005-12-16 2009-05-21 ピーピージー インダストリーズ オハイオ, インコーポレイテッド ポリウレタン、ポリウレタン(ウレア)、硫黄含有ポリウレタンおよび硫黄含有ポリウレタン(ウレア)ならびに調製方法
WO2008018168A1 (fr) * 2006-08-10 2008-02-14 Mitsui Chemicals, Inc. Lentille polarisante en plastique et procédé servant à produire celle-ci
JP2008056854A (ja) * 2006-09-01 2008-03-13 Mitsui Chemicals Inc ポリチオール化合物とポリイソ(チオ)シアナート化合物からなる重合性組成物
JP2008144154A (ja) 2006-11-17 2008-06-26 Mitsui Chemicals Polyurethanes Inc 光学用ポリウレタン樹脂組成物および光学用ポリウレタン樹脂
WO2008092597A2 (en) 2007-01-30 2008-08-07 Acomon Ag Polymerizable liquid composition and process for the production of organic glass of the polyurethane type
WO2010043392A1 (en) 2008-10-16 2010-04-22 Acomon Ag Polymerizable liquid composition and process for the production of organic glass starting from polymerizable liquid compositions of the polyurethane type
US20110251301A1 (en) * 2008-10-16 2011-10-13 Acomon Ag Polymerizable liquid composition and process for the production of organic glass starting from polymerizable liquid compositions of the polyurethane type
JP2012521478A (ja) 2009-03-24 2012-09-13 ピーピージー インダストリーズ オハイオ,インコーポレイテッド ポリウレタン、ポリウレタンから調製される物品およびコーティング、ならびにこれらの製造方法
JP2011012141A (ja) 2009-06-30 2011-01-20 Mitsui Chemicals Inc 光学用ポリウレタン樹脂組成物、光学用ポリウレタン樹脂およびその製造方法
JP2012181268A (ja) 2011-02-28 2012-09-20 Hoya Corp プラスチックレンズ
WO2014080750A1 (ja) * 2012-11-21 2014-05-30 三井化学株式会社 ポリウレタン樹脂の製造方法
WO2014080749A1 (ja) * 2012-11-21 2014-05-30 三井化学株式会社 光学材料用重合性組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2980159A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5666060B2 (ja) * 2012-11-21 2015-02-12 三井化学株式会社 ポリウレタン樹脂組成物の製造方法

Also Published As

Publication number Publication date
KR20150117286A (ko) 2015-10-19
EP2980159A1 (en) 2016-02-03
JPWO2014157407A1 (ja) 2017-02-16
JP5706052B2 (ja) 2015-04-22
JP5666055B2 (ja) 2015-02-12
KR20170018980A (ko) 2017-02-20
BR112015024449A2 (pt) 2017-07-18
JP2015017266A (ja) 2015-01-29
EP2980159B1 (en) 2020-11-25
BR112015024449A8 (pt) 2019-12-17
US20160272784A1 (en) 2016-09-22
CN105143349B (zh) 2018-08-28
KR101739215B1 (ko) 2017-05-23
EP2980159A4 (en) 2016-10-05
CN105143349A (zh) 2015-12-09
KR101739248B1 (ko) 2017-05-23
US10131767B2 (en) 2018-11-20

Similar Documents

Publication Publication Date Title
JP5666060B2 (ja) ポリウレタン樹脂組成物の製造方法
JP6359231B1 (ja) 光学材料用重合性組成物、該組成物から得られた光学材料及びその製造方法
JP5580503B1 (ja) 光学材料用重合性組成物
KR20150065793A (ko) 중합성 조성물, 광학 재료 및 그 제조 방법
EP3168246B1 (en) Polymerizable composition for optical material, and application for same
WO2018079829A1 (ja) 光学材料用重合性組成物、光学材料およびその製造方法
US10344116B2 (en) Polymerizable composition for optical material and use thereof
JP5666055B2 (ja) 光学材料用重合性組成物及びそれより得られる光学材料及びその製造方法
JP7160649B2 (ja) 光学材料用重合性組成物および該組成物から得られた光学材料

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480012069.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014543039

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14775376

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157024153

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014775376

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14777783

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015024449

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015024449

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150923