WO2014156961A1 - 軸流回転機械、及びディフューザ - Google Patents

軸流回転機械、及びディフューザ Download PDF

Info

Publication number
WO2014156961A1
WO2014156961A1 PCT/JP2014/057782 JP2014057782W WO2014156961A1 WO 2014156961 A1 WO2014156961 A1 WO 2014156961A1 JP 2014057782 W JP2014057782 W JP 2014057782W WO 2014156961 A1 WO2014156961 A1 WO 2014156961A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall
peripheral side
inner peripheral
diffuser
blade
Prior art date
Application number
PCT/JP2014/057782
Other languages
English (en)
French (fr)
Inventor
西村 和也
伊藤 栄作
飯田 耕一郎
健太郎 秋元
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to DE112014001760.4T priority Critical patent/DE112014001760T5/de
Priority to KR1020157023693A priority patent/KR101720449B1/ko
Priority to CN201480011302.7A priority patent/CN105008676B/zh
Priority to US14/771,913 priority patent/US10760438B2/en
Publication of WO2014156961A1 publication Critical patent/WO2014156961A1/ja
Priority to US16/379,931 priority patent/US10753217B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/041Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector using blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/16Arrangement of bearings; Supporting or mounting bearings in casings
    • F01D25/162Bearing supports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/30Exhaust heads, chambers, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • F01D5/142Shape, i.e. outer, aerodynamic form of the blades of successive rotor or stator blade-rows
    • F01D5/143Contour of the outer or inner working fluid flow path wall, i.e. shroud or hub contour
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/542Bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/545Ducts
    • F04D29/547Ducts having a special shape in order to influence fluid flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/30Arrangement of components
    • F05D2250/32Arrangement of components according to their shape
    • F05D2250/324Arrangement of components according to their shape divergent

Definitions

  • the present invention relates to an axial-flow rotating machine applied to a gas turbine or the like, and a diffuser.
  • the gas turbine is equipped with a diffuser connected downstream of the axial flow rotary machine such as a compressor or turbine.
  • a working fluid such as compressed air or combustion gas
  • the pressure static pressure
  • the diffuser 101 connected to the downstream side of the turbine has an inner peripheral side inner wall 108 and an outer peripheral side inner wall 109 formed to expand toward the downstream side concentrically.
  • An annular channel 110 is formed between the inner peripheral side inner wall 108 and the outer peripheral side inner wall 109.
  • the gas turbine 2 includes a turbine casing 3 on the outside. Inside the turbine casing 3, a plurality of combinations of the stationary blades 5 and the moving blades 6 are arranged.
  • the rear end of the rotor 20 to which the final stage moving blade 6f is attached is supported by the bearing 12.
  • the bearing housing 11 that houses the bearing 12 is supported concentrically with the center of the turbine casing 3 by a plurality of struts 14 that are radially arranged so as to cross the flow of the working fluid.
  • the strut 14 is covered with a strut cover 15 so as not to be exposed to high-temperature exhaust gas.
  • a cylindrical manhole 16 is provided that is arranged radially so as to cross the flow of the working fluid.
  • the gas turbine 102 ⁇ / b> B includes a compressor 50, a combustor 51 to which compressed air generated by the compressor 50 is supplied, and a turbine 52.
  • the compressor 50 has a configuration in which a plurality of combinations of the stationary blade 5B and the moving blade 6B are arranged.
  • the diffuser 101B connected to the downstream side of the compressor 50 of the gas turbine 102B has an inner peripheral side inner wall 108B that decreases in diameter from the downstream side position toward the downstream side of the final blade 7 of the compressor 50, and an outer periphery that expands in diameter.
  • the side inner wall 109B is arranged concentrically.
  • the final blade 7 is the most downstream blade of the plurality of stationary blades 5B and the plurality of moving blades 6B.
  • OGV that is, an outlet guide vane on the downstream side of the stationary blade 5B and the moving blade 6B
  • An annular channel 110B is formed between the inner peripheral side inner wall 108B and the outer peripheral side inner wall 109B.
  • the diffusers 101 and 101B can decelerate the flow as the ratio of the area of the inlet portion and the area of the outlet portion of the annular flow paths 110 and 110B increases. Therefore, it is preferable from the viewpoint of performance improvement that the inner peripheral side walls 108 and 108B are reduced in diameter toward the downstream side in the annular flow paths 110 and 110B.
  • the inner peripheral side inner walls 108 and 108B have a shape that decreases in diameter toward the downstream side, the flow of the working fluid may be separated from the wall surfaces of the inner peripheral side inner walls 108 and 108B. When the flow is separated, energy loss occurs and the performance of the diffuser decreases.
  • An object of the present invention is to provide an axial-flow rotating machine and a diffuser in which the cross-sectional area of the annular flow path is enlarged and the performance is improved without separating the flow of the working fluid.
  • an axial-flow rotating machine includes a rotor provided with a plurality of moving blades and rotatable around an axis, and a plurality of stationary blades disposed adjacent to the plurality of moving blades.
  • An axial-flow rotating machine comprising: a stator including: an axial-flow rotating portion formed by the rotor and the stator; and a diffuser connected downstream of the axial-flow rotating portion and extending in the axial direction to form an annular flow path An inner peripheral side corresponding to a position in the axial direction of the final blade which is the most downstream blade of the plurality of moving blades and the plurality of stationary blades among the inner peripheral side inner walls of the axial flow rotating portion.
  • the inner wall of the final blade which is the inner wall, is formed such that the rear edge position of the final blade is smaller than the front edge position of the final blade, and the inner wall of the diffuser is the inner wall of the diffuser.
  • Toward the first side in the axial direction on the downstream side Or in part is reduced in diameter.
  • the inner wall of the inner peripheral side is reduced from the upstream side of the diffuser inlet, a smooth diffuser effect can be obtained from the upstream side of the inlet. Further, a part or the whole of the inner wall on the inner peripheral side of the diffuser can be gently inclined, and peeling can be reduced.
  • the inner diameter of the inner wall of the diffuser may be reduced from the downstream end of the inner wall of the final blade.
  • an inclination angle of the inner wall on the inner peripheral side of the diffuser may be equal to or more than an average inclination angle from a leading edge to a trailing edge of the final blade on the inner peripheral side inner wall of the final blade portion and less than 0 °.
  • the working fluid has a swirling flow component and a radial inertial force is applied, so that it is difficult to peel off even if the inclination is steep, but there is no (or less) swirling component diffuser. In the inside, peeling is prevented by making the inclination gentle.
  • the diffuser is connected downstream of the final stage moving blade of the turbine, the inner end wall on the inner peripheral side of the final blade portion is an inner wall on the inner peripheral side of the final stage moving blade, and the inner wall on the inner peripheral side of the final stage moving blade.
  • the diameter of the first stage begins at a position between the leading edge of the last stage blade and the throat position.
  • the inner peripheral side inner wall starts to reduce in diameter from the position between the leading edge and the throat position without occurrence of separation. be able to.
  • the diffuser is a diffuser connected downstream of the final stage rotor blade of the turbine, and is provided on the outer peripheral side of the inner peripheral side inner wall of the diffuser with a space therebetween.
  • An outer peripheral side inner wall that defines an annular flow path between itself and the peripheral inner wall, and a connection that radially connects the inner peripheral side inner wall and the outer peripheral side inner wall in the annular flow path to form an airfoil shape in cross section A member, and the inner peripheral side inner wall is reduced in diameter toward the first axial side on the downstream side, and the reduced diameter corresponds to an inner peripheral position corresponding to a position of the connecting member in the axial direction.
  • the connecting member inner peripheral side inner wall which is a side inner wall, and the connecting member inner peripheral side inner wall is composed of a first inclined portion on the upstream side and a second inclined portion on the downstream side of the first inclined portion, The first inclined portion and the second inclined portion are below the throat position of the connecting member. And at a position upstream of the rear edge including the rear edge position of the connecting member, and the inclination angle of the second inclined portion is not less than 0 ° and less than 0 °. is there.
  • the diffuser is a diffuser connected downstream of the turbine blade at the last stage of the turbine, and has an inner peripheral side inner wall that extends in the axial direction, and an outer periphery of the inner peripheral side inner wall.
  • An outer peripheral side inner wall that is provided at a side and defines an annular flow path between the inner peripheral side inner wall and the inner peripheral side inner wall and the outer peripheral side inner wall within the annular flow path.
  • a front edge and / or a rear edge of the connecting member is inclined toward a second side in the axial direction, which is an upstream side of the annular flow path, from the outer peripheral side inner wall toward the inner peripheral side inner wall.
  • the connecting member is inclined and the inner circumferential side inner wall is reduced in diameter toward the one side in the axial direction, so that the cross-sectional area of the annular flow path can be reduced without separating the flow of the working fluid. Can be enlarged. Thereby, the performance of the exhaust diffuser can be improved.
  • the diffuser includes a rotor provided with a plurality of moving blades and rotatable around an axis, and a plurality of stationary blades disposed adjacent to the plurality of moving blades.
  • a diffuser connected downstream of a final blade that is a most downstream blade of the plurality of moving blades and the plurality of stationary blades of an axial-flow rotating machine including a stator, and has a cylindrical shape extending in an axial direction A circumferential inner wall; and an outer circumferential side inner wall that is provided on the outer circumferential side of the inner circumferential side inner wall and that defines an annular flow path between the inner circumferential side inner wall and the inner circumferential side
  • the inner wall is reduced in diameter toward the first axial side that is the downstream side of the annular flow path over the entire axial direction, and the base end portion of the final blade is a central portion in the blade height direction of the final blade.
  • the angle of the inner peripheral side inner wall can be made gentler by reducing the diameter over the entire area in the axial direction of the inner peripheral side inner wall, thereby further suppressing flow separation. it can.
  • the inner peripheral side inner wall is reduced in diameter from the upstream side of the diffuser, a smooth diffuser effect can be obtained from the upstream side of the diffuser, and a part or the whole of the inner peripheral side inner wall of the diffuser can be gently inclined. And peeling can be reduced.
  • a gas turbine 2 including a diffuser 1 includes a turbine casing 3 on the outside, and a stationary blade 5 fixed to a stator 21 and a motion fixed to a rotor 20 inside the turbine casing 3. A plurality of combinations of blades 6 are arranged.
  • An axial flow rotating portion 22 is formed by the rotor 20 and the stator 21.
  • the diffuser 1 is connected downstream of the axial flow rotating unit 22.
  • the working fluid such as combustion gas is sent to the next device through the diffuser 1 provided on the downstream side of the fluid flow after the turbine is operated.
  • the symbol A in the figure indicates the fluid flow direction, and the symbol R indicates the radial direction of the rotor 20 of the gas turbine 2.
  • the diffuser 1 is an inner wall on the inner peripheral side of the diffuser 1, and is provided on the outer peripheral side of the diffuser inner peripheral inner wall 8 (hub side tube) and the diffuser inner peripheral inner wall 8 that form a cylindrical shape extending in the axial direction.
  • the outer peripheral side inner wall 9 (tip side tube) thus formed is arranged concentrically.
  • An annular channel 10 is formed between the diffuser inner peripheral inner wall 8 and the outer peripheral inner wall 9.
  • the rear end of the rotor 20 to which the moving blade 6 is attached is supported by a bearing 12 (journal bearing) housed in the bearing housing 11.
  • the bearing housing 11 is supported concentrically with the center of the turbine casing 3 by a plurality of struts 14 arranged radially so as to cross the flow of the working fluid.
  • the strut 14 is covered with a strut cover 15 (connection member, first connection member) so as not to be exposed to high-temperature exhaust gas. Further, on the downstream side of the struts 14, similarly to the struts 14, cylindrical manholes 16 (connection members, second connection members) arranged radially so as to cross the flow of the working fluid are provided. A base surface 17 is provided at the downstream end of the diffuser inner peripheral side inner wall 8. A circulating flow CV is formed downstream of the base surface 17.
  • the strut cover 15 has an oval shape or an airfoil shape along the fluid flow direction in order to reduce aerodynamic loss.
  • the manhole 16 is a cylindrical member that functions as a passage that allows a person to enter the bearing 12 of the gas turbine 2, for example.
  • the manhole 16 has an oval shape or an airfoil shape along the fluid flow direction.
  • the diffuser inner peripheral inner wall 8 of the present embodiment has a shape that decreases in diameter toward the first axial side (the right side in FIG. 1) on the downstream side of the annular flow path 10. That is, the diffuser inner peripheral side inner wall 8 has a cylindrical shape whose central axis extends along the axial direction, and moves from the second side opposite to the first axial side toward the first axial side. It has a cylindrical shape with a gradually decreasing diameter. In other words, the diffuser inner peripheral inner wall 8 is inclined to the open side so that the annular flow path 10 expands. Thereby, the circulation flow CV becomes small and it leads to the performance improvement of the diffuser 1.
  • the outer peripheral side inner wall 9 has a shape that increases in diameter toward the downstream side of the annular flow path 10.
  • the final blade inner peripheral side corresponding to the position in the axial direction of the final stage moving blade 6f on the inner peripheral side inner wall of the rotor 20 to which the final stage moving blade 6f upstream of the diffuser 1 is fixed.
  • the outer diameter of the inner wall 20a is formed smaller at the rear edge position 6b than at the front edge position 6a of the final stage moving blade 6f.
  • the final blade inner peripheral side inner wall 20a is an inner peripheral side inner wall in the axial direction range where the final stage moving blade 6f exists among the inner peripheral side inner walls of the rotor 20.
  • the inner wall on the inner peripheral side of the rotor 20 is an inner wall on the inner peripheral side of the annular flow path formed by the rotor 20 and the stator 21.
  • the average inclination angle ⁇ 1 from the leading edge position 6a to the trailing edge position 6b is ⁇ 20 ° to ⁇ 2 °, preferably ⁇ 15 ° to ⁇ 5 °.
  • FIG. 2 shows a final blade inner peripheral side inner wall 20a of the rotor 20 having a uniform inclination angle ⁇ 1.
  • the diameter of the inner wall 8 on the inner periphery side of the diffuser starts from the inlet position of the diffuser 1, that is, the connecting portion with the rotor 20.
  • the average inclination angle ⁇ 1 from the inlet position to the outlet position of the diffuser 1 is preferably equal to or greater than the average inclination angle ⁇ 1 of the inner peripheral wall 20a of the final blade portion and less than 0 °. 1 and 2 show a diffuser inner peripheral side inner wall 8 having a uniform inclination angle ⁇ 1.
  • the inner diameter of the inner wall 8 of the diffuser is continuously reduced from the upstream side of the diffuser 1 through the diffuser 1 inlet, a smooth diffuser effect can be obtained from the upstream side of the inlet. Further, a part or the whole of the inner wall 8 on the inner periphery side of the diffuser can be inclined gently, and peeling can be reduced. Furthermore, by increasing the cross-sectional area of the diffuser before the strut 14, the flow velocity before the strut 14 can be suppressed and the diffuser performance is improved.
  • the average inclination angle ⁇ 1 from the inlet position to the outlet position of the diffuser 1 is set to be equal to or larger than the average inclination angle ⁇ 1 of the inner wall 20a on the inner side of the final blade of the rotor 20 and less than 0 °.
  • the working fluid since the working fluid has a swirl flow component and a radial inertia force acts, the inclination due to the reduced diameter in the diffuser without the swirl component (or reduced) becomes gentle. Thereby, the peeling prevention effect is promoted.
  • outer peripheral side inner wall 9 has a shape that increases in diameter toward the downstream side, it is possible to reduce the amount of diameter reduction of the diffuser inner peripheral side inner wall 8 and to promote the peeling preventing action. .
  • the diffuser shape of this embodiment is applicable not only to a turbine but to a diffuser connected downstream of a compressor as shown in FIG. That is, the rotor is provided with a plurality of moving blades and is rotatable about an axis, and the stator having a plurality of stationary blades disposed between the plurality of moving blades is connected to the downstream side of the axial-flow rotating machine. It can be applied to a diffuser.
  • the blade corresponding to the final stage moving blade 6f of the above embodiment is the final stage stationary blade of the compressor.
  • OOV outlet guide vane
  • the outlet guide vane is a blade corresponding to the final stage moving blade 6f of the above embodiment.
  • the throat position T will be described.
  • the final stage moving blade 6 f includes a main body 60 having a back surface 61 and an abdominal surface 62, a front edge 6 a that connects the back surface 61 and the abdominal surface 62, and the rear. And an edge 6b.
  • the throat position T1 is a position where the flow path width between the plurality of final stage moving blades 6f arranged at equal intervals is the narrowest.
  • the flow path width decreases from the front edge 6a of the last stage moving blade 6f to the throat position T1
  • the inner periphery from the position P between the front edge 6a and the throat position T without occurrence of separation.
  • the diameter reduction of the side inner wall 8B can be started.
  • the reduced diameter of the inner peripheral side inner wall 8 ⁇ / b> C of the diffuser 1 of the present embodiment is the inner peripheral side of the connecting member, which is the inner peripheral side inner wall corresponding to the axial position of the strut cover 15 (connecting member). It extends to the inner wall 18.
  • the diameter reduction of the inner peripheral side inner wall 8C of the diffuser 1 of the present embodiment is started in the section between the throat position T2 (see FIGS.
  • FIG. 5 is a view showing a cross-sectional shape of the strut cover 15 viewed from the radial direction.
  • the throat position T2 is a position where the flow path width between the strut covers 15 having a cross-sectional airfoil shape and spaced apart in the circumferential direction is the narrowest.
  • the connecting member inner peripheral side inner wall 18 is composed of a first inclined portion S1 upstream of the diameter reduction start position P1 and a second inclined portion S2 downstream of the first inclined portion S1. ing.
  • the inclination angle ⁇ 2 of the second inclined portion S2 is formed to be equal to or larger than the inclination angle ⁇ 1 of the first inclined portion S1 and less than 0 °. That is, it is preferable that the diameter reduction starting from the diameter reduction start position P1 is gentle on the downstream side of the position P2.
  • the flow path width increases from the throat position T2 to the rear edge 15b of the strut cover 15, the occurrence of peeling can be suppressed by reducing the inclination due to the reduced diameter.
  • the present invention is not limited thereto.
  • the diffuser 1 is configured so that the strut cover 15 (connecting member) and the manhole 16 (connecting member) are located upstream of the annular flow path 10 as they move from the outer peripheral side inner wall 9 toward the inner peripheral side inner wall 8D. It is characterized in that it is inclined toward the second side in the axial direction which is the side.
  • the inner peripheral side inner wall 8 ⁇ / b> D of the diffuser 1 of the present embodiment is the first side in the axial direction that is the downstream side of the annular flow path 10 (the right side in FIGS. 7 and 8). ). That is, the inner peripheral side inner wall 8D has a cylindrical shape whose central axis is along the axial direction, and has a cylindrical shape whose diameter gradually decreases from the second side in the axial direction toward the first side in the axial direction. There is no. Thereby, the inner peripheral side inner wall 8D is inclined so that the annular flow path 10 expands.
  • the strut cover 15 and the manhole 16 of the present embodiment are inclined toward the second side in the axial direction that is the upstream side of the annular flow path 10 as it goes from the outer peripheral side inner wall 9 to the inner peripheral side inner wall 8D. (Also referred to as a sweep shape).
  • the central axes B1 and B2 of the strut cover 15 and the manhole 16 are inclined toward the first side in the axial direction from the inner peripheral side in the radial direction R of the rotor 20 toward the outer peripheral side.
  • 15 and the outer peripheral surface of the manhole 16 have a shape along the central axis.
  • the diameter reduction of the inner peripheral side inner wall 8D starts from a connecting portion between the strut cover 15 and the inner peripheral side inner wall 8D.
  • a range in which the diameter of the inner peripheral side inner wall 8D is reduced is indicated by R2.
  • the inner peripheral side inner wall 8D has a shape that increases in diameter toward the first side in the axial direction up to the connecting portion between the strut cover 15 and the inner peripheral side inner wall 8D.
  • a range in which the diameter of the inner peripheral side inner wall 8D is expanded is indicated by R1.
  • part R1 is good also as a cylindrical shape which has an outer peripheral surface parallel to an axial direction, without expanding a diameter. That is, the diameter may not be reduced toward the first side in the axial direction.
  • the flow rate of the working fluid flowing in from the upstream side is reduced by the annular flow path 10 that gradually increases in diameter.
  • the strut cover 15 and the manhole 16 are inclined, the separation of the flow of the working fluid is suppressed. That is, the flow of the working fluid to be peeled off is suppressed by the inclination of the strut cover 15 and the manhole 16 due to the reduced diameter of the inner peripheral inner wall 8D, so that the peeling is suppressed.
  • the performance of the diffuser 1 can be improved.
  • the effect of suppressing separation of the working fluid flow is further improved.
  • the inner peripheral side inner wall 8D is inclined, the circulating flow CV can be reduced.
  • the performance of the diffuser 1 can also be improved by reducing the circulating flow CV.
  • the inner peripheral side inner wall 8D has a configuration in which the diameter is reduced over the entire region on the first side in the axial direction with respect to the connection portion.
  • the shape may be a diameter.
  • the strut cover 15 and the manhole 16 are all sweep-shaped at the front edge and the rear edge.
  • the strut cover 15 and the manhole 16 are inclined only at the front edges 15a, 16a and the rear edges 15b, 16b (particularly the inner peripheral side inner wall 8D side) as in the modification shown in FIG. It is good also as a shape.
  • the location of the sweep shape may be only the front edges 15a and 16a, or only the rear edges 15b and 16b.
  • the present invention is not limited to this, and any one of the strut cover 15 and the manhole 16 may be inclined.
  • the inner peripheral side inner wall 8D on the second side in the axial direction from the manhole 16 has a shape that decreases in diameter toward the first side in the axial direction. Must not be.
  • the inner peripheral side inner wall 8D has a shape in which the inner peripheral side inner wall 8D is reduced in diameter at a location where the action of pushing back the fluid to be separated from the inner peripheral side inner wall 8D to the inner peripheral side inner wall 8D side due to the reduced diameter of the inner peripheral side inner wall 8D. It is not.
  • the inner peripheral side inner wall 8E of the present embodiment has a shape that is reduced in diameter over the entire region in the axial direction.
  • a range in which the diameter of the inner peripheral side inner wall 8E is reduced is indicated by R3.
  • the inner peripheral side inner wall 8 ⁇ / b> E starts to be reduced in diameter immediately after the downstream side of the final stage moving blade 6. That is, the diameter has already been reduced on the upstream side of the strut cover 15.
  • the final stage moving blade 6 of the present embodiment has a base end side (hub side) of the final stage moving blade 6 as compared with the central portion of the flow path in the blade height direction of the final stage moving blade 6.
  • the total pressure of the working fluid at the outlet of the last stage rotor blade 6) is increased.
  • the inner peripheral side inner wall 8E has a shape that is reduced in diameter over the entire area in the axial direction of the inner peripheral side inner wall 8E, the angle of the inner peripheral side inner wall 8E can be made gentler. Flow separation can be further suppressed.
  • the diffuser shape of this embodiment is applicable not only to a turbine but also to a diffuser connected downstream of a compressor.
  • the inner wall on the inner peripheral side is reduced from the upstream side of the diffuser inlet, so that a smooth diffuser effect can be obtained from the upstream side of the inlet. Further, a part or the whole of the inner wall on the inner peripheral side of the diffuser can be gently inclined, and peeling can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

 複数の動翼(6)を備え軸線回りに回転自在とされたロータ(20)と、複数の動翼(6)に隣接して配置される複数の静翼(5)を備えたステータと、ロータとステータにより形成される軸流回転部(22)と、軸流回転部の下流につながり、軸線方向に延びて環状流路(10)をなすディフューザ(1)と、を有する軸流回転機械であって、軸流回転部(22)の内周側内壁のうち、複数の動翼と複数の静翼のうち最も下流側の翼である最終翼(6f)の軸線方向の位置に対応する内周側内壁である最終翼部内周側内壁(20a)の径が、最終翼(6f)の前縁位置(6a)よりも最終翼(6f)の後縁位置(6b)の方が小さく形成され、ディフューザ(1)の内周側内壁であるディフューザ内周側内壁(8)は、下流側となる軸線方向の第一の側に向かうにしたがって全部又は一部が縮径している軸流回転機械。

Description

軸流回転機械、及びディフューザ
 本発明は、ガスタービンなどに適用される軸流回転機械、及びディフューザに関する。
 本願は、2013年3月29日に出願された特願2013-071075号について優先権を主張し、その内容をここに援用する。
 ガスタービンには圧縮機やタービンなどの軸流回転機械の下流につながるディフューザが設置されている。圧縮空気や燃焼ガスなどの作動流体の流れの減速及び圧力(静圧)回復は、ディフューザによって行われている(例えば、特許文献1、2参照)。
 図12に示すガスタービン102において、タービンの下流につながるディフューザ101は、内周側内壁108と下流側に向かって拡径して形成されている外周側内壁109を同心に配置したものである。内周側内壁108と外周側内壁109の間には、環状流路110が形成されている。ガスタービン2は外側にタービンケーシング3を備えている。タービンケーシング3の内部には、静翼5と動翼6の組み合わせが複数段配置されている。
 最終段動翼6fが取り付けられたロータ20の後端は、軸受12によって支持されている。軸受12を収容する軸受ハウジング11は、作動流体の流れを横切るように放射状に配置された複数のストラット14によってタービンケーシング3の中心と同心に支持されている。ストラット14は、高温の排気ガスにさらされないようにストラットカバー15によって覆われている。また、ストラット14の下流側には、作動流体の流れを横切るように放射状に配置された筒状のマンホール16が設けられている。
 次に、圧縮機の下流側につながるディフューザについて、図13を参照して説明する。ガスタービン102Bは、圧縮機50と、圧縮機50にて生成された圧縮空気が供給される燃焼器51と、タービン52を有している。圧縮機50は、静翼5Bと動翼6Bの組み合わせが複数段配置されている構成である。
 ガスタービン102Bの圧縮機50の下流側に接続されたディフューザ101Bは、圧縮機50の最終翼7よりも下流側位置から下流側に向かって縮径する内周側内壁108Bと、拡径する外周側内壁109Bとを同心に配置したものである。
 最終翼7は、複数の静翼5B及び複数の動翼6Bのうち最も下流側にある翼である。静翼5B、動翼6Bよりも下流側にOGV、即ち出口案内翼がある場合はOGVが最終翼7となる。内周側内壁108Bと外周側内壁109Bとの間には環状流路110Bが形成されている。
特開2005-290985号公報 特開平8-210152号公報
 図12、図13を参照すると、ディフューザ101,101Bは、環状流路110,110Bの入口部の面積と出口部の面積との比が大きいほど流れを減速させることができる。よって、環状流路110,110Bにおいて内周側内壁108,108Bを下流側に向かって縮径させることが性能向上の点から好ましい。
 ここで、内周側内壁108,108Bを下流側に向かって縮径させる形状とすると、作動流体の流れが内周側内壁108,108Bの壁面からはく離する可能性がある。流れがはく離すると、エネルギーロスが生じるため、ディフューザの性能は低下する。
 この発明は、作動流体の流れをはく離させることなく、環状流路の断面積を拡大させ、性能を向上させた軸流回転機械、及びディフューザを提供することを目的とする。
 本発明の第一の態様によれば、軸流回転機械は、複数の動翼を備え軸線回りに回転自在とされたロータと、前記複数の動翼に隣接して配置される複数の静翼を備えたステータと、前記ロータと前記ステータにより形成される軸流回転部と、前記軸流回転部の下流につながり、軸線方向に延びて環状流路をなすディフューザと、を有する軸流回転機械であって、前記軸流回転部の内周側内壁のうち、前記複数の動翼と前記複数の静翼のうち最も下流側の翼である最終翼の軸線方向の位置に対応する内周側内壁である最終翼部内周側内壁の径が、前記最終翼の前縁位置よりも前記最終翼の後縁位置の方が小さく形成され、前記ディフューザの内周側内壁であるディフューザ内周側内壁は、下流側となる軸線方向の第一の側に向かうにしたがって全部又は一部が縮径している。
 上記構成によれば、ディフューザの入口上流から内周側内壁の縮径がなされるため、入口上流からスムーズなディフューザ効果が得られる。また、ディフューザの内周側内壁の一部又は全体を緩やかな傾斜とすることができ、剥離を低減することができる。
 上記軸流回転機械において、前記ディフューザ内周側内壁の縮径は、前記最終翼部内周側内壁の下流側の端部から始まっている構成としてもよい。
 上記構成によれば、上流側の最終翼部内周側内壁と下流側のディフューザ内周側内壁とが傾斜しつつ接続されるため、上流側からの流れをよりスムーズにすることができる。
 上記軸流回転機械において、前記ディフューザ内周側内壁の傾斜角は、最終翼部内周側内壁における前記最終翼の前縁から後縁までの平均傾斜角以上、0°未満であってよい。
 上記構成によれば、軸流回転部では、作動流体が旋回流成分を有し半径方向の慣性力が働くので傾斜が急であっても剥離しづらいが、旋回成分がない(又は少ない)ディフューザ内では傾斜を緩やかとすることで剥離が防止される。
 上記軸流回転機械において、前記ディフューザはタービンの最終段動翼の下流につながり、前記最終翼部内周側内壁は、最終段動翼内周側内壁であり、前記最終段動翼内周側内壁の縮径が、前記最終段動翼の前縁とスロート位置との間の位置から始まっている。
 上記構成によれば、最終段動翼の前縁からスロート位置までは流路幅が低下するため、剥離の発生なく前縁とスロート位置との間の位置から内周側内壁の縮径を始めることができる。
 本発明の第二の態様によれば、ディフューザは、タービンの最終段動翼の下流につながるディフューザであって、前記ディフューザの内周側内壁の外周側に間隔をあけて設けられて、前記内周側内壁との間に環状流路を画成する外周側内壁と、前記環状流路内において前記内周側内壁と前記外周側内壁とを径方向に接続し、断面翼形形状をなす接続部材と、を備え、前記内周側内壁は、下流側となる軸線方向の第一の側に向かうにしたがって縮径し、前記縮径は、前記接続部材の軸線方向の位置に対応する内周側内壁である接続部材内周側内壁に及び、前記接続部材内周側内壁は上流側の第一傾斜部と、前記第一傾斜部より下流側の第二傾斜部とから構成されており、前記第一傾斜部と前記第二傾斜部とは、前記接続部材のスロート位置下流側、かつ、前記接続部材の後縁位置を含む前記後縁よりも上流側の位置で接続され、前記第二傾斜部の傾斜角は、前記第一傾斜部の傾斜角以上、0°未満である。
 上記構成によれば、スロート位置から接続部材の後縁までは流路幅が増加するため、縮径による傾斜を低減することで剥離の発生を抑えることができる。
 本発明の第三の態様によれば、ディフューザは、タービンの最終段動翼の下流につながるディフューザであって、軸線方向に延びる筒状をなす内周側内壁と、前記内周側内壁の外周側に間隔をあけて設けられて、前記内周側内壁との間に環状流路を画成する外周側内壁と、前記環状流路内において前記内周側内壁と前記外周側内壁とを径方向に接続する接続部材と、を備え、前記内周側内壁の軸線方向の少なくとも一部が、前記環状流路の下流側となる軸線方向の第一の側に向かうにしたがって縮径し、前記接続部材の前縁及び/又は後縁が、前記外周側内壁から前記内周側内壁に向かうにしたがって前記環状流路の上流側となる軸線方向の第二の側に向かって傾斜している。
 上記構成によれば、接続部材が傾斜しているとともに内周側内壁が軸線方向一方側に向かうに従って縮径していることによって、作動流体の流れをはく離させることなく、環状流路の断面積を拡大させることができる。これにより、排気ディフューザの性能を向上させることができる。
 本発明の第四の態様によれば、ディフューザは、複数の動翼を備え軸線回りに回転自在とされたロータと、前記複数の動翼に隣接して配置される複数の静翼を備えたステータと、を備える軸流回転機械の前記複数の動翼と前記複数の静翼のうち最も下流側の翼である最終翼の下流につながるディフューザであって、軸線方向に延びる筒状をなす内周側内壁と、前記内周側内壁の外周側に間隔をあけて設けられて、前記内周側内壁との間に環状流路を画成する外周側内壁と、を備え、前記内周側内壁は、軸線方向の全域にわたって前記環状流路の下流側となる軸線方向の第一の側に向かうに従って縮径し、前記最終翼の基端部は、最終翼の翼高さ方向の中央部と比較して、最終翼の出口での流体の全圧が高くなるように形成されている。
 上記構成によれば、内周側内壁の軸線方向の全域にわたって縮径する構成とすることによって、内周側内壁の角度をより緩やかにすることができるため、流れのはく離をより抑制することができる。
 本発明によれば、ディフューザの入口上流から内周側内壁の縮径がなされるため、入口上流からスムーズなディフューザ効果が得られ、ディフューザの内周側内壁の一部又は全体を緩やかな傾斜とすることができ、剥離を低減することができる。
本発明の第一実施形態に係るガスタービンの排気ディフューザ付近を示す断面図である。 図1の部分拡大図である。 本発明の第二実施形態に係るガスタービンの排気ディフューザの部分拡大図である。 本発明の第三実施形態に係るガスタービンの排気ディフューザ付近を示す断面図。 ストラットの径方向からみた断面形状を示す図である。 図4の部分拡大図である。 本発明の第四実施形態に係るガスタービンの排気ディフューザ付近を示す断面図である。 本発明の第四実施形態に係る排気ディフューザの模式図である。 本発明の第四実施形態の変形例に係る排気ディフューザの模式図である。 本発明の第五実施形態に係る排気ディフューザの模式図である。 本発明の第五実施形態に係るガスタービンの最終段動翼の断面図である。 従来のガスタービンの排気ディフューザ付近を示す断面図である。 従来のガスタービンを示す断面図である。
(第一実施形態)
 以下、本発明の第一実施形態について図面を参照して詳細に説明する。
 図1に示すように、本実施形態のディフューザ1を備えるガスタービン2は、外側にタービンケーシング3を備え、その内部に、ステータ21に固定された静翼5と、ロータ20に固定された動翼6の組み合わせが複数段配置されている。ロータ20とステータ21によって軸流回転部22が形成されている。ディフューザ1は軸流回転部22の下流に接続されている。
 ガスタービン2においては、燃焼ガスなどの作動流体は、タービンを作動させた後に流体の流れに対して下流側に設けられたディフューザ1を通って次の機器などへ送出される。図中の符号Aは、流体の流れ方向を示し、符号Rはガスタービン2のロータ20の径方向を示す。
 ディフューザ1は、ディフューザ1の内周側の内壁であり、軸線方向に延びる筒状をなすディフューザ内周側内壁8(ハブ側チューブ)とディフューザ内周側内壁8の外周側に間隔をあけて設けられた外周側内壁9(チップ側チューブ)を同心に配置したものである。ディフューザ内周側内壁8と外周側内壁9との間には、環状流路10が形成されている。動翼6が取り付けられたロータ20の後端は、軸受ハウジング11に収められた軸受12(ジャーナル軸受)によって支持されている。軸受ハウジング11は、作動流体の流れを横切るように放射状に配置された複数のストラット14によってタービンケーシング3の中心と同心に支持されている。
 ストラット14は、高温の排気ガスにさらされないようにストラットカバー15(接続部材、第一接続部材)によって覆われている。また、ストラット14の下流側には、ストラット14と同様に、作動流体の流れを横切るように放射状に配置された筒状のマンホール16(接続部材、第二接続部材)が設けられている。ディフューザ内周側内壁8の下流端にはベース面17が設けられている。ベース面17の下流には循環流れCVが形成される。
 ストラットカバー15は、空力損失の低減をなすために流体の流れ方向に沿う長円形状、または翼形形状をなしている。マンホール16は、例えばガスタービン2の軸受12への人の進入を可能にする通路として機能する筒状の部材である。マンホール16は、流体の流れ方向に沿う長円形状、または翼形形状をなしている。
 本実施形態のディフューザ内周側内壁8は、環状流路10の下流側となる軸線方向の第一の側(図1の右側)に向かうにしたがって縮径する形状を有している。即ち、ディフューザ内周側内壁8は、中心軸が軸線方向に沿う円筒形状であって、軸方向の第一の側の反対側の第二の側より軸方向の第一の側に向かうにしたがって徐々に直径が小さくなる円筒形状をなしている。換言すれば、ディフューザ内周側内壁8は、環状流路10が拡大するようにオープン側に傾斜している。これにより、循環流れCVが小さくなり、ディフューザ1の性能向上に繋がる。
 また、外周側内壁9は、環状流路10の下流側に向かって拡径する形状を有している。
 図2に示すように、ディフューザ1の入口上流の最終段動翼6fが固定されているロータ20の内周側内壁のうち最終段動翼6fの軸線方向の位置に対応する最終翼部内周側内壁20aの外径は、最終段動翼6fの前縁位置6aよりも後縁位置6bの方が小さく形成されている。換言すれば、最終翼部内周側内壁20aは、ロータ20の内周側内壁のうち、最終段動翼6fが存在する軸線方向の範囲にある内周側内壁である。ここで、ロータ20の内周側内壁とは、ロータ20とステータ21により形成される環状流路の内周側の内壁である。
 前縁位置6aから後縁位置6bの平均傾斜角α1は、-20°~-2°、好ましくは、-15°~-5°である。図2には、一様な傾斜角α1を有するロータ20の最終翼部内周側内壁20aを示す。
 ディフューザ内周側内壁8の縮径は、ディフューザ1の入口位置、即ち、ロータ20との接続部より始まっている。ディフューザ1の入口位置から出口位置の平均傾斜角β1は、最終翼部内周側内壁20aの平均傾斜角α1以上で、0°未満であることが好ましい。図1及び図2には、一様な傾斜角β1を有するディフューザ内周側内壁8を示している。
 上記実施形態によれば、ディフューザ1の入口上流からディフューザ1入口を介して連続的にディフューザ内周側内壁8の縮径がなされるため、入口上流からスムーズなディフューザ効果が得られる。また、ディフューザ内周側内壁8の一部又は全体を緩やかな傾斜とすることができ、剥離を低減することができる。さらに、ストラット14前までにディフューザ断面積を大きくする事で、ストラット14前の流速を抑えられディフューザ性能がよくなる。
 また、ディフューザ1の入口位置から出口位置の平均傾斜角β1をロータ20の最終翼部内周側内壁20aの平均傾斜角α1以上で、0°未満とした。タービン内では、作動流体が旋回流成分を有し半径方向の慣性力が働くので、旋回成分がない(又は低減した)ディフューザ内での縮径による傾斜は緩やかとなる。これにより剥離防止効果が促進される。
 また、外周側内壁9が下流側に向かって拡径する形状を有していることによって、ディフューザ内周側内壁8縮径量を低減することができるとともに、剥離防止作用を促進させることができる。
 なお、本実施形態のディフューザ形状は、タービンのみならず、図13に示すような圧縮機の下流につながるディフューザにも適用可能である。即ち、複数の動翼を備え軸線回りに回転自在とされたロータと、複数の動翼の間に配置される複数の静翼を備えたステータと、を有する軸流回転機械の下流側につながるディフューザに適用することができる。
 なお、圧縮機のディフューザに適用する場合、上記実施形態の最終段動翼6fに相当する翼は、圧縮機の最終段静翼である。ただし、最終段静翼よりも下流側に出口案内翼(OGV)がある場合は、出口案内翼が上記実施形態の最終段動翼6fに相当する翼となる。
(第二実施形態)
 以下、本発明のディフューザ1の第二実施形態を図面に基づいて説明する。なお、本実施形態では、上述した第一実施形態との相違点を中心に述べ、同様の部分についてはその説明を省略する。
 図3に示すように、本実施形態のディフューザ1の内周側内壁8Bの縮径は、最終段動翼6fの前縁6aとスロート位置Tとの間の位置Pから始まっていることを特徴としている。
 ここでスロート位置Tについて説明する。図3の上方に示す最終段動翼6fのプロファイルに示すように、最終段動翼6fは、背面61と腹面62を有する本体部60と、背面61と腹面62とを繋ぐ前縁6a及び後縁6bとを備えている。スロート位置T1は、等間隔に配置された複数の最終段動翼6f間の流路幅が最も狭くなる位置である。
 上記実施形態によれば、最終段動翼6fの前縁6aからスロート位置T1までは流路幅が低下するため、剥離の発生なく前縁6aとスロート位置Tとの間の位置Pから内周側内壁8Bの縮径を始めることができる。
(第三実施形態)
 以下、本発明のディフューザ1の第三実施形態を図面に基づいて説明する。なお、本実施形態では、上述した第一実施形態との相違点を中心に述べ、同様の部分についてはその説明を省略する。
 図4に示すように、本実施形態のディフューザ1の内周側内壁8Cの縮径は、ストラットカバー15(接続部材)の軸線方向の位置に対応する内周側内壁である接続部材内周側内壁18に及んでいる。本実施形態のディフューザ1の内周側内壁8Cの縮径は、軸線方向において、ストラットカバー15のスロート位置T2(図5、図6参照)から後縁位置15bの間の区間で開始されている。換言すれば、縮径開始位置P1(図6参照)は、軸線方向において、ストラットカバー15のスロート位置T2から後縁位置15bの間である。なお、縮径開始位置P1よりも上流側から縮径されている場合は、縮径開始位置P1は、さらなる縮径が始まる位置である。
 図5は、ストラットカバー15の径方向からみた断面形状を示す図である。図5に示すように、スロート位置T2とは、断面翼形形状をなし、周方向に間隔をおいて配置されたストラットカバー15間の流路幅が最も狭くなる位置である。
 図6に示すように、接続部材内周側内壁18は、縮径開始位置P1より上流側の第一傾斜部S1と、第一傾斜部S1より下流側の第二傾斜部S2とから構成されている。
 そして、第二傾斜部S2の傾斜角β2は、第一傾斜部S1の傾斜角α1以上で0°未満となるように形成されている。即ち、縮径開始位置P1から始まる縮径は、位置P2より下流側で緩やかとなることが好ましい。
 上記実施形態によれば、スロート位置T2からストラットカバー15の後縁15bまでは流路幅が増加するため、縮径による傾斜を低減することで剥離の発生を抑えることができる。
 なお、上記実施形態においては、ストラットカバー15のスロート位置T2から後縁15bの間において接続部材内周側内壁18の縮径が開始される例を示したが、これに限ることはない。例えば、内周側内壁と外周側内壁とを接続する他の接続部材であるマンホール16のスロート位置から後縁の間において内周側内壁の縮径が開始される構成としてもよい。
(第四実施形態)
 以下、本発明の第四実施形態について図面を参照して詳細に説明する。
 図7に示すように、本実施形態のディフューザ1は、ストラットカバー15(接続部材)及びマンホール16(接続部材)が外周側内壁9から内周側内壁8Dに向かうにしたがって環状流路10の上流側となる軸線方向の第二の側に向かって傾斜していることを特徴としている。
 図7、及び図8に示すように、本実施形態のディフューザ1の内周側内壁8Dは、環状流路10の下流側となる軸線方向の第一の側(図7、及び図8の右側)に向かうにしたがって縮径する形状を有している。即ち、内周側内壁8Dは、中心軸が軸線方向に沿う円筒形状であって、軸方向の第二の側より軸方向の第一の側に向かうにしたがって徐々に直径が小さくなる円筒形状をなしている。これにより、内周側内壁8Dは、環状流路10が拡大するように傾斜している。
 また、本実施形態のストラットカバー15及びマンホール16は、外周側内壁9から内周側内壁8Dに向かうにしたがって環状流路10の上流側となる軸線方向の第二の側に向かって傾斜する形状(Sweep形状ともいう)をなしている。換言すれば、ストラットカバー15及びマンホール16の中心軸B1,B2は、ロータ20の径方向Rの内周側から外周側に向かうにしたがって軸線方向の第一の側に傾斜しており、ストラットカバー15及びマンホール16の外周面は、この中心軸に沿う形状をなしている。
 内周側内壁8Dの縮径は、ストラットカバー15と内周側内壁8Dとの接続部より始まっている。内周側内壁8Dの縮径する範囲をR2で示す。一方、内周側内壁8Dは、ストラットカバー15と内周側内壁8Dとの接続部までは、軸線方向の第一の側に向かうにしたがって拡径する形状をなしている。内周側内壁8Dの拡径する範囲をR1で示す。
 なお、この部位R1の形状は、拡径せずに、軸線方向と平行な外周面を有する円筒形状としてもよい。即ち、軸線方向の第一の側に向かうにしたがって縮径していなければよい。
 上記実施形態によれば、上流側より流入する作動流体は、徐々に拡径する環状流路10によって流速が低減される。ここで、本実施形態においては、ストラットカバー15及びマンホール16が傾斜していることによって、作動流体の流れのはく離が抑制される。即ち、内周側内壁8Dの縮径によって、はく離しようとする作動流体の流れが、ストラットカバー15及びマンホール16の傾斜によって押さえられるため、はく離が抑制される。これによりディフューザ1の性能を向上させることができる。
 また、傾斜する部材が複数設けられていることによって、作動流体の流れのはく離抑制効果がより向上する。
 なお、ストラット14及びマンホール16のSweep形状による効果は、CFD解析によって確認されている。即ち、ストラット14及びマンホール16がSweep形状となっていることによって、流体の流れが内周側内壁8D側にシフトし、流体のはく離が抑制されることが確認されている。
 また、内周側内壁8Dが傾斜していることによって、循環流れCVを小さくすることができる。循環流れCVを小さくすることによっても、ディフューザ1の性能を向上させることができる。
 なお、上記実施形態においては、内周側内壁8Dは、接続部よりも軸線方向の第一の側の全域にわたって縮径する構成を示したが、これに限ることはなく、少なくとも一部が縮径する形状であってよい。
 また、上記実施形態においては、ストラットカバー15及びマンホール16は、その前縁及び後縁の全部がSweep形状とされている。これに対し、ストラットカバー15及びマンホール16を、図9に示す変形例のように、前縁15a,16a及び後縁15b,16bの一部(特に、内周側内壁8D側)のみが傾斜した形状としてもよい。また、Sweep形状とする箇所は前縁15a,16aのみとしてもよいし、後縁15b,16bのみとしてもよい。
 また、上記実施形態においては、ストラットカバー15とマンホール16の両方が傾斜する例を示したが、これに限ることはなく、ストラットカバー15とマンホール16のいずれかが傾斜していれば良い。ただし、マンホール16が傾斜する形状を有している場合は、マンホール16よりも軸線方向の第二の側の内周側内壁8Dは、軸線方向の第一の側に向かって縮径する形状であってはならない。即ち、内周側内壁8Dの縮径によって内周側内壁8Dよりはく離しようとする流体を内周側内壁8D側に押し戻す作用が発揮されない箇所においては、内周側内壁8Dは縮径する形状とはなっていない。
(第五実施形態)
 以下、本発明のディフューザ1の第五実施形態を図面に基づいて説明する。なお、本実施形態では、上述した第四実施形態との相違点を中心に述べ、同様の部分についてはその説明を省略する。
 図10に示すように、本実施形態の内周側内壁8Eは、軸線方向の全域にわたって縮径する形状を有している。内周側内壁8Eの縮径する範囲をR3で示す。内周側内壁8Eは、最終段動翼6の下流側直後より縮径が開始されている。即ち、ストラットカバー15よりも上流側において、既に縮径が始まっている形状となっている。
 本実施形態の最終段動翼6は、図11に示すように、最終段動翼6の翼高さ方向の流路中央部と比較して、最終段動翼6の基端側(ハブ側)の最終段動翼6の出口での作動流体の全圧が高くなるように形成されている。これにより、最終段動翼6の基端側の流速が速くなるため、はく離のリスクが小さくなり、内周側内壁の全域にわたって縮径することができる。
 上記実施形態によれば、内周側内壁8Eを内周側内壁8Eの軸線方向の全域にわたって縮径する形状とすることによって、内周側内壁8Eの角度をより緩やかにすることができるため、流れのはく離をより抑制することができる。
 なお、本実施形態のディフューザ形状は、タービンのみならず、圧縮機の下流につながるディフューザにも適用可能である。
 なお、本発明の技術範囲は上記の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において、種々の変更を加えることが可能である。例えば、上記各実施形態においては、環状流路10にストラット14とマンホール16を設ける構成を示したが、マンホール16に代えて、第二のストラット及び第二のストラットカバーを設けてもよい。この場合、長大な排気ディフューザを形成した場合においても、排気ディフューザの強度を確保することができる。
 また、二以上のストラット、マンホールを備える構造としてもよい。
 この軸流回転機械によれば、ディフューザの入口上流から内周側内壁の縮径がなされるため、入口上流からスムーズなディフューザ効果が得られる。また、ディフューザの内周側内壁の一部又は全体を緩やかな傾斜とすることができ、剥離を低減することができる。
 1 排気ディフューザ
 2 ガスタービン
 3 タービンケーシング
 5 静翼
 6 動翼
 6f 最終段動翼
 7 最終翼
 8 ディフューザ内周側内壁
 8B,8C,8D,8E 内周側内壁
 9 外周側内壁
 10 環状流路
 11 軸受ハウジング
 12 軸受
 14 ストラット
 15 ストラットカバー
 15a 前縁
 15b 後縁
 16 マンホール
 16a 前縁
 16b 後縁
 17 ベース面
 18 接続部材内周側内壁
 20 ロータ
 20a 最終翼部内周側内壁
 21 ステータ
 22 軸流回転部
 A 流れ方向
 B1,B2 中心軸
 R 径方向
 R1,R2,R3 範囲
 S1 第一傾斜部
 S2 第二傾斜部
 T1 スロート位置
 T2 スロート位置

Claims (7)

  1.  複数の動翼を備え軸線回りに回転自在とされたロータと、
     前記複数の動翼に隣接して配置される複数の静翼を備えたステータと、
     前記ロータと前記ステータにより形成される軸流回転部と、前記軸流回転部の下流につながり、軸線方向に延びて環状流路をなすディフューザと、を有する軸流回転機械であって、
     前記軸流回転部の内周側内壁のうち、前記複数の動翼と前記複数の静翼のうち最も下流側の翼である最終翼の軸線方向の位置に対応する内周側内壁である最終翼部内周側内壁の径が、前記最終翼の前縁位置よりも前記最終翼の後縁位置の方が小さく形成され、
     前記ディフューザの内周側内壁であるディフューザ内周側内壁は、下流側となる軸線方向の第一の側に向かうにしたがって全部又は一部が縮径している軸流回転機械。
  2.  前記ディフューザ内周側内壁の縮径は、前記最終翼部内周側内壁の下流側の端部から始まっている請求項1に記載の軸流回転機械。
  3.  前記ディフューザ内周側内壁の傾斜角は、最終翼部内周側内壁における前記最終翼の前縁から後縁までの平均傾斜角以上、0°未満である請求項1又は請求項2に記載の軸流回転機械。
  4.  前記ディフューザはタービンの最終段動翼の下流につながり、
     前記最終翼部内周側内壁は、最終段動翼内周側内壁であり、
     前記最終段動翼内周側内壁の縮径が、前記最終段動翼の前縁とスロート位置との間の位置から始まっている請求項1に記載の軸流回転機械。
  5.  タービンの最終段動翼の下流につながるディフューザであって、
     前記ディフューザの内周側内壁の外周側に間隔をあけて設けられて、前記内周側内壁との間に環状流路を画成する外周側内壁と、
     前記環状流路内において前記内周側内壁と前記外周側内壁とを径方向に接続し、断面翼形形状をなす接続部材と、を備え、
     前記内周側内壁は、下流側となる軸線方向の第一の側に向かうにしたがって縮径し、
     前記縮径は、前記接続部材の軸線方向の位置に対応する内周側内壁である接続部材内周側内壁に及び、前記接続部材内周側内壁は上流側の第一傾斜部と、前記第一傾斜部より下流側の第二傾斜部とから構成されており、
     前記第一傾斜部と前記第二傾斜部とは、前記接続部材のスロート位置下流側、かつ、前記接続部材の後縁位置を含む前記後縁よりも上流側の位置で接続され、
     前記第二傾斜部の傾斜角は、前記第一傾斜部の傾斜角以上、0°未満であるディフューザ。
  6.  タービンの最終段動翼の下流につながるディフューザであって、
     軸線方向に延びる筒状をなす内周側内壁と、
     前記内周側内壁の外周側に間隔をあけて設けられて、前記内周側内壁との間に環状流路を画成する外周側内壁と、
     前記環状流路内において前記内周側内壁と前記外周側内壁とを径方向に接続する接続部材と、を備え、
     前記内周側内壁の軸線方向の少なくとも一部が、前記環状流路の下流側となる軸線方向の第一の側に向かうにしたがって縮径し、
     前記接続部材の前縁及び/又は後縁が、前記外周側内壁から前記内周側内壁に向かうにしたがって前記環状流路の上流側となる軸線方向の第二の側に向かって傾斜しているディフューザ。
  7.  複数の動翼を備え軸線回りに回転自在とされたロータと、前記複数の動翼に隣接して配置される複数の静翼を備えたステータと、を備える軸流回転機械の前記複数の動翼と前記複数の静翼のうち最も下流側の翼である最終翼の下流につながるディフューザであって、
     軸線方向に延びる筒状をなす内周側内壁と、
     前記内周側内壁の外周側に間隔をあけて設けられて、前記内周側内壁との間に環状流路を画成する外周側内壁と、を備え、
     前記内周側内壁は、軸線方向の全域にわたって前記環状流路の下流側となる軸線方向の第一の側に向かうに従って縮径し、
     前記最終翼の基端部は、最終翼の翼高さ方向の中央部と比較して、最終翼の出口での流体の全圧が高くなるように形成されているディフューザ。
PCT/JP2014/057782 2013-03-29 2014-03-20 軸流回転機械、及びディフューザ WO2014156961A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112014001760.4T DE112014001760T5 (de) 2013-03-29 2014-03-20 Rotierende Axialströmungsmaschine und Diffusor
KR1020157023693A KR101720449B1 (ko) 2013-03-29 2014-03-20 축류 회전 기계 및 디퓨저
CN201480011302.7A CN105008676B (zh) 2013-03-29 2014-03-20 轴流旋转机械及扩散器
US14/771,913 US10760438B2 (en) 2013-03-29 2014-03-20 Axial flow rotating machine and diffuser
US16/379,931 US10753217B2 (en) 2013-03-29 2019-04-10 Axial flow rotating machine and diffuser

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013071075A JP6033154B2 (ja) 2013-03-29 2013-03-29 軸流回転機械、及びディフューザ
JP2013-071075 2013-03-29

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/771,913 A-371-Of-International US10760438B2 (en) 2013-03-29 2014-03-20 Axial flow rotating machine and diffuser
US16/379,931 Division US10753217B2 (en) 2013-03-29 2019-04-10 Axial flow rotating machine and diffuser

Publications (1)

Publication Number Publication Date
WO2014156961A1 true WO2014156961A1 (ja) 2014-10-02

Family

ID=51623940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057782 WO2014156961A1 (ja) 2013-03-29 2014-03-20 軸流回転機械、及びディフューザ

Country Status (6)

Country Link
US (2) US10760438B2 (ja)
JP (1) JP6033154B2 (ja)
KR (1) KR101720449B1 (ja)
CN (2) CN106870012B (ja)
DE (1) DE112014001760T5 (ja)
WO (1) WO2014156961A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3168416A1 (en) * 2015-11-11 2017-05-17 General Electric Company Gas turbine

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6033154B2 (ja) * 2013-03-29 2016-11-30 三菱重工業株式会社 軸流回転機械、及びディフューザ
US9598981B2 (en) * 2013-11-22 2017-03-21 Siemens Energy, Inc. Industrial gas turbine exhaust system diffuser inlet lip
CN107250555A (zh) * 2015-04-03 2017-10-13 三菱重工业株式会社 动叶片以及轴流式旋转机械
US10563543B2 (en) * 2016-05-31 2020-02-18 General Electric Company Exhaust diffuser
JP2017227147A (ja) * 2016-06-21 2017-12-28 三菱重工業株式会社 タービン、ガスタービン
JP6745233B2 (ja) * 2017-02-28 2020-08-26 三菱重工業株式会社 タービン及びガスタービン
US11952912B2 (en) 2022-08-24 2024-04-09 General Electric Company Turbine engine airfoil

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63100640U (ja) * 1986-12-19 1988-06-30
JP2011085134A (ja) * 2009-10-15 2011-04-28 General Electric Co <Ge> 排気ガスディフューザ
JP2012041925A (ja) * 2010-08-20 2012-03-01 General Electric Co <Ge> 先端流路輪郭
JP2012202247A (ja) * 2011-03-24 2012-10-22 Toshiba Corp 軸流排気タービン
JP2012202242A (ja) * 2011-03-24 2012-10-22 Mitsubishi Heavy Ind Ltd 排気ディフューザ

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3625630A (en) * 1970-03-27 1971-12-07 Caterpillar Tractor Co Axial flow diffuser
JPS63100640A (ja) 1986-10-17 1988-05-02 Hitachi Ltd 光磁気再生装置
DE4422700A1 (de) * 1994-06-29 1996-01-04 Abb Management Ag Diffusor für Turbomaschine
JP3165611B2 (ja) 1995-02-07 2001-05-14 三菱重工業株式会社 ガスタービン冷却空気導入装置
DE19618314A1 (de) * 1996-05-08 1997-11-13 Asea Brown Boveri Abgasturbine eines Abgasturboladers
JP3912989B2 (ja) 2001-01-25 2007-05-09 三菱重工業株式会社 ガスタービン
JP2002364310A (ja) 2001-06-06 2002-12-18 Mitsubishi Heavy Ind Ltd 排気ディフューザ
US20040109756A1 (en) 2002-12-09 2004-06-10 Mitsubishi Heavy Industries Ltd. Gas turbine
US6866479B2 (en) * 2003-05-16 2005-03-15 Mitsubishi Heavy Industries, Ltd. Exhaust diffuser for axial-flow turbine
JP2005290985A (ja) 2003-10-09 2005-10-20 Mitsubishi Heavy Ind Ltd 軸流タービンの排気ディフューザー
GB2415749B (en) * 2004-07-02 2009-10-07 Demag Delaval Ind Turbomachine A gas turbine engine including an exhaust duct comprising a diffuser for diffusing the exhaust gas produced by the engine
US7624581B2 (en) * 2005-12-21 2009-12-01 General Electric Company Compact booster bleed turbofan
JP5192507B2 (ja) 2010-03-19 2013-05-08 川崎重工業株式会社 ガスタービンエンジン
US9062559B2 (en) 2011-08-02 2015-06-23 Siemens Energy, Inc. Movable strut cover for exhaust diffuser
JP5222384B2 (ja) 2011-09-09 2013-06-26 三菱重工業株式会社 ガスタービン
PL220635B1 (pl) * 2011-10-03 2015-11-30 Gen Electric Dyfuzor gazu wydechowego i turbina zawierająca dyfuzor gazu wydechowego
US20130180246A1 (en) * 2012-01-13 2013-07-18 General Electric Company Diffuser for a gas turbine
JP5646109B2 (ja) 2012-02-27 2014-12-24 三菱日立パワーシステムズ株式会社 ガスタービン
US20140037439A1 (en) * 2012-08-02 2014-02-06 General Electric Company Turbomachine exhaust diffuser
JP6033154B2 (ja) * 2013-03-29 2016-11-30 三菱重工業株式会社 軸流回転機械、及びディフューザ
US10563543B2 (en) * 2016-05-31 2020-02-18 General Electric Company Exhaust diffuser

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63100640U (ja) * 1986-12-19 1988-06-30
JP2011085134A (ja) * 2009-10-15 2011-04-28 General Electric Co <Ge> 排気ガスディフューザ
JP2012041925A (ja) * 2010-08-20 2012-03-01 General Electric Co <Ge> 先端流路輪郭
JP2012202247A (ja) * 2011-03-24 2012-10-22 Toshiba Corp 軸流排気タービン
JP2012202242A (ja) * 2011-03-24 2012-10-22 Mitsubishi Heavy Ind Ltd 排気ディフューザ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3168416A1 (en) * 2015-11-11 2017-05-17 General Electric Company Gas turbine
CN106988797A (zh) * 2015-11-11 2017-07-28 通用电气公司 用于涡轮的整合的区段的系统
CN106988797B (zh) * 2015-11-11 2020-10-23 通用电气公司 用于涡轮的整合的区段的系统

Also Published As

Publication number Publication date
KR20150110814A (ko) 2015-10-02
CN105008676A (zh) 2015-10-28
JP6033154B2 (ja) 2016-11-30
JP2014194191A (ja) 2014-10-09
CN105008676B (zh) 2017-05-24
DE112014001760T5 (de) 2015-12-17
CN106870012A (zh) 2017-06-20
US20190234223A1 (en) 2019-08-01
KR101720449B1 (ko) 2017-03-27
US10760438B2 (en) 2020-09-01
US10753217B2 (en) 2020-08-25
CN106870012B (zh) 2018-10-16
US20160017734A1 (en) 2016-01-21

Similar Documents

Publication Publication Date Title
WO2014156961A1 (ja) 軸流回転機械、及びディフューザ
WO2011007467A1 (ja) インペラおよび回転機械
JP5535562B2 (ja) 排出スクロール及びターボ機械
US8920126B2 (en) Turbine and turbine rotor blade
JP2017129133A (ja) 可変静翼アンダーカットボタン
JP4924984B2 (ja) 軸流圧縮機の翼列
WO2018124068A1 (ja) タービン及びガスタービン
WO2018159681A1 (ja) タービン及びガスタービン
JP6513952B2 (ja) 電動送風機
WO2018155458A1 (ja) 遠心回転機械
JP6763804B2 (ja) 遠心圧縮機
JP6012519B2 (ja) タービン、及びこれを備えた回転機械
JP6169007B2 (ja) 動翼、及び軸流回転機械
JP2009036112A (ja) 回転機械の翼
JP6503698B2 (ja) 軸流機械の翼
JP2016040463A (ja) 軸流式ターボ機械
EP3421754B1 (en) Variable geometry turbocharger
WO2016157530A1 (ja) 動翼、及び軸流回転機械
CA2846376C (en) Turbo-machinery rotors with rounded tip edge
JP6821426B2 (ja) ディフューザ、タービン及びガスタービン
JP6994976B2 (ja) タービンの排気室及びタービン
JP6215154B2 (ja) 回転機械
JP2018141450A (ja) タービン及びガスタービン
JP7130372B2 (ja) 回転機械
WO2022201932A1 (ja) タービン、及びガスタービン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14775125

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157023693

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14771913

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014001760

Country of ref document: DE

Ref document number: 1120140017604

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14775125

Country of ref document: EP

Kind code of ref document: A1