WO2014156761A1 - 電気ニッケルめっき液中の希土類不純物の除去方法 - Google Patents

電気ニッケルめっき液中の希土類不純物の除去方法 Download PDF

Info

Publication number
WO2014156761A1
WO2014156761A1 PCT/JP2014/057107 JP2014057107W WO2014156761A1 WO 2014156761 A1 WO2014156761 A1 WO 2014156761A1 JP 2014057107 W JP2014057107 W JP 2014057107W WO 2014156761 A1 WO2014156761 A1 WO 2014156761A1
Authority
WO
WIPO (PCT)
Prior art keywords
plating solution
rare earth
plating
impurities
tank
Prior art date
Application number
PCT/JP2014/057107
Other languages
English (en)
French (fr)
Inventor
政直 蒲池
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to CN201480017713.7A priority Critical patent/CN105051264B/zh
Priority to US14/771,327 priority patent/US9873953B2/en
Priority to JP2015508316A priority patent/JP6319297B2/ja
Publication of WO2014156761A1 publication Critical patent/WO2014156761A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/16Regeneration of process solutions
    • C25D21/18Regeneration of process solutions of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/06Filtering particles other than ions
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/10Agitating of electrolytes; Moving of racks
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt

Definitions

  • the present invention relates to a method for efficiently and easily removing rare earth impurities in an electro nickel plating solution.
  • rare earth magnets especially R-Fe-B sintered magnets (R is at least one of rare earth elements including Y and must contain Nd) have high magnetic properties and are widely used.
  • Nd and Fe contained as main components are very rusting. For this reason, a rust preventive film is given to the magnet surface for the purpose of improving corrosion resistance.
  • electronickel plating has high hardness, and the management of the plating process is simpler than electroless plating, and is widely adopted for this magnet.
  • the components of the object to be plated may be dissolved in the plating solution simultaneously with the film formation.
  • the pH of the plating solution is inclined to the acidic side, the object to be plated is easily dissolved in the plating solution, and therefore the object to be plated accumulates as impurities in the plating solution.
  • the main component rare earth elements such as Nd and Fe dissolve in the plating solution and become impurities. Therefore, when the plating process is continued, rare earth impurities such as Nd and Fe, which are main components of the magnet material, and Fe dissolve and accumulate in the plating solution.
  • Nd and Fe which are main components of the magnet material
  • Fe dissolve and accumulate in the plating solution.
  • the amount of rare earth impurities is 700 ppm (mainly Nd impurities). If it exceeds, these defects are likely to occur. Furthermore, in plating by the barrel method, a large current flows locally to the object to be plated, so that double plating is likely to occur.
  • a nickel compound such as nickel carbonate is added to the plating solution, and the pH of the plating solution is increased (at the same time, activated carbon is added to remove organic impurities).
  • impurities are precipitated by further stirring with air, followed by filtration, or by immersing an iron net or plate in the plating solution and cathodic electrolysis at a low current density. ing.
  • Japanese Patent Laid-Open No. 7-62600 discloses a method for removing rare earth impurities from an electronickel plating solution using a chemical used for purification and separation of rare earth metals. This method is considered to be effective as one of the methods for reducing rare earth impurities in the electronickel plating solution.
  • it is necessary to employ a complicated process, which is not efficient, and a special drug is required, which is not realistic.
  • an object of the present invention is to provide a relatively simple and efficient method for removing rare earth impurities in an electronickel plating solution that does not require a complicated process and does not require a special chemical. is there.
  • the present inventors added a rare earth compound to an electronickel plating solution containing a rare earth impurity and kept at a temperature of 60 ° C. or higher for a certain period of time, thereby depositing a rare earth impurity, The inventors have found that it can be easily removed by filtration and have arrived at the present invention.
  • the method of the present invention for removing rare-earth impurities in the electro-nickel plating solution includes adding a rare-earth compound to the electro-nickel plating solution containing the rare-earth impurities and holding it at a temperature of 60 ° C. or higher for a certain period of time.
  • the deposited deposit is removed from the electronickel plating solution by precipitation and / or filtration together with the added rare earth compound.
  • the rare earth compound is preferably a rare earth oxide.
  • the rare earth element constituting the rare earth compound is preferably neodymium.
  • the agitation is preferably agitation by air, rotation of a stirring blade, or circulation of liquid by a pump.
  • the rare earth impurities in the electro nickel plating solution can be removed relatively easily and efficiently without employing a complicated process and without using a special agent. Therefore, it is possible to achieve quality stabilization and cost reduction of electro nickel plating on R-Fe-B sintered magnets.
  • the method of the present invention for removing rare earth impurities from an electronickel plating solution includes adding a rare earth compound to an electronickel plating solution containing rare earth impurities, holding the mixture at a temperature of 60 ° C. or higher for a certain period of time, and then depositing precipitates. And depositing and / or filtering the rare earth compound to remove the precipitate and the rare earth compound from the electro nickel plating solution.
  • rare earth impurities are, for example, R-Fe-B sintered magnets (where R is at least one kind of rare earth elements including Y and must contain Nd) when electroplating. It is an R component that dissolves in the plating solution, and most of it exists in an ionic state in the plating solution.
  • the present invention makes it possible to form a solid precipitate that can collect rare earth impurities in an ionic state by a filter, and to separate and remove the precipitate from the plating solution by sedimentation or filtration.
  • the present invention is not limited to the removal of the R component dissolved in the plating solution when electroplating the above R-Fe-B sintered magnet, but also exists in an ionic state in the plating solution. It can be applied in the removal of rare earth impurities.
  • the relationship between the amount of rare earth impurities (especially Nd impurities) and the occurrence of double plating or peeling of the plating film varies depending on the plating conditions, but when the amount of Nd impurities is about 200 ppm, they are not observed. Therefore, when the rare earth impurity reduction treatment is performed for the purpose of reducing the amount of Nd impurities to 200 ppm or less, the treatment can be performed at the following temperature and time.
  • the plating solution It is necessary to heat the plating solution to 60 ° C or higher when removing rare earth impurities. Below 60 ° C, it takes time to remove rare earth impurities, which is not suitable for industrial production.
  • the boiling point of the plating solution varies depending on the composition.
  • the boiling point of the watt bath is about 102 ° C.
  • the heating in the method of the present invention is desirably in the range of 60 ° C. to 100 ° C., more desirably 70 ° C. to 95 ° C., and most desirably 80 ° C. to 90 ° C.
  • the treatment time varies depending on the temperature conditions, but is preferably 6 hours or more, more preferably 12 hours or more.
  • the upper limit of the time does not need to be set, but is preferably 168 hours or less, more preferably 72 hours or less, and most preferably 24 hours or less from the viewpoint of cost and work efficiency.
  • the relationship between the amount of rare earth impurities (especially Nd impurities) and the occurrence of double plating or peeling of the plating film varies depending on the plating conditions, but when the amount of Nd impurities is about 200 ppm, they are not observed. Therefore, the temperature and time may be set as appropriate so that the amount of Nd impurities can be reduced to 200 ppm or less.
  • the treatment tank used when carrying out the method for removing rare earth impurities of the present invention needs to use one having high heat resistance according to the above heating range (temperature of the plating solution by heating). Therefore, the higher the temperature, the higher the cost. Implementation in the above temperature range, particularly a desirable temperature range, contributes to the suppression of cost increase as a result.
  • the rare earth compound to be added a known one may be used.
  • the rare earth compounds neodymium oxide, dysprosium oxide, terbium oxide, praseodymium oxide and the like can be used as the rare earth oxide.
  • the rare earth constituting these compounds is preferably neodymium, which is the main component of the R—T—B based sintered magnet. Neodymium oxide can be suitably used.
  • a rare earth hydroxide obtained by converting a rare earth oxide into a hydroxide can be used.
  • rare earth salts such as rare earth chloride salts and rare earth sulfates can be used as the rare earth compound.
  • neodymium hydroxide, neodymium chloride, neodymium sulfate and the like are preferably used, and neodymium chloride and neodymium sulfate may be hydrates.
  • the rare earth impurities are precipitated faster by adding the rare earth compound when heating the nickel electroplating solution containing the rare earth impurities, but the rare earth impurities in the electronickel plating solution are deposited. It is presumed that it will play a role like a nucleus when doing so.
  • rare earth compound serving as the nucleus examples include rare earth oxides, rare earth hydroxides, rare earth salts, and rare earth sulfates.
  • rare earth oxides are relatively easy to obtain and can be suitably used. These compounds may be added as powders, or may be added after stirring in water. Or after diluting in an aqueous solution of acid, it may be added to the plating solution.
  • the addition timing of the rare earth compound may be before the heating of the electro nickel plating solution containing the rare earth impurities, may be during the heating and before reaching the set temperature, or after the set temperature is reached.
  • the original characteristics of the present invention can be realized by maintaining at 60 ° C. or higher for a certain time in the state where the rare earth compound is added to the electronickel plating solution containing rare earth impurities.
  • the compound form of the rare earth compound before addition and the rare earth compound removed together with the impurities may be changed.
  • the concentration of the plating solution used in the method for removing rare earth impurities of the present invention is preferably in the range of 1 to 3 times the concentration when plating is performed 1 time. Concentration is preferably by heating. Since the plating solution evaporates water, which is a solvent, by heating, heating and concentration can be performed simultaneously.
  • the concentration of the plating solution exceeds 3 times due to heating, the deposition of the plating solution components starts abruptly and is not desirable.
  • the concentration is more preferably in the range of 1 to 2 times. Although it can be processed in the range of 2 to 3 times, it must be carefully controlled so that the deposition of the plating solution component does not start when the concentration approaches 3 times.
  • the amount of plating solution decreases due to water evaporation.
  • water is replenished.
  • the concentration of the plating solution is kept constant, for example, when the plating solution is returned from the preliminary tank used for removing the rare earth impurities to the plating tank after removing the rare earth impurities, the concentration can be adjusted in a short time by supplying water. .
  • the present invention is suitable for removing rare earth impurities in acidic to neutral nickel plating solutions.
  • the present invention can be applied to nickel plating solutions such as watt baths, high chloride baths, chloride baths, sulfamic acid baths, etc., and is most suitable for watt baths.
  • the Watt bath may be of a very common bath composition. For example, it can be applied to compositions containing brighteners and pit inhibitors as additives: 200 to 320 g / L nickel sulfate, 40 to 50 g / L nickel chloride, 30 to 45 g / L boric acid. is there.
  • the composition of the plating solution is adjusted by a known analysis method (such as titration analysis). For example, in the case of a watt bath, nickel chloride and total nickel are analyzed by titration to obtain nickel sulfate, and boric acid is analyzed by titration.
  • a known analysis method such as titration analysis. For example, in the case of a watt bath, nickel chloride and total nickel are analyzed by titration to obtain nickel sulfate, and boric acid is analyzed by titration.
  • the composition of the plating solution after removal of rare earth impurities is within the control range, it is not always necessary to add it, but if it is insufficient, an insufficient amount of nickel sulfate, nickel chloride, boric acid is added to the plating solution.
  • Add and adjust the composition of the plating solution When adding these chemicals, it is desirable to heat the plating solution to a temperature at which plating is performed. When the temperature is low, dissolution of the added drug is slow or does not dissolve.
  • the pH is adjusted with nickel carbonate or sulfuric acid, and a known brightener or pit inhibitor is added to perform plating.
  • the plating conditions using the plating solution to which the present invention is applied may be appropriately changed depending on the equipment used, the plating method, the size of the object to be plated, the number of treatments, and the like.
  • the plating conditions when the plating bath having the above Watt bath composition is used are preferably pH 3.8 to 4.5, bath temperature 45 ° C. to 55 ° C., and current density 0.1 to 10 A / dm 2 .
  • As a plating method there are a rack method and a barrel method, which may be appropriately set depending on the size of the object to be plated and the processing amount.
  • the plating tank is made of FRP or PP having high heat resistance, or an iron plate coated with fluororesin, impurities in the electro nickel plating solution can be removed only by the plating tank without preparing a preliminary tank.
  • the plating tank is made of vinyl chloride (PVC), and by using a container with a high heat resistance material in the spare tank, the plating tank can perform plating treatment while removing impurities in the spare tank. Efficiency and workability can be improved. In addition, safety
  • security can also be improved by using the container of a material with high heat resistance for both a plating tank and a reserve tank.
  • the plating tank 1 has an anode plate (not shown), a cathode (not shown), a heater (not shown), and a stirrer (not shown), builds a plating solution, and performs electro nickel plating. be able to.
  • the material of the plating tank 1 is preferably vinyl chloride (PVC) or heat-resistant vinyl chloride (PVC) depending on the plating solution used.
  • the plating system is composed of the plating layer 1, the valves 2, 5, 6, 7, the pump 3, and the filter 4.
  • the pump 3 is operated with the valve 7 closed and the valves 2, 5, 6 open.
  • the plating solution in the plating tank 1 can be circulated and the plating solution can be filtered through the filter 4. That is, the plating solution circulates through the path of the plating tank 1, the valve 2, the pump 3, the filter 4, the valve 5, the valve 6, and the plating tank 1, and is filtered by the filter 4 in the path.
  • a known filter used in electroplating can be used for the filter, and the filter 4 that is configured integrally with the pump 3 can be used.
  • the material of the piping is preferably vinyl chloride (PVC) or heat resistant vinyl chloride (PVC).
  • the preliminary tank 8 has a stirring blade 9 connected to a motor (not shown) and a heater 10 connected to a power source (not shown).
  • the heater 10 may be a steam heater connected to a steam generator by piping.
  • a method using an air diffuser connected to an air pump may be used as a means for stirring the plating solution in the preliminary tank. It may be. Since the preliminary tank 8 treats a high-temperature plating solution containing rare earth impurities, it is desirable to use PP or FRP made of high heat resistance.
  • the filtration system is composed of the preliminary tank 8, the valves 11, 14, 15, 16, the pump 12, and the filter 13.
  • the filter 13 may be configured integrally with the pump 12.
  • the circulation of the plating solution in the preliminary tank and the method of feeding the liquid between the preliminary tank and the plating tank will be described.
  • the pump 3 By operating the pump 3 with the valve 6 closed and the valves 2, 5, 7 opened, the plating solution in the plating tank 1 can be sent to the preliminary tank 8 via the filter 4. That is, the plating solution is sent through the route of the plating tank 1, the valve 2, the pump 3, the filter 4, the valve 5, the valve 7, and the reserve tank 8.
  • the plating solution in the reserve tank 8 can be circulated and the plating solution can be filtered through the filter 13. That is, the plating solution is a reserve tank 8, a valve 11, and a pump 12. It circulates in the path
  • the plating solution in the spare tank 8 can be sent to the plating tank 1 via the filter 13. That is, the plating solution is sent through the path of the preliminary tank 8, the valve 11, the pump 12, the filter 13, the valve 14, the valve 15, and the plating tank 1.
  • Rare earth impurities are deposited by adding a rare earth compound to the preliminary tank 8 and performing a heating treatment.
  • the precipitated rare earth impurities and the added rare earth compound settle at the bottom of the preliminary tank 8 when the stirring with the stirring blade 9 is stopped.
  • the preliminary tank 8 When the plating solution is sent from the preliminary tank 8 to the plating tank 1, after the added rare earth compound and precipitate have settled, the preliminary tank 8, the valve 11, the pump 12, the filter 13, the valve 14, the valve 15, and When the solution is sent through the path of the plating tank 1, clogging of the filter due to the added rare earth compound and precipitate is suppressed, and the filter disposed in the filter 13 can be used for a long time.
  • the tip of the pipe connected to the pump 12 from the preliminary tank 8 via the valve 11 (part that absorbs the plating solution) is configured not to contact the bottom of the preliminary tank 8, and the rare earth compound deposited (added) on the bottom and It has a structure that makes it difficult to suck precipitates.
  • the solution may be sent without waiting for sedimentation.
  • the plating solution in which the rare earth compound and the precipitate are precipitated is sent from the preliminary tank 8 to the plating tank 1, a filter may not be disposed in the filter 13.
  • the rare earth compound and the precipitate in the preliminary tank 8 are deposited on the bottom of the preliminary tank 8, and are contained in the plating solution fed from the preliminary tank 8 to the plating tank 1.
  • Rare earth compounds and precipitates are very low. Therefore, after sending the solution to plating tank 1, the plating solution is filtered in the plating tank 1 (plating tank 1, valve 2, pump 3, filter 4, valve 5, valve 6, and plating tank 1 path). Rare earth compounds and precipitates remaining (added) in the liquid can be removed by filtration.
  • devices having various configurations can be used without being limited to the above devices.
  • a configuration in which the piping for circulating the plating solution in the plating tank 1 and the piping for feeding the plating solution in the plating tank 1 to the spare tank 8 are arranged completely independently can be employed.
  • a specific configuration will be described with a valve, a pump, a filter, and a pipe connected to the plating tank 1.
  • the plating solution is plating tank 1, valve 2, pump 3, filter 4, valve 5, It circulates through the path of the valve 6 and the plating tank 1.
  • the plating solution is plated tank 1, valve 2, pump 3, filter 4, valve 5, valve 7, and spare tank 8. It is sent by the route.
  • circulation in the plating tank 1 and liquid feeding from the plating tank 1 to the preliminary tank 8 are switched by opening and closing the valves 5, 6 and 7.
  • the paths to the valve 2, the pump 3, the filter 4, and the valve 5 are used for both circulation and liquid feeding, and are shared.
  • piping is provided in the path that continues to the plating tank 1 through the valve 2, the pump 3, the filter 4, the valve 5, and the valve 6 for circulation (in this case, the valve 5 and the valve 6 are not necessarily required).
  • piping is provided in a path that passes through the valve 2 ′, the pump 3 ′, the filter 4 ′, the valve 5 ′, and the valve 7 and continues to the auxiliary tank 8 (in this case, the valve 5 ′ and the valve 7 are not necessarily required).
  • FIG. 2 shows a configuration in which another spare tank is added to the configuration of the plating tank and the spare tank described in FIG.
  • FIG. 2 is mainly intended to explain the function of the plating tank and the preliminary tank, that is, the function of each tank. Therefore, the heater and the stirring blade arranged individually in each preliminary tank, and the plating tank The arranged electrodes are not shown. Further, only the piping necessary for liquid feeding between the preliminary tanks and between the preliminary tanks and the plating tank is shown, and the valves and the piping necessary for circulation are not shown.
  • the addition of the rare earth compound to the electronickel plating solution containing rare earth impurities can be performed in the first preliminary tank 19 and / or the second preliminary tank 21.
  • Each spare tank has a heater (and a stirring blade) and can heat the nickel electroplating solution, and can promote precipitation of rare earth impurities by heating.
  • the solution may be sent to the second preliminary tank 21 at the same time as being filtered and removed by the vessel (and pump) 20.
  • the nickel nickel plating solution in which rare earth impurities are reduced by this method is prepared in the second preliminary tank in advance, and by sending the liquid to the plating tank 17, the interruption time of the plating operation in the plating tank 17 can be shortened. .
  • the rare earth compound is added to the second preliminary tank 21 and further heated. Then, the rare earth impurities may be precipitated, and the rare earth impurities may be separated and removed by the filter (and pump) 22.
  • the temperature of the electronickel plating solution is at least It is desirable to cool below the processing temperature of the electro nickel plating solution.
  • the temperature of the moved electro nickel plating solution is higher than the treatment temperature of the electro nickel plating solution, the electro nickel plating treatment at that temperature may change the characteristics of the plating film.
  • a heating device such as a heater is attached to the electric nickel plating tank, so even if the temperature of the moved electro nickel plating solution is below the processing temperature, it can be set to the processing temperature by heating.
  • the temperature of the nickel plating solution is equal to or higher than the processing temperature, it is necessary to provide a separate cooling device.
  • Providing a cooling device in the plating tank increases the cost and requires time for cooling, which lowers the efficiency of the plating process.
  • the plating tank may be deformed by a high temperature plating solution. Cooling of the electro nickel plating solution stops natural heating for precipitation of rare earth impurities and may be natural cooling. When it is desired to cool quickly, a heat exchanger or chiller for cooling may be used.
  • Reference Examples 1 to 12 shown below are examples carried out in the process of carrying out Example 1 of the present invention, in which an electric nickel plating solution containing rare earth impurities was heated for a certain period of time and deposited as precipitates. The process of removing rare earth impurities from an electrolytic nickel plating solution by precipitating and / or filtering rare earth impurities is shown.
  • Reference example 1 The composition consists of 250 g / L nickel sulfate, 50 g / L nickel chloride, and 45 g / L boric acid.
  • the pH 4.5 plating solution is heated to 50 ° C and the R-Fe-B system Electronickel plating was applied to the surface of the sintered magnet.
  • R-Fe-B sintered magnets are available in 15-25 mass% Nd, 4-7 mass% Pr, 0-10 mass% Dy, 0.6-1.8 mass% B depending on the required magnetic properties. , 0.07 to 1.2% by mass of Al and the balance of Fe (including 3% by mass or less of Cu and Ga) were used.
  • the composition of the magnets used in one batch was the same.
  • the composition and amount of each rare earth impurity dissolved in the plating solution vary depending on the combination of magnets used for plating, the treatment method such as barrel plating and rack plating, and the composition of the plating solution.
  • Nd impurities, Pr impurities, and Dy impurities in the electro nickel plating solution were analyzed with an ICP emission spectrometer.
  • the analysis results of the plating solution after use were Nd: 500 ppm, Pr: 179 ppm, and Dy: 29 ppm.
  • the plating solution containing the rare earth impurities was collected in a fixed amount (3 liters) beaker and kept at 90 ° C. with a heater for a fixed time. During heating, the mixture was stirred with a magnetic stirrer (magnet stirrer). During heating, water was replenished so that the concentration of the plating solution was constant.
  • the ionic state rare earth impurities dissolved in the electrolytic nickel plating solution became precipitates by heating for a predetermined time, and were separated and removed from the plating solution by filtration with filter paper.
  • the rare earth impurities that did not become precipitates even after heating for a predetermined time remained in the plating solution in an ionic state at a rate as shown in the above analysis results.
  • the longer the heating time the greater the amount of rare earth impurities separated and removed as precipitates.
  • the amount of rare earth impurities in the ionic state in the plating solution decreased. . It has been found that the treatment method of Reference Example 1 reduces the amount of impurities of Pr and Dy at the same time as the amount of impurities of Nd, which is a rare earth element.
  • Reference example 2 R-Fe-B sintering with a composition consisting of 250 g / L nickel sulfate, 50 g / L nickel chloride, 45 g / L boric acid, and a pH 4.5 plating solution heated to 50 ° C
  • Electronickel plating was applied to the surface of a magnet (using the same composition range as in Reference Example 1). After plating for several days, the Nd impurity in the electronickel plating solution was analyzed and found to be 576 ppm.
  • the plating solution after the plating treatment for several days is heated under 6 conditions from 50 ° C to 95 ° C (however, from 50 ° C to 90 ° C, 5 conditions in increments of 10 ° C). Collected and held in a beaker. During heating, the mixture was stirred with a magnetic stirrer (magnet stirrer). During heating, water was replenished so that the concentration of the plating solution was constant, and an amount of plating solution necessary for ICP emission analysis was collected at regular intervals. The collected plating solution was subjected to filtration of precipitates with filter paper, and then the content (concentration) of Nd impurities in the plating solution was analyzed using an ICP emission analyzer. The analysis results from 50 ° C. to 90 ° C. are shown in Table 1 and shown in FIG.
  • the Nd impurity concentration became 518 ppm after 168 hours.
  • the Nd impurity concentration decreased after 24 hours and became 177 ppm after 216 hours.
  • the Nd impurity concentration tended to always be lower after 24 hours compared to 60 ° C.
  • the liquid temperature was 80 ° C.
  • the Nd impurity concentration decreased immediately after heating and reached 125 ppm after 96 hours.
  • the liquid temperature was 90 ° C.
  • the Nd impurity concentration was 134 ppm after 24 hours, 84 ppm after 48 hours, and 59 ppm after 96 hours.
  • the liquid temperature was 95 ° C., analysis was conducted after 24 hours and 96 hours, and the Nd impurity concentration was almost the same as when heated at 90 ° C.
  • the heating temperature is about 200ppm in one week (168 hours) at 60 °C. It can be seen that almost the same effect can be obtained in 5 days (120 hours) at 70 ° C, 3 days (72 hours) at 80 ° C, and 24 hours (1 day) at 90 ° C and 95 ° C. Therefore, for example, when 1 week is the unit period of production, the plating solution which is kept at 60 ° C. for 1 week (168 hours) and then filtered can be used for the plating process, and at 70 ° C. for 5 days (120 days). The amount of impurities that can be plated in time) can be reduced.
  • impurities in the plating solution can be reduced in a shorter time. That is, the heating temperature and the holding time can be selected according to the presence or absence of equipment capable of heating the plating solution to the above temperature and the production schedule.
  • Reference example 3 The plating solution heated in Reference Example 1 and Reference Example 2 was filtered with a filter paper, and the precipitate deposited from the plating solution was collected. The precipitate was dried in a thermostatic bath. The property was powder (solid). When this precipitate was analyzed with an energy dispersive X-ray analyzer (EDX), Nd: 32.532, Pr: 11.967, Dy: 1.581, Al: 0.402, Ni: 7.986, C: 0.319, and O: 45.213 (mass) %). From this result, it was confirmed that the rare earth impurities in the plating solution were precipitated as powder (solid) by the heating treatment.
  • EDX energy dispersive X-ray analyzer
  • Reference example 4 1 g / L of the precipitate collected in Reference Example 3 was added to the plating solution obtained in Reference Example 2 after plating for several days (containing rare earth impurities: Nd impurity concentration is 576 ppm).
  • the plating solution to which the precipitate was added was divided into 3 liter beakers, heated to 60 ° C. and 70 ° C., and held in the same manner as in Reference Example 1 with stirring.
  • the plating solution to which the precipitate was not added was also divided into 3 liter beakers, heated to 60 ° C. and 70 ° C., and similarly held with stirring. Whether or not the precipitate was added, water was replenished so that the concentration of the plating solution was constant during heating.
  • Reference Example 5 R-Fe-B sintering with a composition consisting of 250 g / L nickel sulfate, 50 g / L nickel chloride, 45 g / L boric acid, and a pH 4.5 plating solution heated to 50 ° C Electro-nickel plating was applied to the surface of a magnet (used in combination with several types having the same composition range as in Reference Example 1). After plating for several days, Nd impurities in the electronickel plating solution were analyzed with an ICP emission spectrometer, and found to be 544 ppm.
  • the amount of plating solution necessary for ICP emission analysis was collected at regular intervals, and the Nd impurity concentration was measured with an ICP emission analyzer in the same manner as in Reference Example 1. The analysis results are shown in Table 3 and shown in FIG.
  • Reference Example 6 Prepare the plating solution after plating for several days obtained in Reference Example 5 (containing rare earth impurities: Nd impurity is 544 ppm) Divided into beakers. The same precipitates used in Reference Example 3 were added to 4 beakers at 1 g / L. No precipitate was added to the remaining one. These plating solutions were heated to 90 ° C. and held in the same manner as in Reference Example 1 with stirring. Water was not added until the liquid volume was halved (approximately half after 24 hours of warming), and water was added from the time when the liquid volume was halved to maintain the plating solution concentration at twice the initial level. While maintaining, stirring was performed in the same manner as in Reference Example 1.
  • the Nd impurity concentration of these plating solutions was measured with an ICP emission analyzer. When no precipitate was added, the Nd impurity concentration was 52 ppm after 24 hours of heating.
  • the four plating solutions to which the precipitates were added had Nd impurity concentrations of 32 ppm, 56 ppm, 52 ppm, and 61 ppm after 24 hours of heating. That is, it was found that when the concentration was doubled, the same impurity reduction effect was obtained with or without the precipitate.
  • the Nd impurity concentration was measured by diluting the collected plating solution twice.
  • Reference Example 7 Prepare the plating solution (containing rare earth impurities: Nd impurity concentration: 576 ppm) after several days of plating treatment obtained in Reference Example 2, and add 3 liters of plating solution as in Reference Example 2. It was put in a beaker and kept warm at 90 ° C. At this time, the plating solution was not stirred. Water was added to maintain the amount of the plating solution so that the concentration of the plating solution did not change. The plating solution was collected at regular intervals, and the impurity content was measured with an ICP emission analyzer in the same manner as in Reference Example 1.
  • the Nd impurity concentration was 137 ppm after 24 hours, 73 ppm after 72 hours, and 63 ppm after 96 hours, and was reduced in the same manner as in Reference Example 2.
  • the amount of the plating solution was about 3 liters, the influence of stirring was not so great.
  • the amount of plating solution in a plating bath that is usually used is several tens to 100 times or more. For example, when removing rare earth impurities from several hundred liters or more of plating solution, make the solution temperature uniform. Therefore, it is desirable to stir.
  • Reference Example 8 A plating solution which had been plated was prepared in the same manner as the plating solution obtained after performing the plating treatment for several days obtained in Reference Example 1.
  • the Nd impurity amount, Fe impurity amount, and Cu impurity amount in the plating solution after plating were analyzed with an ICP emission spectrometer. As a result, Nd: 500 ppm, Fe: 19 ppm, and Cu: 3 ppm.
  • This plating solution was heated under the same conditions (90 ° C.) as in Reference Example 1, and after 24 hours and 96 hours, the plating solution was collected in an amount necessary for ICP emission analysis.
  • the amount of impurities and the amount of Cu impurities were measured with an ICP emission spectrometer.
  • Nd 100 ppm, Fe: 3 ppm, and Cu: below detection limit after 24 hours
  • Nd 50 ppm, Fe: 1 ppm, and Cu: below detection limit after 96 hours Met. It was confirmed that not only rare earth impurities but also Fe impurities and Cu impurities can be reduced by heating treatment of the treated plating solution.
  • Reference Example 9 R-Fe-B sintering with a composition consisting of 250 g / L nickel sulfate, 50 g / L nickel chloride, 45 g / L boric acid, and a pH 4.5 plating solution heated to 50 ° C Electro-nickel plating was applied to the surface of a magnet (the same composition range as in Reference Example 1 was used, but the composition of the magnet used in one batch was the same). After plating for several days, the Nd impurity in the electronickel plating solution was analyzed and found to be 581 ppm. .
  • the first heating treatment 90 ° C.
  • a significant decrease (precipitation) of Nd impurities could be confirmed from about 3 hours after heating.
  • the second heating treatment 90 ° C.
  • the rate of decrease of Nd impurities was further increased, and the precipitation of impurities began even after 1 hour.
  • the second heating treatment performed while leaving the precipitate was the same as the case where the precipitate of Reference Example 4 was added.
  • the treatment with the beaker in which the precipitate remains is performed when the removal treatment of the rare earth impurities in the electronickel plating solution is repeatedly performed a plurality of times, and the precipitate obtained by the removal treatment performed previously is added. Also, it corresponds to a case where a new electro nickel plating solution is added in a state in which the deposited precipitate remains, and the rare earth impurities are removed again after the plating treatment.
  • Reference Example 10 (i) First heating treatment Prepare a plating solution (581 ppm of Nd impurities) after performing the plating treatment obtained in Reference Example 9 for several days, put it in a 3 liter beaker, and Warmed up. Water was not replenished until the concentration of the plating solution was doubled by heating (the amount of the solution was halved). After 1, 3, 6, 12 and 24 hours, the content (concentration) of Nd impurities in the plating solution was analyzed with an ICP emission analyzer in the same manner as in Reference Example 1. In the analysis, the plating solution concentration was diluted (twice) so as to be the same as before the heating. After 24 hours, the stirrer was stopped, the precipitate was allowed to settle, and the plating solution in the beaker was extracted. When extracting, the deposit was left at the bottom of the beaker.
  • precipitation by heating concentration has already started after 1 hour of heating, and by removing the precipitate by filtration or sedimentation, it can be reduced to 200 ppm or less after 6 hours. is there. That is, the Nd impurity can be reduced to 200 ppm or less in a short time by heating and concentration, and plating can be continued.
  • treatment amount is reduced to a new plating solution or 200 ppm or less. Although it is shorter than the case, it can be used for a certain period.
  • the previously treated precipitate In addition to heating concentration, if the previously treated precipitate remains, it can be reduced from 581 ppm to 435 ⁇ ⁇ ppm even in the treatment for about 1 hour, and the time that can be used for the plating treatment is compared to the treatment for 3 hours. Although shorter, it can be used for a certain period of time.
  • the plating apparatus shown in Fig. 1 has a composition consisting of 250 g / L nickel sulfate, 45 g / L nickel chloride and 45 g / L boric acid, and the pH 4.5 plating solution is heated to 50 ° C. Electro-nickel plating was performed for several days on the surface of an R-Fe-B sintered magnet (using a combination of several types of magnets having different compositions within the same composition range as in Reference Example 1) in a barrel manner.
  • composition of the plating solution in which the rare earth impurities accumulated after the plating treatment has a composition consisting of 250 g / L nickel sulfate, 45 g / L nickel chloride, and 45 g / L boric acid.
  • concentration of Nd impurity was 600 ppm.
  • the total amount of 500 ⁇ L of this electric nickel plating solution was fed from the plating tank 1 to the preliminary tank 8.
  • the liquid temperature of the fed plating solution was kept at 90 ° C., and stirring was performed using the stirring blade 9.
  • the stirring blade 9 is stopped, the heater 10 is turned off, the valve 16 is closed, the pump 12 is operated with the valves 11, 14, and 15 opened, and the plating solution is passed through the filter 13 to the plating tank 1. Returned to.
  • the Nd impurity concentration of the plating solution returned to the plating tank 1 was measured and found to be 50 ppm.
  • the valve 16 was closed and the valves 11, 14, and 15 were opened, and the plating solution was returned to the plating tank 1 while filtering the plating solution. Then, the pump 12 is operated in a state in which 16 is opened, and the plating solution is circulated in the order from the preliminary tank 8 to the filter 13 and the preliminary tank 8 to filter the plating solution, and the filter 13 is replaced with a new one.
  • the plating solution may be returned from the preliminary tank 8 to the plating tank 1 with the valve closed and the valves 11, 14 and 15 opened.
  • Example 1 R-Fe-B sintering with a composition consisting of 250 g / L nickel sulfate, 50 g / L nickel chloride, 45 g / L boric acid, and a pH 4.5 plating solution heated to 50 ° C
  • Electronickel plating was applied to the surface of the magnet (with the same composition range as Reference Example 1). After plating for several days, the Nd impurity in the electronickel plating solution was analyzed and found to be 320 ppm.
  • the plating solution was collected in a 3 liter beaker and heated at 60 ° C. An amount of plating solution required for the ICP emission spectrometer was collected every 48 hours, 96 hours, and 144 hours. After collecting the plating solution after 144 hours, 1 g / L of neodymium oxide (Nd 2 O 3 ) was added, and the plating solution was collected 168 hours after the start of heating with the solution temperature maintained at 60 ° C. Finally, the heating treatment was performed up to 240 hours. During heating, stirring was performed with a magnetic stirrer (magnet stirrer), and water was supplied so that the concentration of the plating solution was constant. The plating solution after the heating treatment was filtered with a filter paper, and then the content (concentration) of Nd impurities in the plating solution was analyzed using an ICP emission spectrometer. The results are shown in Table 6.
  • Example 1 when heating is performed in the presence of neodymium oxide (Nd 2 O 3 ) in the plating solution containing rare earth impurities, the time during which the rare earth impurities become precipitates increases. I can confirm. That is, after adding neodymium oxide, it was confirmed that a significant impurity concentration reduction effect was exhibited in 24 hours.
  • neodymium oxide Nd 2 O 3
  • Example 1 the amount of decrease in Nd impurities during the period until the rare earth compound (neodymium oxide) was added (from the start of heating to 144 hours) was higher than that in Reference Example 2 (heating at 60 ° C.). The reason for this is considered to be that the amount of rare earth impurities contained in the plating solution after the plating treatment was small.
  • neodymium oxide was added after heating the electrolytic nickel plating solution containing rare earth impurities to 60 ° C. and holding for a certain period of time, but neodymium oxide was added before or during heating. It was confirmed that the same effect was obtained.
  • the present invention has industrial applicability because it dissolves in a plating solution when plating a rare earth magnet and can efficiently remove rare earth impurities in the electronickel plating solution that cause so-called plating defects. .

Abstract

 希土類不純物を含む電気ニッケルめっき液へ希土類化合物を添加し60℃以上に加温した状態で一定時間保持した後、前記加温により析出した析出物を、添加した希土類化合物とともに沈降及び/又は濾過により、前記電気ニッケルめっき液から除去することを特徴とする電気ニッケルめっき液中の希土類不純物の除去方法。

Description

電気ニッケルめっき液中の希土類不純物の除去方法
 本発明は、電気ニッケルめっき液中の希土類不純物を効率的に簡便に除去する方法に関する。
 希土類系磁石の中で特にR-Fe-B系焼結磁石(RはYを含む希土類元素のうち少なくとも一種以上でありNdを必ず含む)は、磁気特性が高く、広く使用されているが、主たる成分として含有されているNdやFeは非常に錆びやすい。このため耐食性を向上させることを目的として、磁石表面に防錆被膜が施される。中でも電気ニッケルめっきは硬度も高く、めっき工程の管理が無電解めっきに比較して簡便であり、本系磁石にも広く採用されている。
 上記電気ニッケルめっきによるめっき被膜の成長過程のごく初期においては、成膜と同時に被めっき物の成分がめっき液中に溶解することがある。特にめっき液のpHが酸性側に傾いている場合、被めっき物がめっき液に溶解しやすいため、被めっき物が不純物としてめっき液中に蓄積する。
 R-Fe-B系焼結磁石の場合は、主成分であるNd等の希土類元素やFeがめっき液に溶解し不純物となる。よって継続してめっき処理を行うとめっき液中に磁石素材の主成分であるNd等の希土類不純物やFeが溶解し蓄積していく。不純物が無い状態でめっきを行うためにはめっき処理ごとに新しいめっき液を建浴することが必要となる。製造工程においてめっき処理ごとに新たなめっき液を建浴することはコストアップとなり困難である。実質的には不可能といえる。
 電気ニッケルめっきの場合は、一般的にめっき液中に不純物が含有されていると、光沢の変化や被めっき物との密着不良、やけ(焦げ)などが発生し易い。例えば、希土類元素がめっき液中に不純物として蓄積し一定量以上になると、めっき被膜と磁石素材との間で密着性が低下し剥離が発生したり、めっき被膜成膜中の電流断続を起因とする層内剥離である2重めっきが発生したりする。
 密着性が低下し2重めっきのような不良が発生するか否かはめっき液の組成、めっき条件等によるが、本発明者の実験によると希土類不純物量が700 ppm(主にNd不純物)を超えるとこれらの不良が発生しやすくなる。さらにバレル方式によるめっきは、局部的に大きな電流が被めっき物に流れるため、2重めっきが発生しやすい。
 工業的量産規模で電気ニッケルめっきを実施する場合に、電気ニッケルめっき液中の希土類不純物が全くない状態を維持することは、製造コストの観点からも非現実的であり、一般的に採用されていない。しかし、品質管理の観点から希土類不純物量が700 ppmを超えない範囲で、低く管理するのが望ましい。
 電気ニッケルめっき液に溶解しているFeなどの不純物を除去する方法としては、めっき液に炭酸ニッケル等のニッケル化合物を添加し、めっき液のpHを上げ(同時に活性炭を添加し有機不純物を除去する場合もある)、さらにエアー攪拌することで不純物を析出させ、その後、濾過する方法や、めっき液中に鉄の網や板を浸漬し、低電流密度で陰極電解する方法が一般的に行われている。これらの方法は、電気ニッケルめっき液に溶解した鉄や有機物の不純物を除去する方法としては有効だが、希土類不純物を除去する方法としては効果が小さい。
 特開平7-62600号は、希土類金属の精製や分離に使用される薬剤を用い、電気ニッケルめっき液から希土類不純物を除去する方法を開示している。この方法は、電気ニッケルめっき液中の希土類不純物を低減する方法の一つとして有効と考えられる。しかしながら、この方法の実現のためには、複雑な工程を採用する必要があり効率的でなく、しかも特別な薬剤が必要であるため現実的ではない。
 従って本発明の目的は、複雑な工程を採用する必要がなく、かつ特別な薬剤を必要としない、比較的簡便で、効率よく電気ニッケルめっき液中の希土類不純物を除去できる方法を提供することである。
 上記目的に鑑み鋭意研究の結果、本発明者は、希土類不純物を含む電気ニッケルめっき液へ希土類化合物を添加し60℃以上に加温した状態で一定時間保持することにより、希土類不純物が析出し、それを濾過によって容易に除去できることを見出し、本発明に想到した。
 電気ニッケルめっき液中の希土類不純物を除去する本発明の方法は、希土類不純物を含む電気ニッケルめっき液へ希土類化合物を添加し60℃以上に加温した状態で一定時間保持した後、前記加温により析出した析出物を、添加した希土類化合物とともに沈降及び/又は濾過により、前記電気ニッケルめっき液から除去することを特徴とする。
 前記希土類化合物は希土類酸化物であるのが好ましい。
 前記希土類化合物を構成する希土類元素はネオジムであるのが好ましい。
 前記電気ニッケルめっき液の加温に際し、電気ニッケルめっき液を攪拌するのが好ましい。
 前記攪拌は、空気、攪拌羽根の回転、又はポンプによる液の循環による攪拌であるのが好ましい。
 本発明によれば、電気ニッケルめっき液中の希土類不純物を、複雑な工程を採用せず、かつ特別の薬剤を使用することなく比較的簡便に効率的に除去することができる。そのため、特にR-Fe-B系焼結磁石への電気ニッケルめっきの品質安定化とコストダウンを実現できる。
本発明の電気ニッケルめっき液中の希土類不純物を除去する方法を実施する電気ニッケルめっき装置の一例を示す模式図である。 本発明の電気ニッケルめっき液中の希土類不純物を除去する方法を実施する電気ニッケルめっき装置の他の例を示す模式図である。 濾過後めっき液中の希土類不純物としてのNd量をICP発光分析装置によって測定し、保温温度ごとに、時間に対してプロットした結果を示すグラフである。 濾過後めっき液中の希土類不純物としてのNd量をICP発光分析装置によって測定し、保温温度及び希土類不純物の析出物の添加の有無ごとに、時間に対してプロットした結果を示すグラフである。 濾過後めっき液中の希土類不純物としてのNd量をICP発光分析装置によって測定し、めっき液の濃度ごとに、時間に対してプロットした結果を示すグラフである。 濾過後めっき液中の希土類不純物としてのNd量をICP発光分析装置によって測定し、時間に対してプロットした結果を示すグラフである。 濾過後めっき液中の希土類不純物としてのNd量をICP発光分析装置によって測定し、時間に対してプロットした結果を示すグラフである。
 電気ニッケルめっき液から希土類不純物を除去する本発明の方法は、希土類不純物を含む電気ニッケルめっき液へ希土類化合物を添加し、60℃以上に加温した状態で一定時間保持した後、析出した析出物及び希土類化合物を沈降及び/又は濾過し、前記電気ニッケルめっき液から前記析出物及び希土類化合物を除去することを特徴とする。
 本発明において、希土類不純物とは、例えば、R-Fe-B系焼結磁石(Rは、Yを含む希土類元素のうち少なくとも一種以上でありNdを必ず含む)を電気ニッケルめっきする際、めっき液に溶解するR成分であり、めっき液中ではそのほとんどがイオンの状態で存在するため、そのままでは濾過捕集が困難なものを指す。本発明は、イオンの状態で存在する希土類不純物を濾過器で捕集可能な固体の析出物とし、その析出物を沈降や濾過によりめっき液から分離除去することを可能にする。なお、本発明は、上記R-Fe-B系焼結磁石を電気ニッケルめっきする際、めっき液に溶解するR成分の除去に限定されることなく、同様にめっき液中でイオンの状態で存在する希土類不純物の除去において適用できる。
 希土類不純物(特にNd不純物)の量とめっき膜の2重めっきや剥離発生との関係はめっき条件によって変わるが、Nd不純物の量が200 ppm程度では、それらの発生は見られない。従って、Nd不純物の量を200 ppm以下に低減することを目的とし希土類不純物の低減処理を行う場合には、次に示す温度と時間で処理可能である。
 希土類不純物を除去する際にめっき液を60℃以上に加温する必要がある。60℃未満では希土類不純物除去に時間がかかり、工業生産的には不向きである。液温が高いほど希土類不純物(析出物)の除去効率が向上する傾向にあり、その上限は特に限定する必要はないが、作業性や安全性の観点、さらにめっき液の組成への影響等からめっき液の沸点未満とするのが望ましい。
 めっき液を沸点以上に加温すると、めっき液から水が急激に蒸発し、めっき液を構成する成分が急激に析出する。ここでめっき液の沸点は組成によって変動し、例えばワット浴の沸点は約102℃となる。このようにめっき液の沸点はモル沸点上昇により上昇するため、水の沸点である100℃を上限として管理すれば、組成の異なるめっき液の不純物除去にも対応可能である。以上のことから、本発明の方法における加温は60℃から100℃の範囲が望ましく、70℃から95℃がより望ましく、80℃から90℃が最も望ましい。
 処理時間は温度条件によって変わってくるが、好ましくは6時間以上、より好ましくは12時間以上である。時間の上限は特に設定する必要はないが、コスト及び作業効率の観点から、168時間以下が好ましく、72時間以下がより好ましく、24時間以下が最も好ましい。
 希土類不純物(特にNd不純物)の量とめっき膜の2重めっきや剥離発生との関係はめっき条件によって変わるが、Nd不純物の量が200 ppm程度では、それらの発生は見られない。従って、Nd不純物の量を200 ppm以下に低減できるように上記温度及び時間を適宜設定すればよい。
 ただし、加温時間(保持時間)が長くなると、それに伴い、めっき液の不純物除去のための予備槽を多く持つ必要がある。従って、めっき液を90℃以上に加温できる設備を有する場合には、後述するように、24~48時間で不純物を100 ppm以下にすることが可能であり望ましい。
 本発明の希土類不純物の除去方法を実施する際に使用する処理槽は、上記加温の範囲(加温によるめっき液の温度)に応じて耐熱性の高いものを使用することが必要となることから、この温度が高くなるほど必然的にコストアップを招くことにもなる。上記温度範囲、特に望ましい温度範囲で実施することが結果的にコストアップの抑制にも寄与する。
 添加する希土類化合物は公知のものを使用すればよい。希土類化合物のうち希土類酸化物としては酸化ネオジム、酸化ジスプロシウム、酸化テルビウム、酸化プラセオジム等が使用できる。特に、これら化合物を構成する希土類はR-T-B系焼結磁石の主たる成分であるネオジムが望ましい。酸化ネオジムが好適に使用できる。
 希土類酸化物を水酸化物化した希土類水酸化物を使用することができる。さらに、希土類化合物として希土類の塩化物塩、希土類硫酸塩等の希土類塩を使用することができる。これら希土類水酸化物及び希土類塩としては、水酸化ネオジム、塩化ネオジム、硫酸ネオジム等を使用するのが好ましく、塩化ネオジムや硫酸ネオジムは水和物であってもよい。
 本発明において、希土類不純物を含有した電気ニッケルめっき液を加温する際に希土類化合物を添加することで希土類不純物の析出が早くなる理由は定かではないが、電気ニッケルメッキ液中の希土類不純物が析出する際の核のような役目をするのではないかと推定している。
 核となる希土類化合物としては、希土類酸化物、希土類水酸化物、希土類塩、希土類硫酸塩等が挙げられる。特に希土類酸化物は比較的手に入りやすく好適に使用できる。これらの化合物は、粉体のまま添加してもよいし、水に投入後に撹拌し投入してもよい。又は酸の水溶液中で希釈した後めっき液に投入してもよい。
 希土類化合物の添加時期は希土類不純物を含む電気ニッケルめっき液の加温前でも良いし、加温中であって設定した温度に到達する前でもよく、又設定した温度に到達した後でもよい。すなわち、希土類不純物を含む電気ニッケルめっき液に希土類化合物が添加された状態において、60℃以上で一定時間保持することによって、本発明が有する本来の特徴を実現できる。
 本発明においては、添加前の希土類化合物と、不純物とともに除去された希土類化合物との化合物形態が変わっていても良い。
 本発明の希土類不純物の除去方法を行う際のめっき液の濃度は、めっきを行う濃度を1倍とすると、濃度1~3倍の範囲であるのが望ましい。濃縮は加温によるのが望ましい。めっき液は加温により溶媒である水が蒸発するため加温と濃縮とを同時に行うことができる。
 加温によりめっき液の濃縮を行う場合には本発明の望ましい加温温度の範囲内で温度が高いほど濃縮に要する時間を短くでき望ましい。加温によりめっき液の濃度が3倍を超えると急激にめっき液成分の析出が始まり望ましくない。濃度は1~2倍の範囲であるのがさらに望ましい。2倍~3倍の範囲でも処理可能であるが、濃度が3倍に近づいた場合には、めっき液成分の析出が始まらないように慎重に管理する必要がある。
 加温した際には水の蒸発によりめっき液の量は減少する、この際めっき液の量を一定に保ちたい場合には、水を補給する。例えばめっき液の濃縮により液面が低下し、加温用のヒーターが露出する場合には、ヒーターが故障する可能性がある。このような場合、水を補給し濃度を一定に保つのが望ましい。まためっき液の濃度を一定に保った場合、例えば、希土類不純物除去後に希土類不純物除去に用いた予備槽からめっき槽にめっき液を戻した際、水を補給することによる濃度調整が短時間でできる。
 本発明は、酸性~中性のニッケルめっき液における希土類不純物除去に好適である。本発明は、ワット浴、高塩化物浴、塩化物浴、スルファミン酸浴等のニッケルめっき液に適用でき、特にワット浴に最も好適である。ワット浴としては、ごく一般的な浴組成のもので良い。例えば、200~320 g/Lの硫酸ニッケル、40~50 g/Lの塩化ニッケル、30~45 g/Lのほう酸、及び添加剤として、光沢剤やピット防止剤を含んだ組成に適用可能である。
 めっき液の組成調整は公知の分析方法(滴定分析等)により行う。例えば、ワット浴の場合、塩化ニッケル及び全ニッケルを滴定により分析し硫酸ニッケルを求め、さらにホウ酸を滴定により分析する。
 本発明において、希土類不純物除去後のめっき液の組成が管理範囲内にある場合は必ずしも添加する必要はないが、不足する場合には不足する量の硫酸ニッケル、塩化ニッケル、ホウ酸をめっき液に添加しめっき液の組成を調整する。これらの薬剤を添加する際には、めっき液をめっき処理する温度に加温するのが望ましい。温度が低いと添加する薬剤の溶解が遅くなるか、溶解しない。組成調整の後、pHを炭酸ニッケルや硫酸で調整し、公知の光沢剤やピット防止剤を添加しめっき処理を行う。
 本発明を適用するめっき液を用いためっき条件については、使用する設備、めっき方法、被めっき物の大きさ、処理個数等々によって適宜変更すれば良い。一例として、上記ワット浴組成のめっき浴を用いた場合のめっき条件は、pH3.8~4.5、浴温45℃~55℃、電流密度0.1~10 A/dm2が望ましい。メッキ方法としてはラック方式、バレル方式があるが、被めっき物のサイズ、処理量によって適宜設定すれば良い。
 本発明によれば、めっき槽として耐熱性の高いFRPもしくはPP、又はフッ素樹脂コートした鉄板で作製すれば、特に予備槽を準備しなくてもめっき槽だけで電気ニッケルめっき液中の不純物を除去することが可能である。さらに、めっき槽を塩化ビニル(PVC)で構成し、予備槽に耐熱性の高い材質の容器を用いることにより、予備槽で不純物除去を行いながらめっき槽ではめっき処理を行うことができ、より一層の効率、作業性の向上を可能とすることができる。なお、めっき槽及び予備槽をともに耐熱性の高い材質の容器を用いることで、安全性をも向上させることができる。
 以下に、希土類不純物の除去に際し、めっき槽及び予備槽を用いた構成について図1に基づいて説明する。
 めっき槽1は、陽極板(図示せず)、陰極(図示せず)、ヒーター(図示せず)、及び攪拌機(図示せず)を有し、めっき液を建浴し、電気ニッケルめっきを行うことができる。めっき槽1の材質は、使用するめっき液によるが、塩化ビニル(PVC)又は耐熱塩化ビニル(PVC)が望ましい。
 めっき層1と、バルブ2,5,6,7と、ポンプ3と、濾過器4とから濾過系統が構成され、バルブ7を閉じバルブ2,5,6を開放した状態でポンプ3を稼動することで、めっき槽1内のめっき液を循環させ、濾過器4を介してめっき液を濾過することができる。すなわち、めっき液はめっき槽1、バルブ2、ポンプ3、濾過器4、バルブ5、バルブ6、及びめっき槽1の経路で循環し、経路中の濾過器4で濾過される。なお、濾過器には電気めっきで用いる公知のフィルターを使用でき、濾過器4は、ポンプ3と一体的に構成されているものが使用可能である。配管の材質は、塩化ビニル(PVC)又は耐熱塩化ビニル(PVC)が望ましい。
 予備槽8は、モータ(図示せず)に接続された攪拌羽9、及び電源(図示せず)に接続されたヒーター10を有する。ヒーター10は蒸気発生装置に配管で接続された蒸気ヒーターでも良い。また、予備槽内のめっき液の攪拌手段としては、撹拌羽9を採用する以外に、エアーポンプに接続した散気管を用いた方法であっても良く、後述するようにポンプ12による循環による方法であっても良い。予備槽8は希土類不純物を含有する高温のめっき液を処理するため、耐熱性の高いPP製又はFRP製が望ましい。
 予備槽8と、バルブ11,14,15,16と、ポンプ12と、濾過器13とから濾過系統が構成される。濾過器13は、ポンプ12と一体的に構成されているものであっても良い。
 以下に、予備槽におけるめっき液の循環及び予備槽とめっき槽との各槽間の送液方法について述べる。バルブ6を閉じ、バルブ2,5,7を開放した状態でポンプ3を稼動することでめっき槽1内にあるめっき液を濾過器4を介して予備槽8に送液することができる。すなわち、めっき液は、めっき槽1、バルブ2、ポンプ3、濾過器4、バルブ5、バルブ7、及び予備槽8の経路で送液される。
 バルブ15を閉じ、バルブ11、14,16を開放した状態でポンプ12を稼動することで予備槽8内のめっき液を循環させ、濾過器13を介してめっき液を濾過することができる。すなわち、めっき液は、予備槽8、バルブ11、ポンプ12。濾過器13、バルブ14、バルブ16、及び予備槽8の経路で循環し、経路中の濾過器13で濾過される。
 バルブ16を閉じ、バルブ11、14、15を開放した状態でポンプ12を稼動することで予備槽8内にあるめっき液を、濾過器13を介してめっき槽1に送液することができる。すなわち、めっき液は、予備槽8、バルブ11、ポンプ12、濾過器13、バルブ14、バルブ15、及びめっき槽1の経路で送液される。
 予備槽8に希土類化合物を添加し、加温処理を行うことで希土類不純物が析出する。析出した希土類不純物及び添加した希土類化合物は、撹拌羽9での撹拌を停止すると予備槽8の底部に沈降する。予備槽8からめっき液をめっき槽1へ送液する際は、添加した希土類化合物及び析出物が沈降したのち、予備槽8、バルブ11、ポンプ12、濾過器13、バルブ14、バルブ15、及びめっき槽1の経路で送液すると、添加した希土類化合物及び析出物によるフィルターの目詰まりが抑えられ、濾過器13に配置されたフィルターを長く使用するができる。
 予備槽8からバルブ11を介しポンプ12につながる配管の先端(めっき液を吸液する部分)は予備槽8の底部に接しない構成となっており、底部に堆積した(添加した)希土類化合物及び析出物を吸い込みにくい構造となっている。
 希土類化合物を添加しさらに加温処理により析出物を析出させためっき液を速やかにめっき槽1に送液する場合には沈降を待たずに送液してもよい。
 希土類化合物及び析出物を沈降させためっき液を予備槽8からめっき槽1に送液する際に濾過器13にフィルターを配置しなくてもよい。希土類化合物及び析出物を十分に沈降させることにより、予備槽8内の希土類化合物及び析出物は予備槽8の底部に堆積し、予備槽8からめっき槽1に送液されるめっき液に含まれる希土類化合物及び析出物は極めて少なくなっている。よってめっき槽1に送液後、めっき槽1内のめっき液の濾過工程(めっき槽1、バルブ2、ポンプ3、濾過器4、バルブ5、バルブ6、及びめっき槽1の経路)で、めっき液に残った(添加した)希土類化合物及び析出物を濾過除去することができる。
 本発明の実施に際しては、上記の装置に限定されることなく、種々の構成からなる装置を用いることができる。例えば、めっき槽1内のめっき液の循環用配管と、めっき槽1内のめっき液を予備槽8内に送液するための送液用配管を全く独立して配置する構成が採用できる。具体的な構成をめっき槽1に接続されたバルブ、ポンプ、濾過器、及び配管で説明する。
 先に説明したように、バルブ7を閉じ、バルブ2,5,6を開放した状態でポンプ3を稼動させると、めっき液はめっき槽1、バルブ2、ポンプ3、濾過器4、バルブ5、バルブ6,及びめっき槽1の経路で循環する。またバルブ6を閉じバルブ2,5,7を開放した状態でポンプ3を稼動させると、めっき液はめっき槽1、バルブ2、ポンプ3、濾過器4、バルブ5、バルブ7、及び予備槽8の経路で送液される。このようにバルブ5,6,7の開閉の仕方でめっき槽1での循環とめっき槽1から予備槽8への送液を切り替えている。この際、バルブ2、ポンプ3、濾過器4、及びバルブ5までの経路は、循環の際も送液の際も使用しており共用となっている。
 上記共用部分を各々独立して設けてもよい。すなわち、循環用としてバルブ2、ポンプ3、濾過器4、バルブ5、及びバルブ6を経てめっき槽1に続く経路(この場合、バルブ5及びバルブ6は必ずしも必要でない)で配管を設け、それとは別に、バルブ2’、ポンプ3’、濾過器4’、バルブ5’、バルブ7を経て予備槽8に続く経路(この場合、バルブ5’及びバルブ7は必ずしも必要でない)で配管を設ける。このような構成とすることによって、循環及び送液の経路が単純となるためバルブの誤開閉を防ぐ等の効果が得られる。予備槽8の循環用配管及び予備槽8からめっき槽1への送液用配管においても、上記と同様に共用部分を各々独立した配管とすることによって、上記と同様な効果を得ることができる
 図2は、図1で説明しためっき槽と予備槽との構成に、さらに別の予備槽を追加した構成を示す。なお図2は、めっき槽及び予備槽の作用、すなわち各槽の機能を説明することを主体とするものであるため、各予備槽に個別に配置されているヒーター及び攪拌羽、並びにめっき槽に配置される電極等は図示していない。また、各予備槽間及びこれら予備槽とめっき槽と間の、送液に必要な配管のみ図示し、バルブ及び循環に必要な配管については図示していない。
 希土類不純物を含有した電気ニッケルめっき液への希土類化合物の添加は第1の予備槽19及び/又は第2の予備槽21で行うことができる。各予備槽にはヒーター(及び撹拌羽)を有しており電気ニッケルめっき液の加温が可能であり、加温による希土類不純物の析出を促進することができる。例えば、第1の予備槽19に希土類不純物を含む電気ニッケルめっき液を送液したのち、第1の予備槽19に希土類化合物を添加して加温し析出した希土類不純物を添加した希土類化合物とともに濾過器(及びポンプ)20で濾過除去すると同時に第2の予備槽21に送液しても良い。あらかじめこの方法で希土類不純物を低減した電気ニッケルめっき液を第2の予備槽に準備しておき、めっき槽17に送液することでめっき槽17でのめっき作業の中断時間を短くすることができる。
 同様の方法で、目標とする希土類不純物の半分の量まで低減した電気ニッケルめっき液を第2の予備槽21に送液した後、第2の予備槽21に希土類化合物を添加しさらに加温して希土類不純物を析出させ、濾過器(及びポンプ)22で希土類不純物を分離除去してもよい。
 このような方法で、多段階での希土類不純物の除去が可能となり、第1及び第2の予備槽19,21の処理能力に合わせた除去量設定が可能となることから工業的規模における実用性がより一層向上する。
 本発明において、希土類不純物が析出した電気ニッケルめっき液から希土類化合物とともに希土類不純物を分離除去した後、あるいは濾過器による分離除去と同時にめっき槽に移動する際には、電気ニッケルめっき液の温度は少なくとも電気ニッケルめっき液の処理温度以下に冷却しておくのが望ましい。移動した電気ニッケルめっき液の温度が電気ニッケルめっき液の処理温度より高い場合、その温度で電気ニッケルめっき処理を行うとめっき膜の特性が変わってしまうおそれがある。通常電気ニッケルめっき槽にはヒーター等の加温装置が付属しているため、たとえ移動した電気ニッケルめっき液の温度が処理温度以下であっても加温することにより処理温度に設定できるが、電気ニッケルめっき液の温度が処理温度以上であった場合、別途冷却装置を設ける必要が生じる。めっき槽に冷却装置までを設けるのはコストアップとなりまた冷却のための時間が必要でありめっき処理の効率が低下する。まためっき槽の材質として耐熱性の低い材質を使用している場合には、温度の高いめっき液によりめっき槽が変形するおそれがある。電気ニッケルめっき液の冷却は希土類不純物の析出のための加温を停止し、自然冷却でよい。早く冷却したい場合には、冷却用の熱交換器やチラーを用いてもよい。
 本発明を以下の実施例によりさらに詳細に説明するが、本発明はこれらに限定されるものではない。なお以下に示す参考例1~12は、本発明の実施例1を実施する過程で行った例であり、希土類不純物を含む電気ニッケルめっき液を一定時間加温し、析出物となって析出した希土類不純物を沈降及び/又は濾過し電気ニッケルめっき液から希土類不純物を除去する過程を示している。
参考例1
 250 g/Lの硫酸ニッケル、50 g/Lの塩化ニッケル、及び45 g/Lのほう酸からなる組成を有し、pH4.5のめっき液を50℃に加温し、R-Fe-B系焼結磁石の表面に電気ニッケルめっきを施した。R-Fe-B系焼結磁石は、必要な磁気特性に応じて、15~25質量%のNd、4~7質量%のPr、0~10質量%のDy、0.6~1.8質量%のB、0.07~1.2質量%のAl、及び残部Fe(3質量%以下のCu及びGaを含む)からなる組成範囲に調整した数種類のものを用いた。ただし、一回のバッチで用いる磁石の組成は同じものとした。なおメッキ液に溶解する希土類不純物のそれぞれの組成や量はめっきに供した磁石の組み合わせ、バレルめっきやラックめっきといった処理方法、メッキ液の組成によって異なる。
 数日間メッキ処理を行った後、電気ニッケルめっき液のNd不純物、Pr不純物、及びDy不純物をICP発光分析装置にて分析した。この使用後のめっき液の分析結果は、Nd:500 ppm、Pr:179 ppm、及びDy:29 ppmであった。
 上記希土類不純物を含むめっき液を一定量(3リットル)ビーカーに採取し、ヒーターで90℃に加温した状態で一定時間保持した。なお、加温中は磁石式の攪拌機(マグネットスターラー)にて攪拌した。加温中はめっき液の濃度が一定になるように水を補給した。
 24時間経過後及び96時間経過後に、それぞれICP発光分析に必要な量のめっき液を採取し、析出物を濾紙にて濾過した後のめっき液中に含まれるNd、Pr及びDyの濃度をICP発光分析装置にて測定した。24時間経過後の分析結果はNd:100 ppm、Pr:35 ppm、及びDy:16 ppmであり、96時間経過後の分析結果はNd:50 ppm、Pr:16 ppm、及びDy:2 ppmであった。
 上記のように、電気ニッケルめっき液中に溶解しているイオン状態の希土類不純物は、所定時間の加温により析出物となり、濾紙による濾過にてめっき液と分離・除去された。所定時間の加温によっても析出物にならなかった希土類不純物は、上記分析結果に示すような割合で、イオン状態のままめっき液中に残存した。上記分析結果から明らかなように、加温時間が長いほど、析出物として分離・除去される希土類不純物の量が多くなり、結果として、めっき液中のイオン状態にある希土類不純物の量が低減した。参考例1の処理方法により、希土類元素であるNdの不純物量低減と同時にPrとDyとの不純物量も低減することが分かった。
参考例2
 250 g/Lの硫酸ニッケル、50 g/Lの塩化ニッケル、45 g/Lのほう酸からなる組成を有し、pH4.5のめっき液を50℃に加温しR-Fe-B系焼結磁石(参考例1と同じ組成範囲のものを用いた)の表面に電気ニッケルめっきを施した。数日間めっき処理を行った後、電気ニッケルめっき液中のNd不純物を分析したところ576 ppmであった。
 上記数日間めっき処理を行った後のめっき液を50℃から95℃までの6条件(ただし50℃から90℃までは10℃きざみにて5条件)で加温し、各1条件3リットルのビーカーに採取して保持した。加温中は磁石式の攪拌機(マグネットスターラ)にて攪拌した。加温中はめっき液の濃度が一定になるように水を補給し、一定時間ごとにICP発光分析に必要な量のめっき液を採取した。採取しためっき液は、析出物を濾紙で濾過した後、めっき液中のNd不純物の含有量(濃度)を、ICP発光分析装置を用いて分析した。50℃から90℃までの分析結果を表1に示すとともに図3に示した。
表1
Figure JPOXMLDOC01-appb-I000001
 
表1(続き)
Figure JPOXMLDOC01-appb-I000002
 液温が50℃の場合、168時間経過後にNd不純物濃度は518 ppmとなった。液温が60℃では24時間以降Nd不純物濃度が低下し、216時間経過後に177 ppmとなった。液温が70℃ではNd不純物濃度は60℃に比較して24時間以降常に低い傾向を示した。液温が80℃では、加温直後からNd不純物濃度は低下し、96時間経過後に125 ppmとなった。液温が90℃では、Nd不純物濃度は24時間経過後で134 ppm、48時間経過後で84 ppmとなり、96時間経過後では59 ppmとなった。液温が95℃では、24時間経過後と96時間経過後について分析したところ、Nd不純物濃度は90℃で加温した場合とほぼ同じであった。
 以上の結果から、60℃以上で一定時間加温し、析出物を濾過した後のめっき液ではNd不純物の量が低減しており、また加温温度が高くなるほど低減効果は大きいことが分かった。
 Nd不純物の量を、めっき膜の2重めっきや剥離の発生が見られない200 ppm以下に低減することを目的とした場合、加温温度が60℃では1週間(168時間)で約200 ppmに低減し、70℃では5日間(120時間)、80℃では3日間(72時間)、90℃及び95℃では24時間(1日)で、ほぼ同程度の効果を得られることが分かる。従って、例えば、1週間を生産の単位期間とした場合、60℃で1週間(168時間)保持し、その後濾過しためっき液はめっき処理に十分使用可能であり、また70℃では5日間(120時間)でめっき可能な不純物量に低減できる。同様に80℃、90℃及び95℃ではさらに短い時間でめっき液中の不純物が低減可能である。すなわち、加温温度と保持時間は、めっき液を上記温度に加温できる設備の有無と、生産スケジュールによって選択することが可能である。
参考例3
 参考例1及び参考例2で加温処理しためっき液を、濾紙で濾過し、めっき液から析出した析出物を回収した。上記析出物を恒温槽で乾燥した。性状は紛体(固体)であった。この析出物をエネルギー分散型X線分析装置(EDX)にて分析したところ、Nd:32.532、Pr:11.967、Dy:1.581、Al:0.402、Ni:7.986、C:0.319、及びO:45.213(質量%)の組成を有していた。この結果から、加温処置により、めっき液中の希土類不純物が紛体(固体)として析出していることを確認した。
参考例4
 参考例2で得られた数日間めっき処理を行った後のめっき液(希土類不純物を含んだもの:Nd不純物濃度は576 ppm)に参考例3で回収した析出物を1g/L添加した。析出物を添加しためっき液を3リットルずつビーカーに分け60℃及び70℃に加温し、参考例1と同様に攪拌しながら保持した。一方で、上記析出物を添加しないめっき液についても3リットルずつビーカーに分け60℃及び70℃に加温し、同様に攪拌しながら保持した。上記析出物を添加した場合も、添加しない場合も、加温中はめっき液の濃度が一定になるように水を補給した。
 一定時間ごとにICP発光分析に必要な量のめっき液を採取し、参考例1と同様にしてめっき液中のNd不純物濃度をICP発光分析装置にて測定した。
 結果を表2に示すとともに図4に示した。これらの結果から、液温が60℃及び70℃ともに、上記析出物を添加しためっき液の方が添加しないめっき液よりも、同じ時間でNd不純物が大幅に低下していた。
表2
Figure JPOXMLDOC01-appb-I000003
参考例5
 250 g/Lの硫酸ニッケル、50 g/Lの塩化ニッケル、45 g/Lのほう酸からなる組成を有し、pH4.5のめっき液を50℃に加温しR-Fe-B系焼結磁石(参考例1と同じ組成範囲のものを数種類組み合わせて用いた)の表面に電気ニッケルめっきを施した。数日間めっき処理したのち、電気ニッケルめっき液中のNd不純物をICP発光分析装置にて分析したところ544 ppmであった。
 上記めっき液から3リットルずつ採取して2つのビーカーに分け90℃で加温した。一方のビーカーは、加温中にめっき液の濃度が変化(液量が減少)しないように水を補給した。他方のビーカーは、加温中に水を添加しなかったところ、約24時間経過後にめっき液の液量は半分(液の濃度が2倍)となった。液量が半分になった時点で半分の液量を維持するように水を補給した。両条件とも加温中は参考例1と同様に、磁石式の攪拌機(マグネットスターラ)にて攪拌した。
 一定時間ごとにICP発光分析に必要な量のめっき液を採取し、参考例1と同様にしてNdの不純物濃度をICP発光分析装置にて測定した。分析結果を表3に示すとともに図5に示した。
表3
Figure JPOXMLDOC01-appb-I000004
 図5の結果から明らかなように、めっき液の液量を保つために水を添加した場合には不純物の含有量は徐々に減少し96時間で59 ppmとなった。これに対して、めっき液の液量を保たない場合(水を添加しない場合)には、Nd不純物の含有量は24時間経過後に52 ppmとなった。なおNd不純物の分析の際、めっき液の液量を保たない場合(液濃度が2倍の場合)には採取しためっき液を2倍に希釈して不純物濃度を測定した。以上の結果から、めっき液の濃度が高いほど、希土類不純物の低減効果が高いことが分かる。
参考例6
 参考例5で得られた数日間めっき処理を行った後のめっき液(希土類不純物を含んだもの:Nd不純物が544 ppmのもの)を準備し、このめっき処理済みめっき液を3リットルずつ5つのビーカーに分けた。4つのビーカーには参考例3で用いたものと同じ析出物を1 g/L添加した。残りの1つには析出物を添加しなかった。これらのめっき液を90℃に加温し、参考例1と同様に攪拌しながら保持した。液量が半分になるまで(加温24時間経過後でほぼ半分)は水を添加せず、半分になった時点から水を添加し、めっき液の濃度を初期の2倍で維持した。維持している間も参考例1と同様に攪拌した。
 これらのめっき液のNd不純物濃度をICP発光分析装置にて測定した。析出物を添加しない場合には加温24時間経過後でNd不純物濃度は52 ppmとなった。析出物を添加した4つのめっき液は、加温24時間経過後のNd不純物濃度は32 ppm、56 ppm、52 ppm、61 ppmであった。すなわち、2倍の濃度まで濃縮した場合は、析出物を添加しても添加しなくても同等の不純物低減効果であることが分かった。なおNd不純物濃度は採取しためっき液を2倍に希釈して測定した。
参考例7
 参考例2で得られた数日間めっき処理を行った後のめっき液(希土類不純物を含んだもの:Nd不純物濃度576 ppmのもの)を準備し、参考例2と同じようにめっき液を3リットルビーカーに入れ90℃に加温保持した、この際、めっき液の攪拌は行わなかった。めっき液の濃度が変化しないように水を添加してめっき液の液量を維持した。一定時間ごとにめっき液を採取し、参考例1と同様にして不純物含有量をICP発光分析装置にて測定した。
 Nd不純物濃度は24時間経過後137 ppm、72時間経過後73 ppm、96時間経過後63 ppmであり参考例2とほぼ同じように低減した。以上のように、3リットル程度のめっき液量であれば、撹拌の影響あまり大きくなかった。しかし、通常使用されるめっき槽中のめっき液量は、その数10倍から100倍以上あり、例えば、数百リットル以上のめっき液から希土類不純物を除去する場合には、液温を均一にするために、攪拌することが望ましい。
参考例8
 参考例1で得られた数日間めっき処理を行った後のめっき液と同様にしてめっき処理済みのめっき液を準備した。このめっき処理済みめっき液中のNd不純物量、Fe不純物量、及びCu不純物量をICP発光分析装置にて分析した。その結果、Nd:500 ppm、Fe:19 ppm、及びCu:3 ppmであった。
 このめっき処理済みめっき液を、参考例1と同じ条件(90℃)で加温し、24時間後、及び96時間後にめっき液をICP発光分析に必要な量を採取し、Nd不純物量、Fe不純物量、及びCu不純物量をICP発光分析装置にて測定した。その結果、24時間経過後には、Nd:100 ppm、Fe:3 ppm、及びCu:検出限界以下であり、96時間経過後には、Nd:50 ppm、Fe:1 ppm、及びCu:検出限界以下であった。処理済みめっき液の加温処理により、希土類不純物のみならずFe不純物やCu不純物も低減できることが確認できた。
参考例9
 250 g/Lの硫酸ニッケル、50 g/Lの塩化ニッケル、45 g/Lのほう酸からなる組成を有し、pH4.5のめっき液を50℃に加温しR-Fe-B系焼結磁石(参考例1と同じ組成範囲のものを用いた、ただし1回のバッチで用いる磁石の組成は同じものとした)の表面に電気ニッケルめっきを施した。数日間めっき処理を行った後、電気ニッケルめっき液中のNd不純物を分析したところ581 ppmであった。。
(i)1回目の加温処理
 上記めっき液を3リットルのビーカーに採取し、90℃で加温した。加温中は磁石式の攪拌機(マグネットスターラ)にて攪拌した。加温中はめっき液の濃度が一定になるように水を補給しながら、1、3、6、12及び24時間経過後に、参考例1と同様に、めっき液中のNd不純物の含有量(濃度)をICP発光分析装置にて分析した。24時間経過の後、攪拌機を停止し、析出物を沈降させ、ビーカー中のめっき液を抜き取った。抜き取る際には析出物がビーカー底部に残るようにした。
(ii)2回目の加温処理
 前記析出物が残っているビーカーに、本参考例にて準備しためっき処理後の電気ニッケルめっき液(581 ppmのNd不純物を含む)を入れ、90℃で加温した。加温中は磁石式の攪拌機(マグネットスターラ)にて攪拌した。加温中はめっき液の濃度が一定になるように水を補給しながら、1、3、6、12及び24時間経過後に、参考例1と同じようにめっき液中のNd不純物濃度をICP発光分析装置にて測定した。Nd不純物の分析結果を、前記1回目の加温処理(析出物を残す前)の結果と併せて表4及び図6に示す。
表4
Figure JPOXMLDOC01-appb-I000005
 1回目の加温処理(90℃)では、加温後3時間程度から顕著にNd不純物の低下(析出)が確認できた。析出物が残ったビーカーで処理した2回目の加温処理(90℃)では、Nd不純物の低下する速度がさらに早くなり、1時間経過後でも不純物の析出が始まっていた。この析出物を残して行った2回目の加温処理は、参考例4の析出物を添加した場合と同様の結果となった。なお、析出物が残ったビーカーでの処理は、電気ニッケルめっき液中の希土類不純物の除去処理を複数回繰り返して実施する場合において、先に実施した除去処理により得られた析出物を添加する場合や、沈降させた析出物を残した状態で新たな電気ニッケルめっき液を追加し、めっき処理後、再度希土類不純物の除去処理を実施する場合に対応する。
参考例10
(i)1回目の加温処理
 参考例9で得られた数日間めっき処理を行った後のめっき液(Nd不純物で581 ppmのもの)を準備し、3リットルのビーカーに入れ、90℃で加温した。加温によりめっき液の濃度が2倍(液量が半分)になるまで水を補給せず、液量が半分になった時点で液量を維持するように水を補給した。1、3、6、12及び24時間経過後で、参考例1と同様に、そのめっき液中のNd不純物の含有量(濃度)をICP発光分析装置にて分析した。なお分析に際してはめっき液濃度を加温前と同じになるように希釈(2倍)した。24時間経過の後、攪拌機を停止し、析出物を沈降させ、ビーカー中のめっき液を抜き取った。抜き取る際には析出物がビーカー底部に残るようにした。
(ii)2回目の加温処理
 前記析出物が残っているビーカーに、参考例9と同じめっき処理後の電気ニッケルめっき液(581 ppmのNd不純物を含む)を入れ、90℃で加温した。加温によりめっき液の濃度が2倍(液量が半分)になるまで水を添加せず、液量が半分になった時点で液量を維持するように水を補給した。1、3、6、12及び24時間経過後に、参考例1と同様にめっき液中のNd不純物濃度をICP発光分析装置にて分析した。なお分析に際してはめっき液濃度を加温前と同じになるように希釈(2倍)した。Nd不純物の分析結果を、前記1回目の加温処理(析出物を残す前)の結果と併せて表5及び図7に示した。
表5
Figure JPOXMLDOC01-appb-I000006
 めっき液量が半分になるまで水を補給せず行った1回目の加温処理(90℃)では、1時間経過した時点でNd不純物の低減が見られ、6時間経過後には168 ppm、12時間後には50 ppm程度にNd不純物を低減できた。析出物が残ったビーカーで、同様にして水を補給せず処理した2回目の加温処理(90℃)では、Nd不純物の低下する速度が24時間経過する前までさらに早くなり、12時間で50 ppm以下に低減できた。この析出物を残して行った2回目の加温処理は、参考例4の析出物を添加した場合と同様の結果となった。
 このように加温濃縮による析出物の析出は加温1時間経過後にはすでに始まっており、析出物を濾過や沈降により除去することで、6時間経過後には200 ppm以下にすることが可能である。すなわち、加温濃縮により短時間でNd不純物を200 ppm以下に低減し、めっきを継続することが可能である。
 さらに3時間の処理でも581 ppmから362 ppm(先に処理した析出物を残した場合には269 ppm)に低減できている。このような、Nd不純物濃度が362 ppm(269 ppm)のめっき液を、めっき処理に供した場合には、めっき処理に使用できる期間(処理量)は新しいめっき液や200 ppm以下に不純物を低減した場合に比べて短いが、一定期間の使用は可能である。
 加温濃縮に加え先に処理した析出物を残した場合には、1時間程度の処理でも581 ppmから435 ppmに低減できており、めっき処理に使用できる時間は前記3時間の処理に比べてさらに短くなるが、一定時間の使用は可能である。
参考例11
 図1に示すめっき装置で、250 g/Lの硫酸ニッケル、45 g/Lの塩化ニッケル、45 g/Lのほう酸からなる組成を有し、pH4.5のめっき液を50℃に加温しR-Fe-B系焼結磁石(参考例1と同じ組成範囲で組成の異なる磁石を数種類組み合わせて用いた)の表面に、バレル方式で数日間電気ニッケルめっきを行った。めっき処理後の希土類不純物が蓄積しためっき液の組成を分析したところ、250 g/Lの硫酸ニッケル、45 g/Lの塩化ニッケル、及び45 g/Lのほう酸からなる組成を有しており、Nd不純物の濃度は600 ppmであった。
 前記めっき処理の最終段階(Nd不純物が600 ppm程度の状態)で行っためっき処理後の磁石の外観を目視などの方法で確認したところ、バレル方式でめっきを行った際に2重めっきや剥離が1%以下の頻度で発生していた。
 この電気ニッケルめっき液全量500 Lをめっき槽1から予備槽8に送液した。送液しためっき液の液温を90℃に保ち、攪拌羽9を用いて攪拌を行った。24時間経過後、攪拌羽9を停止し、ヒーター10を切った後、バルブ16を閉じ、バルブ11,14,15を開放した状態でポンプ12を稼動し濾過器13を通してめっき液をめっき槽1に戻した。めっき槽1に戻しためっき液のNd不純物濃度を測定したところ50 ppmであった。
 上記参考例では、バルブ16を閉じ、バルブ11,14,15を開放した状態で、めっき液を濾過しながら予備槽8からめっき槽1に戻したが、まずバルブ15を閉じ、バルブ11、14、16を開放した状態でポンプ12を稼動しめっき液を予備槽8から濾過器13、予備槽8の順で循環させ前記めっき液を濾過した後、濾過器13を新しいものに取替え、バルブ16を閉じ、バルブ11,14,15開放した状態でめっき液を予備槽8からめっき槽1に戻しても良い。
参考例12
 参考例11の方法で、予備槽8で希土類不純物を低減させた後、めっき槽1に戻しためっき液について組成分析を行った。硫酸ニッケル、塩化ニッケル及びほう酸の組成はほとんど変化しておらず、金属ニッケル分が0.2%低下しているのみであった。
 この加温処理後のめっき液を、希土類不純物低減処理(加温処理)前の組成及びpH4.5に調整した後、適量のピット防止剤を添加した。調整後のめっき液を50℃に加温し、R-Fe-B系焼結磁石の電気めっきをバレル方式で行った。めっき後、めっき膜の外観を評価したが、めっき膜の密着不良を要因とするめっき膜の2重めっきや剥離は発生しておらず、Nd不純物を析出物として分離・除去し、めっき液中の希土類不純物量を低減した電気ニッケルめっき液は、工業的規模の量産において十分使用可能であることを確認した。
実施例1
 250 g/Lの硫酸ニッケル、50 g/Lの塩化ニッケル、45 g/Lのほう酸からなる組成を有し、pH4.5のめっき液を50℃に加温しR-Fe-B系焼結磁石(参考例1と同じ組成範囲のもの)の表面に電気ニッケルめっきを施した。数日間めっき処理を行った後、電気ニッケルめっき液中のNd不純物を分析したところ320 ppmであった。
 上記めっき液を3リットルのビーカーに採取して60℃で加温した。48時間後、96時間後、及び144時間後ごとにICP発光分析装置に必要な量のメッキ液を採取した。144時間後にメッキ液を採取した後に、酸化ネオジム(Nd2O3)を1 g/L添加し、さらに液温を60℃に維持した状態で加温開始から168時間後にメッキ液を採取し、最終的には240時間まで加温処理を行った。加温中は磁石式の攪拌機(マグネットスターラ)にて攪拌し、めっき液の濃度が一定になるように水を補給した。加温処理後のめっき液を濾紙で濾過したのち、めっき液中のNd不純物の含有量(濃度)をICP発光分析装置を用いて分析した。結果を表6に示す。
表6
Figure JPOXMLDOC01-appb-I000007
注(1) 144hrの時点で酸化ネオジム(Nd2O3)を1 g/L添加
 
 上記実施例1の結果より、希土類不純物を含んだめっき液中に酸化ネオジム(Nd2O3)を存在させた状態で加温すると希土類不純物が析出物となって析出する時間が早くなることが確認できる。すなわち、酸化ネオジムを添加した後、24時間で顕著な不純物濃度の低減効果が発現することが確認できた。
 このように希土類不純物を含んだめっき液中に希土類化合物を添加することで希土類不純物の析出が促進される理由は定かではない。しかし、参考例4の析出物を添加した場合や、参考例9の析出物を残してめっき液中の希土類不純物の除去を行った場合にも同様に、希土類不純物の析出が促進される現象が確認されており、またこれらの加温処理によって発生する析出物には、Nd、Pr、Dy及び酸素が含まれることがEDX分析から分かっているので、酸化ネオジムの添加は上記析出物の添加と同様、希土類不純物の析出を促進する作用を有していると推測できる。なお、実施例1において、希土類化合物(酸化ネオジム)を添加するまで(加温開始からから144時間まで)の間のNd不純物の低下量が、参考例2(60℃加温)に比較して少ないのは、めっき処理後のめっき液中に含まれている希土類不純量が少なかったためと考えられる。
 なお上記実施例では、希土類不純物を含む電気ニッケルめっき液を60℃に加温して一定時間保持した後に酸化ネオジムを添加したが、加温開始前、あるいは加温中に酸化ネオジムを添加しても、同様な効果が得られることを確認した。
 以上の参考例及び実施例において、Nd、Pr及びDyの不純物低減効果が確認できたが、Tbやさらに他の希土類不純物についても低減可能であると考えられる。
 本発明は、希土類磁石をめっきする際にめっき液に溶解し、いわゆるめっき不良の原因となる電気ニッケルめっき液中の希土類不純物を効率よく除去することができるため、産業上の利用可能性を有する。

Claims (5)

  1.  希土類不純物を含む電気ニッケルめっき液へ希土類化合物を添加し60℃以上に加温した状態で一定時間保持した後、前記加温により析出した析出物を、添加した希土類化合物とともに沈降及び/又は濾過により、前記電気ニッケルめっき液から除去することを特徴とする電気ニッケルめっき液中の希土類不純物の除去方法。
  2.  請求項1に記載の希土類不純物の除去方法において、前記希土類化合物は、希土類酸化物であることを特徴とする希土類不純物の除去方法。
  3.  請求項1又は2に記載の希土類不純物の除去方法において、前記希土類化合物を構成する希土類元素はネオジムであることを特徴とする希土類不純物の除去方法。
  4.  請求項1~3のいずれかに記載の希土類不純物の除去方法において、前記電気ニッケルめっき液の加温に際し、電気ニッケルめっき液を攪拌することを特徴とする電気ニッケルめっき液中の希土類不純物の除去方法。
  5.  請求項4に記載の希土類不純物の除去方法において、前記攪拌が、空気、攪拌羽根の回転、又はポンプによる液の循環による攪拌であることを特徴とする電気ニッケルめっき液中の希土類不純物の除去方法。
PCT/JP2014/057107 2013-03-25 2014-03-17 電気ニッケルめっき液中の希土類不純物の除去方法 WO2014156761A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480017713.7A CN105051264B (zh) 2013-03-25 2014-03-17 镍电镀液中的稀土类杂质的除去方法
US14/771,327 US9873953B2 (en) 2013-03-25 2014-03-17 Method for removing rare earth impurities from nickel-electroplating solution
JP2015508316A JP6319297B2 (ja) 2013-03-25 2014-03-17 電気ニッケルめっき液中の希土類不純物の除去方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-061648 2013-03-25
JP2013061648 2013-03-25

Publications (1)

Publication Number Publication Date
WO2014156761A1 true WO2014156761A1 (ja) 2014-10-02

Family

ID=51623742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057107 WO2014156761A1 (ja) 2013-03-25 2014-03-17 電気ニッケルめっき液中の希土類不純物の除去方法

Country Status (4)

Country Link
US (1) US9873953B2 (ja)
JP (1) JP6319297B2 (ja)
CN (1) CN105051264B (ja)
WO (1) WO2014156761A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101810373B1 (ko) 2017-07-27 2018-01-18 동아플레이팅 주식회사 초음파 도금장치

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103842561B (zh) 2011-09-28 2016-03-30 日立金属株式会社 镍电镀液中的稀土杂质的除去方法
CN105051263B (zh) 2013-03-25 2018-05-29 日立金属株式会社 镍电镀液中的稀土类杂质的除去方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61533A (ja) * 1984-06-13 1986-01-06 Nippon Pureeteingu Kk サマリウムの回収方法
JPH02209500A (ja) * 1989-02-08 1990-08-20 Sumitomo Special Metals Co Ltd NiまたはNi合金めっき廃液の再生方法
JP2002194600A (ja) * 2000-12-27 2002-07-10 Tdk Corp アゾジスルホン酸の除去方法、めっき膜の形成方法および積層セラミック電子部品の製造方法
JP2006077271A (ja) * 2004-09-07 2006-03-23 Tdk Corp めっき方法、めっき装置
WO2013047340A1 (ja) * 2011-09-28 2013-04-04 日立金属株式会社 電気ニッケルめっき液中の希土類不純物の除去方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3653813A (en) 1970-06-24 1972-04-04 Sylvania Electric Prod Process for preparing rare earth normal tungstates
US5037463A (en) 1990-04-20 1991-08-06 Chicago Bridge & Iron Technical Services Company Freeze concentration and precipitate removal system
JPH0762600A (ja) 1993-07-22 1995-03-07 Shin Etsu Chem Co Ltd めっき浴の不純物金属イオンの連続除去方法およびその装置
JP3119545B2 (ja) * 1993-07-22 2000-12-25 信越化学工業株式会社 Nd−Fe−B系永久磁石表面処理用の電気めっき浴中の不純物金属イオンの除去方法およびNd−Fe−B系永久磁石表面処理用の電気めっき浴の再生方法
WO2003030227A2 (en) * 2001-10-02 2003-04-10 Quantum Dot Corporation Method of semiconductor nanoparticle synthesis
US6682644B2 (en) 2002-05-31 2004-01-27 Midamerican Energy Holdings Company Process for producing electrolytic manganese dioxide from geothermal brines
KR20070086900A (ko) * 2002-09-05 2007-08-27 닛코킨조쿠 가부시키가이샤 고순도 황산동 및 그 제조방법
JP4915175B2 (ja) 2006-08-21 2012-04-11 Jfeスチール株式会社 めっき液再生装置およびめっき液再生方法
US20090078577A1 (en) 2006-08-21 2009-03-26 Kentaro Suzuki Plating Solution Recovery Apparatus and Plating Solution Recovery Method
JP4915174B2 (ja) * 2006-08-21 2012-04-11 Jfeスチール株式会社 めっき液再生装置およびめっき液再生方法
EP2294232A4 (en) 2008-06-25 2013-12-25 Bhp Billiton Ssm Dev Pty Ltd iron precipitation
CA2785411C (en) 2009-12-25 2018-06-19 Anan Kasei Co., Ltd. Complex oxide, method for producing same, and exhaust gas purifying catalyst
JP5835001B2 (ja) * 2012-02-27 2015-12-24 日立金属株式会社 電気ニッケルめっき液中の希土類不純物の除去方法
CN105051263B (zh) 2013-03-25 2018-05-29 日立金属株式会社 镍电镀液中的稀土类杂质的除去方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61533A (ja) * 1984-06-13 1986-01-06 Nippon Pureeteingu Kk サマリウムの回収方法
JPH02209500A (ja) * 1989-02-08 1990-08-20 Sumitomo Special Metals Co Ltd NiまたはNi合金めっき廃液の再生方法
JP2002194600A (ja) * 2000-12-27 2002-07-10 Tdk Corp アゾジスルホン酸の除去方法、めっき膜の形成方法および積層セラミック電子部品の製造方法
JP2006077271A (ja) * 2004-09-07 2006-03-23 Tdk Corp めっき方法、めっき装置
WO2013047340A1 (ja) * 2011-09-28 2013-04-04 日立金属株式会社 電気ニッケルめっき液中の希土類不純物の除去方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101810373B1 (ko) 2017-07-27 2018-01-18 동아플레이팅 주식회사 초음파 도금장치

Also Published As

Publication number Publication date
CN105051264B (zh) 2018-05-29
CN105051264A (zh) 2015-11-11
US9873953B2 (en) 2018-01-23
JPWO2014156761A1 (ja) 2017-02-16
JP6319297B2 (ja) 2018-05-09
US20160002814A1 (en) 2016-01-07

Similar Documents

Publication Publication Date Title
JP5692400B2 (ja) 電気ニッケルめっき液中の希土類不純物の除去方法
JP2008506035A (ja) クロム鍍金方法
WO2013080326A1 (ja) めっき液の再生方法
JP5835001B2 (ja) 電気ニッケルめっき液中の希土類不純物の除去方法
JP6319297B2 (ja) 電気ニッケルめっき液中の希土類不純物の除去方法
TWI260353B (en) Copper electroplating method and pure copper anode for copper electroplating
JP2021523298A (ja) 銅電解精製の改善
US11053604B2 (en) System for treating solution for use in electroplating application and method for treating solution for use in electroplating application
JP6281565B2 (ja) 電気ニッケルめっき液中の希土類不純物の除去方法
JP2012140650A (ja) めっき液中から不純物を除去する方法
JP6119353B2 (ja) 電気ニッケルめっき装置
WO2009044266A2 (en) System and method of plating metal alloys by using galvanic technology
CN103966442A (zh) 一种废杂铜电积制备高纯铜的方法
KR20220118443A (ko) 기판 상에 아연-니켈 합금을 성막하는 방법 및 시스템
JPH0734300A (ja) めっき浴の不純物金属イオンの除去方法
KR100934729B1 (ko) 무전해 주석도금액 불순물 제거장치 및 방법
JPH0762600A (ja) めっき浴の不純物金属イオンの連続除去方法およびその装置
KR20150008084A (ko) 아연계 도금 금속 부재 표면의 질산 활성 처리 용액의 재생 방법 및 그것을 이용한 재생 처리 장치
JP2013253307A (ja) 金属粒子の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480017713.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14773476

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015508316

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14771327

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14773476

Country of ref document: EP

Kind code of ref document: A1