WO2014156703A1 - 真空断熱材 - Google Patents

真空断熱材 Download PDF

Info

Publication number
WO2014156703A1
WO2014156703A1 PCT/JP2014/056804 JP2014056804W WO2014156703A1 WO 2014156703 A1 WO2014156703 A1 WO 2014156703A1 JP 2014056804 W JP2014056804 W JP 2014056804W WO 2014156703 A1 WO2014156703 A1 WO 2014156703A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat insulating
insulating material
vacuum heat
film
convex
Prior art date
Application number
PCT/JP2014/056804
Other languages
English (en)
French (fr)
Inventor
俊圭 鈴木
俊雄 篠木
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP14775369.3A priority Critical patent/EP2980467B1/en
Priority to JP2015508289A priority patent/JP6022037B2/ja
Publication of WO2014156703A1 publication Critical patent/WO2014156703A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • B32B37/1018Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure using only vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/16Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating
    • B32B37/18Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of discrete sheets or panels only
    • B32B37/182Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of discrete sheets or panels only one or more of the layers being plastic
    • B32B37/185Laminating sheets, panels or inserts between two discrete plastic layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • F16L59/026Mattresses, mats, blankets or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • F16L59/029Shape or form of insulating materials, with or without coverings integral with the insulating materials layered
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/04Arrangements using dry fillers, e.g. using slag wool which is added to the object to be insulated by pouring, spreading, spraying or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/08Means for preventing radiation, e.g. with metal foil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • F25D2201/14Insulation with respect to heat using subatmospheric pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2500/00Problems to be solved
    • F25D2500/02Geometry problems

Definitions

  • the present invention relates to a vacuum heat insulating material having a shape that enables three-dimensional formation with high heat insulating performance, which includes a core material such as an inner glass fiber sheet, an outer composite resin, and a packaging material such as an Al vapor deposition film.
  • the heat conductivity of the vacuum heat insulating material is an order of magnitude lower than that of the urethane foam material used in the conventional refrigerator, the amount of use is increasing as a heat insulating material for refrigerators, hot water storage tanks, vending machines, and the like.
  • the vacuum insulation material is very rigid because the inside of the packaging material is depressurized and atmospheric pressure is applied to the entire surface, and it is a packaging material consisting of a thin film if it is later to bend, form recesses, grooves, etc. Easy to damage. For this reason, it is used in the form of a flat plate in most application examples, and is used by being divided into a plurality of sheets depending on the shape of the place of use.
  • Patent Document 1 discloses an example in which a concavo-convex shape is formed in advance at the time of vacuum sealing of a vacuum heat insulating material and bent along the concavo-convex shape.
  • a concavo-convex shape By forming the concavo-convex shape, it is possible to suppress a decrease in the thickness of the bent portion when the vacuum heat insulating material is bent and a decrease in the heat insulating performance due to wrinkles.
  • a mold with a concavo-convex shape at the time of vacuum sealing is used to form a concavo-convex shape without additional post-processing for forming the concavo-convex shape by sealing under reduced pressure with the packaging material with the core inserted in between. Can be formed into a vacuum heat insulating material.
  • the core material and the packaging material are sandwiched by the mold during vacuum decompression, if the distance between the upper and lower molds is small, the thickness of the vacuum insulation material after decompression is reduced, and the heat insulation performance is reduced due to the increase in density. To do.
  • the present invention has been made to solve at least one of the problems as described above, and provides a vacuum heat insulating material capable of forming a concavo-convex shape without the need to provide a mold or the like in the vacuum chamber.
  • the purpose is to do.
  • the vacuum heat insulating material according to the present invention covers a core material in which a fiber material is laminated, an uneven film in which an uneven shape is formed, and a laminate in which the uneven film is laminated on the core material, and is sealed under reduced pressure on the surface. And a wrapping material on which an uneven shape corresponding to the uneven shape of the uneven film is formed.
  • the vacuum heat insulating material according to the present invention when forming the concavo-convex shape, it is not necessary to provide a mold or the like in the vacuum chamber, and the cost can be reduced because an existing vacuum chamber can be used. In addition, since there is no additional process such as post-processing, productivity does not deteriorate.
  • FIG. 1 is a schematic cross-sectional view of a vacuum heat insulating material 6 according to Embodiment 1 of the present invention.
  • 1A shows a state before vacuum sealing
  • FIG. 1B shows a state after vacuum sealing.
  • the vacuum heat insulating material 6 is comprised from the core material 2 which laminated
  • the packaging material 4 is manufactured by heat-sealing (heat-sealing) three sides of two rectangular gas barrier laminate films.
  • the vacuum heat insulating material 6 inserts what laminated
  • corrugated film 1 is pressed against the packaging material 4 at the time of pressure reduction, and the uneven
  • corrugated shape 3 formed in the surface of the packaging material 4 maintains the shape after sealing.
  • FIG. 2 is a schematic cross-sectional view of the vacuum heat insulating material 6 according to Embodiment 1 of the present invention during bending.
  • shape processing such as bending as shown in FIG. 2
  • it promotes the formation of fine wrinkles along the inner concavo-convex shape 3 so that the inner diameter and the outside of the bent portion at the time of bending processing are increased.
  • Deep wrinkle formation due to the concentration of the inner / outer diameter circumference difference, which is the circumference difference with the diameter, is partially concentrated.
  • surplus arises in the packaging material 4 along the outer concavo-convex shape 3, and the surplus part extends at the time of bending, thereby relaxing the inner and outer diameter circumferential length difference and suppressing the formation of deep wrinkles inside the bend.
  • FIG. 3 is a schematic diagram of the surface and side surfaces of the concavo-convex film 1 used in the vacuum heat insulating material 6 according to Embodiment 1 of the present invention.
  • a concavo-convex shape is formed by heat-pressing a PET (polyethylene terephthalate) film having a thickness of 200 ⁇ m and a length of 500 mm ⁇ width of 900 mm at 150 ° C., 640 tf / m 2, and 1 min to produce the concavo-convex film 1.
  • the convex-concave diameter of the concavo-convex shape is 5 mm, the pitch is 7 mm, and the convex height is 1 mm.
  • the core material 2 is a laminate of 20 glass wool having a thickness of 1 ⁇ m and an average fiber diameter of 5 ⁇ m, and is cut into a length of 500 mm ⁇ width of 900 mm.
  • the packaging material 4 is produced by stacking two sealing layers of a quadrangular laminate film and heat-sealing (heat-sealing) the three sides.
  • the laminate film consists of a 50 ⁇ m thick L-LDPE (linear low density polyethylene) film on the seal layer, a 12 ⁇ m thick PET film with a 600 ⁇ m aluminum vapor deposition as a gas barrier layer, and a 7 ⁇ m aluminum foil.
  • a laminate of aluminum and a 25 ⁇ m thick nylon film as a protective layer are bonded together by dry lamination.
  • the concavo-convex film 1 is laminated one by one on the front and back surfaces of the core material 2 laminated with glass wool so that the convex portions are on the outside. These are inserted into the packaging material 4, and after reducing the pressure to 1 Pa in a vacuum chamber having a size of 800 mm in length ⁇ 1200 mm in width ⁇ 200 mm in height, the opening 5 is sealed by heat sealing (thermal fusion) and taken out from the vacuum chamber. Thereby, the vacuum heat insulating material 6 is produced.
  • the concavo-convex film 1 and the packaging material 4 are brought into close contact with each other to form the concavo-convex shape 3 on the surface of the packaging material 4.
  • the diameter of the projections 3a of the concavo-convex shape 3 formed on the surface of the packaging material 4 is 4.5 mm ⁇ 0.1 mm, the interval between the projections 3a is 7 mm, and the height of the projections 3a is 0.8 mm ⁇ 0. .1 mm.
  • the thickness of the vacuum heat insulating material 6 is 15 mm.
  • the irregular shape 3 regularly, the wrinkles formed when the vacuum heat insulating material 6 is bent are uniformly dispersed in all directions, and the formation of fine wrinkles is promoted.
  • the rising of the core material 2 (fiber) in the direction in which heat insulation is desired can be suppressed.
  • the thermal conductivity of the vacuum heat insulating material 6 as described above is 0.0020 W / m ⁇ K when the average temperature of the vacuum heat insulating material 6 is set to 25 ° C. Further, 15 wrinkles are formed in a section of 100 mm in the A direction, which is the direction of bending when performing the bending process so that the radius of curvature is 290 mm at the center 500 mm ⁇ 500 mm of the vacuum heat insulating material 6. The average depth is 0.5 mm. Moreover, the heat conductivity of the vacuum heat insulating material 6 after bending is 0.0022 W / m ⁇ K.
  • the thermal conductivity under the 10-year elapsed condition is 0.0076 W / m ⁇ K, and the uneven shape 3 is not formed. There is no difference.
  • the height of the convex portion and the diameter of the convex portion vary due to the variation in the thickness of the core material.
  • the height of the convex portion is low and the diameter of the convex portion is small, wrinkles are not formed on the convex portions during bending, and loads are concentrated to form deep wrinkles.
  • the height of the convex portion on the outer side of the bend is low, there is little surplus, so the difference between the inner and outer diameter peripheries due to bending cannot be alleviated, and the inner surplus film is greatly loosened, and deep wrinkles are formed.
  • the fibers of the core material that has been laid down horizontally by using a multi-layered structure rises at a nearer vertical angle along the wrinkles that are deeply formed, so the fibers themselves become heat transfer paths.
  • the amount of solid heat conduction increases and the heat insulation performance decreases.
  • the core material is compressed with a force equal to or higher than a desired pressure, and the thickness of the vacuum heat insulating material is reduced and the solid heat conduction amount is increased by increasing the density. Increases and heat insulation performance decreases.
  • the heat conductivity of the vacuum heat insulating material produced under the same conditions as in Embodiment 1 without using the uneven film 1 is 0.0020 W / m ⁇ K when the average temperature of the vacuum heat insulating material is set to 25 ° C.
  • eight wrinkles are formed in a section of 100 mm in the A direction, the average depth of wrinkles is 2.0 mm, and the vacuum after bending
  • the heat conductivity of the heat insulating material is 0.0028 W / m ⁇ K, which is a larger value than that of the first embodiment.
  • the thermal conductivity under the 10-year elapsed condition is 0.0180 W / m ⁇ K, which is a larger value than that of the first embodiment.
  • the convex part diameter of the shape is 4.5 mm ⁇ 0.5 mm
  • the convex part interval is 7 mm
  • the convex part height is 0.8 mm ⁇ 0.5 mm
  • the thickness of the vacuum heat insulating material is 14 mm.
  • the vacuum heat insulating material 6 according to Embodiment 1 has the highest heat insulating performance because the heat conductivity after bending is the lowest as compared with the vacuum heat insulating materials according to Comparative Examples 1 to 4.
  • the vacuum heat insulating material 6 according to the first embodiment does not need to provide a mold or the like in the vacuum chamber when the uneven shape 3 is formed, and can use an existing vacuum chamber. Can be suppressed. Further, the time until the desired pressure in the vacuum chamber is reached does not become long, and there is no additional process such as a post process, so that productivity does not deteriorate. Moreover, since it is not necessary to use a metal mold when forming the uneven shape 3, problems caused by using the metal mold do not occur.
  • the thickness is the same as the conventional vacuum heat insulating material that does not form the uneven shape 3, the heat insulating performance is high by suppressing the formation of deep wrinkles at the time of bending without impairing the initial heat insulating performance, and the reliability at the time of diameter. It is possible to produce the vacuum heat insulating material 6 capable of forming a highly solid material.
  • the material and configuration of the vacuum heat insulating material 6 are not limited to the above.
  • FIG. 4 is a schematic diagram showing a circumferential length difference (inner and outer diameter circumferential length difference) between the inner diameter and outer diameter of the bent portion of the vacuum heat insulating material 6 according to Embodiment 1 of the present invention.
  • the uneven shape 3 shown in FIG. 3 shows a hemispherical example, the present invention is not limited to this, and any shape such as a triangular prism, a quadrangular prism, a triangular pyramid, a quadrangular pyramid, a groove shape, a hollow shape, etc. Shapes can be used.
  • size can also be made into arbitrary magnitude
  • the circumferential length on the inner diameter side of the bending portion of the vacuum heat insulating material 6 shown: Li is smaller than the value obtained by dividing the circumferential length difference between the inner diameter and the outer diameter of the bending portion by D, that is, P ⁇ Li / D It is desirable that
  • the unevenness of the same shape is formed on the inner side of the bending process and the outer side of the bending process.
  • the present invention is not limited to this, and unevenness having different shapes is formed on the inner side of the bending process and the outer side of the bending process. It is also possible to form irregularities with different shapes on one film.
  • a PET film is used for the concavo-convex film 1.
  • the present invention is not limited to this as long as the shape can be maintained even when atmospheric pressure is applied, and a plastic resin such as polypropylene or polyethylene is used. Metal foils such as film, aluminum, and stainless steel can also be used.
  • the thickness of the concavo-convex film 1 is thin, the ratio of the core material 2 per thickness of the vacuum heat insulating material 6 can be increased, and the thermal conductivity of the vacuum heat insulating material 6 can be reduced. Is preferably 10 ⁇ m or more and 3000 ⁇ m or less.
  • the uneven shape 3 is formed to be shifted in the A direction, it is possible to suppress the formation of wrinkles continuously in the B direction, which is a direction perpendicular to the A direction, during the bending process.
  • the effect of suppressing the formation of deep wrinkles can be further expected by dispersing.
  • a known material can be used as the core material 2, and in particular, the fiber material has an effect of suppressing the rising of the fiber during wrinkle formation.
  • glass fiber, glass fiber, alumina fiber, silica alumina fiber, silica fiber, rock wool, silicon carbide, etc. are used for inorganic fibers, and PET fiber, polystyrene (PS) fiber, polypropylene fiber, nylon fiber are used for resin fibers. Etc. And it is set as the core material 2 using the said thing 1 type, or 2 or more types.
  • a known material can be used as the packaging material 4, and a nylon film, a polyethylene terephthalate film, a polyacrylonitrile film, a stretched polypropylene film, or the like can be used as the protective layer.
  • a low density polyethylene film, a high density polyethylene film, an unstretched polypropylene film, a polyacrylonitrile film, an ethylene-vinyl alcohol copolymer film, or a mixture thereof can be used.
  • metal foils such as aluminum and stainless steel, alumina, silica, polyethylene terephthalate film on which alumina and silica are vapor-deposited, and the like can be used. In the first embodiment, vapor deposition in which pinholes are easily formed. When a film is used, an effect of suppressing pinhole formation can be obtained.
  • FIG. FIG. 5 is a schematic cross-sectional view of a vacuum heat insulating material 6a according to Embodiment 2 of the present invention.
  • the second embodiment will be described, but those overlapping with the first embodiment will be omitted.
  • a concave / convex shape is formed in the bending place in the vacuum heat insulating material 6a, and a flat concave / convex film 1a having no concave / convex shape is inserted in the installation target portion.
  • the rest is the same as in the first embodiment.
  • the installation surface and the surface of the vacuum heat insulating material 6a can be brought into close contact with each other. A minute space is not formed, and heat transfer due to convection of a gas such as air can be suppressed. Therefore, the heat conductivity of the vacuum heat insulating material 6a can be suppressed, and higher heat insulating performance can be obtained.
  • FIG. 6 is a schematic cross-sectional view of a vacuum heat insulating material 6b according to Embodiment 3 of the present invention
  • FIG. 7 is a schematic cross-sectional view of a wrinkle portion formed during bending of the vacuum heat insulating material 6b according to Embodiment 3 of the present invention. It is.
  • FIG. 6A shows before vacuum sealing
  • FIG. 6B shows after vacuum sealing.
  • the third embodiment will be described, but the description overlapping with the first and second embodiments will be omitted.
  • corrugated film 1 and The inside is decompressed.
  • FIG. 6 by further laminating the core material 2 b on the concavo-convex film 1 laminated on the core material 2, the core material 2 b enters between fine wrinkles whose formation is promoted when bending is performed.
  • the wrinkle apex angle 9a is larger than the wrinkle apex angle 9b on the side without the core 2b.
  • FIG. FIG. 8 is a schematic diagram of the surface and side surfaces of the concavo-convex film 1 used for the vacuum heat insulating material 6c according to Embodiment 4 of the present invention.
  • the fourth embodiment will be described, but the description overlapping with the first to third embodiments will be omitted.
  • corrugated film 1 in the vacuum heat insulating material 6c arrange
  • FIG. 9 is a surface photograph when the vacuum heat insulating material 6c according to Embodiment 4 of the present invention is bent so that the radius of curvature is 290 mm.
  • a concave portion 3b is formed between the convex portions 3a adjacent to each other in the A direction, and the width of the convex portion 3a is 5 mm and larger than the width of 2 mm of the concave portion 3b.
  • the convex part 3a and the recessed part 3b are adjacent in B direction which is a direction perpendicular
  • FIG. FIG. 10 is a schematic surface view of the bent film 10 used for the vacuum heat insulating material 6d according to Embodiment 5 of the present invention.
  • the fifth embodiment will be described, but the description overlapping with the first to fourth embodiments will be omitted.
  • a bent film 10 in which bending marks 11 are formed at intervals of 5 mm in the direction in which wrinkles are formed in the vacuum heat insulating material 6d instead of the uneven film 1 is used. And when bending is performed to the vacuum heat insulating material 6d, wrinkles are formed along the bending traces 11 at intervals of 5 mm.
  • the bending direction is not limited to the direction perpendicular to the A direction, and may have an angle with respect to the A direction or may intersect.
  • Embodiments 1 to 5 described above can also be applied in a combined form.

Abstract

 繊維材料を積層した芯材2と、凹凸形状が形成された凹凸フィルム1と、芯材2に凹凸フィルム1を積層したものを覆い、減圧封止されて表面に凹凸フィルム1の凹凸形状に対応した凹凸形状3が形成される包装材4と、を有するものである。

Description

真空断熱材
 本発明は、内部のガラス繊維シートなどの芯材と外部の複合樹脂、Al蒸着膜などの包装材から成る断熱性能が高い立体形成を可能とする形状の真空断熱材に関するものである。
 真空断熱材は、従来の冷蔵庫で用いられていたウレタン発泡材料よりも熱伝導率が一桁低いため、冷蔵庫、給湯機貯湯タンク、自動販売機などの断熱材として使用量が増加している。
 しかし、真空断熱材は、包装材の内部が減圧され表面全体に大気圧が付加されているため非常に硬直であり、後から曲げ、凹部、溝などを形成しようとすると薄いフィルムからなる包装材に損傷を与えやすい。そのため、ほとんどの適用例において平板状のまま使用され、使用箇所の形状によっては複数枚に分割して使用されている。
 しかし、給湯機貯湯タンクなどの円柱形状の側面部に真空断熱材を設置するような場合、平板状では真空断熱材と壁面との間に隙間が生じてしまい、また、真空断熱材を分割した場合は、隙間も分割して生じてしまうため、熱漏洩量が多くなってしまう。
 そこで、同サイズの真空断熱材で効果的に断熱しようとする際は、円柱側面形状に沿って曲げ加工を行うことが効果的である。
 しかし、真空断熱材は一度減圧封止されると、全体に大気圧が印加されるため、非常に剛直となり、また、一方では高空隙率であるため、曲げなどの加工を行うと厚み分の内外径周長差から曲げ内側面が内部に座屈して深いシワが形成される。このシワ形成部における真空断熱材の厚みの減少に起因して、芯材密度の増加に伴い空隙率が低下する。
 また、芯材に用いられるグラスウールがシワに沿って垂直方向へと立ち上がることによってガラスの繊維自体が伝熱経路となることに起因して、固体熱伝導量が増加する。そして、それらによって真空断熱材の曲げなどの加工後の断熱性能が低下するという課題がある。
 この課題を解決するために、真空断熱材の減圧封止時に予め凹凸形状を形成し、この凹凸形状に沿って曲げ形成する事例が特許文献1に挙げられている。凹凸形状を形成することで、真空断熱材を曲げ形成する際の曲げ部の厚み減少やシワに起因した断熱性能の低下を抑制できる。この事例は、真空封止時に凹凸形状を形成した金型で、芯材を挿入した包装材を挟み込んだ状態で減圧封止することによって、凹凸形成のための後加工を追加することなく凹凸形状を真空断熱材に形成できるというものである。
特開2007-205530号公報
 特許文献1に記載の方法では、真空チャンバ内に凹凸形状の金型を設けなくてはならないため、真空チャンバが大きくなり、複雑になることでコストがかかる。
 また、真空チャンバ内表面積が大きくなり、真空チャンバ表面への吸着ガス量が多くなることで、所望の真空チャンバ内圧力に到達するまでの時間が長くなり、生産性が悪化する。
 また、真空断熱材の生産時に複数種類の凹凸形状を順に形成する際には、その都度、金型を交換しなければならないため、同様に生産性が悪化する。
 また、真空減圧時に金型によって芯材及び包装材を挟み込むために、上下金型間の距離が小さいと減圧封入後の真空断熱材の厚みが薄くなり、密度が高くなることによって断熱性能が低下する。
 また、減圧封入時に凹凸形状を形成するためには、少なくとも大気圧以上の圧力で芯材及び包装材を挟み込む必要があるが、その際に包装材に負荷がかかるため、包装材のガスバリア層であるアルミ蒸着膜などに損傷を与えてしまうことがある。その結果、ガスバリア性が低下して真空断熱材内部へのガス侵入量が増加し、真空度が低下し、断熱性能が低下するという課題があった。
 本発明は、以上のような課題のうち少なくとも1つを解決するためになされたもので、真空チャンバ内に金型などを設ける必要がなく、凹凸形状を形成することができる真空断熱材を提供することを目的としている。
 本発明に係る真空断熱材は、繊維材料を積層した芯材と、凹凸形状が形成された凹凸フィルムと、前記芯材に前記凹凸フィルムを積層したものを覆い、減圧封止されて表面に前記凹凸フィルムの前記凹凸形状に対応した凹凸形状が形成される包装材と、を有するものである。
 本発明に係る真空断熱材によれば、凹凸形状を形成する際に、真空チャンバ内に金型などを設ける必要がなく、既存の真空チャンバを使用することができるためコストを抑えることができ、また、後加工などの追加工程もないため、生産性を悪化させずに済む。
本発明の実施の形態1に係る真空断熱材の断面模式図である。 本発明の実施の形態1に係る真空断熱材の曲げ加工時の断面模式図である。 本発明の実施の形態1に係る真空断熱材に用いられる凹凸フィルムの表面及び側面の模式図である。 本発明の実施の形態1に係る真空断熱材の曲げ部の内径と外径との周長差(内外径周長差)を示す模式図である。 本発明の実施の形態2に係る真空断熱材の断面模式図である。 本発明の実施の形態3に係る真空断熱材の断面模式図である。 本発明の実施の形態3に係る真空断熱材の曲げ加工時にできるシワ部の断面模式図である。 本発明の実施の形態4に係る真空断熱材に用いられる凹凸フィルムの表面及び側面の模式図である。 本発明の実施の形態4に係る真空断熱材を曲率半径が290mmになるように曲げた際の表面写真である。 本発明の実施の形態5に係る真空断熱材に用いられる曲げフィルムの表面模式図である。
 以下、本発明の実施の形態を図面に基づいて説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。また、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
実施の形態1.
 図1は、本発明の実施の形態1に係る真空断熱材6の断面模式図である。図1の(a)は真空封止前、(b)は真空封止後をそれぞれ示している。
 真空断熱材6は、繊維材料を積層した芯材2と、ガスバリアラミネートフィルムからなる包装材4と、凹凸形状が形成された凹凸フィルム1と、から構成されている。包装材4は、2枚の4角形のガスバリアラミネートフィルムの3辺をヒートシール(熱融着)して製袋される。真空断熱材6は、包装材4の1辺の開放部5から、芯材2の表裏に凹凸フィルム1を積層したものを挿入し、真空チャンバ内で減圧した後、開放部5をヒートシール(熱融着)して作製される。その際、減圧時に凹凸フィルム1の凹凸形状が包装材4に押し付けられ、包装材4(真空断熱材6)表面に凹凸形状3が形成される。なお、その包装材4表面に形成された凹凸形状3は、封止後もその形状が維持される。
 図2は、本発明の実施の形態1に係る真空断熱材6の曲げ加工時の断面模式図である。
 真空断熱材6を、図2に示すように曲げなどの形状加工を実施する際に、内側の凹凸形状3に沿って微細なシワ形成を促すことによって、曲げ加工時の曲げ部の内径と外径との周長差である内外径周長差が一部に集中することによる深いシワ形成を抑制する。また、外側の凹凸形状3に沿って包装材4に余剰が生じ、その余剰分が曲げ加工時に伸びることによって、内外径周長差を緩和して曲げ内側への深いシワの形成を抑制する。
 図3は、本発明の実施の形態1に係る真空断熱材6に用いられる凹凸フィルム1の表面及び側面の模式図である。
 図3に示すように、厚み200μm、縦500mm×横900mmのPET(ポリエチレンテレフタレート)フィルムに150℃、640tf/m2、1minのヒートプレスを行うことによって凹凸形状を形成し、凹凸フィルム1を作製する。凹凸形状の凸部径は5mm、ピッチは7mm、凸部高さは1mmとしている。
 芯材2には、厚み1μm、平均繊維径が5μmのグラスウールを20枚積層したものを用い、縦500mm×横900mmに切断する。包装材4は、2枚の4角形のラミネートフィルムのシール層を重ね合わせて3辺をヒートシール(熱融着)して製袋する。ラミネートフィルムの構成は、シール層に厚み50μmのL-LDPE(直鎖状低密度ポリエチレン)フィルムと、ガスバリア層として厚み12μmのPETフィルムに600Åのアルミ蒸着を形成したフィルムと、7μmのアルミ箔をアルミ同士接着させたものと、保護層として厚み25μmのナイロンフィルムをそれぞれドライラミネートによって貼り合わせる。
 次に、真空断熱材6の作製方法について説明する。
 グラスウールを積層した芯材2の表裏の表面に、凹凸フィルム1を凸部が外側となるように一枚ずつ積層する。これらを包装材4に挿入し、縦800mm×横1200mm×高さ200mmサイズの真空チャンバ内で1Paまで減圧後、開放部5をヒートシール(熱融着)して封止し、真空チャンバから取り出すことによって真空断熱材6を作製する。減圧封止時に、凹凸フィルム1と包装材4とが密着して包装材4表面に凹凸形状3が形成される。包装材4表面に形成される凹凸形状3の凸部3a径は4.5mm±0.1mmで、凸部3a(が形成される)間隔は7mm、凸部3a高さは0.8mm±0.1mmである。また、真空断熱材6の厚みは15mmである。このようにして凹凸形状3が規則的に形成されることにより、真空断熱材6の曲げ加工を行った際に形成されるシワを四方に均一に分散し、微細なシワの形成を促進することで、芯材2(繊維)の断熱したい方向への立ち上がりを抑制することができる。
 以上のような真空断熱材6の熱伝導率は、真空断熱材6の平均温度を25℃に設定したとき0.0020W/m・Kである。また、この真空断熱材6の中心500mm×500mmに曲率半径が290mmになるように、曲げ加工を行う際に曲げられる方向であるA方向に100mmの区間に15本のシワが形成され、シワの平均深さは0.5mmである。
 また、曲げ加工後の真空断熱材6の熱伝導率は0.0022W/m・Kである。なお、径時信頼性を確認するために加速試験による断熱性能の低下を評価した結果、10年経過条件での熱伝導率は0.0076W/m・Kで、凹凸形状3を形成しないものとの差はない。
 一方、従来例のように真空チャンバ内に凹凸形状の金型を設けて真空封止時に包装材表面に凹凸形状を形成する場合、真空チャンバの高さを大きく取る必要があり、また、真空チャンバ内部が複雑化するため、真空チャンバ内壁面の表面積が大きくなる。そうすると、壁面吸着ガス量が多くなるので、所望の圧力まで減圧する際に到達時間が長くなり、生産性が悪化する。
 また、金型間距離は一定であるため、芯材の厚みのばらつきによって凸部高さや凸部径にばらつきが生じる。この際、凸部高さが低く、凸部径が小さくなってしまった場合、曲げ加工時に凸部にシワが形成されず、負荷が集中して深いシワが形成される。また、曲げ外側の凸部高さが低いと、余剰分が少ないため曲げによる内外径周長差を緩和することができず、内側の余剰フィルムが大きく弛むために深いシワが形成される。そうすると、多積層構成にすることによって水平に寝かされていた芯材の繊維が深く形成されたシワに沿ってより垂直に近い角度で立ち上がってしまうために、繊維自体が伝熱経路となって固体熱伝導量が多くなり、断熱性能が低下する。一方、凸部高さが高くなる場合は、所望の圧力以上の力で芯材を圧縮していることになり、真空断熱材の厚みが薄くなり、密度が大きくなることによって固体熱伝導量が多くなり、断熱性能が低下する。
(比較例1)
 凹凸フィルム1を使用せずに、その他は実施の形態1と同じ条件で作製した真空断熱材の熱伝導率は、真空断熱材の平均温度を25℃に設定したとき0.0020W/m・Kで実施の形態1と同じ値ある。しかし、実施の形態1と同じ条件で曲げ加工を行った際に、A方向に100mmの区間に8本のシワが形成され、シワの平均深さは2.0mmであり、曲げ加工後の真空断熱材の熱伝導率は0.0028W/m・Kで、実施の形態1よりも大きな値である。
(比較例2)
 厚み10mm、縦500mm×横500mmの金型を2枚用いて、それら金型で芯材及び包装材を11tf/m2で挟み込んで包装材表面に凹凸形状を形成し、作製した真空断熱材の熱伝導率は、真空断熱材の平均温度を25℃に設定したとき0.0022W/m・Kで実施の形態1よりも大きな値である。また、実施の形態1と同じ条件で曲げ加工を行った際に、A方向に100mmの区間に15本のシワが形成され、シワの平均深さは0.5mmであり、曲げ加工後の真空断熱材の熱伝導率は0.0024W/m・Kで、実施の形態1よりも大きな値である。さらに、加速試験による断熱性能の低下を評価した結果、10年経過条件での熱伝導率は0.0180W/m・Kで実施の形態1よりも大きな値である。
 また、この真空断熱材を作製する際、実施の形態1の真空断熱材6作製時に比べ、封止圧力1Paまで減圧するのに1.6倍の時間がかかり、包装材表面に形成された凹凸形状の凸部径は4.5mm±0.5mmで、凸部間隔は7mm、凸部高さは0.8mm±0.5mm、真空断熱材の厚みは14mmである。
(比較例3)
 図2における凹凸フィルム1の凸部間隔を7mmから20mmとした凹凸フィルムを用いて、その他は実施の形態1と同じ条件で作製し、実施の形態1と同じ条件で曲げ加工を行った真空断熱材の熱伝導率は、A方向に100mmの区間に10本のシワが形成され、シワの平均深さは1.5mmであり、曲げ加工後の真空断熱材の熱伝導率は0.0026W/m・Kで、実施の形態1よりも大きな値である。
(比較例4)
 図2における凹凸フィルム1の代わりに、A方向に垂直な方向に間隔5mmで曲げ加工を実施した曲げフィルムを用いて、その他は実施の形態1と同じ条件で作製し、実施の形態1と同じ条件で曲げ加工を行った真空断熱材の熱伝導率は、A方向に100mmの区間に20本のシワが形成され、シワの平均深さは0.4mmであり、曲げ加工後の真空断熱材の熱伝導率は0.0022W/m・Kで、実施の形態1よりも大きな値である。
 以上より、本実施の形態1に係る真空断熱材6は、比較例1~4に係る真空断熱材と比べ、曲げ加工後の熱伝導率が一番小さいため、断熱性能が一番高い。
 そして、本実施の形態1に係る真空断熱材6は、凹凸形状3を形成する際に、真空チャンバ内に金型などを設ける必要がなく、既存の真空チャンバを使用することができるため、コストを抑えることができる。
 また、所望の真空チャンバ内圧力に到達するまでの時間が長くなることなく、後工程などの追加工程もないため、生産性を悪化させずに済む。
 また、凹凸形状3を形成する際に、金型を用いる必要がないため、金型を用いることに起因する課題が発生せずに済む。
 また、厚みが従来の凹凸形状3を形成しない真空断熱材と同じになることで、初期断熱性能を損ねることなく、曲げ加工時に深いシワの形成を抑制することで断熱性能が高く、径時信頼性の高い立体形成が可能な真空断熱材6の作製が可能である。
 なお、真空断熱材6の材料や構成については、上記に限るものではない。
 図4は、本発明の実施の形態1に係る真空断熱材6の曲げ部の内径と外径との周長差(内外径周長差)を示す模式図である。
 図3に示した凹凸形状3は、半球状の例を示したが、本発明はこれだけに限定されるものではなく、三角柱、四角柱、三角錐、四角錐、溝形状、くぼみ形状など任意の形状を用いることができる。また、その大きさも任意の大きさにすることができる。ただし、凸部3a間隔が小さければ、より細かなシワの形成を促し、芯材2(繊維)の断熱したい方向への立ち上がりを抑制することができるため、凸部間隔:Pは、図4に示す真空断熱材6の曲げ部の内径側の円周長:Liを、曲げ部の内径と外径との円周長差:Dで割った値よりも小さいこと、つまり、P<Li/Dであることが望ましい。
 また、本実施の形態1では、曲げ加工内側と曲げ加工外側とで同形状の凹凸としたが、これだけに限定されるものではなく、曲げ加工内側と曲げ加工外側とで異なる形状の凹凸を形成することができ、また、一つのフィルム上で異なる形状の凹凸を形成することもできる。
 また、本実施の形態1では凹凸フィルム1にPETフィルムを用いたが、大気圧が印加されても形状を維持することができればこれに限定されるものではなく、ポリプロピレン、ポリエチレンなどの可塑性の樹脂フィルム、アルミ、ステンレスなどの金属箔なども用いることができる。また、その凹凸フィルム1の厚みが薄ければ、真空断熱材6の厚みあたりの芯材2の割合を大きくすることができ、真空断熱材6の熱伝導率を小さくすることができるので、厚みは10μm以上3000μm以下が望ましい。
 また、凹凸形状3はA方向にずらして形成されると、曲げ加工時に、A方向に対して垂直な方向であるB方向にシワが連続して形成されることを抑制することができ、負荷を分散させることによって深いシワの形成を抑制する効果がさらに望める。
 芯材2としては公知のものが使用でき、特に繊維材料については、シワ形成時の繊維の立ち上がりを抑制する効果がある。例えば、無機繊維でいえば、グラスウール、グラスファイバー、アルミナ繊維、シリカアルミナ繊維、シリカ繊維、ロックウール、炭化ケイ素など、樹脂繊維でいえば、PET繊維、ポリスチレン(PS)繊維、ポリプロピレン繊維、ナイロン繊維など、が挙げられる。
 そして、上記のものを一種または二種以上用いて芯材2とする。
 包装材4としては公知のものが使用でき、保護層としては、ナイロンフィルム、ポリエチレンテレフタレートフィルム、ポリアクリロニトリルフィルム、延伸ポリプロピレンフィルムなどが利用できる。また、熱融着層としては、低密度ポリエチレンフィルム、高密度ポリエチレンフィルム、無延伸ポリプロピレンフィルム、ポリアクリロニトリルフィルム、エチレン-ビニルアルコール共重合体フィルム、あるいはそれらの混合体を用いることができるが、特に指定するものではない。また、ガスバリア層としては、アルミ、ステンレスなどの金属箔、アルミナ、シリカ、アルミナとシリカを蒸着させたポリエチレンテレフタレートフィルムなどが利用できるが、本実施の形態1においては、ピンホールが形成されやすい蒸着フィルムを用いた際に、ピンホール形成を抑制する効果を得ることができる。
実施の形態2.
 図5は、本発明の実施の形態2に係る真空断熱材6aの断面模式図である。
 以下、本実施の形態2について説明するが、本実施の形態1と重複するものについては省略する。
 本実施の形態2では、真空断熱材6aにおいて曲げ加工実施箇所に凹凸形状を形成し、設置対象部分には凹凸形状を形成していない平坦な、凹凸フィルム1aを挿入する。その他は本実施の形態1と同じである。
 凹凸が形成されていない設置対象部分については真空断熱材6a表面が平坦となり、設置面と真空断熱材6a表面とを密着させることができるため、設置面と真空断熱材6aとの間に凹凸による微細な空間が形成されず、空気など気体の対流による熱の移動を抑制することができる。そのため、真空断熱材6aの熱伝導率を抑えられ、より高い断熱性能を得ることができる。
実施の形態3.
 図6は、本発明の実施の形態3に係る真空断熱材6bの断面模式図、図7は、本発明の実施の形態3に係る真空断熱材6bの曲げ加工時にできるシワ部の断面模式図である。図6の(a)は真空封止前、(b)は真空封止後をそれぞれ示している。
 以下、本実施の形態3について説明するが、本実施の形態1及び2と重複するものについては省略する。
 本実施の形態3では、真空断熱材6bにおいて芯材2と、ガスバリアフィルムからなる包装材4と、芯材2の表裏に積層された凹凸フィルム1、凹凸フィルム1に積層された芯材2bとから構成され、内部が減圧されている。図6に示すように芯材2に積層した凹凸フィルム1にさらに芯材2bを積層することによって、曲げ加工を行った際に形成が促進された微細なシワの間に芯材2bが入り、図7に示すように芯材2bなし側のシワ頂点角度9bに比べ、シワ頂点角度9aが大きくなる。シワ頂点角度9aが大きくなることによって、芯材繊維の角度がさらに緩やかになり、繊維の立ち上がりによる固体熱伝導量の増加をさらに低減することができる。
実施の形態4.
 図8は、本発明の実施の形態4に係る真空断熱材6cに用いられる凹凸フィルム1の表面及び側面の模式図である。
 以下、本実施の形態4について説明するが、本実施の形態1~3と重複するものについては省略する。
 本実施の形態4では、真空断熱材6cにおいて凹凸フィルム1に形成される凹凸形状3は、曲げ加工する方向Aにおいて凸部3aをピッチの1/2(3.5mm)ずつずらして配置している。
 図9は、本発明の実施の形態4に係る真空断熱材6cを曲率半径が290mmになるように曲げた際の表面写真である。
 図8に示すようにA方向に隣り合う凸部3a間に凹部3bが形成されており、凸部3aの幅が5mmと凹部3bの幅2mmよりも大きくなっている。そして、(曲げ加工を行う際に曲げられる方向である)A方向に対して垂直な方向であるB方向において、凸部3aと凹部3bとは隣り合っている。つまり、B方向において凸部3aが隣り合う凹部3b間を遮るように配列されているため、図9に示すように真空断熱材6cを曲げた際に形成されるシワが、B方向に連続して形成されることを抑制している。このため、シワが細かく寸断されることによって、深いシワの形成を抑制し、芯材2(繊維)の断熱したい方向への立ち上がりを抑制することができる。
実施の形態5.
 図10は、本発明の実施の形態5に係る真空断熱材6dに用いられる曲げフィルム10の表面模式図である。
 以下、本実施の形態5について説明するが、本実施の形態1~4と重複するものについては省略する。
 本実施の形態5では、真空断熱材6dにおいて凹凸フィルム1の代わりにシワの形成する方向に5mmの間隔で曲げ跡11が形成された曲げフィルム10が用いられている。そして、真空断熱材6dに曲げ加工を実施した際に5mm間隔の曲げ跡11に沿ってシワが形成される。一方、曲げフィルム10を使用しないで作製した真空断熱材6dに内側曲率半径250mmで曲げ加工を実施すると、平均して10mm間隔でシワが形成される。このように、曲げフィルム10の曲げ跡11によって、曲げ加工を行った際のシワの形成の間隔を短くすることにより、シワの深さを浅くし、シワ内部に沿った繊維の立ち上がりを抑制し、断熱性能の低下を抑制することができる。なお、曲げ方向については、A方向に垂直である方向に限らず、A方向に対して角度を持っていてもよく、また、交わっていてもよい。
 以上に示した実施の形態1~5は、それぞれ組み合わせた形でも適用できる。
 1 凹凸フィルム、1a 凹凸フィルム、2 芯材、2b 芯材、3 (包装材表面の)凹凸形状、3a 凸部、3b 凹部、4 包装材、5 開放部、6 真空断熱材、6a 真空断熱材、6b 真空断熱材、6c 真空断熱材、6d 真空断熱材、7 凹凸形成芯材、8 部分凹凸フィルム、9a シワ頂点角度、9b シワ頂点角度、10 曲げフィルム、11 曲げ跡。

Claims (8)

  1.  繊維材料を積層した芯材と、
     凹凸形状が形成された凹凸フィルムと、
     前記芯材に前記凹凸フィルムを積層したものを覆い、減圧封止されて表面に前記凹凸フィルムの前記凹凸形状に対応した凹凸形状が形成される包装材と、
     を有する真空断熱材。
  2.  前記凹凸フィルムの前記凹凸形状は、規則的に形成されている
     請求項1に記載の真空断熱材。
  3.  前記凹凸フィルムは、形状を変化させる箇所に前記凹凸形状が形成されている
     請求項1または2に記載の真空断熱材。
  4.  前記包装材は、前記芯材に前記凹凸フィルムを積層した後、
     さらに前記芯材を積層したものを覆い、減圧封止されて前記表面に前記凹凸形状が形成される
     請求項1~3のいずれか一項に記載の真空断熱材。
  5.  前記包装材の前記凹凸形状の凸部が形成される間隔は、
     曲げた際の曲げ部の内径側の円周長を、曲げ部の内径と外径の円周長差で割った値より小さい
     請求項1~4のいずれか一項に記載の真空断熱材。
  6.  前記凹凸フィルムの前記凹凸形状は、
     凸部の幅が隣り合う凸部間に形成される凹部の幅よりも大きく、
     曲げ加工を行う際に曲げられる方向に対して垂直な方向において、前記凸部が隣り合う凹部間を遮るように配列されている
     請求項1~5のいずれか一項に記載の真空断熱材。
  7.  繊維材料を積層した芯材と、
     一定間隔毎に曲げ跡が形成された曲げフィルムと、
     前記芯材に前記曲げフィルムを積層したものを覆い、減圧封止されて表面に曲げ跡が形成される包装材と、を有する
     真空断熱材。
  8.  前記包装材は、
     前記凹凸形状を有することにより、
     曲げ加工時のシワの形成を抑制可能に形成されている
     請求項1~7のいずれか一項に記載の真空断熱材。
PCT/JP2014/056804 2013-03-29 2014-03-13 真空断熱材 WO2014156703A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14775369.3A EP2980467B1 (en) 2013-03-29 2014-03-13 Vacuum heat-insulating material
JP2015508289A JP6022037B2 (ja) 2013-03-29 2014-03-13 真空断熱材

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-072574 2013-03-29
JP2013072574 2013-03-29

Publications (1)

Publication Number Publication Date
WO2014156703A1 true WO2014156703A1 (ja) 2014-10-02

Family

ID=51623685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056804 WO2014156703A1 (ja) 2013-03-29 2014-03-13 真空断熱材

Country Status (3)

Country Link
EP (1) EP2980467B1 (ja)
JP (1) JP6022037B2 (ja)
WO (1) WO2014156703A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017093691A1 (fr) * 2015-12-02 2017-06-08 Hutchinson Piece isolante metallique tridimensionnelle

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016223057B4 (de) * 2016-11-22 2022-01-13 Röchling Automotive SE & Co. KG Thermisch isolierendes flächiges Bauteil mit geringer Bauteildicke, insbesondere als Funktionsraumverkleidung eines Kraftfahrzeugs
US10697698B2 (en) * 2016-12-23 2020-06-30 Whirlpool Corporation Vacuum insulated panel for counteracting vacuum bow induced deformations
CN108266601B (zh) * 2018-01-23 2019-12-27 长江师范学院 一种真空绝热板体结构的修复方法
CN112284021A (zh) * 2019-07-24 2021-01-29 青岛海尔电冰箱有限公司 真空绝热板、制备真空绝热板的方法及冰箱
DE102021100454A1 (de) 2020-11-30 2022-06-02 Liebherr-Hausgeräte Ochsenhausen GmbH Wärmedämmelement

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0415398A (ja) * 1990-05-08 1992-01-20 Ishikawajima Harima Heavy Ind Co Ltd 極低温用複合真空多層断熱材
JP2007205530A (ja) 2006-02-06 2007-08-16 Hitachi Appliances Inc 真空断熱材及びその製造方法
JP2009156353A (ja) * 2007-12-27 2009-07-16 Hitachi Appliances Inc 真空断熱材およびそれを用いた機器
JP2010190257A (ja) * 2009-02-16 2010-09-02 Mitsubishi Electric Corp 真空断熱材及びその製造方法
JP2014051993A (ja) * 2010-10-18 2014-03-20 Mitsubishi Electric Corp 真空断熱材およびその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20012190A1 (it) * 2001-10-19 2003-04-19 Getters Spa Processo per la produzione di un dispositivo termoisolante flessibilee dispositivo cosi' ottenuto
JP4974861B2 (ja) * 2007-11-28 2012-07-11 三菱電機株式会社 真空断熱材
JP2011190925A (ja) * 2010-02-16 2011-09-29 Tokyo Electron Ltd 断熱体及び断熱体の製造方法
JP5968004B2 (ja) * 2012-03-29 2016-08-10 三菱電機株式会社 真空断熱材および真空断熱材を用いた冷蔵庫

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0415398A (ja) * 1990-05-08 1992-01-20 Ishikawajima Harima Heavy Ind Co Ltd 極低温用複合真空多層断熱材
JP2007205530A (ja) 2006-02-06 2007-08-16 Hitachi Appliances Inc 真空断熱材及びその製造方法
JP2009156353A (ja) * 2007-12-27 2009-07-16 Hitachi Appliances Inc 真空断熱材およびそれを用いた機器
JP2010190257A (ja) * 2009-02-16 2010-09-02 Mitsubishi Electric Corp 真空断熱材及びその製造方法
JP2014051993A (ja) * 2010-10-18 2014-03-20 Mitsubishi Electric Corp 真空断熱材およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017093691A1 (fr) * 2015-12-02 2017-06-08 Hutchinson Piece isolante metallique tridimensionnelle

Also Published As

Publication number Publication date
EP2980467B1 (en) 2019-07-03
JPWO2014156703A1 (ja) 2017-02-16
JP6022037B2 (ja) 2016-11-09
EP2980467A1 (en) 2016-02-03
EP2980467A4 (en) 2016-11-23

Similar Documents

Publication Publication Date Title
JP6022037B2 (ja) 真空断熱材
JP5618756B2 (ja) 真空断熱材およびその製造方法
US20120231204A1 (en) Grooved type vacuum thermal insulation material and a production method for the same
US20120164365A1 (en) Vacuum insulation panel and method for manufacturing the same
ITMI20012190A1 (it) Processo per la produzione di un dispositivo termoisolante flessibilee dispositivo cosi' ottenuto
JP2008223922A (ja) 真空断熱材
JP4974861B2 (ja) 真空断熱材
JP2010156542A (ja) 真空断熱パネル及びそれを用いた冷蔵庫
JP2008248618A (ja) 断熱遮音材
JP5907204B2 (ja) 真空断熱材の製造方法
JP2012225428A (ja) 断熱シート
JP5334399B2 (ja) 断熱材、断熱シートおよび保温シート
JP6641243B2 (ja) 複合断熱材の製造方法、給湯機の製造方法および複合断熱材
JP6811374B2 (ja) 真空断熱材及び冷蔵庫
TWI596050B (zh) 真空隔熱材料、真空隔熱材料之製造裝置以及使用真空隔熱材料之隔熱箱
JP6422713B2 (ja) 袋体及び当該袋体を用いた真空断熱材
JP6742076B2 (ja) 真空断熱材および真空断熱材の製造方法
JP6359087B2 (ja) 真空断熱材、及びそれを備えた保温体
JP6917870B2 (ja) 真空断熱材及び真空断熱材の製造方法
JP2009041648A (ja) 真空断熱材および真空断熱材を適用した建築部材
JP2006029413A (ja) 真空断熱材およびその製造方法
JP2009074604A (ja) 真空断熱材
JP6098306B2 (ja) 真空断熱材の外装材
JP2006138336A (ja) 真空断熱材
JP2019094962A (ja) 断熱パネル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14775369

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015508289

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014775369

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE