WO2014156649A1 - 太陽光発電モジュールおよび太陽光発電パネル - Google Patents

太陽光発電モジュールおよび太陽光発電パネル Download PDF

Info

Publication number
WO2014156649A1
WO2014156649A1 PCT/JP2014/056489 JP2014056489W WO2014156649A1 WO 2014156649 A1 WO2014156649 A1 WO 2014156649A1 JP 2014056489 W JP2014056489 W JP 2014056489W WO 2014156649 A1 WO2014156649 A1 WO 2014156649A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
pattern
insulating layer
volume
insulating
Prior art date
Application number
PCT/JP2014/056489
Other languages
English (en)
French (fr)
Inventor
永井 陽一
岩崎 孝
和正 鳥谷
斉藤 健司
弘津 研一
英章 中幡
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CN201480002218.9A priority Critical patent/CN104584236B/zh
Priority to US14/422,869 priority patent/US9837558B2/en
Publication of WO2014156649A1 publication Critical patent/WO2014156649A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • H01L31/0201Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules comprising specially adapted module bus-bar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0512Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module made of a particular material or composition of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/20Optical components
    • H02S40/22Light-reflecting or light-concentrating means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a solar power generation module including a power generation element that receives sunlight to generate power.
  • a solar power generation apparatus in which a plurality of solar cells (power generation elements) and metal wiring for electrically connecting the solar cells are fixed on a metal plate via an insulating layer made of resin (Solar power generation module) has been proposed (see Patent Document 1).
  • a solar power generation unit in which a solar cell element (power generation element) and metal wiring for taking out current generated in the solar cell element are mounted on a metal base base via an insulating layer (Solar power generation module) has been proposed (see Patent Document 2).
  • the metal wiring surface is covered with an insulating layer at a portion other than a portion to which a wire or the like is connected from the outside.
  • the base base is being fixed to the metal solar cell mounting board.
  • the withstand voltage between the metal wiring and the metal plate may be a predetermined level or more. Desired. This withstand voltage level is defined in the IEC62688 standard, and a withstand voltage test in which a predetermined voltage (for example, 6 kV) is applied between a metal wiring and a metal plate (base base or solar cell mounting plate). In this case, no dielectric breakdown occurs.
  • a predetermined voltage for example, 6 kV
  • Patent Documents 1 and 2 at least a part of the metal wiring is exposed without being covered with the resin layer.
  • the metal wiring and the metal plate base base or solar cell mounting plate
  • dielectric breakdown occurs along the path from the exposed portion of the metal wiring through the resin layer surface to the metal plate, etc. Discharge
  • the withstand voltage between the metal wiring and the metal plate may not be sufficient to satisfy the IEC62688 standard.
  • an object is to provide a photovoltaic power generation module capable of improving performance in a withstand voltage test.
  • a photovoltaic power generation module includes a container-like casing made of a metal material and a flexible printed wiring board provided in contact with the inner surface of the casing, and the flexible printed wiring board includes a casing.
  • a first insulating layer in contact with the inner surface of the first insulating layer, a flexible insulating base provided on the first insulating layer, a pattern made of a conductor and provided on the insulating base, and a plurality mounted on the pattern
  • a second insulating layer provided so as to cover the entire portion of the pattern surface excluding the portion where the plurality of power generating elements are mounted.
  • the first insulating layer is formed of a resin material, and an average value of the volume of bubbles or foreign matters existing in the first insulating layer is applied with a voltage equal to or lower than a predetermined voltage between the pattern and the casing.
  • the first volume is less than or equal to the first volume at which dielectric breakdown does not occur in the first path from the pattern to any one of the first insulating layers through the first insulating layer.
  • the second insulating layer is formed of a resin material, and a voltage whose average value of the volume of bubbles or foreign matters existing in the second insulating layer is a predetermined voltage or less is applied between the pattern and the casing.
  • the volume is less than or equal to the second volume at which dielectric breakdown does not occur in the second path from the pattern to any one of the second insulating layers through the second insulating layer.
  • the 2nd insulating layer is provided so that the whole part except the part in which each of several electric power generation elements is mounted in the pattern surface may be covered.
  • a voltage equal to or lower than a predetermined voltage is applied between the pattern and the casing by setting the size of the bubbles or foreign matters existing in the first insulating layer to be equal to or smaller than the first volume.
  • the size of the bubbles or foreign matters existing in the first insulating layer is set to or smaller than the second volume.
  • a voltage equal to or lower than a predetermined voltage is applied between the pattern and the casing, It is possible to prevent dielectric breakdown from occurring in a path that reaches the housing via any one of the two insulating layers. Thereby, it becomes easy to satisfy the IEC62688 standard in the withstand voltage test.
  • FIG. 3B is a cross-sectional view taken along line AA in FIG. 3A showing the concentrating solar power generation module according to the embodiment. It is the schematic of the AR2 part in FIG. 3B about the concentrating photovoltaic power generation module which concerns on embodiment. It is a top view which shows the state which removed the primary condensing part 13 about the concentrating solar power generation module which concerns on embodiment.
  • the concentrating photovoltaic power generation module which concerns on embodiment is shown, and the AR3 part in FIG. 5 is an enlarged view.
  • Concentration type photovoltaic power generation panel 1M Concentration type photovoltaic power generation module 11 Housing
  • the gist of the embodiment of the present invention includes at least the following.
  • the solar power generation module according to the present invention includes a housing and a flexible printed wiring board.
  • the casing is made of a metal material and has a bowl shape.
  • the flexible printed wiring board is provided in contact with the inner surface of the housing.
  • the flexible printed wiring board includes a first insulating layer, an insulating base, a pattern, a plurality of power generation elements, and a second insulating layer.
  • the first insulating layer is in contact with the inner surface of the housing.
  • the insulating base material is provided on the first insulating layer and has flexibility.
  • the pattern is made of a conductor and provided on an insulating base material.
  • the plurality of power generation elements are mounted on the pattern.
  • the second insulating layer is provided so as to cover the entire portion of the pattern surface excluding the portion where each of the plurality of power generating elements is mounted.
  • the first insulating layer is formed of a resin material, and the size of the bubbles or foreign matter existing in the first insulating layer is a voltage less than a predetermined voltage between the pattern and the housing
  • the first volume is less than or equal to the first volume at which dielectric breakdown does not occur in the path from the pattern to the housing via any of the first insulating layers.
  • the second insulating layer is formed of a resin material, and a voltage equal to or less than a predetermined voltage is applied between the pattern and the housing, with the size of bubbles or foreign matter existing in the second insulating layer The second volume or less where dielectric breakdown does not occur in the second path from the pattern to any one of the second insulating layers through the second insulating layer.
  • the 2nd insulating layer is provided so that the whole part except the part in which each of several electric power generation elements is mounted in the pattern surface may be covered.
  • the withstand voltage between the pattern and the housing can be improved. That is, it is possible to improve the performance in the withstand voltage test.
  • a voltage equal to or lower than a predetermined voltage is applied between the pattern and the casing by setting the size of the bubbles or foreign matters existing in the first insulating layer to be equal to or smaller than the first volume.
  • the size of the bubbles or foreign matters existing in the second insulating layer is set to be equal to or smaller than the second volume, when a voltage equal to or lower than a predetermined voltage is applied between the pattern and the casing, It is possible to prevent dielectric breakdown from occurring in a path that reaches the housing via any one of the two insulating layers. Further, the size of the bubbles or foreign matters existing in the first insulating layer is set to be equal to or less than the first volume, and the size of the bubbles or foreign matters existing in the second insulating layer is set to be equal to or less than the second volume.
  • the flexible printed wiring board further covers the entire upper portion of the insulating base and the pattern other than the portion where the plurality of power generating elements are mounted.
  • the second insulating layer may be interposed between the insulating substrate and the pattern and the covering layer. According to this configuration, since the coating layer is interposed between the pattern and the casing, the resistance between the pattern and the casing is more resistant than the configuration in which the coating layer is not interposed between the pattern and the casing. The voltage can be improved.
  • the second path extends from the peripheral edge of the insulating base material to the casing through the second insulating layer in the pattern. It may be a route to reach.
  • the electric field tends to concentrate on the edge of the pattern on the peripheral side of the insulating base.
  • it can suppress that a dielectric breakdown generate
  • the first path may further pass through the insulating base material. According to this configuration, it is possible to suppress the occurrence of dielectric breakdown in the path from the insulating base material to the housing.
  • the first volume and the second volume may be equal to or less than a volume of a sphere having a diameter of 1 mm. According to this configuration, the IEC62688 standard can be satisfied in the withstand voltage test.
  • the first volume and the second volume may be equal to or less than a volume of a sphere having a diameter of 100 ⁇ m. According to this configuration, the IEC62688 standard can be satisfied more reliably in the withstand voltage test. Further, it is possible to manage the size of bubbles and foreign matters existing in the first and second insulating layers based on whether or not bubbles and foreign matters can be detected by an ultrasonic microscope using ultrasonic waves having a frequency of several tens of MHz. Become.
  • the first volume and the second volume may be equal to or less than a volume of a sphere having a diameter of 10 ⁇ m. According to this configuration, management of the size of the bubbles and foreign matters existing in the first and second insulating layers based on whether or not the bubbles and foreign matters can be detected by an ultrasonic microscope using ultrasonic waves having a frequency of several hundreds of MHz. Is possible.
  • the insulating base material may be ribbon-shaped. According to this configuration, the area of the insulating base material can be reduced, so that the weight can be reduced.
  • the flexible printed wiring board is a separate body from the plurality of power generation wiring boards having at least one power generation element, and the plurality of power generation wiring boards. You may consist of a wiring board for a connection which electrically connects several wiring boards for electric power generation. According to this configuration, the flexible printed wiring board can be completed by separately producing the power generation wiring board and the connection wiring board and then connecting them together. Since the power generation wiring board and the connection wiring board are small and easy to manufacture compared to the entire flexible printed wiring board, manufacturing can be facilitated.
  • the thickness of the insulating base material may be 10 to 100 ⁇ m. According to this configuration, it is possible to improve both the withstand voltage of the insulating base material and the heat dissipation.
  • a plurality of photovoltaic power generation modules according to the present invention may be assembled. According to this configuration, since a plurality of photovoltaic power generation modules are assembled, a plurality of photovoltaic power generation modules can be attached to a single tracking base, so that a high-output photovoltaic power generation apparatus can be easily used. Can be realized.
  • FIG. 1 is a perspective view showing a concentrating solar power generation device according to an embodiment of the present invention.
  • the concentrating solar power generation apparatus 100 includes a concentrating solar power generation panel 1, a support 2 that supports the concentrating solar power generation panel 1 at the center of the back surface, and a gantry 3 to which the support 2 is attached.
  • the concentrating solar power generation panel 1 includes, for example, 62 concentrating solar cells (vertical 7 ⁇ horizontal 9-1) excluding the central portion for connection with the support column 2 (see the portion marked with “X” in FIG. 1).
  • the photovoltaic modules 1M are assembled vertically and horizontally.
  • the rated output of one concentrating solar power generation module 1M is, for example, about 100 W, and the concentrating solar power generation panel 1 as a whole has a rated output of about 6 kW.
  • the gantry 3 can be rotated around the column 2 by a rotation mechanism (not shown), and the concentrating solar power generation panel 1 can be tracked so as to always face the sun.
  • FIG. 2 is an enlarged perspective view (partially broken) showing a concentrating solar power generation module (hereinafter simply referred to as “module”) 1M.
  • the module 1M mainly includes a housing 11, a primary light collecting unit 13 attached to a part of the housing 11, and a flexible printed wiring board 12 housed in the housing 11.
  • the housing 11 has a container shape (bat shape) having a bottom surface (inner surface) 11a.
  • the “vessel shape” means a shape that is a flat rectangular box shape, one surface in the thickness direction is open, and the flange portion 11b projects outward from the opening edge.
  • casing 11 is formed from the metal material. As this metal material, aluminum etc. are mentioned, for example. By employing aluminum, the housing 11 can be reduced in weight.
  • the primary condensing unit 13 is attached to the housing 11 in a state where the entire peripheral portion thereof is in contact with the flange 11b of the housing 11.
  • the primary condensing unit 13 is a so-called Fresnel lens eye, and a plurality of Fresnel lenses 13f as lens elements for condensing sunlight are formed in a matrix (for example, 192 in the 16 ⁇ 12 horizontal direction). It becomes.
  • Each Fresnel lens 13 f is formed on a resin film that covers the entire rear surface side of the glass plate that is the base material of the primary light condensing unit 13. This resin film is made of, for example, a silicone resin.
  • a connector 14 for taking out the output of the module 1M is provided on the outer surface of the housing 11.
  • FIG. 3A is an enlarged view of the AR1 portion in FIG. 2, and FIG. 3B is a cross-sectional view taken along the line AA in FIG. 3A.
  • the flexible printed wiring board 12 includes an insulating base 121a, a pattern 121b, a plurality of power generation elements (solar cells) 122, insulating layers 124 and 126, and a coverlay (covering layer) 128.
  • the external characteristics of the flexible printed wiring board 12 will be described in detail in the later ⁇ Supplement> column.
  • the insulating base 121a is formed in a ribbon shape.
  • the “ribbon shape” means a shape having an elongated plate shape and a portion meandering in a U shape.
  • the insulating base 121a is in the shape of an elongated plate and has flexibility.
  • the insulating base 121a is made of, for example, a resin material having excellent heat resistance such as polyimide.
  • the thickness of the insulating base 121a is set within a range of 10 to 100 ⁇ m.
  • the thickness of the insulating base material 121a is less than 10 ⁇ m, the withstand voltage of the insulating base material 121a is insufficient, and if the thickness of the insulating base material 121a exceeds 100 ⁇ m, heat dissipation from the power generating element 122 to the housing 11 is achieved. This is because the performance is lowered.
  • both withstand voltage improvement and heat dissipation improvement can be achieved.
  • the pattern 121b is provided on the insulating substrate 121a.
  • the pattern 121b is made of a metal material such as copper.
  • the pattern 121b is formed by forming a metal film on the insulating base 121a and then performing patterning using a known photolithography technique and etching technique.
  • the pattern 121b is provided in a region inside the periphery of the insulating base 121a in plan view. That is, the edge part of the peripheral side of the insulating base material 121a in the pattern 121b is located inside the peripheral edge of the insulating base material 121a in plan view.
  • the material which comprises the pattern 121b is not limited to a metal material, You may employ
  • the power generating element 122 is mounted on the pattern 121b.
  • the power generating element 122 includes an element part 122c, a package 122p for housing the element part 122c, and an electrode 122e for electrically connecting the element part 122c and the pattern 121b. Further, on the front side of the package 122p, a secondary condensing part (not shown) for correcting the sunlight condensing position by the primary condensing part 13 to come to the light receiving part (not shown) of the element part 122c. Z).
  • the element part 122c for example, a III-V compound semiconductor multi-junction solar cell element can be employed. In this solar cell element, for example, a multi-junction III-V group compound semiconductor epitaxial film is formed on a compound semiconductor substrate such as gallium arsenide or indium phosphorus or a germanium substrate.
  • the cover lay 128 is provided so as to cover the entire upper portion of the insulating base 121a and the pattern 121b except for the portion where the plurality of power generating elements 122 are mounted.
  • the cover lay 128 is made of a resin material having excellent insulating properties such as polyimide, acrylic resin, and epoxy resin.
  • the boundary portion between the cover lay 128 and the power generation element 122 is covered with a resin film 129 made of a resin material having excellent insulating properties such as silicone resin.
  • the resin film 129 mainly covers a portion of the electrode 122e of the power generation element 122 that is not covered with the cover lay 128. This prevents the occurrence of dielectric breakdown in the path from the electrode 122e of the power generation element 122 to the housing 11 through the surface of the cover lay 128 or the like.
  • the resin film 129 is formed by potting.
  • One surface (lower surface) of the insulating layer 124 is in contact with the bottom surface 11 a of the housing 11, and an insulating base material 121 a is provided on the other surface (upper surface). Further, the insulating layer 124 functions as an adhesive that bonds the insulating base 121 a to the bottom surface 11 a of the housing 11.
  • the insulating layer 124 is made of a resin material having excellent insulating properties such as polyimide, acrylic resin, silicone resin, and epoxy resin. When viewed from a direction orthogonal to the bottom surface 11a of the housing 11, the peripheral portion of the insulating layer 124 protrudes outside the insulating base 121a. As a result, the creepage distance from the pattern 121b to the housing 11 via the front surface of the insulating base 121a increases, so that the withstand voltage between the pattern 121b and the housing 11 can be improved.
  • the insulating layer 126 is provided so as to cover the entire portion of the surface of the pattern 121b except the portion where the plurality of power generating elements 122 are mounted.
  • the insulating layer 126 is interposed between the insulating base 121a and the coverlay 128.
  • the insulating layer 126 functions as an adhesive that bonds the coverlay 128 to the insulating base 121a.
  • the material constituting the insulating layer 126 is the same as the material constituting the insulating layer 124.
  • the resin sheet is provided with a hole in a portion corresponding to the power generation element 122, and a part of the power generation element 122 protrudes from the hole when the resin sheet is placed on the insulating base 121 a and the pattern 121 b. Thereafter, the resin sheet is fixed on the insulating base 121a and the pattern 121b by solidifying the adhesive.
  • the solidified adhesive corresponds to the insulating layer 126, and the resin sheet corresponds to the cover lay 128.
  • the flexible printed wiring board 12 is completed by forming the resin film 129 by potting at the boundary portion between each power generating element 122 and the cover lay 128.
  • an adhesive that is the basis of the insulating layer 124 is applied to the area corresponding to the area where the flexible printed wiring board 12 is to be arranged on the bottom surface 11a of the case 11.
  • the region to which the adhesive is applied is set wider than the outer dimension in plan view of the insulating base 121a.
  • the insulating base 121a is placed in the area where the adhesive is applied.
  • the insulating base 121 a is fixed to the above-described arrangement planned region of the housing 11 by solidifying the adhesive.
  • the solidified adhesive corresponds to the insulating layer 124.
  • FIG. 4 shows a schematic diagram of the AR2 portion in FIG. 3B.
  • a predetermined voltage for example, 6 kV
  • the pattern 121b and the housing 11 It is required that dielectric breakdown does not occur.
  • the three paths PA1 to PA3 in FIG. 4 are mainly considered as paths that cause dielectric breakdown.
  • the path PA1 extends from the pattern 121b to the housing 11 through the insulating layer 126.
  • the path PA1 reaches the housing 11 through the insulating layer 126 from the edge 121c on the peripheral side of the insulating base 121a in the pattern 121b.
  • the path PA2 extends from the pattern 121b to the housing 11 through the insulating layer 126 and the cover lay 128.
  • the path PA3 extends from the pattern 121b to the housing 11 through the insulating base 121a and the insulating layer 124. As described above, at least one of the insulating layers 124 and 126, the insulating base 121a, and the cover lay 128 is interposed in the paths PA1 to PA3.
  • the withstand voltage between the pattern 121b and the housing 11 can be improved as compared with a module having a configuration in which they are not interposed between the pattern and the housing.
  • the breakdown voltage of the portions PA11 and PA21 corresponding to the insulating layer 126 in the paths PA1 and PA2 depends on the average value of the volume of bubbles and foreign matters existing in the insulating layer 126. Specifically, the pressure resistance in the portions PA11 and PA21 tends to improve as the average value of the volume of bubbles and foreign matters decreases.
  • the withstand voltage of the portion PA31 corresponding to the insulating layer 124 in the path PA3 also tends to be improved as the average value of the volume of bubbles and foreign matters existing in the insulating layer 124 decreases.
  • the inventors when applying a voltage of 6 kV between the pattern 121b and the housing 11 for the module 1M, the inventors have an average value of the volume of bubbles and foreign substances existing in the insulating layers 124 and 126 of 1 mm in diameter. It has been found that dielectric breakdown does not occur if the volume of the sphere is less than that.
  • the electric field tends to concentrate on the edge portion 121c on the peripheral side of the insulating base 121a in the pattern 121b, but the average value of the volume of bubbles and foreign matters existing in the insulating layers 124 and 126 is as described above. Setting did not cause dielectric breakdown. That is, dielectric breakdown did not occur in a path from the edge 121c on the peripheral side of the insulating base 121a in the pattern 121b to the housing 11 through the insulating layer 126.
  • the volume measurement of bubbles and foreign matters existing in the insulating layers 124 and 126 for example, an ultrasonic microscope using an ultrasonic wave having a frequency in the range of 10 MHz to 500 MHz (for example, manufactured by Hitachi Construction Machinery Finetech: HSAM 220) can be used.
  • the average value of the volume of bubbles and foreign substances existing in the insulating layers 124 and 126 is preferably equal to or less than the volume of a sphere having a diameter of 1 mm.
  • the module 1M easily satisfies the IEC62688 standard in the dielectric strength test.
  • the average value of the volumes of the bubbles and foreign matters existing in the insulating layers 124 and 126 can be managed. For example, it is assumed that bubbles and foreign substances present in the insulating layers 124 and 126 cannot be detected with an ultrasonic microscope using ultrasonic waves of several tens of MHz. In this case, it can be determined that there are no bubbles or foreign substances in the insulating layers 124 and 126 that are at least the volume of a sphere having a diameter of 100 ⁇ m. Further, it is assumed that bubbles and foreign substances present in the insulating layers 124 and 126 cannot be detected with an ultrasonic microscope using ultrasonic waves of several hundred MHz.
  • the average value of the volume of bubbles and foreign matters existing in the insulating layers 124 and 126 may be set to be, for example, not more than the volume of a sphere having a diameter of 100 ⁇ m or not more than the volume of a sphere having a diameter of 10 ⁇ m.
  • the size of the bubbles and foreign matters existing in the insulating layers 124 and 126 can be managed based on whether or not the bubbles and foreign matters can be detected by the ultrasonic microscope.
  • FIG. 5 is a plan view showing a state in which the primary condensing unit 13 is removed from the module 1M.
  • the power generation element 122 is not shown.
  • the flexible printed wiring board 12 includes twelve power generation wiring boards 12A and two connection wiring boards 12Bp and 12Bn separate from the power generation wiring board 12A.
  • FIG. 6 shows the module 1M and is an enlarged view of the AR3 portion in FIG.
  • the power generation wiring board 12A is formed in a substantially U shape.
  • a plurality (16 in FIG. 6) of power generation elements 122 are mounted on the power generation wiring board 12A along the extending direction.
  • the plurality of power generating elements 122 are connected in series with each other.
  • one power generation wiring board 12A can generate a voltage of 40V (2.5V ⁇ 16). This voltage is generated between the + side electrode P and the ⁇ side electrode N provided at both ends in the extending direction of the power generation wiring board 12A.
  • the connection wiring board 12Bp electrically connects the + side electrodes P of each of the plurality of power generation wiring boards 12A.
  • the connection wiring board 12Bn electrically connects the negative electrodes N of each of the plurality of power generation wiring boards 12A.
  • the flexible printed wiring board 12 is completed by separately producing the power generation wiring board 12A and the connection wiring boards 12Bp and 12Bn and then connecting them together.
  • the power generation wiring board 12 ⁇ / b> A and the connection wiring boards 12 ⁇ / b> Bp and 12 ⁇ / b> Bn constitute a part of the flexible printed wiring board 12 and are smaller than the entire flexible printed wiring board 12. . Therefore, in this embodiment, since the power generation wiring board 12A and the connection wiring boards 12Bp and 12Bn can be individually manufactured, the manufacturing can be facilitated.
  • the power generation module is not necessarily limited to the concentrating type, and is not provided with a non-condensing type, that is, no condensing unit. It may be a configuration.
  • the insulating layers 124 and 126 are made of a resin material.
  • the material constituting the insulating layers 124 and 126 is not necessarily limited to the resin material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 集光型太陽光発電モジュール1Mは、金属からなる器状の筐体11と、筐体11の内面に接した状態で設けられたフレキシブルプリント配線板12とを備える。フレキシブルプリント配線板12は、絶縁層124と、絶縁基材121aと、パターン121bと、複数の発電素子122と、絶縁層126とを有する。絶縁層124は、筐体11の底面11aに接している。絶縁基材121aは、絶縁層124上に設けられ、柔軟性を有する。パターン121bは、導体からなり、絶縁基材121a上に設けられている。複数の発電素子122は、パターン121b上に実装されている。絶縁層126は、パターン121b表面における、複数の発電素子122が実装された部分を除く部分全体を覆うように設けられている。

Description

太陽光発電モジュールおよび太陽光発電パネル
 本発明は、太陽光を受光して発電する発電素子を備えた太陽光発電モジュールに関する。
 従来から、複数の太陽電池セル(発電素子)と、当該太陽電池セル同士を電気的に接続する金属配線とが、樹脂からなる絶縁層を介して金属板上に固着されている太陽光発電装置(太陽光発電モジュール)が提案されている(特許文献1参照)。ここで、金属配線表面の大部分は、絶縁層で覆われずに剥き出しの状態になっている。
 他に、従来から、太陽電池素子(発電素子)と、太陽電池素子で発生した電流を取り出すための金属配線とが、絶縁層を介して金属製のベース基台に装着された太陽光発電ユニット(太陽光発電モジュール)が提案されている(特許文献2参照)。ここで、金属配線表面は、外部からワイヤ等が接続される部分以外の部分が絶縁層で覆われている。また、ベース基台は、金属製の太陽電池実装板に固定されている。
特開2003-174179号公報 特開2008-91440号公報
 ところで、太陽光発電モジュールには、その使用時の安全性確保の観点から、金属配線と金属板(ベース基台或いは太陽電池実装板)との間の耐電圧が所定の水準以上であることが求められる。この耐電圧の水準は、IEC62688規格に定められており、金属配線と金属板(ベース基台或いは太陽電池実装板)との間に所定の電圧(例えば、6kV)の電圧を印加する耐電圧試験において絶縁破壊が生じないこととなっている。
 しかしながら、特許文献1および2に記載された構成では、金属配線の少なくとも一部が樹脂層で覆われずに露出している。従って、金属配線と金属板(ベース基台或いは太陽電池実装板)との間に電圧を印加した場合、金属配線における露出部分から樹脂層表面を通って金属板等に至る経路で絶縁破壊(沿面放電)が生じ易くなっている。従って、金属配線と金属板等との間の耐電圧が、IEC62688規格を満足できる程度に十分なものとならない虞がある。
 そこで、耐電圧試験における性能向上を図ることができる太陽光発電モジュールを提供することを目的とする。
 本発明に係る太陽光発電モジュールは、金属材料からなる器状の筐体と、筐体の内面に接した状態で設けられたフレキシブルプリント配線板とを備え、前記フレキシブルプリント配線板は、筐体の内面に接する第1絶縁層と、第1絶縁層上に設けられ且つ柔軟性を有する絶縁基材と、導体からなり且つ絶縁基材上に設けられたパターンと、パターン上に実装された複数の発電素子と、パターン表面における、複数の発電素子が実装された部分を除く部分全体を覆うように設けられた第2絶縁層とを有する。また、上記第1絶縁層が、樹脂材料から形成され、第1絶縁層に存在する気泡または異物の体積の平均値が、上記パターンと上記筐体との間に所定の電圧以下の電圧を印加した場合、パターンから第1絶縁層内のいずれかを経由して筐体に至る第1経路で絶縁破壊が生じない第1体積以下である。もしくは、上記第2絶縁層が、樹脂材料から形成され、第2絶縁層に存在する気泡または異物の体積の平均値が、上記パターンと上記筐体との間に所定の電圧以下の電圧を印加した場合、パターンから第2絶縁層内のいずれかを経由して筐体に至る第2経路で絶縁破壊が生じない第2体積以下である。
 本構成によれば、第2絶縁層が、パターン表面における、複数の発電素子それぞれが実装される部分を除く部分全体を覆うように設けられている。これにより、パターンと筐体との間には、絶縁基材、第1絶縁層および第2絶縁層の少なくとも1つが介在することとなるので、パターンと筐体との間にこれらが介在しない構成に比べて、パターンと筐体との間の耐電圧を向上させることができる。
 また、本構成によれば、第1絶縁層に存在する気泡または異物の大きさを上記第1体積以下とすることで、上記パターンと上記筐体との間に所定の電圧以下の電圧を印加した場合、パターンから第1絶縁層内のいずれかを経由して筐体に至る経路で絶縁破壊が生じないようにすることができる。また、第2絶縁層に存在する気泡または異物の大きさを上記第2体積以下とすることで、上記パターンと上記筐体との間に所定の電圧以下の電圧を印加した場合、パターンから第2絶縁層内のいずれかを経由して筐体に至る経路で絶縁破壊が生じないようにすることができる。これにより、耐電圧試験において、IEC62688規格を満足し易くなる。
 本発明によれば、耐電圧試験における性能向上を図ることができる太陽光発電モジュールを提供することが可能となる。
実施形態に係る集光型太陽光発電装置を示す斜視図である。 実施形態に係る集光型太陽光発電モジュールを拡大して示す斜視図(一部破断)である。 実施形態に係る集光型太陽光発電モジュールを示し、図2におけるAR1部分の拡大図である。 実施形態に係る集光型太陽光発電モジュールを示し、図3AにおけるA-A線で破断した断面の矢視図である。 実施形態に係る集光型太陽光発電モジュールについて、図3BにおけるAR2部分の概略図である。 実施形態に係る集光型太陽光発電モジュールについて、一次集光部13を取り外した状態を示す平面図である。 実施形態に係る集光型太陽光発電モジュールを示し、図5におけるAR3部分を拡大図である。
1    集光型太陽光発電パネル
1M   集光型太陽光発電モジュール
11   筐体
11a  底面
11b  鍔部
12   フレキシブルプリント配線板
12A  発電用配線板
12Bn 接続用配線板
12Bp 接続用配線板
121a 絶縁基材
121b パターン
121c 端部
122  発電素子
122c 素子部
122e 電極
122p パッケージ
124  絶縁層(第1絶縁層)
126  絶縁層(第2絶縁層)
128  カバーレイ(被覆層)
129  樹脂膜
13   一次集光部
13f  フレネルレンズ
14   コネクタ
P    +側電極
N    -側電極
[実施形態の要旨]
 本発明の実施形態の要旨としては、少なくとも以下のものが含まれる。
 (1)本発明に係る太陽光発電モジュールは、筐体と、フレキシブルプリント配線板とを備える。筐体は、金属材料からなり器状である。フレキシブルプリント配線板は、筐体の内面に接した状態で設けられている。フレキシブルプリント配線板は、第1絶縁層と、絶縁基材と、パターンと、複数の発電素子と、第2絶縁層とを有する。第1絶縁層は、筐体の内面に接している。絶縁基材は、第1絶縁層上に設けられ且つ柔軟性を有する。パターンは、導体からなり且つ絶縁基材上に設けられている。複数の発電素子は、パターン上に実装されている。第2絶縁層は、パターン表面における、複数の発電素子それぞれが実装される部分を除く部分全体を覆うように設けられている。また、上記第1絶縁層が、樹脂材料から形成され、第1絶縁層に存在する気泡または異物の大きさが、上記パターンと上記筐体との間に所定の電圧以下の電圧を印加した場合、パターンから第1絶縁層内のいずれかを経由して筐体に至る経路で絶縁破壊が生じない第1体積以下である。もしくは、上記第2絶縁層が、樹脂材料から形成され、第2絶縁層に存在する気泡または異物の大きさが、上記パターンと上記筐体との間に所定の電圧以下の電圧を印加した場合、パターンから第2絶縁層内のいずれかを経由して筐体に至る第2経路で絶縁破壊が生じない第2体積以下である。
 本構成によれば、第2絶縁層が、パターン表面における、複数の発電素子それぞれが実装される部分を除く部分全体を覆うように設けられている。これにより、パターンと筐体との間には、絶縁基材、第1絶縁層および第2絶縁層の少なくとも1つが介在することとなるので、パターンと筐体との間にこれらが介在しない構成に比べて、パターンと筐体との間の耐電圧を向上させることができる。つまり、耐電圧試験における性能向上を図ることができる。
 また、本構成によれば、第1絶縁層に存在する気泡または異物の大きさを上記第1体積以下とすることで、上記パターンと上記筐体との間に所定の電圧以下の電圧を印加した場合、パターンから第1絶縁層内のいずれかを経由して筐体に至る経路で絶縁破壊が生じないようにすることができる。また、第2絶縁層に存在する気泡または異物の大きさを上記第2体積以下とすることで、上記パターンと上記筐体との間に所定の電圧以下の電圧を印加した場合、パターンから第2絶縁層内のいずれかを経由して筐体に至る経路で絶縁破壊が生じないようにすることができる。また第1絶縁層に存在する気泡または異物の大きさを上記第1体積以下とし、かつ第2絶縁層に存在する気泡または異物の大きさを上記第2体積以下とすることで、上記パターンと上記筐体との間に所定の電圧以下の電圧を印加した場合、パターンから第1絶縁層内のいずれか、およびパターンから第2絶縁層内のいずれかを経由して筐体に至る経路で絶縁破壊が生じないようにすることができる。これにより、耐電圧試験において、IEC62688規格を満足し易くなる。
 (2)また、本発明に係る太陽光発電モジュールでは、上記フレキシブルプリント配線板が、更に、上記絶縁基材および上記パターンにおける上記複数の発電素子が実装された部分以外の部分全体の上方を覆うように設けられた被覆層を有し、第2絶縁層が、絶縁基材およびパターンと被覆層との間に介在するものであってもよい。
 本構成によれば、パターンと筐体との間に被覆層が介在しているので、パターンと筐体との間に被覆層が介在しない構成に比べて、パターンと筐体との間の耐電圧を向上させることができる。
 (3)また、本発明に係る太陽光発電モジュールでは、上記第2経路が、上記パターンにおける、上記絶縁基材の周縁側の端部から上記第2絶縁層内を経由して上記筐体に至る経路であってもよい。
 上記パターンと上記筐体との間に電圧を印加した場合、パターンにおける上記絶縁基材の周縁側の端部に電界が集中し易い。
 これに対して、本構成によれば、パターンにおける絶縁基材の周縁側の端部から第2絶縁層内を経由して筐体に至る経路で絶縁破壊が発生するのを抑制できる。
 (4)また、本発明に係る太陽光発電モジュールでは、上記第1経路が、更に、上記絶縁基材内を経由するものであってもよい。
 本構成によれば、絶縁基材内を経由して筐体に至る経路で絶縁破壊が発生するのを抑制できる。
 (5)また、本発明に係る太陽光発電モジュールでは、上記第1体積および上記第2体積が、直径1mmの球体の体積以下にしてもよい。
 本構成によれば、耐電圧試験において、IEC62688規格を満足することができる。
 (6)また、本発明に係る太陽光発電モジュールでは、上記第1体積および上記第2体積が、直径100μmの球体の体積以下にしてもよい。
 本構成によれば、耐電圧試験において、より確実にIEC62688規格を満足することができる。また、周波数が数10MHzの超音波を用いる超音波顕微鏡による気泡や異物の検出可否に基づいて、上記第1、第2絶縁層内に存在する気泡や異物の大きさを管理することが可能となる。
 (7)また、本発明に係る太陽光発電モジュールでは、上記第1体積および上記第2体積が、直径10μmの球体の体積以下にしてもよい。
 本構成によれば、周波数が数100MHzの超音波を用いる超音波顕微鏡による、気泡や異物の検出可否に基づいて、上記第1、第2絶縁層内に存在する気泡や異物の大きさの管理が可能となる。
 (8)また、本発明に係る太陽光発電モジュールでは、上記絶縁基材が、リボン状であってもよい。
 本構成によれば、絶縁基材の面積を低減することができるので、軽量化を図ることができる。
 (9)また、本発明に係る太陽光発電モジュールでは、上記フレキシブルプリント配線板が、少なくとも1つの発電素子を有する複数の発電用配線板と、複数の発電用配線板とは別体であり且つ複数の発電用配線板同士を電気的に接続する接続用配線板とからなるものであってもよい。
 本構成によれば、発電用配線板および接続用配線板を個別に作製してから、これらを互いに接続することでフレキシブルプリント配線板を完成させることができる。そして、発電用配線板および接続用配線板は、フレキシブルプリント配線板全体に比べて小さく製造し易いので、製造容易化を図ることができる。
 (10)また、本発明に係る太陽光発電モジュールでは、上記絶縁基材の厚みが、10乃至100μmであってもよい。
 本構成によれば、絶縁基材の耐電圧を向上と放熱性向上の両立を図ることができる。
 (11)また、本発明に係る太陽光発電モジュールを複数個集合させてもよい。
 本構成によれば、太陽光発電モジュールを複数個集合させていることにより、複数の太陽光発電モジュールを1台の追尾架台に纏めて取り付けることができるので、高出力の太陽光発電装置を容易に実現することができる。
[実施形態の詳細]
<1>構成
 図1は、本発明の一実施形態に係る集光型太陽光発電装置を示す斜視図である。
 集光型太陽光発電装置100は、集光型太陽光発電パネル1と、これを背面中央で支持する支柱2と、支柱2を取り付ける架台3とを備える。集光型太陽光発電パネル1は、例えば、支柱2との接続用の中央部(図1中の×印部分参照)を除く、62個(縦7×横9-1)の集光型太陽光発電モジュール1Mを縦横に集合させてなる。1個の集光型太陽光発電モジュール1Mの定格出力は、例えば、約100Wであり、集光型太陽光発電パネル1全体としては、約6kWの定格出力となる。架台3は、図示しない回転機構により支柱2を軸として回転することができ、集光型太陽光発電パネル1を常に太陽の方向へ向けるように追尾させることができる。
 図2は、集光型太陽光発電モジュール(以下、単に「モジュール」と言う。)1Mを拡大して示す斜視図(一部破断)である。
 モジュール1Mは、主として、筐体11と、筐体11の一部に取り付けられた一次集光部13と、筐体11内に収納されたフレキシブルプリント配線板12とを備える。
 筐体11は、底面(内面)11aを有する器状(バット状)の形状を有する。ここで、「器状」とは、扁平な矩形箱状であり且つ厚み方向における一面が開口し、開口端縁から外側に鍔部11bが張り出した形状を意味する。また、筐体11は、金属材料から形成されている。この金属材料としては、例えば、アルミニウム等が挙げられる。アルミニウムを採用することにより、筐体11の軽量化を図ることができる。
 一次集光部13は、その周部全体が筐体11の鍔部11bに当接した状態で筐体11に取り付けられる。一次集光部13は、いわゆるフレネルレンズアイであり、太陽光を集光するレンズ要素としてのフレネルレンズ13fがマトリックス状に複数個(例えば、縦16×横12で、192個)並んで形成されてなる。各フレネルレンズ13fは、一次集光部13の基材となるガラス板の後面側全体を覆う樹脂膜に形成されている。この樹脂膜は、例えば、シリコーン樹脂等からなる。筐体11の外面には、モジュール1Mの出力を取り出すためのコネクタ14が設けられている。
 図3Aは、図2におけるAR1部分の拡大図であり、図3Bは、図3AにおけるA-A線で破断した断面の矢視図である。
 フレキシブルプリント配線板12は、絶縁基材121aと、パターン121bと、複数の発電素子(太陽電池)122と、絶縁層124,126と、カバーレイ(被覆層)128とを備える。なお、このフレキシブルプリント配線板12の外形的特徴については、後の<補足>欄において詳述する。
 絶縁基材121aは、リボン状に形成されている。ここで、「リボン状」とは、細長板状であり且つU字状に蛇行した部分を有する形状を意味する。絶縁基材121aは、細長板状であり且つ柔軟性を有する。
 絶縁基材121aは、例えば、ポリイミド等の耐熱性に優れた樹脂材料からなる。この絶縁基材121aの厚みは、10乃至100μmの範囲内に設定される。なぜなら、絶縁基材121aの厚みが10μm未満であれば、絶縁基材121aの耐電圧が不足してしまい、絶縁基材121aの厚みが100μm超となると、発電素子122から筐体11への放熱性が低下してしまうからである。絶縁基材121aの厚みを上記範囲に設定することにより、耐電圧向上および放熱性向上を両立させることができる。
 パターン121bは、絶縁基材121a上に設けられている。
 パターン121bは、銅等の金属材料からなる。パターン121bは、絶縁基材121a上に金属膜を成膜した後、周知のフォトリソグラフィ技術およびエッチング技術を利用したパターニングを行うことにより形成される。パターン121bは、平面視で絶縁基材121aの周縁よりも内側の領域に設けられている。即ち、パターン121bにおける絶縁基材121aの周縁側の端部は、平面視で絶縁基材121aの周縁よりも内側に位置している。なお、パターン121bを構成する材料は、金属材料に限定されるものではなく、シリコン等の半導体材料や導電性樹脂材料を採用してもよい。
 発電素子122は、パターン121b上に実装されている。発電素子122は、素子部122cと、素子部122cを収納するパッケージ122pと、素子部122cとパターン121bとを電気的に接続するための電極122eとを備える。また、パッケージ122pの前面側には、一次集光部13による太陽光の集光位置が素子部122cの受光部(図示せず)にくるように補正するための二次集光部(図示せず)が設けられている。
 素子部122cとして、例えば、III―V族化合物半導体多接合型の太陽電池素子を採用することができる。この太陽電池素子は、例えば、ガリウム砒素やインジウム燐等の化合物半導体基板或いはゲルマニウム基板上に、多接合III―V族化合物半導体エピタキシャル膜を形成したものである。
 カバーレイ128は、絶縁基材121aおよびパターン121bにおける複数の発電素子122が実装された部分を除く部分全体の上方を覆うように設けられている。このカバーレイ128は、ポリイミドやアクリル樹脂、エポキシ樹脂等の絶縁性に優れた樹脂材料からなる。
 また、カバーレイ128と発電素子122との境目部分は、シリコーン樹脂等の絶縁性に優れた樹脂材料からなる樹脂膜129により覆われている。この樹脂膜129は、主として、発電素子122の電極122eのうちカバーレイ128で覆われていない部分を被覆している。これにより、発電素子122の電極122eからカバーレイ128表面等を通じて筐体11に至る経路で生じる絶縁破壊の発生を防止している。また、この樹脂膜129は、ポッティングにより形成されている。
 絶縁層124は、一面(下面)が筐体11の底面11aに接し、他面(上面)に絶縁基材121aが設けられている。また、絶縁層124は、絶縁基材121aを筐体11の底面11aに接着する接着剤として機能する。この絶縁層124は、ポリイミドやアクリル樹脂、シリコーン樹脂、エポキシ樹脂等の絶縁性に優れた樹脂材料からなる。
 筐体11の底面11aに直交する方向から見た場合、絶縁層124の周縁部分は、絶縁基材121aの外側に張り出している。これにより、パターン121bから絶縁基材121a前面を経由して筐体11に至る沿面距離が拡大するので、パターン121bと筐体11との間の耐電圧を向上させることができる。
 絶縁層126は、パターン121b表面における、複数の発電素子122が実装された部分を除く部分全体を覆うように設けられている。この絶縁層126は、絶縁基材121aとカバーレイ128との間に介在している。また、絶縁層126は、カバーレイ128を絶縁基材121aに接着する接着剤として機能する。この絶縁層126を構成する材料は、絶縁層124を構成する材料と同様である。
<2>モジュールの製造方法について
 次に、モジュール1Mの製造方法のうち、特に、フレキシブルプリント配線板12の製造工程、および、フレキシブルプリント配線板12を筐体11に取り付ける工程ついて図3Bを参照しながら簡単に説明する。
<2-1>フレキシブルプリント配線板の製造工程
 まず、パターン121b上に複数の発電素子122を実装する。
 次に、絶縁基材121aおよびパターン121b上における発電素子122が実装された領域を除く領域全体に接着剤を塗布する。
 続いて、絶縁基材121aおよびパターン121b上にカバーレイ128の基となる樹脂性シートを被せる。この樹脂性シートは、発電素子122に対応する部分に孔が設けられており、絶縁基材121aおよびパターン121b上に被せた状態では孔から発電素子122の一部が突出した状態となる。
 その後、接着剤を固化させることにより、樹脂シートが絶縁基材121aおよびパターン121b上に固着される。ここで、固化した接着剤が、絶縁層126に相当し、樹脂シートがカバーレイ128に相当する。
 最後に、各発電素子122とカバーレイ128との間の境目部分に、ポッティングにより樹脂膜129を形成することによりフレキシブルプリント配線板12が完成する。
<2-2>フレキシブルプリント配線板を筐体に取り付ける工程
 まず、筐体11の底面11aにおけるフレキシブルプリント配線板12の配置予定領域に対応する領域に、絶縁層124の基となる接着剤を塗布する。ここで、筐体11の底面11aに直交する方向から見た場合、接着剤を塗布する領域は、絶縁基材121aの平面視における外形寸法よりも広く設定されている。
 次に、接着剤が塗布された領域に絶縁基材121aを載置する。
 その後、接着剤を固化させることにより、絶縁基材121aが筐体11の上記配置予定領域に固着される。ここで、固化した接着剤が、絶縁層124に相当する。
<3>モジュールの耐電圧試験における性能について
 次に、本実施形態に係るモジュール1Mの耐電圧試験における性能について説明する。
 図4に、図3BにおけるAR2部分の概略図を示す。
 IEC62688規格を参考にした絶縁耐圧試験では、図4に示すように、パターン121bと筐体11との間に所定の電圧(例えば、6kV)の電圧を印加した場合、パターン121bと筐体11と間で絶縁破壊が生じないことが要求される。
 パターン121bと筐体11との間に電圧を印加した場合、絶縁破壊を生じる経路としては、主に図4のPA1乃至PA3の3つの経路が考えられる。
 経路PA1は、パターン121bから、絶縁層126内を経由して筐体11に至る。この経路PA1は、パターン121bにおける、絶縁基材121aの周縁側の端部121cから絶縁層126内を経由して筐体11に至る。
 経路PA2は、パターン121bから、絶縁層126内およびカバーレイ128内を経由して筐体11に至る。
 経路PA3は、パターン121bから、絶縁基材121a内および絶縁層124内を経由して筐体11に至る。
 以上のように、経路PA1乃至PA3中には、絶縁層124,126、絶縁基材121aおよびカバーレイ128うちの少なくとも1つが介在している。つまり、パターン121bと筐体11との間には、絶縁基材121a、絶縁層124,126およびカバーレイ128のうちの少なくとも1つが介在することとなる。従って、モジュール1Mでは、パターンと筐体との間にこれらが介在しない構成のモジュールに比べて、パターン121bと筐体11との間の耐電圧を向上させることができる。
 ところで、<2>で説明した接着剤を塗布する工程では、接着剤中に気泡や異物がある程度混入してしまう。従って、絶縁層124,126内には、ある程度気泡や異物が存在してしまうこととなる。
 一方、経路PA1,PA2中の絶縁層126内に相当する部分PA11,PA21の耐圧は、絶縁層126内に存在する気泡や異物の体積の平均値に依存する。具体的には、気泡や異物の体積の平均値が小さいほど、部分PA11,PA21における耐圧が向上する傾向にある。同様に、経路PA3中の絶縁層124内に相当する部分PA31の耐圧も、絶縁層124内に存在する気泡や異物の体積の平均値が小さいほど向上する傾向にある。
ここで、発明者らは、モジュール1Mについてパターン121bと筐体11との間に6kVの電圧を印加する場合において、絶縁層124,126内に存在する気泡や異物の体積の平均値が直径1mmの球体の体積以下であれば絶縁破壊が生じないという知見を得ている。ここにおいて、パターン121bにおける絶縁基材121aの周縁側の端部121cに電界が集中し易くなっているが、絶縁層124,126内に存在する気泡や異物の体積の平均値を前述のように設定することで絶縁破壊が生じなかった。即ち、パターン121bにおける絶縁基材121aの周縁側の端部121cから絶縁層126内を経由して筐体11に至る経路で絶縁破壊は生じなかった。なお、絶縁層124,126内に存在する気泡や異物の体積測定には、例えば、周波数が10MHz乃至500MHzの範囲内にある超音波を用いた超音波顕微鏡(例えば、日立建機ファインテック製:HSAM220)を用いることができる。
 以上の知見から、絶縁層124,126内に存在する気泡や異物の体積の平均値は、直径1mmの球体の体積以下となっていることが好ましいと言える。この場合、モジュール1Mは、絶縁耐圧試験におけるIEC62688規格を満足し易くなる。
 また、超音波顕微鏡による気泡や異物の検出限界を利用すれば、絶縁層124,126内に存在する気泡や異物の体積の平均値を管理することができる。
 例えば、数10MHzの超音波を用いる超音波顕微鏡では、絶縁層124,126内に存在する気泡や異物が検出できなかったとする。この場合、絶縁層124,126内には、少なくとも直径100μmの球体の体積以下の気泡や異物が存在しないと判定できる。
 また、数100MHzの超音波を用いる超音波顕微鏡では、絶縁層124,126内に存在する気泡や異物が検出できなかったとする。この場合、絶縁層124,126内には、少なくとも直径10μmの球体の体積以下の気泡や異物が存在しないと判定できる。
 そこで、絶縁層124,126内に存在する気泡や異物の体積の平均値を、例えば、直径100μmの球体の体積以下、或いは、直径10μmの球体の体積以下に設定すればよい。この場合、超音波顕微鏡による気泡や異物の検出可否に基づいて、絶縁層124,126内に存在する気泡や異物の大きさの管理が可能となる。
<補足>
 次に、モジュール1Mにおけるフレキシブルプリント配線板12の構造的特徴について説明する。
 図5は、モジュール1Mについて、一次集光部13を取り外した状態を示す平面図である。なお、図5において発電素子122は図示を省略している。
 フレキシブルプリント配線板12は、12本の発電用配線板12Aと、発電用配線板12Aとは別体の2本の接続用配線板12Bp,12Bnとからなる。
 図6は、モジュール1Mを示し、図5におけるAR3部分の拡大図である。
 発電用配線板12Aは、略U字状に形成されている。発電用配線板12Aには、その延伸方向に沿って複数(図6では16個)の発電素子122が実装されている。これらの複数の発電素子122は、互いに直列に接続されている。1個の発電素子122で発生する電圧が2.5Vとすれば、1つの発電用配線板12Aは、40V(2.5V×16)の電圧を発生させることができる。この電圧は、発電用配線板12Aの延伸方向における両端部それぞれに設けられた+側電極Pおよび-側電極Nの間に生じる。
 そして、接続用配線板12Bpは、複数の発電用配線板12Aそれぞれの+側電極P同士を電気的に接続している。また、接続用配線板12Bnは、複数の発電用配線板12Aそれぞれの-側電極N同士を電気的に接続している。
 ところで、例えば、フレキシブルプリント配線板等の製造工程においては、製造対象物が小型化するほど、大型の製造装置等が不要となるため、製造容易化が図れる。
 これに対して、本実施形態に係るフレキシブルプリント配線板12は、発電用配線板12Aおよび接続用配線板12Bp,12Bnを個別に作製してから、これらを互いに接続することで完成する。そして、図5に示すように、発電用配線板12Aおよび接続用配線板12Bp,12Bnは、フレキシブルプリント配線板12の一部を構成するものであって、フレキシブルプリント配線板12全体に比べて小さい。
 従って、本実施形態では、発電用配線板12Aおよび接続用配線板12Bp,12Bnを個別に作製することができるので、製造容易化を図ることができる。
<変形例>
(1)実施形態では、集光型太陽光発電モジュール1Mの例について説明したが、発電モジュールは必ずしも集光型に限定されるものではなく、非集光型、即ち、集光部を備えない構成であってもよい。
(2)実施の形態では、絶縁層124,126が樹脂材料からなる例について説明したが、絶縁層124,126を構成する材料は必ずしも樹脂材料に限定されるものではない。例えば、ガラスやセラミックス等の絶縁性材料から構成されるものであってもよい。
 なお、今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。

Claims (11)

  1.  金属からなる器状の筐体と、
     前記筐体の内面に接した状態で設けられたフレキシブルプリント配線板とを備え、
     前記フレキシブルプリント配線板は、
     前記筐体の前記内面に接する第1絶縁層と、
     前記第1絶縁層上に設けられ且つ柔軟性を有する絶縁基材と、
     導体からなり且つ前記絶縁基材上に設けられたパターンと、
     前記パターン上に実装された複数の発電素子と、
     前記パターン表面における、前記複数の発電素子が実装された部分を除く部分全体を覆うように設けられた第2絶縁層とを有し、
     前記第1絶縁層が、樹脂材料から形成され、前記第1絶縁層に存在する気泡または異物の体積の平均値が、前記パターンと前記筐体との間に所定の電圧以下の電圧を印加した場合、前記パターンから前記第1絶縁層内のいずれかを経由して前記筐体に至る第1経路で絶縁破壊が生じない第1体積以下であるか、
     もしくは前記第2絶縁層が、樹脂材料から形成され、前記第2絶縁層に存在する気泡または異物の体積の平均値が、前記パターンと前記筐体との間に所定の電圧以下の電圧を印加した場合、前記パターンから前記第2絶縁層内のいずれかを経由して前記筐体に至る第2経路で絶縁破壊が生じない第2体積以下である
     ことを特徴とする太陽光発電モジュール。
  2.  前記フレキシブルプリント配線板は、更に、
     前記絶縁基材および前記パターンにおける前記複数の発電素子が実装された部分を除く部分全体の上方を覆うように設けられた被覆層を有し、
     前記第2絶縁層は、前記絶縁基材および前記パターンと前記被覆層との間に介在する
     ことを特徴とする請求項1記載の太陽光発電モジュール。
  3.  前記第2経路は、前記パターンにおける、前記絶縁基材の周縁側の端部から前記第2絶縁層内を経由して前記筐体に至る
     ことを特徴とする請求項1または請求項2記載の太陽光発電モジュール。
  4.  前記第1経路は、更に、前記絶縁基材内を経由する
     ことを特徴とする請求項1乃至3のいずれか1項に記載の太陽光発電モジュール。
  5.  前記第1体積および前記第2体積は、直径1mmの球体の体積以下である 
     ことを特徴とする請求項1乃至4のいずれか1項に記載の太陽光発電モジュール。
  6.  前記第1体積および前記第2体積は、直径100μmの球体の体積以下である
     ことを特徴とする請求項1乃至4のいずれか1項に記載の太陽光発電モジュール。
  7.  前記第1体積および前記第2体積は、直径10μmの球体の体積以下である
     ことを特徴とする請求項1乃至4のいずれか1項に記載の太陽光発電モジュール。 
  8.  前記絶縁基材は、リボン状である
     ことを特徴とする請求項1乃至7のいずれか1項に記載の太陽光発電モジュール。
  9.  前記フレキシブルプリント配線板は、
     少なくとも1つの発電素子を有する複数の発電用配線板と、
     複数の発電用配線板同士を電気的に接続する接続用配線板とからなる
     ことを特徴とする請求項1乃至8のいずれか1項に記載の太陽光発電モジュール。
  10.  前記絶縁基材の厚みは、10乃至100μmである
     ことを特徴とする請求項1乃至9のいずれか1項に記載の太陽光発電モジュール。
  11.  請求項1乃至10のいずれか1項に記載の太陽光発電モジュールを複数個集合させてなることを特徴とする太陽光発電パネル。
PCT/JP2014/056489 2013-03-26 2014-03-12 太陽光発電モジュールおよび太陽光発電パネル WO2014156649A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480002218.9A CN104584236B (zh) 2013-03-26 2014-03-12 光伏模块和光伏面板
US14/422,869 US9837558B2 (en) 2013-03-26 2014-03-12 Photovoltaic module and photovoltaic panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-063681 2013-03-26
JP2013063681A JP6131667B2 (ja) 2013-03-26 2013-03-26 太陽光発電モジュールおよび太陽光発電パネル

Publications (1)

Publication Number Publication Date
WO2014156649A1 true WO2014156649A1 (ja) 2014-10-02

Family

ID=51623632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056489 WO2014156649A1 (ja) 2013-03-26 2014-03-12 太陽光発電モジュールおよび太陽光発電パネル

Country Status (5)

Country Link
US (1) US9837558B2 (ja)
JP (1) JP6131667B2 (ja)
CN (1) CN104584236B (ja)
TW (1) TWI617778B (ja)
WO (1) WO2014156649A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289900A (ja) * 2001-03-23 2002-10-04 Canon Inc 集光型太陽電池モジュール及び集光型太陽光発電システム
WO2008050392A1 (fr) * 2006-10-24 2008-05-02 Daido Steel Co., Ltd Appareil photovoltaïque à concentration
WO2010027083A1 (ja) * 2008-09-08 2010-03-11 シャープ株式会社 太陽電池、集光型太陽光発電モジュール、および、太陽電池製造方法
WO2011065975A1 (en) * 2009-11-25 2011-06-03 Banyan Energy, Inc. Solar module construction
WO2013051426A1 (ja) * 2011-10-03 2013-04-11 住友電気工業株式会社 集光型太陽光発電モジュール、集光型太陽光発電パネル、及び、集光型太陽光発電モジュール用フレキシブルプリント配線板

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5869219A (en) * 1997-11-05 1999-02-09 Taiwan Semiconductor Manufacturing Co. Ltd. Method for depositing a polyimide film
JP2003174179A (ja) 2001-12-07 2003-06-20 Daido Steel Co Ltd 集光型太陽光発電装置
JP4794402B2 (ja) 2006-09-29 2011-10-19 シャープ株式会社 太陽電池および集光型太陽光発電ユニット

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289900A (ja) * 2001-03-23 2002-10-04 Canon Inc 集光型太陽電池モジュール及び集光型太陽光発電システム
WO2008050392A1 (fr) * 2006-10-24 2008-05-02 Daido Steel Co., Ltd Appareil photovoltaïque à concentration
WO2010027083A1 (ja) * 2008-09-08 2010-03-11 シャープ株式会社 太陽電池、集光型太陽光発電モジュール、および、太陽電池製造方法
WO2011065975A1 (en) * 2009-11-25 2011-06-03 Banyan Energy, Inc. Solar module construction
WO2013051426A1 (ja) * 2011-10-03 2013-04-11 住友電気工業株式会社 集光型太陽光発電モジュール、集光型太陽光発電パネル、及び、集光型太陽光発電モジュール用フレキシブルプリント配線板

Also Published As

Publication number Publication date
JP6131667B2 (ja) 2017-05-24
CN104584236A (zh) 2015-04-29
TW201447197A (zh) 2014-12-16
TWI617778B (zh) 2018-03-11
CN104584236B (zh) 2016-08-31
US9837558B2 (en) 2017-12-05
JP2014192195A (ja) 2014-10-06
US20150243797A1 (en) 2015-08-27

Similar Documents

Publication Publication Date Title
JP5814725B2 (ja) 集光型太陽光発電モジュール及び集光型太陽光発電パネル
JP4875124B2 (ja) 太陽電池モジュール
US10680127B2 (en) Power generation circuit unit
JP5948890B2 (ja) 集光型太陽光発電モジュール、集光型太陽光発電パネル、及び、集光型太陽光発電モジュール用フレキシブルプリント配線板
CN104779901A (zh) 具有集成逆变器的太阳能电池组件
JP6482939B2 (ja) 太陽電池モジュール
CN107078686B (zh) 包括外部旁路二极管的光伏模块
JP2014127552A (ja) 太陽電池
JP5232213B2 (ja) 裏面電極型太陽電池セル、太陽電池モジュール、太陽電池ウェハおよび太陽電池モジュールの製造方法
US10284104B2 (en) Integral inverter and solar cell module including the same
JPWO2018051658A1 (ja) 太陽電池モジュール
JP6131667B2 (ja) 太陽光発電モジュールおよび太陽光発電パネル
US9935226B2 (en) Photovoltaic module with simplified connection
JP6318726B2 (ja) 集光型太陽光発電モジュール、集光型太陽光発電パネル及び集光型太陽光発電モジュール用フレキシブルプリント配線板
JP2013153076A (ja) 集光型太陽光発電モジュール及び集光型太陽光発電パネル
JP2014127553A (ja) 太陽電池及び太陽電池の製造方法
CN105453274B (zh) 聚光光伏模块、聚光光伏面板和用于聚光光伏模块的柔性印刷电路
JP5816823B2 (ja) 太陽電池モジュール及びその製造方法
JP6086181B2 (ja) 太陽光発電モジュール、太陽光発電パネル、および太陽光発電モジュール用フレキシブルプリント配線板
JP2014127551A (ja) 太陽電池
JP2005123370A (ja) 電力変換器一体型太陽電池モジュール及びその製造方法
WO2015156028A1 (ja) フレキシブルプリント配線板並びにこれを用いた集光型太陽光発電モジュール及び集光型太陽光発電パネル
JP6026821B2 (ja) 光電変換装置、光電変換モジュールおよび光電変換装置用部品
JP2006278708A (ja) 太陽電池モジュール及びその製造方法
US20190221680A1 (en) Solar cell module including terminal box and method of manufacturing solar cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14775091

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14422869

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14775091

Country of ref document: EP

Kind code of ref document: A1