WO2014156577A1 - 強化ガラス基板及びその製造方法 - Google Patents

強化ガラス基板及びその製造方法 Download PDF

Info

Publication number
WO2014156577A1
WO2014156577A1 PCT/JP2014/056116 JP2014056116W WO2014156577A1 WO 2014156577 A1 WO2014156577 A1 WO 2014156577A1 JP 2014056116 W JP2014056116 W JP 2014056116W WO 2014156577 A1 WO2014156577 A1 WO 2014156577A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
less
tempered glass
main surface
film
Prior art date
Application number
PCT/JP2014/056116
Other languages
English (en)
French (fr)
Inventor
隆 村田
浩佑 川本
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to KR1020157007515A priority Critical patent/KR102123253B1/ko
Priority to CN201480002752.XA priority patent/CN104736496A/zh
Priority to US14/651,386 priority patent/US20150329418A1/en
Publication of WO2014156577A1 publication Critical patent/WO2014156577A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/02Surface treatment of glass, not in the form of fibres or filaments, by coating with glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/18Compositions for glass with special properties for ion-sensitive glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/08Doped silica-based glasses containing boron or halide
    • C03C2201/10Doped silica-based glasses containing boron or halide containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/20Doped silica-based glasses containing non-metals other than boron or halide
    • C03C2201/28Doped silica-based glasses containing non-metals other than boron or halide containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/32Doped silica-based glasses containing metals containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/212TiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/213SiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/218V2O5, Nb2O5, Ta2O5
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/23Mixtures
    • C03C2217/231In2O3/SnO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/154Deposition methods from the vapour phase by sputtering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/266Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension of base or substrate

Definitions

  • the present invention relates to a tempered glass substrate and a method for manufacturing the same, and more particularly to a tempered glass substrate suitable for a mobile phone, a digital camera, a PDA (mobile terminal), a touch panel display, and the like, and a method for manufacturing the same.
  • Glass substrates used for these applications are required to have high mechanical strength, and to be thin and lightweight. Under such circumstances, some devices use glass substrates that have been chemically strengthened by ion exchange processing or the like, that is, tempered glass substrates (see Patent Document 1 and Non-Patent Document 1).
  • internal tensile stress value [MPa] (compressive stress value of main surface [MPa] ⁇ stress depth of main surface [ ⁇ m]) / (plate thickness [ ⁇ m] ⁇ stress depth of main surface [ ⁇ m] ] ⁇ 2).
  • the present invention has been made in view of the above circumstances, and its technical problem is to devise a tempered glass substrate capable of achieving both high strength and thinning, and a method for manufacturing the same.
  • the present inventors diligently studied the distribution of compressive stress strain formed inside the tempered glass substrate. It has been found that the probability of breakage starting from the end face is high, and in that case, the in-plane strength of the main surface of the tempered glass substrate is higher than the end face strength. Further, it has been found that deep scratches leading to breakage are easily formed on the end face of the tempered glass substrate, while deep scratches are hardly formed on the main surface.
  • the present inventors have made the strength of the tempered glass substrate higher by forming a stress distribution different between the main surface direction and the end surface direction of the tempered glass substrate while optimizing the internal tensile stress of the tempered glass substrate.
  • the present inventors have found that the thickness can be reduced, and propose as the present invention. That is, the tempered glass substrate of the present invention is characterized in that, in the tempered glass substrate having a compressive stress layer, the plate thickness is 1.5 mm or less, and the stress depth of the end face is larger than the stress depth of the main surface. .
  • main surface corresponds to the surface (front surface and back surface) in the thickness direction of the tempered glass substrate, and usually corresponds to the effective surface (for example, display surface and display surface in the case of display applications).
  • back side corresponds to the effective surface (for example, display surface and display surface in the case of display applications).
  • end surface corresponds to a surface other than the main surface, and generally refers to a side surface constituting the outer peripheral portion of the tempered glass substrate.
  • the “compressive stress value” and the “stress depth” can be calculated by observing the number of interference fringes and their intervals with a surface stress meter.
  • the tempered glass substrate of the present invention preferably has an unpolished main surface. Polishing the main surface of the tempered glass substrate makes it possible to make the stress depth of the end face larger than the stress depth of the main surface. However, in this method, scratches are formed on the main surface and mechanical strength of the tempered glass substrate is increased. It becomes difficult to maintain strength. In other words, if the main surface is not polished, the mechanical strength of the tempered glass substrate can be easily maintained and the production efficiency of the tempered glass substrate can be increased.
  • the tempered glass substrate of the present invention is preferably not etched on the main surface. If it does in this way, the manufacture efficiency of a tempered glass substrate can be raised.
  • the tempered glass substrate of the present invention preferably has a film on the main surface. If it does in this way, it will become easy to control the compressive stress value and stress depth of the main surface. Furthermore, the film can be effectively used as a functional film such as a conductive film or an antireflection film.
  • the tempered glass substrate of the present invention preferably has a film thickness of 5 to 1000 nm.
  • the tempered glass substrate of the present invention preferably contains any one of SiO 2 , Nb 2 O 5 , TiO 2 , and ITO (tin-doped indium oxide) as a film component.
  • the tempered glass substrate of the present invention preferably has an internal tensile stress value of 200 MPa or less.
  • the tempered glass substrate of the present invention has a glass composition in terms of mass% of SiO 2 45 to 75%, Al 2 O 3 1 to 30%, Na 2 O 0 to 20%, K 2 O 0 to 20%. % Is preferably contained.
  • the tempered glass substrate of the present invention has a main surface compressive stress value of 50 MPa or more, a main surface stress depth of 100 ⁇ m or less, an end face compressive stress value of 300 MPa or more, and an end face stress depth of It is preferable that it is 10 micrometers or more.
  • the tempered glass substrate of the present invention preferably has a density of 2.6 g / cm 3 or less.
  • Young's modulus refers to a value measured by a bending resonance method.
  • the tempered glass substrate of the present invention preferably has a Young's modulus of 67 GPa or more.
  • Young's modulus refers to a value measured by a bending resonance method.
  • the tempered glass substrate of the present invention is preferably used for a display.
  • the tempered glass substrate of the present invention is preferably used for a touch panel display.
  • the method for producing a tempered glass substrate of the present invention includes (1) a step of preparing a glass raw material to obtain a glass batch, and (2) melting the glass batch, and 1.5 mm of the obtained molten glass. The following steps to form a glass substrate, (3) a step of forming a film on the main surface of the glass substrate, and (4) an ion exchange treatment of the glass substrate having the film, and compression to the main surface and end face of the glass substrate Forming a stress layer and obtaining a tempered glass substrate.
  • the plate thickness is 1.5 mm or less, preferably 1.3 mm or less, 1.1 mm or less, 1.0 mm or less, 0.8 mm or less, 0.7 mm or less, 0.6 mm or less, It is 0.5 mm or less, 0.4 mm or less, 0.3 mm or less, or 0.2 mm or less, and particularly preferably 0.1 mm or less.
  • the plate thickness of the tempered glass substrate is smaller, the tempered glass substrate can be made lighter, and as a result, the device can be made thinner and lighter.
  • the stress depth of the main surface is too large, the internal tensile stress becomes too high and the tempered glass substrate may be self-destructed.
  • the stress depth of the main surface is too small, the tempered glass substrate tends to be damaged starting from polishing marks, handling scratches and the like. Therefore, it is necessary to regulate the stress depth of the main surface in consideration of the balance between the plate thickness and the mechanical strength.
  • the value of DT / DH is preferably 0.1 to 0.99, preferably 0.1 to 0.00. 7, 0.1 to 0.5, 0.1 to 0.45 or 0.15 to 0.45, particularly preferably 0.2 to 0.4. If the value of DT / DH is set to the above range, the stress depth of the end face is optimized, and the mechanical strength of the tempered glass substrate can be increased without unduly increasing the internal tensile stress.
  • the stress depth of the main surface is preferably 50 ⁇ m or less, 45 ⁇ m or less, 35 ⁇ m or less, 30 ⁇ m or less, 25 ⁇ m or less, 20 ⁇ m or less, or 15 ⁇ m or less, particularly preferably 10 ⁇ m or less. is there.
  • the upper limit range of the stress depth of the main surface is preferably 100 ⁇ m or less, 80 ⁇ m or less, 60 ⁇ m or less, 50 ⁇ m or less, or 45 ⁇ m or less, particularly preferably 35 ⁇ m or less
  • the lower limit range is preferably 5 ⁇ m or more, 10 ⁇ m or more, 15 ⁇ m or more, 20 ⁇ m or more, or 25 ⁇ m or more, and particularly preferably 30 ⁇ m or more.
  • the stress depth of the end face is preferably 10 ⁇ m or more, 15 ⁇ m or more, 20 ⁇ m or more, 25 ⁇ m or more, 30 ⁇ m or more, 35 ⁇ m or more, 40 ⁇ m or more, 45 ⁇ m or more, 50 ⁇ m or more, or 55 ⁇ m or more, and particularly preferably 60 ⁇ m or more. Deep scratches are likely to be formed on the end face during handling in the manufacturing process or during end face processing (chamfering). If the stress depth of the end face is less than 10 ⁇ m, the tempered glass substrate is likely to be damaged starting from these scratches, and it is difficult to increase the mechanical strength.
  • the compressive stress value of the main surface is preferably 50 MPa or more, 100 MPa or more, 200 MPa or more, 300 MPa or more, or 400 MPa or more, and particularly preferably 500 MPa or more.
  • the larger the compressive stress value of the main surface the higher the mechanical strength of the tempered glass substrate.
  • the upper limit of the compressive stress value on the main surface is preferably 900 MPa, and particularly preferably 800 MPa. In this way, it becomes easy to avoid a situation in which the internal tensile stress is unduly increased.
  • the compressive stress value of the end face is preferably 300 MPa or more, 400 MPa or more, 500 MPa or more, 600 MPa or more, 700 MPa or more, 800 MPa or more, or 900 MPa or more, and particularly preferably 1000 MPa or more.
  • the mechanical strength of a tempered glass substrate becomes high, so that the compressive stress value of an end surface is large.
  • the tempered glass substrate of the present invention preferably has a film on the main surface.
  • the stress depth of the end surface is reduced. It can be larger than the stress depth of the main surface.
  • any of SiO 2 , Nb 2 O 5 , TiO 2 , and ITO is included as a component of the film, and it is particularly preferable that SiO 2 is included.
  • the film is not limited to a single layer film, and may be a multilayer film. Furthermore, it is preferable to design a film having functions such as a conductive film and an antireflection film.
  • the lower limit of the film thickness is preferably 5 nm or more, 10 nm or more, 20 nm or more, 30 nm or more, 50 nm or more or 80 nm or more, particularly preferably 100 nm or more, and the upper limit is preferably 1000 nm or less, 800 nm or less or 600 nm. Or less, particularly preferably 400 nm or less. If the film thickness is too small, it is difficult to reduce the stress depth of the main surface. On the other hand, if the film thickness is too large, it takes a long time for film formation, and the stress depth of the main surface is too low, making it difficult to ensure the mechanical strength of the tempered glass substrate.
  • R CS When the ratio of (compressive stress value of main surface when film is formed on the entire main surface) / (compressive stress value of main surface when no film is formed) is R CS , R CS is preferably 1.2. Below, 1.1 or less, 1.0 or less, 0.9 or less, 0.8 or less, or 0.7 or less, particularly preferably 0.6 or less. Further, when the ratio of (stress depth of main surface when film is formed on the entire main surface) / (stress depth of main surface when film is not formed) is R DOL , R DOL is preferably Less than 1.0, 0.9 or less, 0.8 or less, 0.7 or less, 0.6 or less, 0.5 or less, or 0.4 or less, particularly preferably 0.3 or less. If it does in this way, it will become easy to reduce internal tensile stress appropriately.
  • sputtering sputtering, CVD, dip coating, etc.
  • the sputtering method is preferable from the viewpoint of film thickness control.
  • the membrane is to be used effectively as a functional membrane, it is not necessary to provide a separate step for removing the membrane after the ion exchange treatment. However, if it is desired to increase the in-plane strength of the main surface as much as possible, A separate step of removing the film may be provided after the treatment.
  • the tempered glass substrate of the present invention contains, as a glass composition, by mass%, SiO 2 45 to 75%, Al 2 O 3 1 to 30%, Na 2 O 0 to 20%, K 2 O 0 to 20%. It is preferable. The reason for limiting the content of each component is shown below. In addition, in description regarding a glass composition,% display points out the mass% except the case where there is particular notice.
  • SiO 2 is a component that forms a glass network.
  • the content of SiO 2 is preferably 45 to 75%, 50 to 75% or 52 to 65%, particularly preferably 52 to 63%. If the content of SiO 2 is less than 45%, the thermal expansion coefficient becomes too high, and the thermal shock resistance tends to decrease, it becomes difficult to vitrify, and the devitrification resistance tends to decrease. On the other hand, when the content of SiO 2 is more than 75%, the meltability and moldability are liable to be lowered, or the thermal expansion coefficient is too low, and it is difficult to match the thermal expansion coefficient of the surrounding materials.
  • Al 2 O 3 is a component that increases heat resistance, ion exchange performance, and Young's modulus.
  • the content of Al 2 O 3 is preferably 1 to 30%. When the content of Al 2 O 3 is too small, resulting is a possibility which can not be sufficiently exhibited ion exchange performance. On the other hand, when the content of Al 2 O 3 is too large, the acid resistance is likely to decrease. Therefore, it is difficult to achieve both ion exchange performance and acid resistance by adjusting the content of Al 2 O 3 . However, when a film is formed on the main surface, the ion exchange performance can be enhanced by increasing the amount of Al 2 O 3 while maintaining acid resistance by the film.
  • the content of Al 2 O 3 is more than 30%, devitrified crystals are likely to precipitate on the glass, or the thermal expansion coefficient becomes too low, making it difficult to match the thermal expansion coefficient of the surrounding materials. If the content of Al 2 O 3 is more than 30%, the high temperature viscosity becomes higher, there is a possibility that the meltability decreases.
  • the preferred range for Al 2 O 3 is that the upper limit is 25% or less, 23% or less, 22% or less, 21% or less, or 20% or less, and the lower limit is 1.5% or more, 3% or more, and 5%. Or more, 10% or more, 11% or more, 12% or more, 14% or more, 15% or more, 16.5% or more, 17% or more, or 18% or more.
  • Na 2 O is an ion exchange component, and is a component that lowers the high-temperature viscosity to improve meltability and moldability and improve devitrification resistance.
  • the content of Na 2 O is preferably 0-20%, 7-20%, 7-18%, 8-16%, 10-16% or 12-16%, particularly preferably 12-15%. is there.
  • the thermal expansion coefficient becomes too high, the thermal shock resistance is lowered, and it becomes difficult to match the thermal expansion coefficient of the surrounding materials.
  • the content of Na 2 O is greater than 20%, is impaired balance of components glass composition, devitrification resistance conversely tends to decrease.
  • the strain point is excessively lowered, the heat resistance may be lowered, or the ion exchange performance may be lowered.
  • K 2 O has an effect of promoting ion exchange, and has an effect of increasing the stress depth among alkali metal oxides.
  • K 2 O is a component that lowers the high-temperature viscosity to improve meltability and moldability, reduce the crack generation rate, and improve devitrification resistance.
  • the content of K 2 O is preferably 0 to 20%, 0 to 10%, 0 to 8%, 0 to 5%, 0.1 to 4% or 0.1 to 2%, particularly preferably 0. .5 to less than 2%.
  • the content of K 2 O is more than 20%, the thermal expansion coefficient becomes too high, the thermal shock resistance is lowered, and it becomes difficult to match the thermal expansion coefficient of the surrounding materials. Further, when the content of K 2 O is more than 20%, is impaired balance of components glass composition, devitrification resistance conversely tends to decrease.
  • the value of the mass ratio (Al 2 O 3 + K 2 O) / Na 2 O is preferably 0.1 to 6.5, 0.1 to 5, 0.2 to 3, 0.2 to 2.5, 0 .4 to 2 or 0.7 to 1.7, particularly preferably 1.0 to 1.5. In this way, the stress depth can be increased by the ion exchange process. If the value of the mass ratio (Al 2 O 3 + K 2 O) / Na 2 O is smaller than 0.1, it is difficult to increase the stress depth.
  • B 2 O 3 is a component that lowers the liquidus temperature, high-temperature viscosity, and density.
  • the content of B 2 O 3 is preferably 0 to 7%, 0 to 5% or 0.1 to 3%, particularly preferably 0.5 to 1%. If the content of B 2 O 3 is more than 7%, the ion exchange treatment may cause burns on the main surface, the water resistance will decrease, the low-temperature viscosity will decrease, and the compressive stress value and stress depth will decrease. There is a case.
  • Li 2 O is an ion exchange component, is a component that lowers the high-temperature viscosity, improves meltability and moldability, and further increases the Young's modulus.
  • the content of Li 2 O is preferably 0-20%, 0-10%, 0-8%, 0-6%, 0-4%, 0-3.5%, 0-3%, 0-2 % Or 0 to 1%, particularly preferably 0 to 0.1%. If the content of Li 2 O is more than 20%, the glass tends to devitrify, the liquid phase viscosity tends to decrease, the thermal expansion coefficient becomes too high, and the thermal shock resistance decreases, It becomes difficult to match the thermal expansion coefficient of the material.
  • Li 2 O when the content of Li 2 O is more than 20%, too lowered strain point, it lowered heat resistance, rather the ion exchange performance may deteriorate.
  • its content is preferably 0.001% or more, particularly preferably 0.01% or more.
  • Li 2 O + Na 2 O + K 2 O Li 2 O, Na 2 O and K 2 O in total amount
  • the content of Li 2 O + Na 2 O + K 2 O is preferably 5% or more, 10% or more, 13% or more, or 15% or more, and particularly preferably 17% or more.
  • the content of Li 2 O + Na 2 O + K 2 O is too large, the glass tends to be devitrified, the thermal expansion coefficient becomes too high, the thermal shock resistance decreases, and the heat of the surrounding materials It becomes difficult to match the expansion coefficient.
  • the content of Li 2 O + Na 2 O + K 2 O is preferably 30% or less or 22% or less, and particularly preferably 20% or less.
  • MgO is a component that lowers the high-temperature viscosity and increases meltability, moldability, strain point, and Young's modulus. MgO has a relatively large effect of improving ion exchange performance among alkaline earth metal oxides. However, when there is too much content of MgO, a density, a thermal expansion coefficient, and a crack generation rate will become high, or it will become easy to devitrify glass. Therefore, the content of MgO is preferably 10% or less, 9% or less, 6% or less, or 0.1 to 4%, particularly preferably 1 to 3%.
  • CaO is a component that lowers the high-temperature viscosity and increases meltability, moldability, strain point, and Young's modulus.
  • the CaO content is preferably 10% or less, 8% or less, 5% or less, 3% or less, 1% or less, less than 1%, or 0.5% or less, and particularly preferably 0.1% or less. It is.
  • SrO is a component that lowers the high-temperature viscosity and increases meltability, moldability, strain point, and Young's modulus. However, if the SrO content is too large, the density, thermal expansion coefficient and crack generation rate increase, the glass tends to devitrify, and the ion exchange performance tends to decrease. Therefore, the content of SrO is preferably 10% or less, 8% or less, 5% or less, 3% or less, 1% or less, or 0.8% or less, particularly preferably 0.5% or less, Most preferably, it does not substantially contain SrO.
  • “substantially does not contain SrO” refers to a case where the content of SrO in the glass composition is 0.2% or less.
  • BaO is a component that lowers the high-temperature viscosity and increases meltability, moldability, strain point, and Young's modulus.
  • the content of BaO is preferably 3% or less, 2.5% or less, 2% or less, 1% or less, or 0.8% or less, particularly preferably 0.5% or less,
  • substantially does not contain BaO refers to a case where the content of BaO in the glass composition is 0.1% or less.
  • the content of MgO + CaO + SrO + BaO is preferably 0 to 16%, 0 to 10%, or 0 to 6%, particularly preferably 0 to 3%.
  • the value of the mass ratio (MgO + CaO + SrO + BaO) / (Li 2 O + Na 2 O + K 2 O) is preferably 0.5 or less, 0.4 or less, 0.3 or less or 0.2 or less, particularly preferably 0.8. 1 or less.
  • ZnO has the effect of increasing the compressive stress value.
  • ZnO also has the effect of reducing the high temperature viscosity and increasing the Young's modulus.
  • the content of ZnO is preferably 0 to 15%, 0 to 10%, 0 to 2%, or 0 to 0.5%, particularly preferably 0 to 0.1%.
  • TiO 2 is a component that enhances the ion exchange performance, but if its content is too large, the glass tends to be devitrified or colored. Therefore, the content of TiO 2 is preferably 0 to 10%, 0 to 5%, or 0 to 1%, particularly preferably 0 to 0.5%, and substantially no TiO 2 is contained. It is more preferable. Here, “substantially does not contain TiO 2 ” refers to the case where the content of TiO 2 in the glass composition is 0.1% or less.
  • ZrO 2 is a component that increases the strain point, Young's modulus, and ion exchange performance, and is a component that decreases high temperature viscosity. It also has the effect of increasing the viscosity near the liquidus temperature. However, if the content of ZrO 2 is too large, the devitrification resistance may be extremely lowered. Therefore, the content of ZrO 2 is preferably 0 to 10%, 0 to 9%, 0 to 7%, 0 to 5%, 0 to 3% or 0 to 1%, particularly preferably 0 to 0. Less than 1%.
  • P 2 O 5 is a component that enhances ion exchange performance, and in particular, a component that increases the stress depth.
  • the content of P 2 O 5 is preferably 8% or less, 5% or less, 4% or less, or 3% or less, and particularly preferably 2% or less. If the content of P 2 O 5 is too large, the water resistance tends to decrease.
  • membrane is formed in the main surface and the protective function by a film
  • P 2 O 5 is introduced its content is preferably 0.1% or more or 0.5% or more, and particularly preferably 1% or more.
  • As 2 O 3 and F have a clarification effect, but may have an adverse effect on the environment. Therefore, it is preferable not to use them as much as possible, and it is more preferable not to contain them as much as possible.
  • Sb 2 O 3 is less toxic than As 2 O 3 , but its use may be restricted from an environmental point of view, and it may be preferable not to contain it substantially. In consideration of the environmental viewpoint and the clarification effect, it is preferable that SnO 2 is contained in an amount of 0.01 to 3% (preferably 0.05 to 1%) as a clarifier.
  • substantially not containing As 2 O 3 refers to a case where the content of As 2 O 3 in the glass composition is 0.1% or less.
  • substantially no F refers to the case where the F content in the glass composition is 0.05% or less.
  • substantially no Sb 2 O 3 refers to the case where the content of Sb 2 O 3 in the glass composition is 0.1% or less.
  • Sb 2 O 3 and SO 3 have a great effect of preventing a decrease in transmittance among the clarifying agents. Therefore, when used for applications requiring high transmittance, the content of Sb 2 O 3 + SO 3 (total amount of Sb 2 O 3 and SO 3 ) is preferably 0.001 to 5%.
  • Transition metal elements having a coloring action such as Co, Ni, and Cu may reduce the transmittance of the tempered glass substrate.
  • the content of the transition metal oxide is preferably 0.5% or less or 0.1% or less, and particularly preferably 0.05% or less.
  • Rare earth oxides such as Nd 2 O 5 and La 2 O 3 are components that increase the Young's modulus. However, the raw material cost is high, and when it is introduced in a large amount, the devitrification resistance tends to decrease. Therefore, the content of the rare earth oxide is preferably 3% or less, 2% or less, or 1% or less, particularly preferably 0.5% or less, and substantially no rare earth oxide is contained. Most preferred. Here, “substantially no rare earth oxide” refers to the case where the content of the rare earth oxide in the glass composition is 0.1% or less.
  • PbO is an environmentally hazardous substance, it is preferable that PbO is not substantially contained.
  • substantially no PbO refers to a case where the content of PbO in the glass composition is 0.1% or less.
  • a preferable glass composition range can be obtained by appropriately selecting a suitable content range of each component.
  • a suitable content range of each component (1) by mass%, SiO 2 45-75%, Al 2 O 3 1-25%, Li 2 O 0-9%, Na 2 O 7-20%, K 2 O 0-8%, Substantially free of As 2 O 3 , F, PbO, (2) By mass%, SiO 2 45-75%, Al 2 O 3 3-25%, Li 2 O 0-3.5%, Na 2 O 7-20%, K 2 O 0-8%
  • the mass ratio (Al 2 O 3 + K 2 O) / Na 2 O is 0.1 to 3, and substantially does not contain As 2 O 3 , F, or PbO.
  • the tempered glass substrate of the present invention preferably has the following glass characteristics.
  • Density is preferably 2.8 g / cm 3 or less, 2.7 g / cm 3 or less, 2.6 g / cm 3 or less, 2.57 g / cm 3 or less, 2.55 g / cm 3 or less, 2.5 g / cm 3 or less, or 2.45 g / cm 3 or less, particularly preferably 2.4 g / cm 3 or less.
  • the strain point is preferably 500 ° C or higher, 510 ° C or higher, 520 ° C or higher, 530 ° C or higher, 540 ° C or higher, 550 ° C or higher, or 560 ° C or higher, and particularly preferably 570 ° C or higher.
  • the “strain point” refers to a value measured based on the method of ASTM C336. The strain point tends to increase if the content of alkaline earth metal oxide, Al 2 O 3 , ZrO 2 , P 2 O 5 in the glass composition is increased or the content of alkali metal oxide is decreased. There is.
  • the temperature at a high temperature viscosity of 10 2.5 dPa ⁇ s is preferably 1700 ° C. or lower, 1600 ° C. or lower, 1560 ° C. or lower, 1500 ° C. or lower, 1450 ° C. or lower, or 1420 ° C. or lower, particularly preferably 1400 ° C. or lower.
  • the lower the temperature at a high temperature viscosity of 10 2.5 dPa ⁇ s the less the burden on glass manufacturing equipment such as a melting kiln, and the higher the bubble quality of the glass substrate. That is, the lower the temperature at a high temperature viscosity of 10 2.5 dPa ⁇ s, the easier it is to reduce the manufacturing cost of the glass substrate.
  • temperature at a high temperature viscosity of 10 2.5 dPa ⁇ s refers to a value measured by a platinum ball pulling method.
  • the temperature at the high temperature viscosity of 10 2.5 dPa ⁇ s corresponds to the melting temperature of the glass.
  • the thermal expansion coefficient is preferably 40 to 110 ⁇ 10 ⁇ 7 / ° C., 70 to 105 ⁇ 10 ⁇ 7 / ° C., 75 to 100 ⁇ 10 ⁇ 7 / ° C. or 80 to 100 ⁇ 10 ⁇ 7 / ° C., in particular It is preferably 80 to 90 ⁇ 10 ⁇ 7 / ° C.
  • the thermal expansion coefficient refers to a value obtained by measuring an average value in a temperature range of 30 to 380 ° C. using a dilatometer.
  • the Young's modulus is preferably 67 GPa or more, 68 GPa or more, 70 GPa or more, or 71 GPa or more, and particularly preferably 73 GPa or more.
  • the Young's modulus is higher, the tempered glass substrate is less likely to bend, and in a device such as a touch panel display, when the display is pressed with a pen or the like, the liquid crystal element or the like inside the device is less likely to be pressed. As a result, display defects are unlikely to occur on the display.
  • the Young's modulus is too high, when the tempered glass substrate is deformed by being pushed with a pen or the like, the stress generated by the deformation becomes high, which may cause damage.
  • the Young's modulus is preferably 100 GPa or less, 95 GPa or less, 90 GPa or less, 85 GPa or less, or 80 GPa or less, and particularly preferably 78 GPa or less.
  • the specific Young's modulus is preferably 27 GPa / (g / cm 3 ) or more, 28 GPa / (g / cm 3 ) or more, or 29 GPa / (g / cm 3 ) or more, and particularly preferably 30 GPa / (g / cm 3 ). That's it.
  • the higher the specific Young's modulus the more difficult the tempered glass substrate bends due to its own weight. As a result, when the tempered glass substrate is stored in a cassette or the like, the clearance between the tempered glass substrates can be narrowed to accommodate the tempered glass substrate, and the manufacturing efficiency of the tempered glass substrate and the device can be easily improved.
  • Liquid phase temperature is preferably 1200 ° C. or lower, 1100 ° C. or lower, 1050 ° C. or lower, 1000 ° C. or lower, 930 ° C. or lower, or 900 ° C. or lower, particularly preferably 880 ° C. or lower.
  • the “liquid phase temperature” refers to a temperature gradient after pulverizing glass, passing through a standard sieve 30 mesh (a sieve opening of 500 ⁇ m), and putting the glass powder remaining in 50 mesh (a sieve opening of 300 ⁇ m) into a platinum boat. It means a value obtained by measuring the temperature at which crystals are deposited while being kept in a furnace for 24 hours.
  • the liquid phase viscosity is preferably 10 4.0 dPa ⁇ s or more, 10 4.3 dPa ⁇ s or more, 10 4.5 dPa ⁇ s or more, 10 5.0 dPa ⁇ s or more, 10 5.5 dPa ⁇ s or more, 10 5.7 dPa ⁇ s or more, or 10 It is 5.9 dPa ⁇ s or more, and particularly preferably 10 6.0 dPa ⁇ s or more.
  • liquid phase viscosity refers to a value obtained by measuring the viscosity of glass at the liquid phase temperature by a platinum ball pulling method.
  • the manufacturing method of the tempered glass substrate of the present invention includes (1) a step of preparing a glass raw material to obtain a glass batch, and (2) melting the glass batch, and converting the obtained molten glass into a glass substrate of 1.5 mm or less. A step of forming, (3) a step of forming a film on the main surface of the glass substrate, and (4) an ion exchange treatment of the glass substrate having the film to form a compressive stress layer on the main surface and end face of the glass substrate. And a step of obtaining a tempered glass substrate.
  • the technical features (glass composition, glass characteristics, etc.) of the method for producing a tempered glass substrate of the present invention the description of the above-described portions is omitted for convenience.
  • the overflow down draw method is a method in which molten glass is overflowed from both sides of a heat-resistant bowl-shaped structure, and the overflowed molten glass is stretched and formed downward while joining at the lower end of the bowl-shaped structure. This is a method of molding.
  • the structure and material of the bowl-shaped structure are not particularly limited as long as desired dimensions and surface quality can be realized.
  • the method of applying force when stretching downward is not particularly limited.
  • a method may be adopted in which a heat-resistant roll having a sufficiently large width is rotated and stretched in contact with the glass, or a plurality of pairs of heat-resistant rolls are provided only near the edge of the glass. You may employ
  • various forming methods such as a float method, a slot down method, a redraw method, a rollout method, and a press method can be employed.
  • the manufacturing method of the tempered glass substrate of this invention has the process of ion-exchange-processing with respect to a glass substrate, forming a compressive-stress layer in the main surface and end surface of a glass substrate, and obtaining a tempered glass substrate.
  • the ion exchange treatment is a method of introducing alkali ions having a large ion radius into the glass surface at a temperature below the strain point of the glass substrate.
  • the conditions for the ion exchange treatment are not particularly limited, and may be determined in consideration of the viscosity characteristics of the glass substrate. In particular, when the Na component in the glass composition is ion-exchanged with K ions in the KNO 3 molten salt, the compressive stress layer can be efficiently formed. Note that the ion exchange treatment has an advantage that the tempered glass substrate is not easily broken even if the tempered glass substrate is cut after the ion exchange treatment, unlike a physical tempering method such as an air cooling tempering method.
  • the glass substrate in KNO 3 molten salt at 350 to 500 ° C. for 2 to 24 hours. If it does in this way, a compression stress layer can be efficiently formed in a glass substrate.
  • the method for producing a tempered glass substrate of the present invention does not include a step of removing the film after the ion exchange treatment of the glass substrate having the film.
  • the film can be effectively used as a functional film such as a conductive film or an antireflection film.
  • the production efficiency of the tempered glass substrate can be increased.
  • the membrane after the ion exchange treatment may reduce the in-plane strength of the main surface. In this case, such a situation can be accurately prevented by providing a separate process for removing the membrane after the ion exchange treatment. Note that in the step of removing the film, the film may be completely removed, but the above effect can be obtained even if the film is partially removed.
  • Etching is preferred as the step of removing the film.
  • a solution containing F it is particularly preferable to etch the SiO 2 film with HF solution. In this way, the film can be removed accurately while increasing the in-plane strength of the main surface.
  • the end face When etching the film, the end face may be protected with a resin or the like so that the end face is not etched. In this way, it becomes easy to regulate the value of DT / DH within a predetermined range.
  • the end face when the film is etched, the end face may be etched at the same time. In this way, since the crack source existing on the end face is reduced, the end face strength can be increased.
  • Tables 1 and 2 show examples of tempered glass materials (sample Nos. 1 to 20).
  • Each sample was prepared as follows. First, glass raw materials were prepared so as to have the glass compositions shown in Tables 1 and 2, and a glass batch was prepared. Then, the glass batch was put into a platinum pot and melted at 1600 ° C. for 8 hours to obtain a molten glass. . Next, the molten glass was poured out on the carbon plate and formed into a glass substrate. Various characteristics were evaluated about the obtained glass substrate.
  • the density is a value measured by the well-known Archimedes method.
  • strain point Ps and the annealing point Ta are values measured based on the method of ASTM C336.
  • the softening point Ts is a value measured based on the method of ASTM C338.
  • the temperature at high temperature viscosity of 10 4.0 dPa ⁇ s, 10 3.0 dPa ⁇ s, 10 2.5 dPa ⁇ s was measured by a well-known platinum ball pulling method.
  • the thermal expansion coefficient ⁇ is a value obtained by measuring an average thermal expansion coefficient at 30 to 380 ° C. using a dilatometer.
  • the liquid phase temperature TL is obtained by crushing a glass substrate, passing through a standard sieve 30 mesh (a sieve opening of 500 ⁇ m), and putting glass powder remaining in a 50 mesh (a sieve opening of 300 ⁇ m) into a platinum boat, and putting it in a temperature gradient furnace. This is a value obtained by measuring the temperature at which the crystals are deposited while maintaining the time.
  • the liquid phase viscosity log ⁇ atTL refers to a value obtained by measuring the viscosity of the glass at the liquid phase temperature TL by a platinum ball pulling method.
  • the Young's modulus is a value measured by the resonance method.
  • the specific Young's modulus is a value obtained by dividing Young's modulus by density.
  • Sample No. 1 to 20 had a density of 2.48 g / cm 3 or less, a Young's modulus of 69 GPa or more, and a thermal expansion coefficient of 78 to 96 ⁇ 10 ⁇ 7 / ° C. Furthermore, sample no. 1 to 20 had a liquidus viscosity of 10 5.1 dPa ⁇ s or higher and a temperature at a high temperature viscosity of 10 2.5 dPa ⁇ s of 1653 ° C. or lower.
  • the glass composition is microscopically different in the surface layer between the unreinforced glass substrate and the tempered glass substrate, the glass composition is not substantially different when viewed as a whole. Therefore, characteristics such as density, viscosity, and Young's modulus are not substantially different between the untempered glass substrate and the tempered glass substrate.
  • ion exchange treatment was performed.
  • the ion exchange treatment was performed by immersing Sample Nos. 1 to 17 in KNO 3 molten salt at 430 ° C. for 6 hours, and No. 18 to 20 by immersing in KNO 3 molten salt at 430 ° C. for 4 hours. It was.
  • the compression stress layer is compressed from the number of observed interference fringes and their spacing using a surface stress meter (FSM-6000 manufactured by Toshiba Corporation). Stress value CS and stress depth DOL were calculated.
  • the refractive index was set to 1.50
  • the photoelastic constant was set to 30 [(nm / cm) / MPa].
  • a glass substrate (plate thickness 0.55 mm) was formed by the overflow down draw method. Thereafter, a SiO 2 film was formed on the entire main surface (front surface and back surface) of the glass substrate by sputtering. The pressure at the time of film formation was set to 0.3 Pa or 0.1 Pa, and a film having a thickness of 50 to 500 nm was formed. Further, the glass substrate having the film was subjected to ion exchange treatment (immersion in KNO 3 molten salt at 430 ° C. for 6 hours) to prepare samples bi. Sample a was obtained by performing the above ion exchange treatment without forming a film. Finally, the obtained tempered glass substrate was placed on a surface plate, a diamond pen (27.4 g) was dropped from a height of 50 mm, and the number of pieces after breakage was evaluated. The results are shown in Table 3.
  • the compressive stress value CS on the main surface was 879 MPa, and the stress depth DOL was 46 ⁇ m. Therefore, it is considered that the compressive stress value CS of the end faces of the samples a to i is about 879 MPa, and the stress depth DOL is about 46 ⁇ m.
  • the step of removing the SiO 2 film is not provided, but from the viewpoint of simultaneously increasing the in-plane strength of the main surface and the end surface strength of the end surface, the tempered glass having the film is immersed in an HF aqueous solution to obtain the SiO 2 film. It is preferable to reduce the crack source existing on the end face.
  • the tempered glass substrate of the present invention is suitable as a cover glass for mobile phones, digital cameras, PDAs, etc., or a substrate for touch panel displays.
  • the tempered glass substrate of the present invention is used for applications requiring high strength, for example, window glass, magnetic disk substrates, flat panel display substrates, solar cell cover glasses, and solid-state imaging devices. Application to cover glass and tableware is expected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Glass Compositions (AREA)
  • Surface Treatment Of Glass (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)
  • Position Input By Displaying (AREA)

Abstract

 本発明は、高強度化と薄型化を両立し得る強化ガラス基板を提供するものであって、本発明の強化ガラス基板は、圧縮応力層を有する強化ガラス基板において、板厚が1.5mm以下であり、且つ端面の応力深さが、主表面の応力深さより大きいことを特徴とする。

Description

強化ガラス基板及びその製造方法
 本発明は、強化ガラス基板及びその製造方法に関し、具体的には携帯電話、デジタルカメラ、PDA(携帯端末)、タッチパネルディスプレイ等に好適な強化ガラス基板及びその製造方法に関する。
 携帯電話、デジタルカメラ、PDA、タッチパネルディスプレイ等のデバイスは、益々普及する傾向がある。これらの用途に用いられるガラス基板は、高い機械的強度が要求されると共に、薄型で軽量であることも要求される。このような事情から、一部のデバイスには、イオン交換処理等で化学強化処理したガラス基板、つまり強化ガラス基板が用いられている(特許文献1、非特許文献1参照)。
特開2006-83045号公報
泉谷徹朗等、「新しいガラスとその物性」、初版、株式会社経営システム研究所、1984年8月20日、p.451-498
 近年、強化ガラス基板は、高強度化及び薄型化の要求が高まっている。
 しかし、高強度化と薄型化の両立は困難である。強化ガラス基板の機械的強度を高めるためには、圧縮応力層の圧縮応力値、応力深さを大きくすることが有効である。しかし、圧縮応力層の圧縮応力値、応力深さを大きくすると、強化ガラス基板の内部に、その圧縮応力の大きさに相当する引っ張り応力が形成されて、強化ガラス基板が破損する虞が生じる。特に、強化ガラス基板の板厚を小さくした場合に、その傾向が顕著になる。
 内部引っ張り応力は、内部引っ張り応力値[MPa]=(主表面の圧縮応力値[MPa]×主表面の応力深さ[μm])/(板厚[μm]-主表面の応力深さ[μm]×2)の関係で表される。上記関係式から分かるように、内部引っ張り応力により、強化ガラス基板が自己破壊する可能性がある。特に、薄い強化ガラス基板は、主表面の圧縮応力値、応力深さが大きい場合、その可能性が上昇する。結果として、強化ガラス基板の板厚を小さくした場合に、高強度化を達成し難くなる。
 本発明は、上記事情に鑑み成されたものであり、その技術的課題は、高強度化と薄型化を両立し得る強化ガラス基板及びその製造方法を創案することである。
 本発明者等は、強化ガラス基板の高強度化と薄型化を両立するために、強化ガラス基板の内部に形成される圧縮応力歪みの分布を鋭意検討したところ、強化ガラス基板が破損に至る際、端面を起点に破損する確率が高く、その場合、強化ガラス基板の主表面の面内強度が端面強度より高いことを見出した。更に強化ガラス基板の端面には、破損に至る深い傷が形成されているか、或いは形成され易く、その一方で主表面は、深い傷が形成され難いことを見出した。
 本発明者等は、上記知見に基づき、強化ガラス基板の内部引っ張り応力を適正化しつつ、強化ガラス基板の主表面方向と端面方向で異なる応力分布を形成すれば、強化ガラス基板の高強度化と薄型化を両立し得ることを見出し、本発明として、提案するものである。すなわち、本発明の強化ガラス基板は、圧縮応力層を有する強化ガラス基板において、板厚が1.5mm以下であり、且つ端面の応力深さが、主表面の応力深さより大きいことを特徴とする。ここで、「主表面」とは、強化ガラス基板の板厚方向の表面(おもて面及び裏面)に相当し、通常、有効面(例えば、ディスプレイ用途の場合、表示面及び表示面に対応する裏面)を指す。「端面」とは、主表面以外の表面に相当し、通常、強化ガラス基板の外周部を構成する側面を指す。「圧縮応力値」及び「応力深さ」は、表面応力計で干渉縞の本数とその間隔を観察することで算出することができる。
 第二に、本発明の強化ガラス基板は、主表面が未研磨であることが好ましい。強化ガラス基板の主表面を研磨すると、端面の応力深さを主表面の応力深さより大きくすることが可能になるが、この方法では、主表面に傷が形成されて、強化ガラス基板の機械的強度を維持し難くなる。逆に言えば、主表面を未研磨にすれば、強化ガラス基板の機械的強度を維持し易くなると共に、強化ガラス基板の製造効率を高めることができる。
 第三に、本発明の強化ガラス基板は、主表面がエッチングされていないことが好ましい。このようにすれば、強化ガラス基板の製造効率を高めることができる。
 第四に、本発明の強化ガラス基板は、主表面に膜を有することが好ましい。このようにすれば、主表面の圧縮応力値と応力深さを制御し易くなる。更に、膜を導電膜、反射防止膜等の機能膜として有効利用することができる。
 第五に、本発明の強化ガラス基板は、膜の厚みが5~1000nmであることが好ましい。
 第六に、本発明の強化ガラス基板は、膜の成分としてSiO2、Nb25、TiO2、ITO(スズドープ酸化インジウム)の何れかを含むことが好ましい。
 第七に、本発明の強化ガラス基板は、内部引っ張り応力値が200MPa以下であることが好ましい。
 第八に、本発明の強化ガラス基板は、ガラス組成として、質量%で、SiO2 45~75%、Al23 1~30%、Na2O 0~20%、K2O 0~20%を含有することが好ましい。
 第九に、本発明の強化ガラス基板は、主表面の圧縮応力値が50MPa以上、主表面の応力深さが100μm以下であり、且つ端面の圧縮応力値が300MPa以上、端面の応力深さが10μm以上であることが好ましい。
 第十に、本発明の強化ガラス基板は、密度が2.6g/cm3以下であることが好ましい。ここで、「ヤング率」は、曲げ共振法により測定した値を指す。
 第十一に、本発明の強化ガラス基板は、ヤング率が67GPa以上であることが好ましい。ここで、「ヤング率」は、曲げ共振法により測定した値を指す。
 第十二に、本発明の強化ガラス基板は、ディスプレイに用いることが好ましい。
 第十三に、本発明の強化ガラス基板は、タッチパネルディスプレイに用いることが好ましい。
 第十四に、本発明の強化ガラス基板の製造方法は、(1)ガラス原料を調合し、ガラスバッチを得る工程と、(2)ガラスバッチを溶融し、得られた溶融ガラスを1.5mm以下のガラス基板に成形する工程と、(3)ガラス基板の主表面に膜を形成する工程と、(4)膜を有するガラス基板をイオン交換処理して、ガラス基板の主表面及び端面に圧縮応力層を形成し、強化ガラス基板を得る工程とを有することを特徴とする。
 本発明の強化ガラス基板において、板厚は1.5mm以下であり、好ましくは1.3mm以下、1.1mm以下、1.0mm以下、0.8mm以下、0.7mm以下、0.6mm以下、0.5mm以下、0.4mm以下、0.3mm以下または0.2mm以下であり、特に好ましくは0.1mm以下である。強化ガラス基板の板厚が小さい程、強化ガラス基板を軽量化することでき、結果として、デバイスの薄型化、軽量化を図ることができる。
 主表面の応力深さが大き過ぎると、内部引っ張り応力が高くなり過ぎて、強化ガラス基板が自己破壊する虞がある。一方、主表面の応力深さが小さ過ぎると、研磨痕、取り扱い傷等を起点として、強化ガラス基板が破損し易くなる。よって、板厚と機械的強度のバランスを考慮して、主表面の応力深さを規制する必要がある。
 本発明の強化ガラス基板において、主表面の応力深さをDT、端面の応力深さをDHとすると、DT/DHの値は、好ましくは0.1~0.99、0.1~0.7、0.1~0.5、0.1~0.45または0.15~0.45であり、特に好ましくは0.2~0.4である。DT/DHの値を上記範囲にすれば、端面の応力深さが適正化されて、内部引っ張り応力を不当に上昇させずに、強化ガラス基板の機械的強度を高めることができる。
 板厚が0.5mm以下である場合、主表面の応力深さは、好ましくは50μm以下、45μm以下、35μm以下、30μm以下、25μm以下、20μm以下または15μm以下であり、特に好ましくは10μm以下である。一方、板厚が0.5mmより大きい場合、主表面の応力深さの上限範囲は、好ましくは100μm以下、80μm以下、60μm以下、50μm以下または45μm以下であり、特に好ましくは35μm以下であり、且つ、下限範囲は、好ましくは5μm以上、10μm以上、15μm以上、20μm以上または25μm以上であり、特に好ましくは30μm以上である。
 端面の応力深さは、好ましくは10μm以上、15μm以上、20μm以上、25μm以上、30μm以上、35μm以上、40μm以上、45μm以上、50μm以上または55μm以上であり、特に好ましくは60μm以上である。端面には、製造工程での取り扱い時、或いは端面加工(面取り加工)時に深い傷が形成され易い。端面の応力深さが10μm未満であると、これらの傷を起点として、強化ガラス基板が破損し易くなり、機械的強度を高めることが困難になる。
 主表面の圧縮応力値は、好ましくは50MPa以上、100MPa以上、200MPa以上、300MPa以上または400MPa以上であり、特に好ましくは500MPa以上である。主表面の圧縮応力値が大きい程、強化ガラス基板の機械的強度が高くなる。なお、主表面の圧縮応力値の上限は、好ましくは900MPaであり、特に好ましくは800MPaである。このようにすれば、内部引っ張り応力が不当に上昇する事態を回避し易くなる。
 端面の圧縮応力値は、好ましくは300MPa以上、400MPa以上、500MPa以上、600MPa以上、700MPa以上、800MPa以上または900MPa以上であり、特に好ましくは1000MPa以上である。端面の圧縮応力値が大きい程、強化ガラス基板の機械的強度が高くなる。
 本発明の強化ガラス基板は、主表面に膜を有することが好ましい。このようにすれば、主表面の圧縮応力値と応力深さを制御することが可能になる。例えば、ガラス基板の主表面に膜を形成した後に、膜を有するガラス基板に対して、イオン交換処理して、ガラス基板の主表面及び端面に圧縮応力層を形成すると、端面の応力深さを主表面の応力深さより大きくすることができる。なお、強化ガラス基板の反りが許容される場合(又は強化ガラス基板に積極的に湾曲形状を付与したい場合)は、主表面の一方の面のみに膜を形成してもよいが、強化ガラス基板の反りを可及的に低減したい場合は、主表面の全面(両面)に膜を形成することが好ましい。
 膜の成分としてSiO2、Nb25、TiO2、ITOの何れかを含むことが好ましく、特にSiO2を含むことが好ましい。膜は、単層膜に限られず、多層膜であってもよい。更に、導電膜、反射防止膜等の機能を兼ね備えた膜設計が成されることが好ましい。
 膜厚の下限は、好ましくは5nm以上、10nm以上、20nm以上、30nm以上、50nm以上または80nm以上であり、特に好ましくは100nm以上であり、且つ、上限は、好ましくは1000nm以下、800nm以下または600nm以下であり、特に好ましくは400nm以下である。膜厚が小さ過ぎると、主表面の応力深さを小さくすることが困難となる。一方、膜厚が大き過ぎると、成膜に長時間を要すると共に、主表面の応力深さが低下し過ぎて、強化ガラス基板の機械的強度を担保し難くなる。
 (主表面の全面に成膜した場合の主表面の圧縮応力値)/(成膜しなかった場合の主表面の圧縮応力値)の比をRCSとすると RCSは、好ましくは1.2以下、1.1以下、1.0以下、0.9以下、0.8以下または0.7以下であり、特に好ましくは0.6以下である。また、(主表面の全面に成膜した場合の主表面の応力深さ)/(成膜しなかった場合の主表面の応力深さ)の比をRDOLとすると、RDOLは、好ましくは1.0未満、0.9以下、0.8以下、0.7以下、0.6以下、0.5以下または0.4以下であり、特に好ましくは0.3以下である。このようにすれば、内部引っ張り応力を適正に低減し易くなる。
 膜の形成方法として、種々の方法を採用することができる。例えば、スパッタ法、CVD、ディップコート等を採用することができる。その中でも、膜厚制御の観点から、スパッタ法が好ましい。
 なお、膜を機能膜として有効利用したい場合は、イオン交換処理後に、別途、膜を除去する工程を設ける必要はないが、主表面の面内強度を可及的に高めたい場合は、イオン交換処理後に、別途、膜を除去する工程を設けてもよい。
 本発明の強化ガラス基板は、ガラス組成として、質量%で、SiO2 45~75%、Al23 1~30%、Na2O 0~20%、K2O 0~20%を含有することが好ましい。各成分の含有量を限定した理由を以下に示す。なお、ガラス組成に関する説明において、%表示は、特に断りがある場合を除き、質量%を指す。
 SiO2は、ガラスネットワークを形成する成分である。SiO2の含有量は、好ましくは45~75%、50~75%または52~65%であり、特に好ましくは52~63%である。SiO2の含有量が45%より少ないと、熱膨張係数が高くなり過ぎて、耐熱衝撃性が低下し易くなったり、ガラス化し難くなったり、耐失透性が低下し易くなる。一方、SiO2の含有量が75%より多いと、溶融性、成形性が低下し易くなったり、熱膨張係数が低くなり過ぎて、周辺材料の熱膨張係数に整合し難くなる。
 Al23は、耐熱性、イオン交換性能、ヤング率を高める成分である。Al23の含有量は1~30%が好ましい。Al23の含有量が少な過ぎると、イオン交換性能を十分に発揮できない虞が生じる。一方、Al23の含有量が多過ぎると、耐酸性が低下し易くなる。よって、Al23の含有量を調整して、イオン交換性能と耐酸性を両立させることは困難である。しかし、主表面に膜を形成すると、膜により耐酸性を維持しながら、Al23の増量によりイオン交換性能を高めることができる。従って、板厚0.5mm以下の強化ガラス基板について、耐酸性を確保しつつ、非常に大きな圧縮応力値、応力深さを得ることが可能になる。但し、Al23の含有量が30%より多いと、ガラスに失透結晶が析出し易くなったり、熱膨張係数が低くなり過ぎて、周辺材料の熱膨張係数に整合し難くなる。また、Al23の含有量が30%より多いと、高温粘性が高くなり、溶融性が低下する虞もある。Al23の好適な範囲は、上限が25%以下、23%以下、22%以下、21%以下または20%以下であり、且つ、下限が1.5%以上、3%以上、5%以上、10%以上、11%以上、12%以上、14%以上、15%以上、16.5%以上、17%以上または18%以上である。
 Na2Oは、イオン交換成分であると共に、高温粘度を低下させて、溶融性、成形性を高めたり、耐失透性を改善する成分である。Na2Oの含有量は、好ましくは0~20%、7~20%、7~18%、8~16%、10~16%または12~16%であり、特に好ましくは12~15%である。Na2Oの含有量が20%より多いと、熱膨張係数が高くなり過ぎて、耐熱衝撃性が低下したり、周辺材料の熱膨張係数に整合し難くなる。また、Na2Oの含有量が20%より多いと、ガラス組成の成分バランスが損なわれて、逆に耐失透性が低下する傾向がある。更に、Na2Oの含有量が20%より多いと、歪点が低下し過ぎて、耐熱性が低下したり、かえってイオン交換性能が低下する場合がある。
 K2Oは、イオン交換を促進する効果があり、アルカリ金属酸化物の中では応力深さを大きくする効果がある。また、K2Oは、高温粘度を低下させて、溶融性、成形性を高めたり、クラック発生率を低減させたり、耐失透性を改善する成分である。K2Oの含有量は、好ましくは0~20%、0~10%、0~8%、0~5%、0.1~4%または0.1~2%であり、特に好ましくは0.5~2%未満である。K2Oの含有量が20%より多いと、熱膨張係数が高くなり過ぎて、耐熱衝撃性が低下したり、周辺材料の熱膨張係数に整合し難くなる。また、K2Oの含有量が20%より多いと、ガラス組成の成分バランスが損なわれて、逆に耐失透性が低下する傾向がある。
 質量比(Al23+K2O)/Na2Oの値は、好ましくは0.1~6.5、0.1~5、0.2~3、0.2~2.5、0.4~2または0.7~1.7であり、特に好ましくは1.0~1.5である。このようにすれば、イオン交換処理で応力深さを大きくすることができる。質量比(Al23+K2O)/Na2Oの値が0.1より小さいと、応力深さを大きくすることが困難になる。一方、質量比(Al23+K2O)/Na2Oの値が6.5より大きいと、ガラス組成の成分バランスが損なわれて、耐失透性が低下する傾向があると共に、Na2O成分が不足することに起因して、圧縮応力値が低下し易くなる。
 上記成分以外にも、例えば、以下の成分を添加してもよい。
 B23は、液相温度、高温粘度、密度を低下させる成分である。B23の含有量は、好ましくは0~7%、0~5%または0.1~3%であり、特に好ましくは0.5~1%である。B23の含有量が7%より多いと、イオン交換処理によって主表面にヤケが発生したり、耐水性が低下したり、低温粘性が低下して、圧縮応力値、応力深さが低下する場合がある。
 Li2Oは、イオン交換成分であり、高温粘度を低下させて、溶融性や成形性を高める成分であり、更にはヤング率を高める成分である。Li2Oの含有量は、好ましくは0~20%、0~10%、0~8%、0~6%、0~4%、0~3.5%、0~3%、0~2%または0~1%であり、特に好ましくは0~0.1%である。Li2Oの含有量が20%より多いと、ガラスが失透し易くなり、液相粘度が低下し易くなり、更には熱膨張係数が高くなり過ぎて、耐熱衝撃性が低下したり、周辺材料の熱膨張係数に整合し難くなる。また、Li2Oの含有量が20%より多いと、歪点が低下し過ぎて、耐熱性が低下したり、かえってイオン交換性能が低下する場合がある。なお、Li2Oを導入する場合、その含有量は0.001%以上が好ましく、特に0.01%以上が好ましい。
 Li2O+Na2O+K2O(Li2O、Na2O及びK2Oの合量)の含有量が少な過ぎると、イオン交換性能や溶融性が低下し易くなる。よって、Li2O+Na2O+K2Oの含有量は、好ましくは5%以上、10%以上、13%以上または15%以上であり、特に好ましくは17%以上である。一方、Li2O+Na2O+K2Oの含有量が多過ぎると、ガラスが失透し易くなることに加えて、熱膨張係数が高くなり過ぎて、耐熱衝撃性が低下したり、周辺材料の熱膨張係数に整合し難くなる。また、Li2O+Na2O+K2Oの含有量が多過ぎると、歪点が低下し過ぎて、圧縮応力値が低下し過ぎる虞がある。よって、Li2O+Na2O+K2Oの含有量は、好ましくは30%以下または22%以下であり、特に好ましくは20%以下である。
 MgOは、高温粘度を低下させて、溶融性、成形性、歪点、ヤング率を高める成分である。また、MgOは、アルカリ土類金属酸化物の中では、イオン交換性能を高める効果が比較的に大きい。しかし、MgOの含有量が多過ぎると、密度、熱膨張係数、クラック発生率が高くなったり、ガラスが失透し易くなる。よって、MgOの含有量は、好ましくは10%以下、9%以下、6%以下または0.1~4%であり、特に好ましくは1~3%である。
 CaOは、高温粘度を低下させて、溶融性、成形性、歪点、ヤング率を高める成分である。しかし、CaOの含有量が多過ぎると、密度、熱膨張係数、クラック発生率が高くなったり、ガラスが失透し易くなる。更には大きな応力深さを得難くなる。よって、CaOの含有量は、好ましくは10%以下、8%以下、5%以下、3%以下、1%以下、1%未満または0.5%以下であり、特に好ましくは0.1%以下である。
 SrOは、高温粘度を低下させて、溶融性、成形性、歪点、ヤング率を高める成分である。しかし、SrOの含有量が多過ぎると、密度、熱膨張係数、クラック発生率が高くなったり、ガラスが失透し易くなったり、更にはイオン交換性能が低下する傾向がある。よって、SrOの含有量は、好ましくは10%以下、8%以下、5%以下、3%以下、1%以下または0.8%以下であり、特に好ましくは0.5%以下であり、さらに、実質的にSrOを含有しないことが最も好ましい。ここで、「実質的にSrOを含有しない」とは、ガラス組成中のSrOの含有量が0.2%以下の場合を指す。
 BaOは、高温粘度を低下させて、溶融性、成形性、歪点、ヤング率を高める成分である。しかし、BaOの含有量が多過ぎると、密度、熱膨張係数、クラック発生率が高くなったり、ガラスが失透し易くなったり、更にはイオン交換性能が低下する傾向がある。また、BaOは、原料化合物が環境負荷物質であるため、環境的視点に立てば、その使用を極力控えることが好ましい。よって、BaOの含有量は、好ましくは3%以下、2.5%以下、2%以下、1%以下または0.8%以下であり、特に好ましくは0.5%以下であり、さらに、実質的にBaOを含有しないことがより好ましい。ここで、「実質的にBaOを含有しない」とは、ガラス組成中のBaOの含有量が0.1%以下の場合を指す。
 MgO+CaO+SrO+BaO(MgO、CaO、SrO及びBaOの合量)が多過ぎると、密度、熱膨張係数が高くなったり、耐失透性が低下したり、イオン交換性能が低下する傾向がある。よって、MgO+CaO+SrO+BaOの含有量は、好ましくは0~16%、0~10%または0~6%であり、特に好ましくは0~3%である。
 MgO+CaO+SrO+BaOの含有量をLi2O+Na2O+K2Oの含有量で割った値が大きくなると、密度が高くなったり、耐失透性が低下する傾向が現れる。よって、質量比(MgO+CaO+SrO+BaO)/(Li2O+Na2O+K2O)の値は、好ましくは0.5以下、0.4以下、0.3以下または0.2以下であり、特に好ましくは0.1以下である。
 ZnOは、圧縮応力値を大きくする効果がある。また、ZnOは、高温粘度を低下させたり、ヤング率を高める効果がある。しかし、ZnOの含有量が多過ぎると、密度、熱膨張係数が高くなったり、耐失透性が低下する傾向がある。よって、ZnOの含有量は、好ましくは0~15%、0~10%、0~2%または0~0.5%であり、特に好ましくは0~0.1%である。
 TiO2は、イオン交換性能を高める成分であるが、その含有量が多過ぎると、ガラスが失透し易くなったり、着色し易くなる。よって、TiO2の含有量は、好ましくは0~10%、0~5%または0~1%であり、特に好ましくは0~0.5%であり、さらに、実質的にTiO2を含有しないことがより好ましい。ここで、「実質的にTiO2を含有しない」とは、ガラス組成中のTiO2の含有量が0.1%以下の場合を指す。
 ZrO2は、歪点、ヤング率、イオン交換性能を高める成分であり、また高温粘性を低下させる成分である。また液相温度付近の粘性を高める効果がある。しかし、ZrO2の含有量が多過ぎると、耐失透性が極端に低下する場合がある。よって、ZrO2の含有量は、好ましくは0~10%、0~9%、0~7%、0~5%、0~3%または0~1%であり、特に好ましくは0~0.1%未満である。
 P25は、イオン交換性能を高める成分であり、特に応力深さを増大させる成分である。しかし、P25の含有量が多過ぎると、ガラスが分相し易くなる。よって、P25の含有量は、好ましくは8%以下、5%以下、4%以下または3%以下であり、特に好ましくは2%以下である。また、P25の含有量が多過ぎると、耐水性が低下し易くなる。なお、主表面に膜が形成されており、且つ膜による保護機能が十分である場合、耐水性の低下を考慮しなくてもよい場合がある。P25を導入する場合、その含有量は、好ましくは0.1%以上または0.5%以上であり、特に好ましくは1%以上である。
 清澄剤としてSO3、Cl、CeO2、Sb23及びSnO2から選択された一種又は二種以上を0~3%含有することが好ましい。As23、Fは、清澄効果を奏するが、環境に対して悪影響を与える虞があるため、極力使用しないことが好ましく、実質的に含有しないことがより好ましい。また、Sb23は、As23に比べて、毒性が低いが、環境的観点から使用が制限される場合もあり、実質的に含有しないことが好ましい場合もある。また、環境的観点と清澄効果を考慮すれば、清澄剤として、SnO2を0.01~3%(望ましくは0.05~1%)含有させることが好ましい。ここで、「実質的にAs23を含有しない」とは、ガラス組成中のAs23の含有量が0.1%以下の場合を指す。「Fを実質的に含有しない」とは、ガラス組成中のFの含有量が0.05%以下の場合を指す。「実質的にSb23を含有しない」とは、ガラス組成中のSb23の含有量が0.1%以下の場合を指す。一方、Sb23、SO3は、清澄剤の中では、透過率の低下を防止する効果が大きい。よって、高透過率が要求される用途に用いる場合、Sb23+SO3(Sb23とSO3の合量)の含有量は、好ましくは0.001~5%である。
 Co、Ni、Cu等の着色作用を有する遷移金属元素は、強化ガラス基板の透過率を低下させる虞がある。特に、ディスプレイ用途に用いる場合、遷移金属酸化物の含有量が多過ぎると、ディスプレイの視認性が損なわれる虞がある。よって、遷移金属酸化物の含有量は、好ましくは0.5%以下または0.1%以下であり、特に好ましくは0.05%以下である。
 Nd25、La23等の希土類酸化物は、ヤング率を高める成分である。しかし、原料コストが高く、また多量に導入すると、耐失透性が低下し易くなる。よって、希土類酸化物の含有量は、好ましくは3%以下、2%以下または1%以下であり、特に好ましくは0.5%以下であり、さらに、実質的に希土類酸化物を含有しないことが最も好ましい。ここで、「実質的に希土類酸化物を含有しない」とは、ガラス組成中の希土類酸化物の含有量が0.1%以下の場合を指す。
 PbOは、環境負荷物質であるため、実質的に含有しないことが好ましい。ここで、「PbOを実質的に含有しない」とは、ガラス組成中のPbOの含有量が0.1%以下の場合を指す。
 各成分の好適な含有範囲を適宜選択して、好ましいガラス組成範囲とすることができる。その中でも、より好ましいガラス組成範囲として、
(1)質量%で、SiO2 45~75%、Al23 1~25%、Li2O 0~9%、Na2O 7~20%、K2O 0~8%を含有し、実質的にAs23、F、PbOを含有しない、
(2)質量%で、SiO2 45~75%、Al23 3~25%、Li2O 0~3.5%、Na2O 7~20%、K2O 0~8%を含有し、質量比(Al23+K2O)/Na2Oが0.1~3であり、実質的にAs23、F、PbOを含有しない、
(3)質量%で、SiO2 45~70%、Al23 10~22%、Li2O 0~3%、Na2O 7~20%、K2O 0~5%を含有し、質量比(Al23+K2O)/Na2Oが0.5~2であり、実質的にAs23、F、PbOを含有しない、
(4)質量%で、SiO2 45~65%、Al23 10~22%、Li2O 0~3%、Na2O 7~16%、K2O 0~8%、MgO+CaO+SrO+BaO 0~10%を含有し、質量比(Al23+K2O)/Na2Oが0.3~1.8であり、実質的にAs23、F、PbOを含有しない、
(5)質量%で、SiO2 45~65%、Al23 11~22%、Li2O 0~3%、Na2O 7~16%、K2O 0~5%、MgO 0~3%、MgO+CaO+SrO+BaO 0~9%を含有し、質量比(Al23+K2O)/Na2Oが1~1.5であり、実質的にAs23、F、PbOを含有しない。
(6)質量%で、SiO2 50~63%、Al23 11~20%、Li2O 0~2%、Na2O 8~15.5%、K2O 0~5%、MgO 0~3%、MgO+CaO+SrO+BaO 0~8%を含有し、質量比(Al23+K2O)/Na2Oが1~1.5であり、実質的にAs23、F、PbOを含有しない、
(7)質量%で、SiO2 50~63%、Al23 11~20%、Li2O 0~1%、Na2O 8~15%、K2O 0.1~5%、MgO 0~2.5%、MgO+CaO+SrO+BaO 0~6%を含有し、質量比(Al23+K2O)/Na2Oが1~1.5であり、実質的にAs23、F、PbOを含有しない、が挙げられる。
 本発明の強化ガラス基板は、以下のガラス特性を有することが好ましい。
 密度は、好ましくは2.8g/cm3以下、2.7g/cm3以下、2.6g/cm3以下、2.57g/cm3以下、2.55g/cm3以下、2.5g/cm3以下または2.45g/cm3以下であり、特に好ましくは2.4g/cm3以下である。密度が低い程、強化ガラス基板を軽量化することができる。
 歪点は、好ましくは500℃以上、510℃以上、520℃以上、530℃以上、540℃以上、550℃以上または560℃以上であり、特に好ましくは570℃以上である。歪点が高いと、イオン交換処理の際、応力緩和が生じ難くなり、圧縮応力値を高め易くなる。ここで、「歪点」は、ASTM C336の方法に基づいて測定した値を指す。なお、ガラス組成中のアルカリ土類金属酸化物、Al23、ZrO2、P25の含有量を増加、或いはアルカリ金属酸化物の含有量を低減すれば、歪点が上昇する傾向がある。
 高温粘度102.5dPa・sにおける温度は、好ましくは1700℃以下、1600℃以下、1560℃以下、1500℃以下、1450℃以下または1420℃以下であり、特に好ましくは1400℃以下である。高温粘度102.5dPa・sにおける温度が低い程、溶融窯等のガラス製造設備への負担が軽減されると共に、ガラス基板の泡品位を高めることができる。つまり、高温粘度102.5dPa・sにおける温度が低い程、ガラス基板の製造コストを低廉化し易くなる。ここで、「高温粘度102.5dPa・sにおける温度」は、白金球引き上げ法で測定した値を指す。なお、高温粘度102.5dPa・sにおける温度は、ガラスの溶融温度に相当しており、高温粘度102.5dPa・sにおける温度が低い程、低温でガラスを溶融することができる。
 熱膨張係数は、好ましくは40~110×10-7/℃、70~105×10-7/℃、75~100×10-7/℃または80~100×10-7/℃であり、特に好ましくは80~90×10-7/℃である。熱膨張係数を上記範囲とすれば、金属、有機系接着剤等の部材の熱膨張係数に整合し易くなり、金属、有機系接着剤等の部材の剥離を防止し易くなる。ここで、「熱膨張係数」は、ディラトメーターを用いて、30~380℃の温度範囲における平均値を測定した値を指す。
 ヤング率は、好ましくは67GPa以上、68GPa以上、70GPa以上または71GPa以上であり、特に好ましくは73GPa以上である。ヤング率が高い程、強化ガラス基板が撓み難くなり、タッチパネルディスプレイ等のデバイスにおいて、ペン等でディスプレイを押す際に、デバイス内部の液晶素子等が圧迫され難くなる。その結果、ディスプレイに表示不良が発生し難くなる。一方、ヤング率が高過ぎると、強化ガラス基板がペン等で押されて変形する際、その変形により発生する応力が高くなり、破損に至る虞が生じる。特に、強化ガラス基板の板厚が小さい場合、この点に留意することが好ましい。よって、ヤング率は、好ましくは100GPa以下、95GPa以下、90GPa以下、85GPa以下または80GPa以下であり、特に好ましくは78GPa以下である。
 比ヤング率は、好ましくは27GPa/(g/cm3)以上、28GPa/(g/cm3)以上または29GPa/(g/cm3)以上であり、特に好ましくは30GPa/(g/cm3)以上である。比ヤング率が高い程、自重により強化ガラス基板が撓み難くなる。その結果、強化ガラス基板をカセット等に収納する際、強化ガラス基板同士のクリアランスを狭くして、強化ガラス基板を収納することが可能になり、強化ガラス基板及びデバイスの製造効率を高め易くなる。
 液相温度は、好ましくは1200℃以下、1100℃以下、1050℃以下、1000℃以下、930℃以下または900℃以下であり、特に好ましくは880℃以下である。液相温度が低い程、オーバーフローダウンドロー法等でガラス基板を成形する際に、ガラスが失透し難くなる。ここで、「液相温度」は、ガラスを粉砕した後、標準篩30メッシュ(篩目開き500μm)を通過し、50メッシュ(篩目開き300μm)に残るガラス粉末を白金ボートに入れ、温度勾配炉中に24時間保持して、結晶が析出する温度を測定した値を指す。
 液相粘度は、好ましくは104.0dPa・s以上、104.3dPa・s以上、104.5dPa・s以上、105.0dPa・s以上、105.5dPa・s以上、105.7dPa・s以上または105.9dPa・s以上であり、特に好ましくは106.0dPa・s以上である。液相粘度が高い程、オーバーフローダウンドロー法等でガラス基板を成形する際に、ガラスが失透し難くなる。ここで、「液相粘度」は、液相温度におけるガラスの粘度を白金球引き上げ法で測定した値を指す。
 本発明の強化ガラス基板の製造方法は、(1)ガラス原料を調合し、ガラスバッチを得る工程と、(2)ガラスバッチを溶融し、得られた溶融ガラスを1.5mm以下のガラス基板に成形する工程と、(3)ガラス基板の主表面に膜を形成する工程と、(4)膜を有するガラス基板をイオン交換処理して、ガラス基板の主表面及び端面に圧縮応力層を形成し、強化ガラス基板を得る工程とを有することを特徴とする。本発明の強化ガラス基板の製造方法の技術的特徴(ガラス組成及びガラス特性等)について、既述の部分は、便宜上、その記載を省略する。
 本発明の強化ガラス基板の製造方法において、オーバーフローダウンドロー法で1.5mm以下のガラス基板に成形することが好ましい。オーバーフローダウンドロー法の場合、薄いガラス基板を容易に成形することができる。ここで、オーバーフローダウンドロー法は、溶融ガラスを耐熱性の樋状構造物の両側から溢れさせて、溢れた溶融ガラスを樋状構造物の下端で合流させながら、下方に延伸成形してガラス基板を成形する方法である。樋状構造物の構造や材質は、所望の寸法や表面品位を実現できる限り、特に限定されない。また、下方に延伸成形する際、力を印加する方法は特に限定されない。例えば、十分に大きい幅を有する耐熱性ロールをガラスに接触させた状態で回転させて延伸する方法を採用してもよいし、複数の対になった耐熱性ロールをガラスの端縁近傍のみに接触させて延伸する方法を採用してもよい。なお、液相温度が1200℃以下、且つ液相粘度が104.0dPa・s以上であれば、オーバーフローダウンドロー法で薄いガラス基板を成形することができる。
 なお、オーバーフローダウンドロー法以外にも、種々の成形方法、例えば、フロート法、スロットダウン法、リドロー法、ロールアウト法、プレス法等を採用することができる。
 本発明の強化ガラス基板の製造方法は、ガラス基板に対して、イオン交換処理して、ガラス基板の主表面及び端面に圧縮応力層を形成し、強化ガラス基板を得る工程を有する。イオン交換処理は、ガラス基板の歪点以下の温度で、ガラス表面に大きなイオン半径のアルカリイオンを導入する方法である。イオン交換処理の条件は、特に限定されず、ガラス基板の粘度特性等を考慮して決定すればよい。特に、ガラス組成中のNa成分をKNO3溶融塩中のKイオンでイオン交換すると、圧縮応力層を効率良く形成することができる。なお、イオン交換処理は、風冷強化法等の物理強化法と異なり、イオン交換処理後に強化ガラス基板を切断しても、強化ガラス基板が容易に破損しないという利点がある。
 特に、イオン交換処理の条件として、350~500℃のKNO3溶融塩中にガラス基板を2~24時間浸漬することが好ましい。このようにすれば、ガラス基板に圧縮応力層を効率良く形成することができる。
 本発明の強化ガラス基板の製造方法は、膜を有するガラス基板をイオン交換処理した後、その膜を除去する工程を有しないことが好ましい。このようにすれば、膜を導電膜、反射防止膜等の機能膜として有効利用することができる。結果として強化ガラス基板の製造効率を高めることができる。
 一方、膜を有するガラス基板をイオン交換処理した後、その膜を除去する工程を有することもできる。本発明者等の調査によると、イオン交換処理後の膜は、主表面の面内強度を低下させる場合がある。この場合、イオン交換処理後に、別途、膜を除去する工程を設けると、そのような事態を的確に防止することができる。なお、膜を除去する工程で、完全に膜を除去してもよいが、部分的に膜を除去しても、上記効果を享受することができる。
 膜を除去する工程として、エッチングが好ましい。例えば、SiO2膜を有する強化ガラス基板の場合、Fを含む溶液、特にHF溶液でSiO2膜をエッチングすることが好ましい。このようにすれば、主表面の面内強度を高めつつ、膜を的確に除去することができる。
 膜をエッチングする場合、端面がエッチングされないように、端面を樹脂等で保護してもよい。このようにすれば、DT/DHの値を所定範囲に規制し易くなる。一方、膜をエッチングする場合、端面も同時にエッチングされるようにしてもよい。このようにすれば、端面に存在するクラックソースが低減されるため、端面強度を高めることができる。
 以下、本発明を実施例に基づいて説明する。なお、本発明の実施例は単なる例示である。本発明は、以下の実施例に何ら限定されない。
 表1、2は、強化ガラスの材質例(試料No.1~20)を示している。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 次のようにして、各試料を作製した。まず表1、2のガラス組成となるように、ガラス原料を調合し、ガラスバッチを作製した後、このガラスバッチを白金ポットに投入して、1600℃で8時間溶融し、溶融ガラスを得た。次に、溶融ガラスをカーボン板の上に流し出し、ガラス基板に成形した。得られたガラス基板について、種々の特性を評価した。
 密度は、周知のアルキメデス法で測定した値である。
 歪点Ps、徐冷点Taは、ASTM C336の方法に基づいて測定した値である。
 軟化点Tsは、ASTM C338の方法に基づいて測定した値である。
 高温粘度104.0dPa・s、103.0dPa・s、102.5dPa・sにおける温度は、周知の白金球引き上げ法で測定した。
 熱膨張係数αは、ディラトメーターを用いて、30~380℃における平均熱膨張係数を測定した値である。
 液相温度TLは、ガラス基板を粉砕し、標準篩30メッシュ(篩目開き500μm)を通過し、50メッシュ(篩目開き300μm)に残るガラス粉末を白金ボートに入れ、温度勾配炉中に24時間保持して、結晶の析出する温度を測定した値である。液相粘度logηatTLは、液相温度TLにおけるガラスの粘度を白金球引き上げ法で測定した値を指す。
 ヤング率は共振法により測定した値である。また、比ヤング率は、ヤング率を密度で割った値である。
 表1、2から明らかなように、試料No.1~20は、密度が2.48g/cm3以下、ヤング率が69GPa以上、熱膨張係数が78~96×10-7/℃であった。更に、試料No.1~20は、液相粘度が105.1dPa・s以上、高温粘度102.5dPa・sにおける温度が1653℃以下であった。
 なお、未強化ガラス基板と強化ガラス基板では、表層においてガラス組成が微視的に異なっているものの、全体として見た場合、ガラス組成は実質的に相違しない。よって、密度、粘度、ヤング率等の特性は、未強化ガラス基板と強化ガラス基板で実質的に相違しない。
 更に、各試料の主表面に光学研磨を施した後、イオン交換処理を行った。イオン交換処理は、試料No.1~17について、430℃のKNO3溶融塩中に6時間浸漬し、No.18~20について、430℃のKNO3溶融塩中に4時間浸漬することで行った。次に、イオン交換処理後の各試料の表面を洗浄した上で、表面応力計(株式会社東芝製FSM-6000)を用いて、観察される干渉縞の本数とその間隔から圧縮応力層の圧縮応力値CSと応力深さDOLを算出した。なお、測定に際し、屈折率を1.50、光弾性定数を30[(nm/cm)/MPa]とした。
 表1、2から明らかなように、試料No.1~20は、圧縮応力値CSが728MPa以上であり、応力深さDOLが34μm以上であった。また、内部引っ張り応力値は、段落[0007]に記載の関係式により算出したところ、88MPaであった。
 上記実験では、便宜上、溶融ガラスを流し出し、ガラス基板に成形した後、イオン交換処理の前に光学研磨を行った。しかし、工業的規模で強化ガラス基板を作製する場合、製造効率の観点から、オーバーフローダウンドロー法等でガラス基板を成形した後、未研磨のガラス基板をイオン交換処理することが望ましい。
 続いて、試料No.17に記載の材質について、オーバーフローダウンドロー法によりガラス基板(板厚0.55mm)を成形した。その後、スパッタ法により、ガラス基板の主表面全体(おもて面と裏面)にSiO2の膜を形成した。成膜時の圧力として、0.3Pa又は0.1Paを設定し、厚み50~500nmの膜を形成した。更に、膜を有するガラス基板について、イオン交換処理(430℃のKNO3溶融塩中に6時間浸漬)を行い、試料b~iを作製した。なお、試料aは、膜を形成せずに、上記イオン交換処理を行ったものである。最後に、得られた強化ガラス基板を定盤上に載置し、ダイヤペン(27.4g)を50mmの高さから落下させて、破損後の破片数を評価した。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 試料aでは、主表面の圧縮応力値CSが879MPaであり、応力深さDOLが46μmであった。よって、試料a~iの端面の圧縮応力値CSは879MPa程度、応力深さDOLは46μm程度と考えられる。
 表3から明らかなように、試料b~iでは、端面の応力深さDOLが主表面の応力深さDOLより大きいため、試料aに比べて、内部引っ張り応力値CTが小さかった。結果として、落下試験後の破片数が少なかった。なお、試料d、e、h、iは、圧縮応力値CSと応力深さDOLが測定されていないが、破片数が低下しているため、端面の応力深さDOLが、主表面の応力深さDOLより大きく、内部引っ張り応力値CTが低下しているものと推定される。
 表3の実験では、便宜上、試料No.17に記載の材質を用いたが、試料No.1~16、18~20に記載の材質でも同様の傾向を示すものと考えられる。
 上記実験では、SiO2膜を除去する工程を設けていないが、主表面の面内強度と端面の端面強度を同時に高める観点から、膜を有する強化ガラスをHF水溶液に浸漬して、SiO2膜をエッチングすると共に、端面に存在するクラックソースを低減することが好ましい。
 本発明の強化ガラス基板は、携帯電話、デジタルカメラ、PDA等のカバーガラス、或いはタッチパネルディスプレイ等の基板として好適である。また、本発明の強化ガラス基板は、これらの用途以外にも、高強度が要求される用途、例えば窓板ガラス、磁気ディスク用基板、フラットパネルディスプレイ用基板、太陽電池用カバーガラス、固体撮像素子用カバーガラス、食器への応用が期待される。

Claims (14)

  1.  圧縮応力層を有する強化ガラス基板において、板厚が1.5mm以下であり、且つ端面の応力深さが、主表面の応力深さより大きいことを特徴とする強化ガラス基板。
  2.  主表面が未研磨であることを特徴とする請求項1に記載の強化ガラス基板。
  3.  主表面がエッチングされていないことを特徴とする請求項1又は2に記載の強化ガラス基板。
  4.  主表面に膜を有することを特徴とする請求項1~3の何れかに記載の強化ガラス基板。
  5.  膜の厚みが5~1000nmであることを特徴とする請求項4に記載の強化ガラス基板。
  6.  膜の成分としてSiO2、Nb25、TiO2、ITOの何れかを含むことを特徴とする請求項4又は5に記載の強化ガラス基板。
  7.  内部引っ張り応力値が200MPa以下であることを特徴とする請求項1~6の何れかに記載の強化ガラス基板。
  8.  ガラス組成として、質量%で、SiO2 45~75%、Al23 1~30%、Na2O 0~20%、K2O 0~20%を含有することを特徴とする請求項1~7に記載の強化ガラス基板。
  9.  主表面の圧縮応力値が50MPa以上、主表面の応力深さが100μm以下であり、且つ端面の圧縮応力値が300MPa以上、端面の応力深さが10μm以上であることを特徴とする請求項1~8の何れかに記載の強化ガラス基板。
  10.  密度が2.6g/cm3以下であることを特徴とする請求項1~9の何れかに記載の強化ガラス基板。
  11.  ヤング率が67GPa以上であることを特徴とする請求項1~10の何れかに記載の強化ガラス基板。
  12.  ディスプレイに用いることを特徴とする請求項1~11の何れかに記載の強化ガラス基板。
  13.  タッチパネルディスプレイに用いることを特徴とする請求項1~11の何れかに記載の強化ガラス基板。
  14.  (1)ガラス原料を調合し、ガラスバッチを得る工程と、(2)ガラスバッチを溶融し、得られた溶融ガラスを1.5mm以下のガラス基板に成形する工程と、(3)ガラス基板の主表面に膜を形成する工程と、(4)膜を有するガラス基板をイオン交換処理して、ガラス基板の主表面及び端面に圧縮応力層を形成し、強化ガラス基板を得る工程とを有することを特徴とする強化ガラス基板の製造方法。
PCT/JP2014/056116 2013-03-25 2014-03-10 強化ガラス基板及びその製造方法 WO2014156577A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020157007515A KR102123253B1 (ko) 2013-03-25 2014-03-10 강화 유리 기판 및 그 제조 방법
CN201480002752.XA CN104736496A (zh) 2013-03-25 2014-03-10 强化玻璃基板及其制造方法
US14/651,386 US20150329418A1 (en) 2013-03-25 2014-03-10 Reinforced glass substrate and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-061355 2013-03-25
JP2013061355 2013-03-25

Publications (1)

Publication Number Publication Date
WO2014156577A1 true WO2014156577A1 (ja) 2014-10-02

Family

ID=51623562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056116 WO2014156577A1 (ja) 2013-03-25 2014-03-10 強化ガラス基板及びその製造方法

Country Status (5)

Country Link
US (1) US20150329418A1 (ja)
JP (2) JP2014208570A (ja)
KR (1) KR102123253B1 (ja)
CN (2) CN104736496A (ja)
WO (1) WO2014156577A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017009235A1 (en) * 2015-07-16 2017-01-19 Agc Glass Europe Glass substrate for chemical strengthening and method for chemically strengthening with controlled curvature
CN107108347A (zh) * 2015-03-25 2017-08-29 日本电气硝子株式会社 强化玻璃板的制造方法、以及强化用玻璃板的制造方法
JP2017197408A (ja) * 2016-04-27 2017-11-02 旭硝子株式会社 強化ガラス板
WO2017217388A1 (ja) * 2016-06-17 2017-12-21 日本電気硝子株式会社 強化ガラス板および強化ガラス板の製造方法
WO2018008359A1 (ja) * 2016-07-08 2018-01-11 日本電気硝子株式会社 強化ガラス板の製造方法

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201200890D0 (en) * 2012-01-19 2012-02-29 Univ Dundee An ion exchange substrate and metalized product and apparatus and method for production thereof
US9359251B2 (en) 2012-02-29 2016-06-07 Corning Incorporated Ion exchanged glasses via non-error function compressive stress profiles
US11079309B2 (en) 2013-07-26 2021-08-03 Corning Incorporated Strengthened glass articles having improved survivability
US10118858B2 (en) 2014-02-24 2018-11-06 Corning Incorporated Strengthened glass with deep depth of compression
TWI705889B (zh) 2014-06-19 2020-10-01 美商康寧公司 無易碎應力分布曲線的玻璃
CN112250301A (zh) 2014-10-08 2021-01-22 康宁股份有限公司 包含金属氧化物浓度梯度的玻璃和玻璃陶瓷
US10150698B2 (en) 2014-10-31 2018-12-11 Corning Incorporated Strengthened glass with ultra deep depth of compression
EP4011843A3 (en) 2014-11-04 2022-06-29 Corning Incorporated Deep non-frangible stress profiles and methods of making
US11613103B2 (en) 2015-07-21 2023-03-28 Corning Incorporated Glass articles exhibiting improved fracture performance
US10579106B2 (en) 2015-07-21 2020-03-03 Corning Incorporated Glass articles exhibiting improved fracture performance
WO2017026190A1 (ja) * 2015-08-11 2017-02-16 日本電気硝子株式会社 強化ガラス基板の製造方法及び強化ガラス基板
JP6670462B2 (ja) * 2015-12-04 2020-03-25 日本電気硝子株式会社 強化ガラス
EP3386930B1 (en) 2015-12-11 2021-06-16 Corning Incorporated Fusion-formable glass-based articles including a metal oxide concentration gradient
EP3390313A1 (en) 2015-12-17 2018-10-24 Corning Incorporated Ion exchangeable glass with fast diffusion
CN105731790B (zh) * 2016-03-18 2018-12-25 芜湖东旭光电装备技术有限公司 一种无碱铝硅酸盐玻璃用组合物、无碱铝硅酸盐玻璃及其制备方法和应用
KR20200091500A (ko) 2016-04-08 2020-07-30 코닝 인코포레이티드 두 영역을 포함하는 응력 프로파일을 포함하는 유리-계 물품, 및 제조 방법
CN111423110A (zh) 2016-04-08 2020-07-17 康宁股份有限公司 包含金属氧化物浓度梯度的玻璃基制品
WO2017179360A1 (ja) * 2016-04-12 2017-10-19 日本電気硝子株式会社 強化ガラスの製造方法および強化ガラス製造装置
CN115028356B (zh) * 2016-04-29 2024-07-12 肖特玻璃科技(苏州)有限公司 高强度超薄玻璃以及其制造方法
WO2017221805A1 (ja) * 2016-06-22 2017-12-28 日本電気硝子株式会社 強化ガラスの製造方法および強化ガラス製造装置
CN206541281U (zh) * 2016-10-12 2017-10-03 肖特玻璃科技(苏州)有限公司 一种电子器件结构及其使用的超薄玻璃板
WO2018097096A1 (ja) * 2016-11-22 2018-05-31 日本電気硝子株式会社 強化ガラス板、強化ガラス板の製造方法
JP2020532481A (ja) * 2017-09-04 2020-11-12 ショット グラス テクノロジーズ (スゾウ) カンパニー リミテッドSchott Glass Technologies (Suzhou) Co., Ltd. 改善された曲げ性および化学強化性を有する薄板ガラス
JP7280546B2 (ja) * 2017-11-09 2023-05-24 日本電気硝子株式会社 ガラス板及びこれを用いた波長変換パッケージ
CN107827352B (zh) * 2017-11-16 2019-12-10 东旭科技集团有限公司 玻璃用组合物和玻璃及其制备方法和应用
CN107892472B (zh) * 2017-11-23 2020-10-27 东旭光电科技股份有限公司 玻璃用组合物和玻璃及其制备方法和应用
CN108385063B (zh) * 2018-03-30 2020-01-14 江西泽发光电有限公司 一种流沙纹理冰钻黑的镀膜方法
JP7335541B2 (ja) * 2018-07-27 2023-08-30 日本電気硝子株式会社 強化ガラス及び強化用ガラス
CN112513985B (zh) * 2018-08-07 2023-07-28 Hoya株式会社 磁盘用基板以及磁盘
JP6896358B2 (ja) * 2018-08-09 2021-06-30 株式会社オハラ 結晶化ガラス基板
JPWO2020262293A1 (ja) * 2019-06-27 2020-12-30

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010116276A (ja) * 2008-11-11 2010-05-27 Nippon Electric Glass Co Ltd 強化ガラス基板及びその製造方法
JP2012184155A (ja) * 2011-02-17 2012-09-27 Hoya Corp 携帯電子機器用カバーガラスのガラス基板の製造方法、携帯電子機器用カバーガラスのガラス基板および携帯電子機器
JP2013012282A (ja) * 2011-06-30 2013-01-17 Konica Minolta Advanced Layers Inc Hdd用ガラス基板の製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002222659A1 (en) * 2000-12-18 2002-07-01 Bridgestone Corporation Film-reinforced glasses
JP2002234754A (ja) * 2001-02-02 2002-08-23 Nippon Sheet Glass Co Ltd 強化された機能性膜被覆ガラス物品の製造方法
TWI254080B (en) * 2002-03-27 2006-05-01 Sumitomo Metal Mining Co Transparent conductive thin film, process for producing the same, sintered target for producing the same, and transparent, electroconductive substrate for display panel, and organic electroluminescence device
JP2006083045A (ja) 2004-09-17 2006-03-30 Hitachi Ltd ガラス部材
WO2008062656A1 (fr) * 2006-11-22 2008-05-29 Konica Minolta Opto, Inc. Substrat de verre pour un support d'enregistrement d'informations, procédé de fabrication du substrat de verre pour un support d'enregistrement d'informations, et support d'enregistrement d'informations
JP5467490B2 (ja) * 2007-08-03 2014-04-09 日本電気硝子株式会社 強化ガラス基板の製造方法及び強化ガラス基板
US7810355B2 (en) * 2008-06-30 2010-10-12 Apple Inc. Full perimeter chemical strengthening of substrates
US8192000B2 (en) * 2009-07-17 2012-06-05 Lexmark International, Inc. Fluid height backpressure system for supplying fluid to a printhead and backpressure device used therein
US8835011B2 (en) * 2010-01-07 2014-09-16 Corning Incorporated Cover assembly for electronic display devices
US20130001546A1 (en) * 2010-03-26 2013-01-03 Tsuyoshi Kamada Display device and method for producing array substrate for display device
US9302937B2 (en) * 2010-05-14 2016-04-05 Corning Incorporated Damage-resistant glass articles and method
TWI398423B (zh) * 2010-05-28 2013-06-11 Wintek Corp 玻璃強化方法及應用其之玻璃
US20120052302A1 (en) * 2010-08-24 2012-03-01 Matusick Joseph M Method of strengthening edge of glass article
CN102531384B (zh) * 2010-12-29 2019-02-22 安瀚视特股份有限公司 玻璃盖片及其制造方法
TW201329004A (zh) * 2012-01-04 2013-07-16 Wintek Corp 強化玻璃切割件、玻璃強化方法、具有強化玻璃保護的觸控顯示裝置以及有機發光二極體顯示裝置
US9725357B2 (en) * 2012-10-12 2017-08-08 Corning Incorporated Glass articles having films with moderate adhesion and retained strength

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010116276A (ja) * 2008-11-11 2010-05-27 Nippon Electric Glass Co Ltd 強化ガラス基板及びその製造方法
JP2012184155A (ja) * 2011-02-17 2012-09-27 Hoya Corp 携帯電子機器用カバーガラスのガラス基板の製造方法、携帯電子機器用カバーガラスのガラス基板および携帯電子機器
JP2013012282A (ja) * 2011-06-30 2013-01-17 Konica Minolta Advanced Layers Inc Hdd用ガラス基板の製造方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107108347A (zh) * 2015-03-25 2017-08-29 日本电气硝子株式会社 强化玻璃板的制造方法、以及强化用玻璃板的制造方法
CN107108347B (zh) * 2015-03-25 2020-02-11 日本电气硝子株式会社 强化玻璃板的制造方法、以及强化用玻璃板的制造方法
US10723651B2 (en) 2015-03-25 2020-07-28 Nippon Electric Glass Co., Ltd. Method for manufacturing reinforced glass plate, and method for manufacturing glass plate for reinforcement
WO2017009235A1 (en) * 2015-07-16 2017-01-19 Agc Glass Europe Glass substrate for chemical strengthening and method for chemically strengthening with controlled curvature
JP2018521947A (ja) * 2015-07-16 2018-08-09 エージーシー グラス ユーロップAgc Glass Europe 化学強化のためのガラス基板および制御された曲率を有する化学強化法
EA036427B1 (ru) * 2015-07-16 2020-11-10 Агк Гласс Юроп Способ получения химически упрочненной стеклянной подложки с контролируемой кривизной
US11242281B2 (en) 2015-07-16 2022-02-08 Agc Glass Europe Glass substrate for chemical strengthening and method for chemically strengthening with controlled curvature
JP2017197408A (ja) * 2016-04-27 2017-11-02 旭硝子株式会社 強化ガラス板
WO2017217388A1 (ja) * 2016-06-17 2017-12-21 日本電気硝子株式会社 強化ガラス板および強化ガラス板の製造方法
JPWO2017217388A1 (ja) * 2016-06-17 2019-04-11 日本電気硝子株式会社 強化ガラス板および強化ガラス板の製造方法
US11104606B2 (en) * 2016-06-17 2021-08-31 Nippon Electric Glass Co., Ltd. Tempered glass plate and production method for tempered glass plate
WO2018008359A1 (ja) * 2016-07-08 2018-01-11 日本電気硝子株式会社 強化ガラス板の製造方法

Also Published As

Publication number Publication date
CN106977092B (zh) 2020-04-24
KR102123253B1 (ko) 2020-06-16
US20150329418A1 (en) 2015-11-19
JP2014208570A (ja) 2014-11-06
JP5920554B1 (ja) 2016-05-18
CN106977092A (zh) 2017-07-25
KR20150135189A (ko) 2015-12-02
CN104736496A (zh) 2015-06-24
JP2016121067A (ja) 2016-07-07

Similar Documents

Publication Publication Date Title
JP5920554B1 (ja) 強化ガラス基板の製造方法
JP5429684B2 (ja) 強化ガラス基板及びその製造方法
JP6168288B2 (ja) 強化ガラス及び強化ガラス板
JP5867574B2 (ja) 強化ガラス基板及びその製造方法
JP5365974B2 (ja) 強化ガラス基板及びその製造方法
JP5743125B2 (ja) 強化ガラス及び強化ガラス基板
JP5875133B2 (ja) 強化ガラス基板
WO2012099053A1 (ja) 強化ガラス及び強化ガラス板
WO2013031855A1 (ja) 強化ガラス基板及びその製造方法
JP2012148908A (ja) 強化ガラス及び強化ガラス板
WO2014010544A1 (ja) 強化ガラス基板の製造方法及び強化ガラス基板
JP2013121912A (ja) 強化ガラス基板及びガラス並びに強化ガラス基板の製造方法
JP2013177305A (ja) 強化ガラス基板及びガラス並びに強化ガラス基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14774375

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157007515

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14651386

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14774375

Country of ref document: EP

Kind code of ref document: A1