WO2017026190A1 - 強化ガラス基板の製造方法及び強化ガラス基板 - Google Patents

強化ガラス基板の製造方法及び強化ガラス基板 Download PDF

Info

Publication number
WO2017026190A1
WO2017026190A1 PCT/JP2016/069409 JP2016069409W WO2017026190A1 WO 2017026190 A1 WO2017026190 A1 WO 2017026190A1 JP 2016069409 W JP2016069409 W JP 2016069409W WO 2017026190 A1 WO2017026190 A1 WO 2017026190A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressive stress
glass substrate
ion exchange
film
tempered glass
Prior art date
Application number
PCT/JP2016/069409
Other languages
English (en)
French (fr)
Inventor
利之 梶岡
睦 深田
清貴 木下
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to JP2017534132A priority Critical patent/JPWO2017026190A1/ja
Publication of WO2017026190A1 publication Critical patent/WO2017026190A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface

Definitions

  • the present invention relates to a method for producing a tempered glass substrate and a tempered glass substrate.
  • a chemically strengthened tempered glass substrate has been used as a cover glass for touch panel displays mounted on electronic devices such as smartphones and tablet PCs.
  • a tempered glass substrate is generally obtained by chemically treating a glass substrate containing an alkali metal as a composition with an ion exchange solution, and alkali metal ions (Na + ) on the surface of the glass substrate and the alkali metal in the ion exchange solution. It is manufactured by exchanging ions (K + ) and forming a compressive stress layer on the surface.
  • K + alkali metal ions
  • a tensile stress layer corresponding to the compressive stress layer on the main surface is formed inside the compressive stress layer.
  • the tempered glass substrate is spontaneously broken, so-called self-breaking occurs.
  • Patent Document 1 discloses a technique for controlling the magnitude of compressive stress on the main surface by forming a film on the main surface in advance and suppressing the progress of chemical strengthening from the end surface.
  • Patent Documents 2 and 3 below disclose techniques that can reduce the warp of a tempered glass substrate by forming a film that suppresses ion exchange on one or both surfaces of a glass plate and then performing ion exchange.
  • JP 2014-208570 A US Patent Application Publication No. 2011/0293928 International Publication No. 2013/094479
  • the tempered glass substrate may be warped due to a slight difference in treatment between the front and back surfaces.
  • the tempered glass substrate may be warped after strengthening due to a slight difference in thickness between the front and back surfaces that is unavoidable during production.
  • a plurality of glass substrates are arranged with a small interval so that the main surfaces face each other and are subjected to ion exchange treatment.
  • Patent Document 1 the direction of warping of the tempered glass substrate as described above is not considered.
  • Patent Documents 2 and 3 the inevitable film thickness variation at the time of film formation is not considered.
  • An object of the present invention is to provide a method of manufacturing a tempered glass substrate and a tempered glass substrate that can control the direction of warpage.
  • a first ion exchange suppressing film is formed on a first main surface of a glass substrate having first and second main surfaces facing each other.
  • the product of the surface compressive stress value (CS) and the compressive stress depth (DOL) of the first compressive stress layer, and the product of the surface compressive stress value and the compressive stress depth of the second compressive stress layer are examples of the first ion exchange suppressing film.
  • the absolute value of the amount ⁇ (CS ⁇ DOL) / T 2 defined by the difference ⁇ (CS ⁇ DOL) and the thickness T of the tempered glass substrate is 1.5 ⁇ 10 9 Pa / m or more, and 9 ⁇
  • the target values of the film thickness of the first ion exchange suppression film and the film thickness of the second ion exchange suppression film are set so as to be 10 9 Pa / m or less, and the first and second ion exchanges are set.
  • a suppression film is formed.
  • the glass substrate has an end surface connected to the first main surface and the second main surface, it is preferable to chemically strengthen the glass substrate without forming an ion exchange suppressing film on the end surface in the strengthening step.
  • the difference in film thickness between the first ion exchange suppression film and the second ion exchange suppression film is such that the ion exchange suppression of the thicker one of the first and second ion exchange suppression films is greater. It is preferable to form the first and second ion exchange suppressing films so as to be greater than 2% and 10% or less of the film thickness.
  • a polishing step of polishing at least one of the first and second ion exchange suppressing films may be provided after the strengthening step.
  • At least one of the first compressive stress layer and the second compressive stress layer may be further polished.
  • the tempered glass substrate of the present invention has first and second compressive stress layers facing each other. Difference ⁇ () between the product of the surface compressive stress value (CS) and the compressive stress depth (DOL) of the first compressive stress layer and the product of the surface compressive stress value and the compressive stress depth of the second compressive stress layer.
  • CS ⁇ DOL) and the absolute value of the quantity ⁇ (CS ⁇ DOL) / T 2 defined by the thickness T of the tempered glass substrate is 1.5 ⁇ 10 9 Pa / m or more, and 9 ⁇ 10 9 Pa / m. It is as follows.
  • At least one of the surface compressive stress value and the compressive stress depth of the end face compressive stress layer is It is preferable that it is larger than the values of the first compressive stress layer and the second compressive stress layer.
  • a method of manufacturing a tempered glass substrate and a tempered glass substrate that can control the direction of warping can be provided.
  • FIGS. 1A to 1D are front views for explaining a method of manufacturing a tempered glass substrate according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view for explaining the definition of the warpage amount in the present invention.
  • FIG. 3 is a diagram showing the relationship between the position in the thickness direction of the tempered glass substrate and the stress value.
  • FIG. 4 is a diagram showing the relationship between the warpage rate
  • FIG. 5 is a diagram showing the relationship between the film thickness of the ion exchange suppressing film, the surface compressive stress value CS, and the compressive stress depth DOL.
  • FIG. 6 is a front view for explaining the polishing step.
  • FIGS. 1A to 1D are front views for explaining a method of manufacturing a tempered glass substrate according to the first embodiment of the present invention.
  • the glass substrate 11 is prepared in the manufacturing method of 1st Embodiment.
  • the glass substrate 11 has the 1st, 2nd main surface 11a, 11b and the side surface 11c connected to the 1st, 2nd main surface 11a, 11b which oppose.
  • the material of the glass substrate 11 is not particularly limited as long as it can be strengthened by an ion exchange method.
  • the glass substrate 11 may be made of soda lime or aluminosilicate.
  • the thickness of the glass substrate 11 is preferably 0.1 mm to 2 mm. Although details will be described later, since the glass substrate is more likely to warp as the glass substrate 11 is thinner, the present invention can be suitably used. When the thickness of the glass substrate is thinner than 0.1 mm, the glass substrate is likely to be cracked and it is difficult to form a compression stress layer described later.
  • the thickness of the glass substrate 11 is more preferably 0.2 mm to 1.3 mm, further preferably 0.2 mm to 0.9 mm, further preferably 0.2 mm to 0.7 mm, Most preferably, it is 2 mm to 0.55 mm. In this case, the present invention can be applied more suitably.
  • the glass substrate 11 is not particularly limited, but can be prepared by, for example, an overflow down draw method or a float method.
  • a first ion exchange suppression film 2 a is formed on the first main surface 11 a of the glass substrate 11.
  • the second ion exchange suppressing film 2b is also formed on the second main surface 11b (film forming process).
  • the first and second ion exchange suppression films 2a and 2b are made of silicon oxide.
  • the material of the first and second ion exchange suppressing films 2a and 2b is not particularly limited, and examples thereof include metals, metal oxide films, metal nitride films, metal carbide films, metal oxynitride films, and metal acids. It is formed from a carbide film, a metal carbonitride film, or the like.
  • the first and second ion exchange suppressing films 2a and 2b are, for example, silicon oxide, aluminum oxide, silicon nitride, silicon carbide, aluminum nitride, zirconium oxide, titanium oxide, tantalum oxide, niobium oxide, It is formed from hafnium oxide, tin oxide, silicon oxynitride, zinc oxide, indium oxide, or the like.
  • the first and second ion exchange suppressing films 2a and 2b are formed by a PVD method (physical vapor deposition method) such as a sputtering method or a vacuum evaporation method, or a CVD method (chemical vapor deposition method) such as a thermal CVD method or a plasma CVD method. Or a wet coating method such as a dip coating method, a spray coating method, a spin coating method, or a slit coating method. In particular, it is preferable to use a sputtering method. When the sputtering method is used, the film thickness uniformity of the ion exchange suppressing film is particularly high.
  • the film thicknesses of the first and second ion exchange suppression films 2a and 2b can be controlled by controlling the film formation rate and the film formation time.
  • the film thickness can be controlled by adjusting the angle of the glass substrate 11 when the glass substrate 11 is pulled up.
  • the film thickness can be controlled by adjusting the coating amount.
  • an ion exchange suppressing film may also be formed on the side surface 11c of the glass substrate 11.
  • the first ion exchange suppression film 2a is formed such that the film thickness is larger than the film thickness 2b of the second ion exchange suppression film.
  • the film thickness of the first ion exchange suppressing film 2a is preferably 10 nm to 300 nm.
  • the film thickness of the ion exchange suppression film is thicker than 300 nm, there is a possibility that ion exchange does not proceed in the strengthening step described later.
  • the film thickness of the ion exchange suppression film is thin, there is a possibility that ion exchange cannot be suppressed.
  • the difference in film thickness between the first and second ion exchange suppression films 2a and 2b is preferably greater than 2% and less than or equal to 10% of the film thickness of the first ion exchange suppression film 2a.
  • the difference between the film thicknesses of the first and second ion exchange suppressing films 2a and 2b is larger than 10%, the warp of the tempered glass substrate described later may be increased.
  • the difference in film thickness is 2% or less, it may be difficult to control the variation in the film thickness of the ion exchange suppressing film during manufacturing.
  • a difference is provided in the film thicknesses of the first and second ion exchange suppression films 2a and 2b, and ion exchange is performed in the strengthening process described later. Due to the difference in film thickness, there is a difference between the ion exchange progress of the first main surface 11a and the ion exchange progress of the second main surface 11b. Thereby, the product of the surface compressive stress value (CS) and the compressive stress depth (DOL) of the first compressive stress layer of the tempered glass substrate described later, the surface compressive stress value and the compressive stress of the second compressive stress layer. A difference can be made in the product of the depth.
  • CS surface compressive stress value
  • DOL compressive stress depth
  • the absolute value of the quantity ⁇ (CS ⁇ DOL) / T 2 defined by the product difference ⁇ (CS ⁇ DOL) and the thickness T of the tempered glass substrate is 1.5 ⁇ 10 9 Pa / m or more, 9
  • the first and second ion exchange suppression films 2a and 2b are formed by setting the difference in film thickness so as to be not more than ⁇ 10 9 Pa / m.
  • the glass substrate 11 is cut in the thickness direction.
  • a portion cut in this processing step becomes an end surface 11d connected to the first main surface 11a and the second main surface 11b.
  • An ion exchange suppression film is not formed on the end face 11d.
  • membrane is not formed can be provided.
  • the machining process may be a drilling process or an end face process.
  • the glass substrate 11 does not necessarily have to be processed as described above, and may be subjected to a strengthening step described later in a state where the ion exchange suppressing film shown in FIG. 1B is formed on the side surface 11c.
  • a strengthening step described later it is preferable to expose the end surface 11d on which the ion exchange suppression film is not formed by a processing step. Thereby, the end face 11d can be effectively strengthened in the strengthening step.
  • the first and second ion exchange suppression films 2a and 2b may be formed on the first and second main surfaces 11a and 11b without forming the ion exchange suppression film on the side surface 11c. Good.
  • the glass substrate 11 is chemically strengthened by an ion exchange method (strengthening step).
  • this strengthening step in this embodiment, the glass substrate 11 that has undergone the film forming step is immersed in a potassium nitrate molten salt at 430 ° C. for 5 hours.
  • the conditions for the strengthening process are not limited to the above. What is necessary is just to determine the conditions of a reinforcement
  • ion exchange proceeds on the first and second main surfaces 11a and 11b. And the glass substrate 11 turns into the tempered glass substrate 1 which has the 1st, 2nd compressive-stress layer 1a, 1b which opposes as shown in FIG.1 (d).
  • ion exchange is also performed on the end face 11d, and an end face compressive stress layer is formed.
  • the end surface compressive stress layer has at least one of the surface compressive stress value and the compressive stress depth larger than those of the first and second compressive stress layers 1a and 1b. Therefore, damage to the end surface 11d of the tempered glass substrate 1 can be efficiently suppressed.
  • the thickness of the tempered glass substrate 1 is preferably 0.1 mm to 2 mm, similar to the thickness of the glass substrate 11. More preferably, the thickness of the tempered glass substrate 1 is more preferably 0.2 mm to 1.3 mm, further preferably 0.2 mm to 0.9 mm, and 0.2 mm to 0.7 mm. Is more preferable, and most preferably 0.2 mm to 0.55 mm.
  • the absolute value of ⁇ (CS ⁇ DOL) / T 2 is obtained by chemically strengthening the glass substrate 11 by providing a difference in film thickness between the first and second ion exchange suppressing films 2a and 2b. It can be set to 1.5 ⁇ 10 9 Pa / m or more and 9 ⁇ 10 9 Pa / m or less. Thereby, the direction of the warp of the tempered glass substrate 1 can be controlled effectively, and the warp can be sufficiently reduced. Details will be described below.
  • FIG. 2 is a cross-sectional view for explaining the definition of the amount of warpage in the present invention.
  • the relationship between the length L of the tempered glass substrate 1 and the radius of curvature ⁇ and the angle ⁇ of the tempered glass substrate 1 can be expressed by the following formula 1.
  • the length L refers to the dimension of the long side of the rectangular tempered glass substrate 1.
  • the length L indicates the longest dimension along the first compressive stress layer 1a of the tempered glass substrate 1.
  • FIG. 2 is a cross-sectional view cut in a direction along the length L.
  • the angle ⁇ has a radius ⁇ , an imaginary line 11 connecting the center of an imaginary circle in contact with the tempered glass substrate 1 and one end of the tempered glass substrate 1, and the center and the tempered glass substrate 1. This is an angle formed by an imaginary line l2 connecting the central portion.
  • Equation 2 the relationship between the warpage amount ⁇ of the tempered glass substrate 1, the radius of curvature ⁇ , and the angle ⁇ .
  • Equation 3 the relationship between the warpage amount ⁇ and the length L can be expressed by Equation 3 below.
  • the warpage amount ⁇ of the tempered glass substrate 1 depends on the square of the length L.
  • / L 2 that does not depend on the length L can be defined.
  • / L 2 is preferably 40 ⁇ 10 ⁇ 9 ⁇ m ⁇ 1 or less.
  • / L 2 is larger than 40 ⁇ 10 ⁇ 9 ⁇ m ⁇ 1 , for example, when the tempered glass substrate 1 is bonded to another member as a cover glass, the bonding may be difficult. is there. More preferably, the curvature ratio
  • the tempered glass substrate 1 is more easily bonded to another member or the like.
  • / L 2 is 20 ⁇ 10 ⁇ 9 ⁇ m ⁇ 1 or less. Accordingly, the tempered glass substrate 1 can be more easily bonded to other members.
  • / L 2 can be determined.
  • the surface compressive stress value of the first compressive stress layer 1 a is ⁇ 1
  • the surface compressive stress value of the second compressive stress layer 1 b is ⁇ 2
  • the compressive stress depth of the first compressive stress layer 1 a is D 1
  • second the compressive stress depth of the compression stress layer 1b when the D 2 can be calculated by equation 4 below.
  • / L 2 can be obtained as follows.
  • FIG. 3 is a diagram showing the relationship between the position in the thickness direction of the tempered glass substrate 1 and the stress value.
  • the outer surface of the first compressive stress layer 1 a of the tempered glass substrate 1 corresponds to a position 0 in the thickness direction (x direction) of the tempered glass substrate 1.
  • the outer surface of the second compressive stress layer 1b corresponds to the position T in the thickness direction. From the outer surface of the first compressive stress layer 1a, the distance D 1 of the up position D 1 of the thickness direction corresponds to the compression stress depth of the first compressive stress layer 1a. From the outer surface of the second compressive stress layer 1b, a distance D 2 to the thickness direction position T-D 2 corresponds to the compression stress depth of the second compressive stress layer 1b.
  • the compressive stress value on the outer surface of the first compressive stress layer 1a is ⁇ 1 and decreases in proportion to the thickness direction up to the position D 1 in the thickness direction. From the position D 1 in the thickness direction to TD 2 , the compressive stress value is a constant value -CT. From the position T-D 2 in the thickness direction to the outer surface of the second compressive stress layer 1b, the compression stress value increases in proportion to the thickness direction. Compressive stress value at the outer surface of the second compressive stress layer 1b is sigma 2. This can be expressed by the following equations 5 to 7, where x in the thickness direction and ⁇ S (x) as the stress value. Note that ⁇ S (x) is a compressive stress when the value is positive. When ⁇ s (x) is a negative value, it becomes a tensile stress.
  • ⁇ S (x) ⁇ ⁇ 1x / D 1 + ⁇ 1 (0 ⁇ x ⁇ D 1 ) Equation 5
  • the moment of force due to compressive stress at each position x in the thickness direction can be expressed by the equation x ⁇ S (x).
  • the moment of force due to compressive stress is not balanced throughout the thickness direction. Therefore, the tempered glass substrate 1 warps. Thereby, a bending stress ⁇ B (x) is generated. Thereby, the moment of force in the entire thickness direction of the tempered glass substrate 1 is balanced. That is, the integral value of the entire thickness direction of the moment of force due to compressive stress and bending stress is zero. This can be expressed by Equation 9 below.
  • is obtained by substituting the values of E, ⁇ , ⁇ 1 , ⁇ 2 , D 1 , D 2 and T into the equation obtained by substituting Equation 8 and Equation 10 into Equation 9. Can do.
  • each of the parameters shown in Table 1 below was varied to obtain each ⁇ (CS ⁇ DOL) / T 2 and each
  • the Young's modulus E was 70 GPa and the Poisson's ratio ⁇ was 0.2.
  • the compressive stress depth of the second compressive stress layer 1b of the tempered glass substrate 1 was varied.
  • the surface compressive stress value of the first compressive stress layer 1a, the compressive stress depth of the first compressive stress layer 1a, the surface compressive stress value of the second compressive stress layer 1b, and the thickness of the tempered glass substrate 1 are as follows. The value shown in 1 was fixed.
  • Table 1 shows the surface compressive stress value of the first compressive stress layer 1a, the compressive stress depth of the first compressive stress layer 1a, the compressive stress depth of the second compressive stress layer 1b, and the thickness of the tempered glass substrate 1. The value shown was fixed.
  • FIG. 4 is a diagram showing the relationship between the warpage rate
  • the solid line, the broken line with a short period, and the dashed-dotted line show the results of A, B and C in Table 1.
  • a broken line and a two-dot chain line with a long period indicate the results of D and E in Table 1.
  • / L 2 increases.
  • / L 2 is preferably 40 ⁇ 10 ⁇ 9 ⁇ m ⁇ 1 or less.
  • / L 2 can be set to 40 ⁇ 10 ⁇ 9 ⁇ m ⁇ 1 or less.
  • / L 2 is 40. ⁇ 10 ⁇ 9 ⁇ m ⁇ 1 or less.
  • the first and second ion exchange suppression films 2a and 2b are set so that the absolute value of ⁇ (CS ⁇ DOL) / T 2 is 1.5 ⁇ 10 9 Pa / m or more.
  • a target thickness value is set, and the first and second ion exchange suppression films 2a and 2b are formed.
  • the direction in which the tempered glass substrate 1 warps can be effectively controlled. That is, even if the film thicknesses of the first and second ion exchange suppression films 2a and 2b vary within a range of ⁇ 1%, the tempered glass substrate 1 can be controlled to warp in the same direction.
  • ion exchange suppression films are respectively 10 nm, 20 nm, 30 nm, 40 nm, 50 nm, 60 nm, and 70 nm. , 80 nm, 90 nm, and 100 nm.
  • a glass substrate having a rectangular main surface was used. The direction along the long side of the glass substrate is defined as the length direction.
  • the glass substrate on which the ion exchange suppressing film was formed was tempered by an ion exchange method by immersing it in a potassium nitrate molten salt at 430 ° C.
  • a glass substrate on which no ion exchange suppressing film was formed that is, a glass substrate having a film thickness of 0 nm was tempered by the ion exchange method in the same manner as described above to produce a tempered glass substrate.
  • silicon oxide was used for the ion exchange suppression film.
  • the surface compressive stress value CS and the compressive stress depth DOL of each tempered glass substrate were measured with a surface stress meter (FSM-6000 manufactured by Orihara Seisakusho).
  • Other methods for measuring the surface compressive stress value CS and the compressive stress depth DOL include the depth direction of alkaline ions such as potassium ions by EPMA (Electron probe micro-analyzer) and GDOES (Glow discharge ion optical-spectrometry). It can be measured by performing a concentration analysis.
  • FIG. 5 is a diagram showing the relationship between the film thickness of the ion exchange suppressing film, the surface compressive stress value CS, and the compressive stress depth DOL.
  • the following expression 11 which is a relational expression between the film thickness of the ion exchange suppressing film and the surface compressive stress value CS was obtained.
  • the following Expression 12 which is a relational expression between the film thickness of the ion exchange suppressing film and the compressive stress depth DOL was obtained.
  • the film thickness of the ion exchange suppression film is x
  • y is the surface compressive stress value CS.
  • the film thickness of the ion exchange suppression film is x
  • y is the compression stress depth DOL.
  • the first and first values are set so that the absolute value of ⁇ (CS ⁇ DOL) / T 2 is 1.5 ⁇ 10 9 Pa / m or more and 9 ⁇ 10 9 Pa / m or less.
  • the target value of the film thickness of the ion exchange suppressing film 2 can be set.
  • the second ion exchange suppressing film 2 b is polished by the polishing apparatus P.
  • the thickness of the ion exchange suppressing film 2b is reduced.
  • the tempered glass substrate 1 has high scratch resistance and good appearance as compared with the case where the ion exchange suppressing film 2b is not polished.
  • the ion exchange suppression film 2a and the second compressive stress layer 1a may also be polished to adjust the thickness of the ion exchange suppression film 2a and the compressive stress layer 1a.
  • Examples 1 and 2 and Comparative Examples 1 and 2 > Examples 1 and 2 in which the absolute value of ⁇ (CS ⁇ DOL) / T 2 is 1.5 ⁇ 10 9 Pa / m or more and 9 ⁇ 10 9 Pa / m or less, and ⁇ (CS ⁇ DOL) / T 2
  • the tempered glass substrate of Comparative Example 1 having an absolute value of less than 1.5 ⁇ 10 9 Pa / m and Comparative Example 2 having an absolute value of ⁇ (CS ⁇ DOL) / T 2 of greater than 9 ⁇ 10 9 Pa / m It was produced as follows.
  • As the glass substrate a substrate having a thickness of 0.55 mm, a long side length of 130 mm, and a short side length of 65 mm was used.
  • Example 1 The target value of the film thickness of the first ion exchange suppressing film is set to 100 nm, and the value of ⁇ (CS ⁇ DOL) / T 2 is set to 1.9 ⁇ 10 9 Pa / m. The target value of the film thickness was calculated to be 97.8 nm.
  • the target value of the first ion exchange suppression film thickness is set to 100 nm
  • the target value of the second ion exchange suppression film thickness is set to 97.8 nm
  • the first and second ion exchange suppression values are set.
  • a film was formed on a glass substrate, and a plurality of tempered glass substrates were prepared by immersing in a potassium nitrate molten salt at 430 ° C. for 5 hours in the same manner as described above, and strengthening by an ion exchange method.
  • the amount of warpage ⁇ was measured by scanning a laser type displacement sensor along the length direction of the substrate.
  • the length direction of the substrate was the long side direction when the planar shape of the substrate was a rectangle as in this example.
  • the warpage amount ⁇ is measured by scanning the laser type displacement sensor on the longest dimension line.
  • the maximum distance among the distances between the measurement point and the line connecting the one end and the other end of the substrate on the line scanned with the laser displacement sensor was defined as the warpage amount ⁇ .
  • a tempered glass substrate having a maximum warpage amount ⁇ film thickness of the first ion exchange suppression film: 101 nm, film thickness of the second ion exchange suppression film: 96.8 nm
  • the measurement results of the warpage amount ⁇ of the tempered glass substrate (the film thickness of the first ion exchange suppression film: 99 nm, the film thickness of the second ion exchange suppression film: 98.8 nm) with the minimum warpage amount ⁇ are shown. It is shown in 2.
  • Table 2 also shows the set values of the surface compressive stress value and compressive stress depth of the first and second main surfaces, and the warpage rates
  • Example 2 The target value of the film thickness of the first ion exchange suppressing film is set to 100 nm, and the value of ⁇ (CS ⁇ DOL) / T 2 is set to 6.7 ⁇ 10 9 Pa / m. The target value of the film thickness was calculated to be 92 nm.
  • the target value of the film thickness of the first ion exchange suppression film is set to 100 nm
  • the target value of the film thickness of the second ion exchange suppression film is set to 92 nm
  • the first and second ion exchange suppression films are A plurality of tempered glass substrates were produced by forming on a glass substrate and strengthening by an ion exchange method in the same manner as described above.
  • the tempered glass substrate having the maximum warpage amount ⁇ film thickness of the first ion exchange suppression film: 101 nm, film thickness of the second ion exchange suppression film: 91 nm
  • warpage Table 2 shows the measurement results of the warpage amount ⁇ of the tempered glass substrate (the film thickness of the first ion exchange suppression film: 99 nm, the film thickness of the second ion exchange suppression film: 93 nm) having the minimum amount ⁇ .
  • Table 2 also shows the set values of the surface compressive stress value and compressive stress depth of the first and second main surfaces, and the warpage rates
  • the target value of the film thickness of the first ion exchange suppression film is set to 100 nm
  • the value of ⁇ (CS ⁇ DOL) / T 2 is set to 0 Pa / m
  • the target value of the film thickness of the second ion exchange suppression film was calculated to be 100 nm.
  • the target value of the film thickness of the first ion exchange suppression film is set to 100 nm
  • the target value of the film thickness of the second ion exchange suppression film is set to 100 nm
  • the first and second ion exchange suppression films are A plurality of tempered glass substrates were produced by forming on a glass substrate and strengthening by an ion exchange method in the same manner as described above.
  • the tempered glass substrate having the maximum warpage amount ⁇ film thickness of the first ion exchange suppression film: 101 nm, film thickness of the second ion exchange suppression film: 99 nm
  • warpage Table 2 shows the measurement results of the warpage amount ⁇ of the tempered glass substrate (thickness of the first ion exchange suppression film: 99 nm, thickness of the second ion exchange suppression film: 101 nm) in which the amount ⁇ was minimal.
  • Table 2 also shows the set values of the surface compressive stress value and compressive stress depth of the first and second main surfaces, and the warpage rates
  • the target value of the film thickness of the first ion exchange suppression film is set to 100 nm, the value of ⁇ (CS ⁇ DOL) / T 2 is set to 11.9 ⁇ 10 9 Pa / m, and the second ion exchange suppression film The target value of the film thickness was calculated to be 85 nm.
  • the target value of the film thickness of the first ion exchange suppression film is set to 100 nm
  • the target value of the film thickness of the second ion exchange suppression film is set to 85 nm
  • the first and second ion exchange suppression films are A plurality of tempered glass substrates were produced by forming on a glass substrate and strengthening by an ion exchange method in the same manner as described above.
  • the tempered glass substrate having the maximum warpage amount ⁇ (the film thickness of the first ion exchange suppression film: 101 nm, the film thickness of the second ion exchange suppression film: 84 nm), and the warp Table 2 shows the measurement results of the warpage amount ⁇ of the tempered glass substrate (the film thickness of the first ion-exchange suppression film: 99 nm, the film thickness of the second ion-exchange suppression film: 86 nm) with the minimum amount ⁇ .
  • Table 2 also shows the set values of the surface compressive stress value and compressive stress depth of the first and second main surfaces, and the warpage rates
  • Comparative Example 1 the sign of the warpage amount ⁇ differs depending on whether the warpage amount ⁇ is the maximum or the minimum. That is, the direction of the warp differs depending on whether the warp amount ⁇ is maximum or minimum. Therefore, as in Comparative Example 1, when ⁇ (CS ⁇ DOL) / T 2 is smaller than 1.5 ⁇ 10 9 Pa / m, it is difficult to control the direction of warpage.
  • Example 1 the sign of the warpage amount ⁇ is the same between the case where the warpage amount ⁇ is the maximum and the case where the warpage amount ⁇ is the minimum, and the warpage can be controlled in the same direction. Further, even when the warpage amount ⁇ is maximum, the warpage rate
  • SYMBOLS 1 Tempered glass substrate 1a, 1b ... 1st, 2nd compressive-stress layer 2a, 2b ... 1st, 2nd ion exchange suppression film
  • membrane 11 Glass substrate 11a, 11b ... 1st, 2nd main surface 11c ... Side surface 11d ... end face

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

反りの方向を制御することができる、強化ガラス基板の製造方法を提供する。 対向し合う第1,第2の主面11a,11bを有するガラス基板11の、第1の主面11aの上に第1のイオン交換抑制膜2aを形成し、第2の主面11bの上に第2のイオン交換抑制膜2bを形成する成膜工程と、ガラス基板11をイオン交換法により化学強化することにより強化ガラス基板1とする、強化工程とを備える。成膜工程において、強化ガラス基板1の第1の圧縮応力層1aの表面圧縮応力値(CS)と圧縮応力深さ(DOL)との積と、第2の圧縮応力層1bの表面圧縮応力値と圧縮応力深さとの積の差Δ(CS×DOL)及び強化ガラス基板1の厚みTにより定義される量Δ(CS×DOL)/Tの絶対値が、1.5×10Pa/m以上であり、9×10Pa/m以下となるように、第1のイオン交換抑制膜2aと第2のイオン交換抑制膜2bとの膜厚の差を設定し、第1,第2のイオン交換抑制膜2a,2bを形成することを特徴とする。

Description

強化ガラス基板の製造方法及び強化ガラス基板
 本発明は、強化ガラス基板の製造方法及び強化ガラス基板に関するものである。
 従来、化学強化された強化ガラス基板は、スマートフォンやタブレットPCなどの電子機器に搭載されるタッチパネルディスプレイのカバーガラスとして用いられている。このような強化ガラス基板は、一般的に、アルカリ金属を組成として含むガラス基板をイオン交換液で化学的に処理し、ガラス基板表面のアルカリ金属イオン(Na+)とイオン交換液中のアルカリ金属イオン(K+)とを交換し、表面に圧縮応力層を形成することによって製造される。このような強化ガラス基板は、主表面に圧縮応力層を有することによって、主表面への衝撃耐性が向上する。一方、このような強化ガラス基板においては、圧縮応力層よりも内部に、主表面の圧縮応力層に対応した引張応力層が形成される。圧縮応力層の厚みよりも深いダメージを受けた場合、強化ガラス基板が自発的に破壊される、いわゆる自己破壊が生じることが問題となっていた。
 このような問題を解決すべく、強化ガラス基板の主表面と端面との圧縮応力のバランスを適切に設定するため、化学強化の進度を調整する処理を表面に施す技術が開発されている。例えば、特許文献1には、主表面に予め膜を形成しておくことによって、化学強化の進度を端面より抑制することによって、主表面の圧縮応力の大きさを制御する技術が開示されている。
 下記の特許文献2及び3には、ガラス板の片面もしくは両面にイオン交換を抑制する膜を形成した後にイオン交換することにより、強化ガラス基板の反りを小さくし得る技術が開示されている。
特開2014-208570号公報 米国特許出願公開第2011/0293928号明細書 国際公開第2013/094479号
 しかしながら、化学強化の進度を調整する処理をガラス基板の表面に施す場合、表裏のわずかな処理の差によって、強化ガラス基板が反ることがあった。例えば、主表面に予め膜を形成して強化する場合、生産時に不可避に生じる表裏のわずかな膜厚差によって、強化後に強化ガラス基板が反ることがあった。一般に、表裏の膜厚差を±2%未満に収めることは容易だが、±1%のばらつきは残る。一般に、複数枚のガラス基板を、主表面同士が向かい合うように、狭い間隔をあけて並べ、イオン交換処理しているが、反りの方向がガラス基板により異なる場合、隣同士の強化ガラス基板が接触するおそれがある。あるいは、強化ガラス基板の反りが大きいと、強化ガラス基板を吸着搬送により搬送する際において、強化ガラス基板を吸着することができないなどの不具合が生じるおそれもある。
 特許文献1においては、上述したような強化ガラス基板の反りの方向については考慮されていない。特許文献2及び3においては、成膜時において不可避な膜厚のばらつきについては考慮されていない。
 本発明の目的は、反りの方向を制御することができる、強化ガラス基板の製造方法及び強化ガラス基板を提供することにある。
 本発明の強化ガラス基板の製造方法は、対向し合う第1,第2の主面を有するガラス基板の、第1の主面の上に第1のイオン交換抑制膜を形成し、第2の主面の上に第2のイオン交換抑制膜を形成する成膜工程と、ガラス基板をイオン交換法により化学強化することにより第1の主面に対応する第1の圧縮応力層と、第2の主面に対応する第2の圧縮応力層を形成する強化工程とを備える。成膜工程において、第1の圧縮応力層の表面圧縮応力値(CS)と圧縮応力深さ(DOL)との積と、第2の圧縮応力層の表面圧縮応力値と圧縮応力深さとの積との差Δ(CS×DOL)及び強化ガラス基板の厚みTにより定義される量Δ(CS×DOL)/Tの絶対値が、1.5×10Pa/m以上であり、9×10Pa/m以下となるように、第1のイオン交換抑制膜の膜厚と第2のイオン交換抑制膜の膜厚とのそれぞれの目標値を設定し、第1,第2のイオン交換抑制膜を形成する。
 ガラス基板が、第1の主面と第2の主面とに接続される端面を有する場合、強化工程において、端面にイオン交換抑制膜を形成せずにガラス基板を化学強化することが好ましい。
 成膜工程において、第1のイオン交換抑制膜と第2のイオン交換抑制膜との膜厚の差が、第1,第2のイオン交換抑制膜の内の膜厚が厚い方のイオン交換抑制膜の膜厚の2%より大きく、10%以下となるように、第1,第2のイオン交換抑制膜を形成することが好ましい。
 強化工程後に、第1,第2のイオン交換抑制膜のうち少なくとも一方を研磨する研磨工程を備えてもよい。
 研磨工程において、更に、第1の圧縮応力層、第2の圧縮応力層のうち少なくとも一方を研磨してもよい。
 本発明の強化ガラス基板は、対向し合う第1,第2の圧縮応力層を有する。第1の圧縮応力層の表面圧縮応力値(CS)と圧縮応力深さ(DOL)との積と、第2の圧縮応力層の表面圧縮応力値と圧縮応力深さとの積との差Δ(CS×DOL)及び強化ガラス基板の厚みTにより定義される量Δ(CS×DOL)/Tの絶対値が、1.5×10Pa/m以上であり、9×10Pa/m以下である。
 第1の圧縮応力層と第2の圧縮応力層とに接続される端面圧縮応力層を有する場合、端面圧縮応力層の表面圧縮応力値及び圧縮応力深さの内の少なくとも一方の値は、第1の圧縮応力層及び第2の圧縮応力層の値よりも大きいことが好ましい。
 反りの方向を制御することができる、強化ガラス基板の製造方法及び強化ガラス基板を提供することができる。
図1(a)~(d)は、本発明の第1の実施形態に係る強化ガラス基板の製造方法を説明するための正面図である。 図2は、本発明における反り量の定義を説明するための断面図である。 図3は、強化ガラス基板の厚み方向の位置と、応力値との関係を示す図である。 図4は、反り率|δ|/LとΔ(CS×DOL)/Tとの関係を示す図である。 図5は、イオン交換抑制膜の膜厚と、表面圧縮応力値CS及び圧縮応力深さDOLとの関係を示す図である。 図6は、研磨工程を説明するための正面図である。
 以下、好ましい実施形態について説明する。但し、以下の実施形態は単なる例示であり、本発明は以下の実施形態に限定されるものではない。また、各図面において、実質的に同一の機能を有する部材は同一の符号で参照する場合がある。
 (第1の実施形態)
 図1(a)~(d)は、本発明の第1の実施形態に係る強化ガラス基板の製造方法を説明するための正面図である。図1(a)に示すように、第1の実施形態の製造方法では、ガラス基板11を用意する。ガラス基板11は、対向し合う第1,第2の主面11a,11b及び第1,第2の主面11a,11bに接続される側面11cを有する。ガラス基板11の材質は、イオン交換法により強化し得る材質であれば、特に限定されない。例えば、ガラス基板11は、ソーダライムやアルミノシリケートなどからなっていてもよい。
 ガラス基板11の厚みは、0.1mm~2mmであることが好ましい。詳細は後述するが、ガラス基板11の厚みが薄いほどガラス基板が反りやすいため、本発明を好適に用いることができる。ガラス基板の厚みが0.1mmよりも薄い場合、ガラス基板に割れが生じやすく、後述する圧縮応力層を形成し難い。ガラス基板11の厚みは、0.2mm~1.3mmであることがより好ましく、0.2mm~0.9mmであることがさらに好ましく、0.2mm~0.7mmであることがさらに好ましく、0.2mm~0.55mmであることが最も好ましい。この場合には、本発明をより一層好適に適用することができる。
 ガラス基板11は、特に限定されないが、例えば、オーバーフローダウンドロー法やフロート法などにより用意することができる。
 次に、図1(b)に示すように、ガラス基板11の第1の主面11aの上に、第1のイオン交換抑制膜2aを形成する。第2の主面11bの上にも、第2のイオン交換抑制膜2bを形成する(成膜工程)。本実施形態では、第1,第2のイオン交換抑制膜2a,2bは、酸化珪素からなる。なお、第1,第2のイオン交換抑制膜2a,2bの材質は、特に限定されず、例えば、金属、金属酸化物膜、金属窒化物膜、金属炭化物膜、金属酸窒化物膜、金属酸炭化物膜、金属炭窒化物膜などから形成される。より具体的には、第1,第2のイオン交換抑制膜2a,2bは、例えば、酸化珪素、酸化アルミニウム、窒化珪素、炭化珪素、窒化アルミニウム、酸化ジルコニウム、酸化チタン、酸化タンタル、酸化ニオブ、酸化ハフニウム、酸化スズ、酸窒化珪素、酸化亜鉛または酸化インジウムなどから形成される。
 第1,第2のイオン交換抑制膜2a,2bは、スパッタリング法や真空蒸着法などのPVD法(物理気相成長法)、熱CVD法やプラズマCVD法などのCVD法(化学気相成長法)、あるいは、ディップコート法、スプレーコート法、スピンコート法やスリットコート法などのウェットコート法を用いることで形成することができる。特に、スパッタリング法を用いることが好ましい。スパッタリング法を用いた場合、イオン交換抑制膜の膜厚の均一性が特に高い。
 PVD法やCVD法においては、成膜レートや成膜時間を制御することにより、第1,第2のイオン交換抑制膜2a,2bの膜厚を制御することができる。ディップコート法においては、ガラス基板11を引き上げる際のガラス基板11の角度を調整することにより、上記膜厚を制御することができる。スリットコート法においては、塗布量の調整などにより、上記膜厚を制御することができる。
 図1(b)に示すように、第1,第2のイオン交換抑制膜2a,2bを形成する際に、ガラス基板11の側面11cにもイオン交換抑制膜を形成してもよい。
 本実施形態では、第1のイオン交換抑制膜2aの膜厚の方が、第2のイオン交換抑制膜の膜厚2bよりも厚くなるように成膜する。第1のイオン交換抑制膜2aの膜厚は、10nm~300nmであることが好ましい。イオン交換抑制膜の膜厚が300nmよりも厚い場合、後述する強化工程において、イオン交換が進行しないおそれがある。イオン交換抑制膜の膜厚が薄い場合は、イオン交換を抑制することができないおそれがある。
 第1,第2のイオン交換抑制膜2a,2bの膜厚の差は、第1のイオン交換抑制膜2aの膜厚の2%より大きく、10%以下であることが好ましい。第1,第2のイオン交換抑制膜2a,2bの膜厚の差が10%よりも大きい場合、後述する強化ガラス基板の反りが大きくなるおそれがある。上記膜厚の差を2%以下とする場合、製造する際に、イオン交換抑制膜の膜厚のばらつきを制御することが困難となるおそれがある。
 本実施形態では、第1,第2のイオン交換抑制膜2a,2bの膜厚に差を設け、後述する強化工程においてイオン交換を行う。上記膜厚の差があるため、第1の主面11aのイオン交換の進度と第2の主面11bのイオン交換の進度とに差が生じる。それによって、後述する強化ガラス基板の第1の圧縮応力層の表面圧縮応力値(CS)と圧縮応力深さ(DOL)との積と、第2の圧縮応力層の表面圧縮応力値と圧縮応力深さとの積とに差を設けることができる。上記積の差Δ(CS×DOL)及び強化ガラス基板の厚みTにより定義される量Δ(CS×DOL)/Tの絶対値が、1.5×10Pa/m以上であり、9×10Pa/m以下となるように、上記膜厚の差を設定して、第1,第2のイオン交換抑制膜2a,2bを形成する。
 次に、本実施形態では、図1(c)に示すように、ガラス基板11を厚み方向に切断する。この加工工程において切断された部分が、第1の主面11aと第2の主面11bとに接続されている端面11dとなる。端面11dにはイオン交換抑制膜は形成されていない。このように、ガラス基板11において、イオン交換抑制膜が形成されていない露出部を設けることができる。言い換えれば、成膜工程及び加工工程により、端面11dにイオン交換抑制膜を形成せずに、第1,第2の主面11a,11bにイオン交換抑制膜2a,2bを形成したガラス基板11を得ることができる。なお、加工工程は、切断加工を行う以外にも、孔あけ加工や端面加工を行ってもよい。
 ガラス基板11は、必ずしも上記のように加工する必要もなく、図1(b)に示した、イオン交換抑制膜が側面11cに形成された状態において、後述する強化工程を行ってもよい。もっとも、本実施形態のように、加工工程により、イオン交換抑制膜が形成されていない端面11dを露出させることが好ましい。それによって、強化工程において、端面11dを効果的に強化することができる。
 あるいは、成膜工程において、側面11cにイオン交換抑制膜を形成せずに、第1,第2の主面11a,11bに第1,第2のイオン交換抑制膜2a,2bを形成してもよい。
 次にイオン交換法によりガラス基板11の化学強化を行う(強化工程)。この強化工程において、本実施形態では、成膜工程を経たガラス基板11を、430℃の硝酸カリウム溶融塩に5時間浸漬する。なお、強化工程の条件は、上記に限定されない。上記成膜工程における条件などに応じて、強化工程の条件を決定すればよい。それによって、第1,第2の主面11a,11bでイオン交換が進行する。そして、ガラス基板11は、図1(d)に示す、対向し合う第1,第2の圧縮応力層1a,1bを有する強化ガラス基板1となる。また、端面11dでもイオン交換が行われ、端面圧縮応力層が形成される。なお、端面11dには、イオン交換抑制膜が形成されていないため、第1,第2の主面11a,11bよりもイオン交換が行われる。そのため、端面圧縮応力層は、第1,第2の圧縮応力層1a,1bよりも表面圧縮応力値及び圧縮応力深さの内の少なくとも一方の値が大きい。そのため、強化ガラス基板1の端面11dの損傷を効率的に抑制できる。
 強化ガラス基板1の厚みは、ガラス基板11の厚みと同様に、0.1mm~2mmが好ましい。より好ましくは、強化ガラス基板1の厚みは、0.2mm~1.3mmであることがより好ましく、0.2mm~0.9mmであることがさらに好ましく、0.2mm~0.7mmであることがさらに好ましく、0.2mm~0.55mmであることが最も好ましい。
 上述したように、第1,第2のイオン交換抑制膜2a,2bの膜厚の差を設けてガラス基板11を化学強化することにより、Δ(CS×DOL)/Tの絶対値を、1.5×10Pa/m以上、9×10Pa/m以下とすることができる。それによって、強化ガラス基板1の反りの方向を効果的に制御することができ、かつ反りを充分に小さくすることができる。この詳細を以下において説明する。
 図2は、本発明における反り量の定義を説明するための断面図である。
 強化ガラス基板1の長さLと、強化ガラス基板1の曲率半径ρ及び角度θとの関係は、下記の式1により表すことができる。なお、長さLとは、矩形の強化ガラス基板1の長辺の寸法を指す。また、強化ガラス基板1が矩形でない場合、長さLとは、強化ガラス基板1の第1の圧縮応力層1aに沿った最長の寸法を指す。図2は、長さLに沿った方向に切断した断面図である。なお、角度θは、半径がρであり、強化ガラス基板1に接している仮想上の円の中心と強化ガラス基板1の一方端部とを結ぶ仮想線l1及び上記中心と強化ガラス基板1の中央部とを結ぶ仮想線l2がなす角度である。
 2ρθ=L…式1
 さらに、強化ガラス基板1の反り量δと、曲率半径ρ及び角度θとの関係はδ=ρ-ρcosθの式により表すことができる。δ=ρ-ρcosθ=ρ(1-cosθ)において、角度θが0に近くなると、1-cosθがθ/2に近似されるという近似式を用いると、下記の式2により表すことができる。
 δ=ρθ/2…式2
 なお、反り量δは、図2のように、強化ガラス基板1が第1の圧縮応力層1a側から第2の圧縮応力層1b側に凸状となるように反っている場合は、強化ガラス基板1の両端部を結ぶ仮想線l3と、第1の圧縮応力層1aとの距離の内最大の距離である。強化ガラス基板1が第2の圧縮応力層1b側から第1の圧縮応力層1a側に凸状となるように反っている場合は、反り量δは、仮想線l3と第2の圧縮応力層1bとの距離の内最大の距離である。反りの方向は、強化ガラス基板1の第1の圧縮応力層1aから第2の圧縮応力層1bに向かう方向を正とする。
 式1及び式2から、反り量δと長さLとの関係は、下記の式3により表すことができる。
 δ=L/8ρ…式3
 このように、強化ガラス基板1の反り量δは、長さLの2乗に依存する。ここで、式3より、長さLに依存しない、反り率|δ|/Lを定義することができる。
 反り率|δ|/Lは、40×10-9μm-1以下であることが好ましい。反り率|δ|/Lが40×10-9μm-1よりも大きい場合、例えば、強化ガラス基板1をカバーガラスとして他の部材などに貼り合わせる際に、貼り合わせが困難となることがある。より好ましくは、反り率|δ|/Lは、30×10-9μm-1以下であることが望ましい。それによって、強化ガラス基板1を他の部材などに貼り合わせやすい。さらに好ましくは、反り率|δ|/Lは、25×10-9μm-1以下であることが望ましい。それによって、強化ガラス基板1を他の部材などにより一層貼り合わせやすい。最も好ましくは、反り率|δ|/Lは、20×10-9μm-1以下であることが望ましい。それによって、強化ガラス基板1を他の部材などにさらにより一層貼り合わせやすい。
 次に、反り率|δ|/LとΔ(CS×DOL)/Tとの関係を説明する。
 第1,第2の圧縮応力層1a,1bの表面圧縮応力値CS、圧縮応力深さDOL及び強化ガラス基板1の厚みTから、Δ(CS×DOL)/T及び反り率|δ|/Lを求めることができる。
 第1の圧縮応力層1aの表面圧縮応力値をσ、第2の圧縮応力層1bの表面圧縮応力値をσ、第1の圧縮応力層1aの圧縮応力深さをD、第2の圧縮応力層1bの圧縮応力深さをDとしたとき、Δ(CS×DOL)/Tは下記の式4により求めることができる。
 (σ・D-σ・D)/T…式4
 反り率|δ|/Lは、以下のように求めることができる。
 図3は、強化ガラス基板1の厚み方向の位置と、応力値との関係を示す図である。
 強化ガラス基板1の第1の圧縮応力層1aの外表面は、強化ガラス基板1の厚み方向(x方向)の位置0に相当する。第2の圧縮応力層1bの外表面は、厚み方向の位置Tに相当する。第1の圧縮応力層1aの外表面から、厚み方向の位置Dまでの距離Dが、第1の圧縮応力層1aの圧縮応力深さに相当する。第2の圧縮応力層1bの外表面から、厚み方向の位置T-Dまでの距離Dが、第2の圧縮応力層1bの圧縮応力深さに相当する。
 第1の圧縮応力層1aの外表面における圧縮応力値はσであり、厚み方向の位置Dまでは、厚み方向に比例して小さくなる。厚み方向の位置DからT-Dまでは、圧縮応力値は一定の値である-CTとなる。厚み方向の位置T-Dから第2の圧縮応力層1bの外表面までは、厚み方向に比例して圧縮応力値が大きくなる。第2の圧縮応力層1bの外表面における圧縮応力値はσである。これを、厚み方向の位置をx、応力値をσS(x)として、下記の式5~式7により表すことができる。なお、σS(x)は、正の値の場合は圧縮応力となる。σs(x)は、負の値の場合は引っ張り応力となる。
 σS(x)=-σ1x/D+σ  (0<x<D)…式5
 σS(x)=-CT  (D≦x≦T-D)…式6
 σS(x)=σ2x/D-σ(T/D-1)  (T-D<x<T)…式7
 ここで、強化ガラス基板1の厚み方向全体としては、応力が釣り合っている。この力の釣り合いを考慮すると、圧縮応力値σS(x)の厚み方向全体の積分値は、∫0TdxσS(x)=0となる。この式を、式5~式7を用いて展開すると、下記の式8を得ることができる。
 -CT=-((Dσ/2)+(Dσ/2))/(T-D-D)…式8
 他方、それぞれの厚み方向の位置xにおける、圧縮応力による力のモーメントは、xσS(x)の式で表すことができる。圧縮応力による力のモーメントは、厚み方向全体において釣り合っていない。そのため、強化ガラス基板1が反る。それによって、曲げ応力σB(x)が発生する。これにより、強化ガラス基板1の厚み方向全体における力のモーメントが釣り合う。すなわち、圧縮応力及び曲げ応力による力のモーメントの厚み方向全体の積分値は0となる。これを、下記の式9により表すことができる。
 ∫0Tdx・x[σS(x)+σB(x)]=0…式9
 さらに、圧縮応力及び曲げ応力においても、厚み方向全体において力が釣り合っている。よって、圧縮応力値σS(x)及び曲げ応力σB(x)の厚み方向全体の積分値は、∫0Tdx・[σS(x)+σB(x)]=0となる。上述したように、∫0TdxσS(x)=0なので、∫0TdxσB(x)=0となり、曲げ応力σB(x)の中立軸は厚み方向における中心となる。強化ガラス基板1のヤング率をE’とし、曲率半径をρとすると、曲げ応力は、下記の式10により表すことができる。
 σB(x)=E’(x-T/2)/ρ…式10
 なお、E’は、ヤング率Eをポアソン比νにより補正したヤング率である。より具体的には、E’=E/(1-ν)の式で表すことができる。
 次に、式9に式8及び式10を代入することにより得た式に、E、ν、σ、σ、D、D及びTの値を代入することにより、ρを求めることができる。
 求めた曲率半径ρ及び式3から、反り率|δ|/Lを求めることができる。
 ここで、下記の表1に示すそれぞれのパラメータを異ならせて、上述のように各Δ(CS×DOL)/T及び各|δ|/Lを求めた。なお、ヤング率Eを70GPaとし、ポアソン比νを0.2とした。
Figure JPOXMLDOC01-appb-T000001
 表1に示すA、B及びCでは、それぞれ強化ガラス基板1の第2の圧縮応力層1bの圧縮応力深さを異ならせた。なお、第1の圧縮応力層1aの表面圧縮応力値、第1の圧縮応力層1aの圧縮応力深さ、第2の圧縮応力層1bの表面圧縮応力値及び強化ガラス基板1の厚みは、表1に示す値に固定した。
 表1に示されているD及びEでは、それぞれ強化ガラス基板1の第2の圧縮応力層1bの表面圧縮応力値を異ならせた。第1の圧縮応力層1aの表面圧縮応力値、第1の圧縮応力層1aの圧縮応力深さ、第2の圧縮応力層1bの圧縮応力深さ及び強化ガラス基板1の厚みは、表1に示す値に固定した。
 図4は、反り率|δ|/LとΔ(CS×DOL)/Tとの関係を示す図である。なお、実線、周期が短い破線及び一点鎖線は、表1におけるA、B及びCの結果を示す。周期が長い破線及び二点鎖線は、表1におけるD及びEの結果を示す。
  図4に示されているように、Δ(CS×DOL)/Tが大きくなるほど、反り率|δ|/Lが大きくなっている。上述したように、反り率|δ|/Lは、40×10-9μm-1以下であることが好ましい。Δ(CS×DOL)/Tを9×10Pa/m以下とすることにより、反り率|δ|/Lを40×10-9μm-1以下とすることができる。なお、反り量δが負の値の場合においても、Δ(CS×DOL)/Tの絶対値を9×10Pa/m以下とすることにより、反り率|δ|/Lを40×10-9μm-1以下とすることができる。
 他方、本実施形態では、Δ(CS×DOL)/Tの絶対値が1.5×10Pa/m以上となるように、第1,第2のイオン交換抑制膜2a,2bの膜厚の目標値を設定し、第1,第2のイオン交換抑制膜2a,2bを形成する。それによって、強化ガラス基板1が反る方向を効果的に制御することができる。すなわち、第1,第2のイオン交換抑制膜2a,2bの膜厚が±1%の範囲内でばらついても、強化ガラス基板1が同じ方向に反るように制御することができる。
 <第1,第2のイオン交換抑制膜2a,2bの膜厚と強化ガラス基板1の表面圧縮応力値CS及び圧縮応力深さDOLとの関係>
 第1,第2のイオン交換抑制膜2a,2bの膜厚の目標値を設定するためには、イオン交換抑制膜2a,2bの膜厚と、その膜厚でイオン交換して得られる強化ガラス基板1の表面圧縮応力値CS及び圧縮応力深さDOLとの関係を知ることが必要となる。
 これらの関係を以下のように求めた。
 ガラス基板(厚み0.55mm、長辺の長さ130mm、短辺の長さ65mm)の両主面の上に、それぞれイオン交換抑制膜を、10nm、20nm、30nm、40nm、50nm、60nm、70nm、80nm、90nm、及び100nmと膜厚を変えて形成した。ここで、ガラス基板としては、主面が矩形形状を有するものを用いた。ガラス基板の長辺に沿った方向を長さ方向とする。イオン交換抑制膜を形成したガラス基板を、第1の実施形態と同様に、430℃の硝酸カリウム溶融塩に5時間浸漬することにより、イオン交換法で強化して複数の強化ガラス基板を作製した。また、イオン交換抑制膜を形成していないガラス基板、すなわち膜厚が0nmであるガラス基板についても、上記と同様にイオン交換法で強化し、強化ガラス基板を作製した。
 なお、イオン交換抑制膜には、酸化珪素を用いた。
 次に、各強化ガラス基板の表面圧縮応力値CS及び圧縮応力深さDOLを、表面応力計(折原製作所社製FSM-6000)により測定した。表面圧縮応力値CS及び圧縮応力深さDOLの測定方法としては、他にも、EPMA(Electron  probe  micro  analyzer)やGDOES(Glow  discharge  optical  emission  spectrometry)などにより、カリウムイオンなどのアルカリイオンの深さ方向の濃度分析を行うことにより測定できる。
 図5は、イオン交換抑制膜の膜厚と、表面圧縮応力値CS及び圧縮応力深さDOLとの関係を示す図である。
 図5の結果にフィッティングすることにより、イオン交換抑制膜の膜厚と表面圧縮応力値CSとの関係式である下記の式11を求めた。同様に、イオン交換抑制膜の膜厚と圧縮応力深さDOLとの関係式である下記の式12を求めた。式11において、イオン交換抑制膜の膜厚をxとし、yを表面圧縮応力値CSとする。式12において、イオン交換抑制膜の膜厚をxとし、yを圧縮応力深さDOLとする。
 y=0.0086x-0.2255x+791.84…式11
 y=-0.0018x-0.0137x+52.947…式12
 式11及び式12を用いて、Δ(CS×DOL)/Tの絶対値が1.5×10Pa/m以上、9×10Pa/m以下となるように、第1,第2のイオン交換抑制膜の膜厚の目標値を設定することができる。
 なお、一方に反らせた強化ガラス基板の製造方法において、必要に応じて研磨工程を含むことができる。図6に示すように、第2のイオン交換抑制膜2bを研磨装置Pにより研磨する。第2のイオン交換抑制膜2bを研磨することにより、イオン交換抑制膜2bの厚みが小さくなる。イオン交換抑制膜2bを研磨することにより、イオン交換抑制膜2bを研磨しなかった場合と比較して、強化ガラス基板1の耐傷性が高く、かつ外観が良い。当然ながら、イオン交換膜2bを全て研磨除去し、かつ、第2の圧縮応力層1bも研磨し、その厚みを小さくしても、同様に耐傷性が高く、かつ外観が良い。なお、必要に応じてイオン交換抑制膜2aや第2の圧縮応力層1aも研磨し、イオン交換抑制膜2aや圧縮応力層1aの厚みを調整してもよい。
 <実施例1~2及び比較例1~2>
 Δ(CS×DOL)/Tの絶対値が1.5×10Pa/m以上、9×10Pa/m以下である実施例1及び2と、Δ(CS×DOL)/Tの絶対値が1.5×10Pa/mより小さい比較例1及びΔ(CS×DOL)/Tの絶対値が9×10Pa/mより大きい比較例2の強化ガラス基板を、以下のようにして作製した。ガラス基板としては、厚み0.55mm、長辺の長さ130mm、短辺の長さ65mmの基板を用いた。
 (実施例1)
 第1のイオン交換抑制膜の膜厚の目標値を100nmに設定し、Δ(CS×DOL)/Tの値を、1.9×10Pa/mとして、第2のイオン交換抑制膜の膜厚の目標値を算出したところ、97.8nmとなった。
 第1のイオン交換抑制膜の膜厚の目標値を100nmに設定し、第2のイオン交換抑制膜の膜厚の目標値を97.8nmに設定して、第1,第2のイオン交換抑制膜をガラス基板の上に形成し、上記と同様にして、430℃の硝酸カリウム溶融塩に5時間浸漬することにより、イオン交換法で強化して複数の強化ガラス基板を作製した。
 基板の長さ方向に沿って、レーザ式変位センサを走査させることにより、反り量δを測定した。基板の長さ方向は、本実施例のように、基板の平面形状が長方形である場合には長辺方向とした。なお、基板の平面形状が長方形ではない場合には、第1の圧縮応力層の最長の寸法に沿った方向を指す。そして、その場合、最長の寸法直線上にレーザ式変位センサを走査させることにより、反り量δを測定する。レーザ式変位センサを走査させた線上における基板の一方端部と他方端部とを結んだ線と、各測定点との距離の内で最大の距離を反り量δとした。
 得られた強化ガラス基板のうち、反り量δが最大であった強化ガラス基板(第1のイオン交換抑制膜の膜厚:101nm、第2のイオン交換抑制膜の膜厚:96.8nm)と、反り量δが最小であった強化ガラス基板(第1のイオン交換抑制膜の膜厚:99nm、第2のイオン交換抑制膜の膜厚:98.8nm)の反り量δの測定結果を表2に示す。また、表2には、第1,第2の主面の表面圧縮応力値及び圧縮応力深さ、並びに反り率|δ|/L、Δ(CS×DOL)/Tの設定値を併せて示す。
 (実施例2)
 第1のイオン交換抑制膜の膜厚の目標値を100nmに設定し、Δ(CS×DOL)/Tの値を、6.7×10Pa/mとして、第2のイオン交換抑制膜の膜厚の目標値を算出したところ、92nmとなった。
 第1のイオン交換抑制膜の膜厚の目標値を100nmに設定し、第2のイオン交換抑制膜の膜厚の目標値を92nmに設定して、第1,第2のイオン交換抑制膜をガラス基板の上に形成し、上記と同様にして、イオン交換法で強化して複数の強化ガラス基板を作製した。
 得られた強化ガラス基板のうち、反り量δが最大であった強化ガラス基板(第1のイオン交換抑制膜の膜厚:101nm、第2のイオン交換抑制膜の膜厚:91nm)と、反り量δが最小であった強化ガラス基板(第1のイオン交換抑制膜の膜厚:99nm、第2のイオン交換抑制膜の膜厚:93nm)の反り量δの測定結果を表2に示す。また、表2には、第1,第2の主面の表面圧縮応力値及び圧縮応力深さ、並びに反り率|δ|/L、Δ(CS×DOL)/Tの設定値を併せて示す。
 (比較例1)
  第1のイオン交換抑制膜の膜厚の目標値を100nmに設定し、Δ(CS×DOL)/Tの値を、0Pa/mとして、第2のイオン交換抑制膜の膜厚の目標値を算出したところ、100nmとなった。
 第1のイオン交換抑制膜の膜厚の目標値を100nmに設定し、第2のイオン交換抑制膜の膜厚の目標値を100nmに設定して、第1,第2のイオン交換抑制膜をガラス基板の上に形成し、上記と同様にして、イオン交換法で強化して複数の強化ガラス基板を作製した。
 得られた強化ガラス基板のうち、反り量δが最大であった強化ガラス基板(第1のイオン交換抑制膜の膜厚:101nm、第2のイオン交換抑制膜の膜厚:99nm)と、反り量δが最小であった強化ガラス基板(第1のイオン交換抑制膜の膜厚:99nm、第2のイオン交換抑制膜の膜厚:101nm)の反り量δの測定結果を表2に示す。また、表2には、第1,第2の主面の表面圧縮応力値及び圧縮応力深さ、並びに反り率|δ|/L、Δ(CS×DOL)/Tの設定値を併せて示す。
 (比較例2)
 第1のイオン交換抑制膜の膜厚の目標値を100nmに設定し、Δ(CS×DOL)/Tの値を、11.9×10Pa/mとして、第2のイオン交換抑制膜の膜厚の目標値を算出したところ、85nmとなった。
 第1のイオン交換抑制膜の膜厚の目標値を100nmに設定し、第2のイオン交換抑制膜の膜厚の目標値を85nmに設定して、第1,第2のイオン交換抑制膜をガラス基板の上に形成し、上記と同様にして、イオン交換法で強化して複数の強化ガラス基板を作製した。
 得られた強化ガラス基板のうち、反り量δが最大であった強化ガラス基板(第1のイオン交換抑制膜の膜厚:101nm、第2のイオン交換抑制膜の膜厚:84nm)と、反り量δが最小であった強化ガラス基板(第1のイオン交換抑制膜の膜厚:99nm、第2のイオン交換抑制膜の膜厚:86nm)の反り量δの測定結果を表2に示す。また、表2には、第1,第2の主面の表面圧縮応力値及び圧縮応力深さ、並びに反り率|δ|/L、Δ(CS×DOL)/Tの設定値を併せて示す。
Figure JPOXMLDOC01-appb-T000002
 比較例1では、反り量δが最大の場合と最小の場合とで、反り量δの符号が、異なっている。すなわち、反り量δが最大の場合と最小の場合とで、反りの方向が異なる。よって、比較例1のように、Δ(CS×DOL)/Tが1.5×10Pa/mよりも小さい場合は、反りの方向を制御することが困難である。
 比較例2では、反りの方向を制御することはできているが、反り率|δ|/Lは40×10-9よりも大きい。よって、Δ(CS×DOL)/Tが9×10Pa/mより大きい場合は、反り量が大きくなることがわかる。
 これに対して、実施例1においては、反り量δが最大の場合と最小の場合とにおいて、反り量δの符号は同じであり、反りを同じ方向に制御することができている。さらに、反り量δが最大の場合でも、反り率|δ|/Lは16.6×10-9μm-1であり、充分に小さい。実施例2においても、反りを同じ方向に制御することができている。反り量δが最大の場合でも、反り率|δ|/Lは38×10-9μm-1であり、40×10-9μm-1よりも小さい値とすることができている。
1…強化ガラス基板
1a,1b…第1,第2の圧縮応力層
2a,2b…第1,第2のイオン交換抑制膜
11…ガラス基板
11a,11b…第1,第2の主面
11c…側面
11d…端面
 

Claims (7)

  1.  対向し合う第1,第2の主面を有するガラス基板の、前記第1の主面の上に第1のイオン交換抑制膜を形成し、前記第2の主面の上に第2のイオン交換抑制膜を形成する成膜工程と、
     前記ガラス基板をイオン交換法により化学強化することにより、前記第1の主面に対応する第1の圧縮応力層と、前記第2の主面に対応する第2の圧縮応力層を形成する強化工程とを備え、
     前記成膜工程において、前記第1の圧縮応力層の表面圧縮応力値(CS)と圧縮応力深さ(DOL)との積と、前記第2の圧縮応力層の表面圧縮応力値と圧縮応力深さとの積との差Δ(CS×DOL)及び前記強化ガラス基板の厚みTにより定義される量Δ(CS×DOL)/Tの絶対値が、1.5×10Pa/m以上であり、9×10Pa/m以下となるように、前記第1のイオン交換抑制膜の膜厚と前記第2のイオン交換抑制膜の膜厚とのそれぞれの目標値を設定し、前記第1,第2のイオン交換抑制膜を形成する、強化ガラス基板の製造方法。
  2.  前記ガラス基板が、前記第1の主面と前記第2の主面とに接続される端面を有し、
     前記強化工程において、前記端面にイオン交換抑制膜を形成せずに前記ガラス基板を化学強化する、請求項1に記載の強化ガラス基板の製造方法。
  3.  前記成膜工程において、前記第1のイオン交換抑制膜と前記第2のイオン交換抑制膜との膜厚の差が、前記第1,第2のイオン交換抑制膜の内の膜厚が厚い方のイオン交換抑制膜の膜厚の2%より大きく、10%以下となるように、前記第1,第2のイオン交換抑制膜を形成する、請求項1または2に記載の強化ガラス基板の製造方法。
  4.  前記強化工程後に、前記第1,第2のイオン交換抑制膜のうち少なくとも一方を研磨する研磨工程を備える、請求項1~3のいずれか一項に記載の強化ガラス基板の製造方法。
  5.  前記研磨工程において、更に、前記第1の圧縮応力層、前記第2の圧縮応力層のうち少なくとも一方を研磨する、請求項4に記載の強化ガラス基板の製造方法。
  6.  対向し合う第1,第2の圧縮応力層を有する強化ガラス基板であって、
     前記第1の圧縮応力層の表面圧縮応力値(CS)と圧縮応力深さ(DOL)との積と、前記第2の圧縮応力層の表面圧縮応力値と圧縮応力深さとの積との差Δ(CS×DOL)及び前記強化ガラス基板の厚みTにより定義される量Δ(CS×DOL)/T2の絶対値が、1.5×10Pa/m以上であり、9×10Pa/m以下である、強化ガラス基板。
  7.  前記第1の圧縮応力層と前記第2の圧縮応力層とに接続される端面圧縮応力層を有し、
     前記端面圧縮応力層の表面圧縮応力値及び圧縮応力深さの内の少なくとも一方の値が、前記第1の圧縮応力層及び前記第2の圧縮応力層の値よりも大きい、請求項6に記載の強化ガラス基板。
PCT/JP2016/069409 2015-08-11 2016-06-30 強化ガラス基板の製造方法及び強化ガラス基板 WO2017026190A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017534132A JPWO2017026190A1 (ja) 2015-08-11 2016-06-30 強化ガラス基板の製造方法及び強化ガラス基板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015158895 2015-08-11
JP2015-158895 2015-08-11

Publications (1)

Publication Number Publication Date
WO2017026190A1 true WO2017026190A1 (ja) 2017-02-16

Family

ID=57983466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069409 WO2017026190A1 (ja) 2015-08-11 2016-06-30 強化ガラス基板の製造方法及び強化ガラス基板

Country Status (2)

Country Link
JP (1) JPWO2017026190A1 (ja)
WO (1) WO2017026190A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021070591A (ja) * 2019-10-29 2021-05-06 Agc株式会社 カバーガラスの製造方法及びカバーガラス
US11565969B2 (en) 2016-05-19 2023-01-31 Apple Inc. Asymmetric chemical strengthening
US11639307B2 (en) 2018-07-13 2023-05-02 Apple Inc. Patterned asymmetric chemical strengthening
US11905205B2 (en) 2018-12-20 2024-02-20 Apple Inc. Strengthened covers for electronic devices

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099620A1 (ja) * 2011-12-26 2013-07-04 旭硝子株式会社 化学強化処理によるガラス基板の反りを低減する方法、および化学強化ガラス基板の製造方法
JP2014208570A (ja) * 2013-03-25 2014-11-06 日本電気硝子株式会社 強化ガラス基板及びその製造方法
WO2014200097A1 (ja) * 2013-06-14 2014-12-18 旭硝子株式会社 化学強化処理によるガラス基板の反りを低減する方法、化学強化ガラス及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099620A1 (ja) * 2011-12-26 2013-07-04 旭硝子株式会社 化学強化処理によるガラス基板の反りを低減する方法、および化学強化ガラス基板の製造方法
JP2014208570A (ja) * 2013-03-25 2014-11-06 日本電気硝子株式会社 強化ガラス基板及びその製造方法
WO2014200097A1 (ja) * 2013-06-14 2014-12-18 旭硝子株式会社 化学強化処理によるガラス基板の反りを低減する方法、化学強化ガラス及びその製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11565969B2 (en) 2016-05-19 2023-01-31 Apple Inc. Asymmetric chemical strengthening
US11639307B2 (en) 2018-07-13 2023-05-02 Apple Inc. Patterned asymmetric chemical strengthening
US11905205B2 (en) 2018-12-20 2024-02-20 Apple Inc. Strengthened covers for electronic devices
JP2021070591A (ja) * 2019-10-29 2021-05-06 Agc株式会社 カバーガラスの製造方法及びカバーガラス
JP7331628B2 (ja) 2019-10-29 2023-08-23 Agc株式会社 カバーガラスの製造方法及びカバーガラス

Also Published As

Publication number Publication date
JPWO2017026190A1 (ja) 2018-05-31

Similar Documents

Publication Publication Date Title
WO2017026190A1 (ja) 強化ガラス基板の製造方法及び強化ガラス基板
US20210284571A1 (en) Cover glass
JP2017030997A (ja) 薄膜付き強化ガラス基板の製造方法及び薄膜付き強化ガラス基板
JP6636037B2 (ja) 成形ガラス物品および該成形ガラス物品の製造方法
WO2014119453A1 (ja) 防汚膜付き透明基体
WO2016158623A1 (ja) ガラス板
CN107031145B (zh) 保护玻璃和玻璃层叠体
CN107848875B (zh) 用于化学强化的玻璃基板和用受控曲率进行化学强化的方法
US11267753B2 (en) Glazing comprising a protective coating
WO2018066314A1 (ja) 強化ガラス板の製造方法、膜付ガラス板及び強化ガラス板
CN108463443B (zh) 强化玻璃的制造方法及强化玻璃制造装置
JP6886127B2 (ja) 強化ガラス板および強化ガラス板の製造方法
WO2018008359A1 (ja) 強化ガラス板の製造方法
WO2017221805A1 (ja) 強化ガラスの製造方法および強化ガラス製造装置
JP2020060657A (ja) 反射防止ガラス
CN111741936B (zh) 层叠体和层叠体的制造方法
WO2018056329A1 (ja) 強化ガラス板の製造方法、強化用ガラス板、および強化ガラス板
JP2019001691A (ja) 強化ガラス板の製造方法、強化用ガラス板、および強化ガラス板
KR101772772B1 (ko) 표면 처리된 기판 및 이의 제조방법
CN110997590B (zh) 带有膜的玻璃基板的制造方法、带有膜的玻璃基板和膜的除去方法
CN104118175A (zh) 具有ZrSiNx薄膜的镀膜玻璃及其制备方法
JPWO2018097096A1 (ja) 強化ガラス板、強化ガラス板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16834887

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017534132

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16834887

Country of ref document: EP

Kind code of ref document: A1