WO2014156267A1 - 電磁アクチュエータ - Google Patents

電磁アクチュエータ Download PDF

Info

Publication number
WO2014156267A1
WO2014156267A1 PCT/JP2014/051664 JP2014051664W WO2014156267A1 WO 2014156267 A1 WO2014156267 A1 WO 2014156267A1 JP 2014051664 W JP2014051664 W JP 2014051664W WO 2014156267 A1 WO2014156267 A1 WO 2014156267A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical element
electromagnetic actuator
coil
actuator according
magnetic flux
Prior art date
Application number
PCT/JP2014/051664
Other languages
English (en)
French (fr)
Inventor
森島哲矢
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to CN201480010293.XA priority Critical patent/CN105026974A/zh
Priority to EP14775731.4A priority patent/EP2980623A4/en
Publication of WO2014156267A1 publication Critical patent/WO2014156267A1/ja
Priority to US14/867,548 priority patent/US20160018625A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/10Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens
    • G02B7/102Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens controlled by a microcomputer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans

Definitions

  • the present invention relates to an electromagnetic actuator.
  • an actuator that moves a coil by using a Lorentz force acting on the coil by passing a current through a coil in a magnetic field represented by a VCM (voice coil motor) is generally known.
  • an actuator that moves a lens by using a reaction acting on a magnet with respect to Lorentz force acting on a coil when a current is passed through the coil in a magnetic field is disclosed in Patent Document 1, for example.
  • the actuator disclosed in the above-mentioned publication requires a plurality of coils in order to move the magnet in the optical axis direction. For this reason, the number of components is increasing. Therefore, the assembly process increases, and it is not easy to reduce the size and weight.
  • the present invention has been made in view of the above, and an object thereof is to provide an electromagnetic actuator that is easily assembled and reduced in size and weight.
  • an electromagnetic actuator of the present invention includes an optical element that can move in the optical axis direction, an optical element holding unit that holds the optical element, and an optical element and an optical element.
  • a coil installed so as to surround the holding unit, a coil holding unit that holds the coil, and a magnetic flux generation unit that generates a magnetic flux in the radial direction, and an optical element is disposed inside the magnetic flux generation unit.
  • the present invention has an effect of providing an electromagnetic actuator that is easily assembled and reduced in size and weight.
  • FIG. 1A is a cross-sectional view perpendicular to the optical axis of the electromagnetic actuator of the first embodiment
  • FIG. 1B is a cross-sectional view in the direction along the optical axis
  • FIG. 2A is a diagram for explaining a force acting in a cross section perpendicular to the optical axis of the electromagnetic actuator of the first embodiment
  • FIG. 2B is a diagram for explaining the action in a cross section in a direction along the optical axis. is there.
  • FIG. 3A is a cross-sectional view perpendicular to the optical axis of the electromagnetic actuator of the second embodiment
  • FIG. 3B is a cross-sectional view in the direction along the optical axis.
  • FIG. 4A is a cross-sectional view perpendicular to the optical axis of the electromagnetic actuator of the third embodiment
  • FIG. 4B is a cross-sectional view in the direction along the optical axis
  • FIG. 5 is a cross-sectional view perpendicular to the optical axis of the electromagnetic actuator of the fourth embodiment
  • FIG. 6A is a cross-sectional view perpendicular to the optical axis of the electromagnetic actuator of the fifth embodiment
  • FIG. 6B is a cross-sectional view in the direction along the optical axis.
  • FIG. 1A is a cross-sectional view perpendicular to the optical axis of the electromagnetic actuator 100 of the first embodiment
  • FIG. 1B is a cross-sectional view in the direction along the optical axis.
  • the optical element L is disposed so as to be movable in the optical axis AX direction.
  • the optical element holding unit 10 holds the optical element L.
  • the coil 11 is fixedly installed so as to surround the optical element L and the optical element holding unit 10.
  • optical element L mainly refer to a lens, a diaphragm, a filter, an image sensor, a prism, and a mirror.
  • a lens is used as the optical element L.
  • the coil holding unit 12 holds the coil 11.
  • the magnetic flux generator generates a magnetic flux in the radial direction.
  • An optical element L is disposed inside the magnetic flux generation unit.
  • the number of the coils 11 can be reduced as compared with the conventional one.
  • At least one of the optical element holding unit 10 and the coil holding unit 12 also functions as a magnetic flux generation unit.
  • the magnetic flux generation part and the optical element holding part 10 and / or the coil holding part 12 can be shared.
  • the number of parts can be reduced.
  • the optical element holding unit 10 by causing the optical element holding unit 10 to also function as a magnetic flux generator, the characteristics of magnetic flux generation are improved.
  • the magnetic flux generation characteristics are improved. Further, by making the coil holding part 12 also function as the magnetic flux generation part, the assembly and manufacture of the electromagnetic actuator can be facilitated.
  • FIG. 2A is a diagram for explaining a force acting in a cross section perpendicular to the optical axis of the electromagnetic actuator of the first embodiment
  • FIG. 2B is a diagram for explaining the action in a cross section along the optical axis. is there.
  • the optical element holding unit 10 (lens holding unit) is a permanent magnet.
  • maintenance part 12 is a magnetic body.
  • the optical element holding unit 10 (lens holding unit) is a permanent magnet.
  • the coil holding part 12 is also a permanent magnet.
  • a magnetic flux MF, a current CU, a force F3 applied to the optical element holding unit 10 (lens holding unit), a force F2 applied to the coil holding unit 12, and a force F1 applied to the coil are illustrated.
  • the electromagnetic actuator 100 has a rotationally symmetric configuration around the optical axis AX. For this reason, the upper half of the optical axis AX in FIG.
  • a magnetic flux MF is generated downward from the coil holding portion 12 (N pole) toward the optical element holding portion 10 (lens holding portion (S pole)).
  • the current CU flows from the back of the page toward the front.
  • the direction in which force is generated is considered using Fleming's left-hand rule.
  • the coil 11 generates a force F1 in the right direction on the paper surface.
  • the magnets of the coil holding unit 12 and the optical element holding unit 10 generate forces F2 and F3 in the left direction on the paper surface.
  • the coil 11 and the coil holding part 12 are fixed by a fixing part 13. For this reason, the coil 11 and the coil holding
  • FIG. 2B attention is focused on the lower half of the configuration centered on the optical axis AX.
  • the direction of the magnetic flux MF changes upward in the drawing.
  • the current CU changes from the front of the page to the back. Since the directions of the magnetic flux MF and the current CU are changed, the directions of the forces F1, F2, and F3 are the same as those in the configuration of the upper half of the optical axis AX. Further, when the direction of the current CU flowing through the coil 11 is reversed, the optical element holding unit 10 and the optical element L move to the right in the drawing.
  • At least one of the coil 11 or the coil holding part 12 is in contact with the fixing part 13.
  • the coil 11 is fixedly installed so as to surround the optical element L and the optical element holding unit 10.
  • the coil side may move.
  • the coil 11 must be fixed. Therefore, as in this embodiment, the coil holding part 12 is fixed to the fixing part 13 and the coil 11 is fixed to the coil holding part 12. As a result, the movement of the coil 11 can be prevented.
  • At least one of the optical element holding unit 10 and the coil holding unit 12 contains a magnetic material.
  • An arbitrary magnetic path can be formed by using a magnetic material.
  • the permanent magnet has different magnetic fluxes at the end and the center. For this reason, the magnetic force is more uniform on one side.
  • the magnetic material is easier to process than the permanent magnet, and is suitable for miniaturization of the electromagnetic actuator.
  • the coil 11 is preferably longer in the optical axis AX direction than the optical element holding unit 10. If the coil 11 is shorter than the optical element holding unit 10 in the optical axis AX direction, the generated force is weakened. Further, since the coil 11 is long in the optical axis AX direction, the coil 11 serves as a guide for a moving member, for example, a lens and a lens holding portion. On the contrary, there is no particular advantage even if the coil 11 is shortened.
  • the coil holding part 12 is preferably longer in the optical axis AX direction than the optical element holding part 10. If the coil holding part 12 is shorter than the optical element holding part 10 in the optical axis AX direction, the generated force becomes weak. Furthermore, if there is an end portion in the stroke, the flow of magnetic flux changes depending on the position of the optical element holding unit 10 and becomes non-uniform.
  • the magnetic flux generator is preferably a permanent magnet.
  • a permanent magnet is suitable. As will be described later, there are various variations in the shape, quantity, and arrangement of the permanent magnets.
  • permanent magnets 20a, 20b, 20c, 20d, 20e, 20f, 20g, and 20h are arranged discretely at equal intervals in a ring shape.
  • the plurality of permanent magnets 12 have a plurality of rectangular parallelepiped permanent magnets 20a to 20g.
  • a plurality of roof-shaped permanent magnets may be arranged as the plurality of permanent magnets.
  • a plurality of curved permanent magnets may be arranged as the plurality of permanent magnets.
  • FIG. 4A is a cross-sectional view perpendicular to the optical axis of the electromagnetic actuator of the third embodiment
  • FIG. 4B is a cross-sectional view in the direction along the optical axis.
  • a plurality of permanent magnets 30a, 30b, and 30c may be arranged asymmetrically with respect to the optical axis AX.
  • maintenance part 10 is attracted
  • the holding force may be weakened.
  • a stable holding force can always be obtained.
  • FIG. 5A is a cross-sectional view perpendicular to the optical axis of the electromagnetic actuator of the fourth embodiment.
  • the intermediate member 41 is disposed between the optical element holding unit 10 and the coil 11. Thereby, airtightness can be improved.
  • the intermediate member 41 is preferably a nonmagnetic material. Thereby, the intermediate member 41 does not become a harmful effect of the magnetic circuit.
  • the intermediate member 41 desirably reduces the friction and wear between the optical element holding portion 10 and the coil 11 and mainly protects the coil 11.
  • the intermediate member 41 is preferably configured to increase sliding with the optical element holding unit 10 and reduce the friction coefficient. Thereby, the intermediate member 41 can reduce friction and wear between the optical element holding unit 10 and the coil 11. Furthermore, it is desirable that the intermediate member 41 mainly serves to protect the coil 11.
  • the intermediate member 41 is parallel to the optical axis AX. Since the intermediate member 41 is parallel to the optical axis AX, the movement of the optical element L is not hindered.
  • the intermediate member 41 is preferably cylindrical. Since the intermediate member 41 is cylindrical with respect to the optical axis AX, the movement of the optical element L is not hindered.
  • the intermediate member 41 desirably seals the optical element 10.
  • the lens can be sealed by using other members, for example, sealing members 40a and 40b.
  • the sealing means watertightness, particularly airtightness.
  • the stop portion 42 is formed on the intermediate member 41.
  • the optical element holding part 10 comes into contact with the stop part 42 and stops.
  • the restraining part 42 functions as an abutment. Therefore, it is possible to accurately determine the movement range of the optical element L, that is, to restrict the movement amount.
  • maintenance part 10 to the paper surface left-right direction instead of providing the stop part 42 may be sufficient. Also by this, the movement amount of the optical element L can be regulated by the contact between the optical element holding portion 10 and the other members 40a and 40b.
  • permanent magnets 40a, 40b, 40c, 40d, 40e, and 40f may be arranged around the optical element holding unit 10 at equal intervals.
  • permanent magnets may be arranged at unequal intervals.
  • optical element holding unit 10 a configuration that is a single magnet
  • II a configuration in which a plurality of magnets are included in the non-magnetic optical element holding unit 10
  • III A configuration in which a plurality of magnets are included in the optical element holding unit 10 made of a magnetic material
  • IV Configuration with a plurality of magnets.
  • the coil holder 12 also has the same four variations as the optical element holder 10. And it is good also as a structure of embodiment by the number of these combinations.
  • an example in which both the optical element holding unit 10 and the coil holding unit 12 are made of a magnetic material is excluded.
  • FIGS. 6A and 6B Combination examples are shown in FIGS. 6A and 6B.
  • (II) A combination in which the non-magnetic optical element holding unit 10 includes a plurality of magnets and a combination in which the coil holding unit 12 is made of a magnetic material.
  • the electromagnetic actuator according to the present invention is suitable for an electromagnetic actuator that is easily assembled and reduced in size and weight.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Lens Barrels (AREA)
  • Studio Devices (AREA)

Abstract

光軸方向に対して移動可能な光学素子(L)と、光学素子(L)を保持する光学素子保持部(10)と、光学素子(L)と光学素子保持部(10)を囲うように設置されたコイル(11)と、コイル(11)を保持するコイル保持部(12)と、ラジアル方向に磁束を発生する磁束発生部(10)を有し、磁束発生部(10)の内側に光学素子(L)が配置されていることを特徴としている電磁アクチュエータ(100)である。

Description

電磁アクチュエータ
 本発明は、電磁アクチュエータに関するものである。
 例えば、VCM(ボイスコイルモータ)に代表される磁場中のコイルに電流を流すことによってコイルに働くローレンツ力を利用してコイルを動かすアクチュエータが一般的に知られている。また、磁場中のコイルに電流を流したときにコイルに働くローレンツ力に対して磁石に働く反作用を用いてレンズを動かすアクチュエータも存在している。このような電磁アクチュエータは、例えば、特許文献1に開示されている。
特開2012-242499号公報
 しかしながら、上述の公報に開示されているアクチュエータにおいては、磁石を光軸方向へ動かすためには、複数のコイルが必要となる。このため、構成部品の点数が多くなっている。したがって、組み立て工程が増え、かつ小型化、軽量化することが容易ではない。
 本発明は、上記に鑑みてなされたものであって、簡易に組み立てられ、かつ小型化、軽量化された電磁アクチュエータを提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明の電磁アクチュエータは、光軸方向に対して移動可能な光学素子と、光学素子を保持する光学素子保持部と、光学素子と光学素子保持部を囲うように設置されたコイルと、コイルを保持するコイル保持部と、ラジアル方向に磁束を発生する磁束発生部を有し、磁束発生部の内側に光学素子が配置されている。
 本発明には、簡易に組み立てられ、かつ小型化、軽量化された電磁アクチュエータを提供できるという効果を奏する。
図1(a)は第1実施形態の電磁アクチュエータの光軸に垂直な断面図、図1(b)は光軸に沿った方向の断面図である。 図2(a)は第1実施形態の電磁アクチュエータの光軸に垂直な断面において作用する力を説明する図、図2(b)は光軸に沿った方向の断面において作用を説明する図である。 図3(a)は第2実施形態の電磁アクチュエータの光軸に垂直な断面図、図3(b)は光軸に沿った方向の断面図である。 図4(a)は第3実施形態の電磁アクチュエータの光軸に垂直な断面図、図4(b)は光軸に沿った方向の断面図である。 図5は第4実施形態の電磁アクチュエータの光軸に垂直な断面図である。 図6(a)は第5実施形態の電磁アクチュエータの光軸に垂直な断面図、図6(b)は光軸に沿った方向の断面図である。
 以下に、本発明に係る電磁アクチュエータの実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。
(第1実施形態)
 図1(a)は第1実施形態の電磁アクチュエータ100の光軸に垂直な断面図、図1(b)は光軸に沿った方向の断面図である。
 電磁アクチュエータ100において、光学素子Lは、光軸AX方向に対して移動可能に配置されている。光学素子保持部10は、光学素子Lを保持する。コイル11は、光学素子Lと光学素子保持部10を囲うように固定して設置されている。
 光学素子Lの例は、主として、レンズ、絞り、フィルター、撮像素子、プリズム、ミラーをいう。以下、光学素子Lとしてレンズを用いた場合を説明する。
 コイル保持部12は、コイル11を保持する。そして、磁束発生部は、ラジアル方向に磁束を発生する。磁束発生部の内側に光学素子Lが配置されている。
 これにより、コイル11の数量を従来よりも減らすことができる。この結果、簡易に組み立てられ、かつ小型化、軽量化された電磁アクチュエータを提供できる。
 光学素子保持部10とコイル保持部12との少なくとも一方は、磁束発生部の機能を兼用することが望ましい。これにより、磁束発生部と光学素子保持部10及び/又はコイル保持部12とが共通化できる。この結果、部品数を低減できる。
 例えば、光学素子保持部10に、磁束発生部の機能を兼用させることにより、磁束発生の特性が向上する。
 さらに、光学素子保持部10とコイル保持部12の両方に磁束発生部の機能を兼用させることにより、磁束発生の特性が向上する。
 また、コイル保持部12に磁束発生部の機能を兼用させることにより、電磁アクチュエータの組立、製造が容易になる。
 次に、第1実施形態の電磁アクチュエータ100についてさらに詳細に説明する。
 図2(a)は第1実施形態の電磁アクチュエータの光軸に垂直な断面において作用する力を説明する図、図2(b)は光軸に沿った方向の断面において作用を説明する図である。
 図1(a)、(b)において、光学素子保持部10(レンズ保持部)は永久磁石である。また、コイル保持部12は磁性体である。
 図2(a)、(b)において、光学素子保持部10(レンズ保持部)は永久磁石である。また、コイル保持部12も永久磁石である。
 磁束MF、電流CU、光学素子保持部10(レンズ保持部)に加わる力F3、コイル保持部12に加わる力F2、コイルに加わる力F1を図示している。
 電磁アクチュエータ100の動作原理について、図2(a)、(b)について説明する。
 電磁アクチュエータ100は、光軸AXを中心として回転対称な構成を有している。このため、図2(b)の光軸AXよりも上部半分を用いて説明する。
 磁界は、コイル保持部12(N極)から、光学素子保持部10(レンズ保持部(S極))に向かい下向きに磁束MFが発生している。電流CUは、紙面奥から手前に向かい流れている。ここで、フレミングの左手の法則を用いて力の発生する方向を考える。
 コイル11は紙面右方向へ力F1が発生する。コイル保持部12、光学素子保持部10の磁石は、紙面左方向へ力F2、F3が発生する。
 ここで、コイル11とコイル保持部12は、固定部13により固定されている。このため、コイル11とコイル保持部12は、移動することがない。従って、光学素子保持部10と光学素子Lとが、紙面左方向へ移動する。
 次に、図2(b)において、光軸AXを中心とする構成の下半分の構成に着目する。ここでは、磁束MFの向きは紙面上向きへ変わる。電流CUは紙面手前から奥に変化する。磁束MFと電流CUの向きが変化したことにより、力F1、F2、F3の向きは、光軸AXより上半分の構成のときと同様の向きとなる。
 また、コイル11へ流す電流CUの向きを逆にすると、光学素子保持部10と光学素子Lは紙面右方向へ移動する。
 コイル11またはコイル保持部12の少なくとも一方は、固定部13に接触している。これにより、コイル11は、光学素子Lと光学素子保持部10を囲うように固定して設置されている。
 コイル11とコイル保持部12が固定されていないと、コイル側が動いてしまう可能性がある。ここで、コイル11の固定は、必ず必要である。そこで、本実施形態のように、コイル保持部12を固定部13に固定し、コイル11をコイル保持部12に固定して構成する。この結果、コイル11の移動を防止できる。
 ここで、光学素子保持部10とコイル保持部12との少なくとも一方に磁性材料が含まれていることが望ましい。磁性材料を用いることにより、任意の磁路を形成できる。また、永久磁石は、端部と中心部では磁束が異なる。このため、片側が磁性材料の方が均一な力となる。さらに、磁性材料の方が永久磁石より加工が容易で、電磁アクチュエータの小型化に好適である。
 コイル11は、光学素子保持部10より、光軸AX方向に長いことが望ましい。コイル11が光学素子保持部10より、光軸AX方向に短いと、発生する力が弱くなってしまう。また、コイル11が光軸AX方向に長いことで、コイル11は、移動する部材、例えば、レンズ、レンズ保持部のガイドとなる。反対に、コイル11を短くしても、メリットは特に無い。
 また、コイル保持部12は、光学素子保持部10より、光軸AX方向に長いことが望ましい。コイル保持部12は、光学素子保持部10より、光軸AX方向に短いと、発生する力が弱くなってしまう。さらに、ストローク内に端部が存在すると、磁束の流れが光学素子保持部10の位置により変化し、不均一になってしまう。
(第2実施形態)
 次に、第2実施形態の電磁アクチュエータ200について説明する。第1実施形態と同じ部分には同じ符号を付し、重複する説明は省略する。
 磁束発生部は、永久磁石であることが望ましい。磁束発生部としては、永久磁石が好適である。そして、後述するように、永久磁石の形状・数量・配置には、様々なバリエーションがある。
 また、複数の永久磁石が配置されていることが望ましい。例えば、図3(a)に示すように、輪帯状に等間隔で離散的に永久磁石20a、20b、20c、20d、20e、20f、20g、20hを配置している。
 1つの磁石でラジアル異方性磁石を作製する場合に比較して、複数の板状や瓦状の磁石を組み合わせて作成する方が容易である。これに対して、例えば、板状、瓦状の磁石は容易に作成できる。そこで、本実施形態では、複数の永久磁石を配置している。形状、配置等のバリエーションは後述する。
 本実施形態によれば、永久磁石の枚数の設定ができるため、任意の磁束が設定可能である。
 例えば、図3(a)に示すように、複数の永久磁石12は、複数の直方体の永久磁石20a~20gを配置する構成が望ましい。
 また、複数の永久磁石として、複数の瓦型の永久磁石を配置しても良い。
 さらに、複数の永久磁石として、複数の湾曲形状の永久磁石を配置してもよい。
(第3実施形態)
 次に、第3実施形態の電磁アクチュエータ300について説明する。図4(a)は第3実施形態の電磁アクチュエータの光軸に垂直な断面図、図4(b)は光軸に沿った方向の断面図である。
 本実施形態では、図4(a)に示すように、複数の永久磁石30a、30b、30cを光軸AXに対し非対称に配置しても良い。これにより本実施形態では、紙面下方向に光学素子保持部10は引きつけられ、より安定した保持力が発生する。
 複数の永久磁石を光軸AXに関して対称に配置する構成の場合、保持力が弱くなる場合がある。これに対して、本実施形態では、常に安定した保持力を得ることができる。
 さらに、複数の永久磁石を完全に光軸AX対称に配置することは、難しい。そこで、本実施形態のように、永久磁石を非対称に配置することで、電磁アクチュエータ300の組立性が向上する。
(第4実施形態)
 次に、第4実施形態の電磁アクチュエータ400について説明する。図5(a)は第4実施形態の電磁アクチュエータの光軸に垂直な断面図である。
 本実施形態では、光学素子保持部10とコイル11の間に、中間部材41が介在するように配置されている。これにより、密閉性を向上できる。
 また、中間部材41は、非磁性体であることが望ましい。これにより、中間部材41は、磁気回路の弊害とならない。
 また、中間部材41は、光学素子保持部10とコイル11との摩擦・磨耗を低減し、主にコイル11を保護する役割を果たすことが望ましい。
 中間部材41は、光学素子保持部10との摺動を高め摩擦係数を軽減する構成が望ましい。これにより、中間部材41は、光学素子保持部10とコイル11との摩擦・磨耗を低減できる。さらに、中間部材41は、主にコイル11を保護する役割を果たすことが望ましい。
 また、中間部材41は、光軸AXに対し平行であることが望ましい。中間部材41が、光軸AXに対し平行であることにより、光学素子Lの移動を妨げることがない。
 中間部材41は、円筒形であることが望ましい。中間部材41は、光軸AXに対し円筒形であることにより、光学素子Lの移動を妨げることがない。
 中間部材41は、光学素子10を密閉することが望ましい。図5に示すように、他の部材、例えば封止部材40a、40bを用いることにより、レンズを密閉することができる。ここで、密閉とは、水密、特に、気密をいう。
 また、本実施形態では、制止部42が中間部材41に形成されている。光学素子Lが紙面の左右方向へ移動したとき、光学素子保持部10は制止部42に当接して停止する。制止部42は突き当てとして機能する。このため、光学素子Lの移動範囲を正確に決めること、すなわち移動量を規制することができる。また、制止部42を設ける代わりに、光学素子保持部10の端部を紙面左右方向に延在させる構成でもよい。これによっても、光学素子保持部10と他の部材40a、40bとの当接により、光学素子Lの移動量を規制することができる。
(第5実施形態)
 次に、第5実施形態の電磁アクチュエータ500について説明する。本実施形態では、光学素子保持部10の周囲に、等間隔に永久磁石40a、40b、40c、40d、40e、40fを配置しても良い。もちろん、永久磁石を不等間隔に配置しても良い。
 光学素子保持部10のバリエーションとして以下の4つが挙げられる。
(I) 単一の磁石である構成、
(II) 非磁性体の光学素子保持部10に複数の磁石が含まれている構成、
(III)磁性体の光学素子保持部10に複数の磁石が含まれている構成、
(IV) 複数の磁石である構成。
 コイル保持部12も光学素子保持部10と同様の4つのバリエーションが存在する。そして、これらの組み合わせの数だけ実施形態の構成としても良い。ここで、光学素子保持部10、コイル保持部12との両方が磁性体で構成されている例は除く。
 組み合わせ例を、図6(a)、(b)に示す。
 上述した(II)非磁性体の光学素子保持部10に複数の磁石が含まれている構成と、コイル保持部12が磁性体で構成されている組合せである。
 なお、上述したように、すべての組合せを図示はしないが、光学素子保持部10のバリエーションと、コイル保持部12のバリエーションとの組み合わせのいずれの構成でも良い。
 本発明は、上述した発明の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々の変更を加え得ることは勿論である。
 以上のように、本発明に係る電磁アクチュエータは、簡易に組み立てられ、かつ小型化、軽量化された電磁アクチュエータに適している。
 100 電磁アクチュエータ
 10 光学素子保持部
 L 光学素子
 11 コイル
 12 コイル保持部
 13 固定部
 AX 光軸

Claims (18)

  1.  光軸方向に対して移動可能な光学素子と、
     前記光学素子を保持する光学素子保持部と、
     前記光学素子と前記光学素子保持部を囲うように設置されたコイルと、
     前記コイルを保持するコイル保持部と、
     ラジアル方向に磁束を発生する磁束発生部を有し、
     前記磁束発生部の内側に前記光学素子が配置されていることを特徴とする電磁アクチュエータ。
  2.  前記光学素子保持部と前記コイル保持部との少なくとも一方は、前記磁束発生部の機能を兼用することを特徴とする請求項1に記載の電磁アクチュエータ。
  3.  前記磁束発生部は、永久磁石であることを特徴とする請求項1または2に記載の電磁アクチュエータ。
  4.  前記磁束発生部は、複数の前記永久磁石が配置されていることを特徴とする請求項3に記載の電磁アクチュエータ。
  5.  前記複数の永久磁石は光軸に対し、非対称に配置されていることを特徴とする請求項4に記載の電磁アクチュエータ。
  6.  前記コイルは、前記光学素子保持部より、光軸方向に長いことを特徴とする請求項1~5のいずれか1項に記載の電磁アクチュエータ。
  7.  前記コイル保持部は、前記光学素子保持部より、光軸方向に長いことを特徴とする請求項1~6のいずれか1項に記載の電磁アクチュエータ。
  8.  固定部は、前記光学素子または前記光学素子保持部の少なくとも一方の移動量を規制する制止部を有することを特徴とする請求項1~7のいずれか1項に記載の電磁アクチュエータ。
  9.  前記永久磁石は、直方体であることを特徴とする請求項4または5に記載の電磁アクチュエータ。
  10.  前記永久磁石は、瓦型であることを特徴とする請求項4または5に記載の電磁アクチュエータ。
  11.  前記永久磁石は、湾曲形状であることを特徴とする請求項3に記載の電磁アクチュエータ。
  12.  前記光学素子保持部と前記コイルの間に、中間部材が介在することを特徴とする請求項1~11のいずれか1項に記載の電磁アクチュエータ。
  13.  前記中間部材は、非磁性体であることを特徴する請求項12に記載の電磁アクチュエータ。
  14.  前記中間部材は、前記光学素子保持部との摺動を高め摩擦係数を軽減することを特徴とする請求項12または13に記載の電磁アクチュエータ。
  15.  前記中間部材は、光軸に対し平行であることを特徴とする請求項12~14のいずれか1項に記載の電磁アクチュエータ。
  16.  前記中間部材は、円筒形であることを特徴とする請求項11~15のいずれか1項に記載の電磁アクチュエータ。
  17.  前記中間部材は、前記光学素子を密閉することを特徴とする請求項12~16のいずれか1項に記載の電磁アクチュエータ。
  18.  前記光学素子保持部と前記コイル保持部との少なくとも一方に磁性材料が含まれていることを特徴とする請求項1~17のいずれか1項に記載の電磁アクチュエータ。
PCT/JP2014/051664 2013-03-29 2014-01-27 電磁アクチュエータ WO2014156267A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480010293.XA CN105026974A (zh) 2013-03-29 2014-01-27 电磁促动器
EP14775731.4A EP2980623A4 (en) 2013-03-29 2014-01-27 ELECTROMAGNETIC CONTROLLER
US14/867,548 US20160018625A1 (en) 2013-03-29 2015-09-28 Electromagnetic actuator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-072353 2013-03-29
JP2013072353A JP2014197112A (ja) 2013-03-29 2013-03-29 電磁アクチュエータ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/867,548 Continuation US20160018625A1 (en) 2013-03-29 2015-09-28 Electromagnetic actuator

Publications (1)

Publication Number Publication Date
WO2014156267A1 true WO2014156267A1 (ja) 2014-10-02

Family

ID=51623269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051664 WO2014156267A1 (ja) 2013-03-29 2014-01-27 電磁アクチュエータ

Country Status (5)

Country Link
US (1) US20160018625A1 (ja)
EP (1) EP2980623A4 (ja)
JP (1) JP2014197112A (ja)
CN (1) CN105026974A (ja)
WO (1) WO2014156267A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105739044A (zh) * 2014-12-08 2016-07-06 安徽昌硕光电子科技有限公司 一种微动装置
CN105988175A (zh) * 2015-02-10 2016-10-05 安徽昌硕光电子科技有限公司 一种微动装置模块
US20180081164A1 (en) * 2015-06-02 2018-03-22 Olympus Corporation Optical unit and endoscope

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107430256B (zh) * 2015-04-15 2020-03-03 奥林巴斯株式会社 光学单元和内窥镜
JP6678163B2 (ja) 2015-04-15 2020-04-08 オリンパス株式会社 光学ユニット及び内視鏡
WO2019026445A1 (ja) * 2017-08-04 2019-02-07 オリンパス株式会社 内視鏡用リニアアクチュエータ、内視鏡用光学ユニットおよび内視鏡
WO2019123730A1 (ja) * 2017-12-22 2019-06-27 オリンパス株式会社 内視鏡用光学ユニット、内視鏡
JP7045482B2 (ja) * 2018-12-27 2022-03-31 オリンパス株式会社 光学装置および内視鏡
WO2020170312A1 (ja) * 2019-02-18 2020-08-27 オリンパス株式会社 内視鏡

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0581816U (ja) * 1992-04-01 1993-11-05 株式会社ニコン 測量機用望遠鏡
JP2009058601A (ja) * 2007-08-30 2009-03-19 Konica Minolta Opto Inc レンズ駆動装置及び撮像装置並びに携帯端末
JP2010139980A (ja) * 2008-12-15 2010-06-24 Sanyo Electric Co Ltd レンズ駆動装置及びこのレンズ駆動装置を搭載したカメラモジュール
JP2012018244A (ja) * 2010-07-07 2012-01-26 Shicoh Engineering Co Ltd レンズ駆動装置、オートフォーカスカメラ及びカメラ付きモバイル端末
JP2012242499A (ja) 2011-05-17 2012-12-10 Olympus Corp ズーム鏡枠、撮像装置、及び携帯情報端末

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03205635A (ja) * 1989-10-17 1991-09-09 Ricoh Co Ltd 光学系駆動装置
JPH04212913A (ja) * 1990-12-06 1992-08-04 Canon Inc レンズ移動装置
JPH07104166A (ja) * 1993-10-06 1995-04-21 Canon Inc 光学機器
JPH0829657A (ja) * 1994-07-11 1996-02-02 Canon Inc レンズ鏡筒
JP4250409B2 (ja) * 2002-12-04 2009-04-08 日本電産サンキョー株式会社 レンズ駆動装置
JP4682653B2 (ja) * 2005-03-14 2011-05-11 ミツミ電機株式会社 オートフォーカス用アクチュエータ
TWI288258B (en) * 2005-05-27 2007-10-11 Powergate Optical Inc Auto-focusing device for lens
JP4765472B2 (ja) * 2005-08-12 2011-09-07 ソニー株式会社 レンズ駆動装置及びカメラ付き携帯電話端末
JP2008281657A (ja) * 2007-05-08 2008-11-20 Nidec Sankyo Corp レンズ駆動装置
JP4642053B2 (ja) * 2007-09-14 2011-03-02 三洋電機株式会社 レンズ駆動装置
JP5087522B2 (ja) * 2008-11-10 2012-12-05 株式会社ミツバ 電動モータ
JP2010240136A (ja) * 2009-04-06 2010-10-28 Olympus Corp 磁気結合型レンズ駆動アクチュエータ
JP2011221212A (ja) * 2010-04-08 2011-11-04 Sanyo Electric Co Ltd レンズ駆動装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0581816U (ja) * 1992-04-01 1993-11-05 株式会社ニコン 測量機用望遠鏡
JP2009058601A (ja) * 2007-08-30 2009-03-19 Konica Minolta Opto Inc レンズ駆動装置及び撮像装置並びに携帯端末
JP2010139980A (ja) * 2008-12-15 2010-06-24 Sanyo Electric Co Ltd レンズ駆動装置及びこのレンズ駆動装置を搭載したカメラモジュール
JP2012018244A (ja) * 2010-07-07 2012-01-26 Shicoh Engineering Co Ltd レンズ駆動装置、オートフォーカスカメラ及びカメラ付きモバイル端末
JP2012242499A (ja) 2011-05-17 2012-12-10 Olympus Corp ズーム鏡枠、撮像装置、及び携帯情報端末

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2980623A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105739044A (zh) * 2014-12-08 2016-07-06 安徽昌硕光电子科技有限公司 一种微动装置
CN105988175A (zh) * 2015-02-10 2016-10-05 安徽昌硕光电子科技有限公司 一种微动装置模块
US20180081164A1 (en) * 2015-06-02 2018-03-22 Olympus Corporation Optical unit and endoscope
US10732401B2 (en) * 2015-06-02 2020-08-04 Olympus Corporation Optical unit having movable body and voice coil motor for moving lens group and endoscope having optical unit

Also Published As

Publication number Publication date
JP2014197112A (ja) 2014-10-16
CN105026974A (zh) 2015-11-04
US20160018625A1 (en) 2016-01-21
EP2980623A4 (en) 2016-10-26
EP2980623A1 (en) 2016-02-03

Similar Documents

Publication Publication Date Title
WO2014156267A1 (ja) 電磁アクチュエータ
US20170031131A1 (en) Electromagnetic driving module and electronic device using the same
JP2012196128A (ja) 重力補償を行う鉛直アクチュエータ
JPH03761B2 (ja)
WO2014148092A1 (ja) 電磁アクチュエータ
JP2010158140A (ja) リニアモータ
CN110301018A (zh) 磁阻执行器
JP2009237192A (ja) レンズ駆動装置
US11973390B2 (en) Actuator having driving pin with rectilinear movement and an elastic member outside of housing
TW201338392A (zh) 磁浮馬達
KR101339620B1 (ko) 카메라 모듈 구동 장치
JP2013068702A (ja) レンズ駆動装置、オートフォーカスカメラ及びカメラ付きモバイル端末
WO2020137107A1 (ja) 電磁継電器
JP6064748B2 (ja) 発電装置
JP2013109248A (ja) 防振アクチュエータ
JP2017005872A (ja) リニアアクチュエータ
US11735344B2 (en) Moving coil type actuator
JP6178604B2 (ja) 磁気バネ装置
JP6432045B2 (ja) アクチュエータ及びアクチュエータを備えるレンズ鏡筒
JP2018153030A (ja) リニアモータ
JP2011188546A (ja) ボイスコイルモータ
WO2018074336A1 (ja) リニアアクチュエータ
CN113287042A (zh) 用于光学器件的特别是调谐液体透镜光焦度的致动器
JP2016019438A (ja) リニアアクチュエータ
JP2018068010A5 (ja) リニアアクチュエータ、レンズ鏡筒及びカメラ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480010293.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14775731

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014775731

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014775731

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE