WO2014156207A1 - ポンプ容積制御装置 - Google Patents

ポンプ容積制御装置 Download PDF

Info

Publication number
WO2014156207A1
WO2014156207A1 PCT/JP2014/050052 JP2014050052W WO2014156207A1 WO 2014156207 A1 WO2014156207 A1 WO 2014156207A1 JP 2014050052 W JP2014050052 W JP 2014050052W WO 2014156207 A1 WO2014156207 A1 WO 2014156207A1
Authority
WO
WIPO (PCT)
Prior art keywords
spool
pump
pump volume
horsepower
control device
Prior art date
Application number
PCT/JP2014/050052
Other languages
English (en)
French (fr)
Inventor
哲也 岩名地
Original Assignee
カヤバ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カヤバ工業株式会社 filed Critical カヤバ工業株式会社
Priority to KR1020157015495A priority Critical patent/KR101702250B1/ko
Priority to CN201480003702.3A priority patent/CN104870813B/zh
Priority to EP14776349.4A priority patent/EP2933486B1/en
Priority to US14/654,850 priority patent/US10145368B2/en
Publication of WO2014156207A1 publication Critical patent/WO2014156207A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/26Control
    • F04B1/30Control of machines or pumps with rotary cylinder blocks
    • F04B1/32Control of machines or pumps with rotary cylinder blocks by varying the relative positions of a swash plate and a cylinder block
    • F04B1/324Control of machines or pumps with rotary cylinder blocks by varying the relative positions of a swash plate and a cylinder block by changing the inclination of the swash plate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/20Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block
    • F04B1/2014Details or component parts
    • F04B1/2078Swash plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/002Hydraulic systems to change the pump delivery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/08Regulating by delivery pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/06Pressure in a (hydraulic) circuit

Definitions

  • the present invention relates to a pump volume control device that controls the pump volume of a variable volume pump.
  • variable displacement pump that is rotationally driven by an engine as a pressure source of hydraulic equipment mounted on a working machine such as a hydraulic excavator.
  • JP10-281073A includes a swash plate that adjusts the pump volume of a variable volume pump, a tilt piston that tilts the swash plate, and an electric control regulator that controls a tilt drive pressure guided to the tilt piston.
  • a volume control device is disclosed.
  • the electric control regulator includes a servo switching valve that adjusts the tilting drive pressure guided to the tilting piston as the spool moves, a flow rate control piston that moves the spool via the flow rate control lever, and a horsepower control of the spool.
  • a horsepower control piston that is moved through a side lever.
  • the flow rate of the pump is controlled by moving the spool via the flow rate control side lever by the operation of the flow rate control piston that moves according to the control signal.
  • An object of the present invention is to provide a pump volume control device capable of accurately controlling the pump volume of a variable volume pump.
  • a pump volume control device that changes a pump volume of a pump according to a tilt angle of a swash plate, wherein the swash plate is arranged in a direction in which the pump volume decreases as the tilt drive pressure increases.
  • a flow rate that includes a horsepower control piston that moves according to pressure and a horsepower control spring that biases the horsepower control piston according to the tilt angle of the swash plate, and forms a gap between the horsepower control piston and the spool
  • the tilting driving pressure is adjusted by moving the spool according to the force acting on the spool by the flow control signal pressure, and in the horsepower control state where the horsepower control piston and the spool are in contact, Tilting driving pressure is adjusted by the spool is moved in response to a force acting on the horsepower control piston by flop discharge pressure.
  • FIG. 1 is a hydraulic circuit diagram of a pump volume control device according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the variable volume pump and the pump volume control device.
  • FIG. 3 is a cross-sectional view showing a III-III cross section of FIG.
  • FIG. 4 is a cross-sectional view showing the operation of the pump volume control device in the standby state.
  • FIG. 5 is a cross-sectional view showing the operation of the pump volume control device in the flow rate control state.
  • FIG. 6 is a cross-sectional view showing the operation of the pump volume control device in the horsepower control state.
  • FIG. 7 is a characteristic diagram showing the relationship between the flow control signal pressure and the control flow rate.
  • FIG. 8 is a characteristic diagram showing the relationship between pump discharge pressure and control flow rate.
  • FIG. 9 is a hydraulic circuit diagram of a pump volume control device according to the second embodiment of the present invention.
  • FIG. 10 is a characteristic diagram showing the relationship between the flow control signal pressure and the control flow rate.
  • FIG. 1 is a hydraulic circuit diagram of a pump volume control device in the present embodiment.
  • the pump volume control device 10 is provided in a pressure source of a hydraulic device mounted on the hydraulic excavator.
  • the pump volume control device 10 controls the pump volume (pump displacement volume) of a variable volume pump 100 (hereinafter referred to as “pump 100”).
  • the pump 100 sucks the hydraulic oil in the tank 101 through the suction passage 103 and discharges the hydraulic oil pressurized to the pump discharge pressure P to the discharge passage 104.
  • the hydraulic oil sent through the discharge passage 104 is supplied to a hydraulic cylinder (not shown) that drives the boom of the hydraulic excavator.
  • hydraulic oil is not limited to the boom, but may be supplied to a hydraulic cylinder that drives an arm or a bucket or a hydraulic motor that drives traveling, turning, or the like.
  • hydraulic oil is used as the working fluid.
  • a water-soluble alternative liquid may be used instead of the hydraulic oil.
  • the pump 100 is a swash plate type piston pump driven by the engine 109.
  • the pump 100 can change the pump volume according to the tilt angle of the swash plate 15.
  • the pump volume control device 10 includes a tilt piston 16 that changes the tilt angle of the swash plate 15 and a regulator 30 that adjusts the tilt drive pressure Pc guided to the tilt piston 16.
  • a controller (not shown) mounted on the hydraulic excavator receives an operation signal based on the lever operation amount of the operator, and controls the operation of an electromagnetic proportional control valve (not shown) provided in the hydraulic circuit according to the operation signal.
  • the flow control signal pressure Pi as the pilot hydraulic pressure is adjusted.
  • the flow control signal pressure Pi is guided to the regulator 30 through the pump volume control signal passage 108.
  • the flow control signal pressure Pi is adjusted by controlling the operation of the electromagnetic proportional control valve.
  • the flow control signal pressure Pi is set to the pilot hydraulic pressure directly by the pilot valve or the like. You may adjust.
  • the pump discharge pressure P of the pump 100 is guided to the regulator 30 as another signal pressure.
  • the regulator 30 switches between a flow rate control state and a horsepower control state according to the pump discharge pressure P.
  • the regulator 30 enters a flow control state when the pump discharge pressure P is lower than a set value, and enters a horsepower control state when the pump discharge pressure P is equal to or higher than the set value.
  • the regulator 30 adjusts the tilt driving pressure Pc guided to the tilt piston 16 according to the flow control signal pressure Pi.
  • the regulator 30 adjusts the tilt drive pressure Pc guided to the tilt piston 16 according to the pump discharge pressure P.
  • the controller of the hydraulic excavator can be switched between the high load mode and the low load mode.
  • the horsepower control signal pressure Ppw is adjusted to be high in order to increase the load on the pump 100 as described later.
  • the horsepower control signal pressure Ppw is adjusted low to reduce the load on the pump 100.
  • a horsepower control signal pressure Ppw is guided to the regulator 30 through the horsepower control signal passage 107.
  • the controller switches the horsepower control signal pressure Ppw between the high load mode signal pressure and the low load mode signal pressure by controlling the operation of a solenoid valve (not shown) provided in the hydraulic circuit according to the operation mode.
  • FIG. 2 is a cross-sectional view of the pump 100 and the pump volume control device 10.
  • the pump 100 includes a cylinder block 12 that is rotationally driven by the engine 109, a piston 13 that reciprocates within a plurality of cylinders 14 provided in the cylinder block 12, and a swash plate 15 that the piston 13 follows.
  • the shaft 1 is fixed to the cylinder block 12.
  • the front end portion of the shaft 1 is rotatably supported by the pump housing 17 via the bearing 2, and the central portion of the shaft 1 is rotatably supported by the pump cover 19 via the bearing 3.
  • the power of the engine 109 is transmitted to the base end portion 1 ⁇ / b> A of the shaft 1.
  • the swash plate 15 is swingably supported by the pump housing 17 via the tilt bearing 9.
  • the tilt angle of the swash plate 15 changes, the stroke amount of the piston 13 relative to the cylinder 14 changes, and the pump volume changes.
  • the rocking center axis S of the swash plate 15 is arranged offset with respect to the rotation axis C of the cylinder block 12. As a result, the swash plate 15 is urged in a direction in which the tilt angle is increased by the combined force of the reaction forces received from the pistons 13. That is, offsetting the swinging center axis S with respect to the rotation axis C acts like a tilting biasing mechanism that biases the swash plate 15 in the tilting direction.
  • a tilting biasing mechanism may be provided by interposing a spring or a piston between the swash plate 15 and the pump housing 17.
  • the tilting piston 16 is slidably accommodated in a tilting cylinder 18 formed in the pump housing 17.
  • the tilting piston 16 and the tilting cylinder 18 are disposed so as to extend in parallel with the rotation axis C of the cylinder block 12 and a spool shaft O described later.
  • the tip of the tilting piston 16 is in sliding contact with the protrusion 16A of the swash plate 15 via the shoe 8.
  • a tilt drive pressure chamber 6 is defined between the tilt piston 16 and the tilt cylinder 18.
  • the tilt piston 16 moves to the right in FIG. 1 as the tilt drive pressure Pc guided from the regulator 30 to the tilt drive pressure chamber 6 increases, and the tilt angle of the swash plate 15 via the shoe 8 is increased. Tilt in the direction of decreasing.
  • the plug 7 protruding into the tilting cylinder 18 is screwed into the pump housing 17.
  • the plug 7 defines the maximum tilt angle of the swash plate 15 by having the tip surface abutting against the base end of the tilt piston 16.
  • the regulator 30 includes a regulator housing 29 attached to the pump housing 17.
  • a pump volume switching valve 40 Inside the regulator housing 29, a pump volume switching valve 40, a flow rate control spring 49, a horsepower control piston 60, horsepower control springs 31 and 32, a rod 35 and the like are arranged in the direction of the spool axis O of the spool 41 of the pump volume switching valve 40. Housed side by side.
  • the pump volume switching valve 40 includes a cylindrical sleeve 50 and a spool 41 that is slidably accommodated in the spool axis O direction with respect to the sleeve 50.
  • the plug 56 is screwed onto the proximal end of the sleeve 50.
  • the spool 41 is urged by a flow rate control spring 49 in a direction toward the plug 56 (left direction in FIG. 3).
  • the plug 56 regulates the stroke of the spool 41 when the distal end surface comes into contact with the proximal end surface of the spool 41.
  • the spool 41 is formed with a shaft hole 43 that opens at the base end of the spool 41 and extends in the axial direction.
  • a pin 58 is slidably accommodated in the shaft hole 43.
  • a signal pressure chamber 55 is defined between the shaft hole 43 of the spool 41 and the tip of the pin 58. The spool 41 and the pin 58 are restricted from moving leftward in FIGS. 2 and 3 when the proximal end abuts against the plug 56.
  • the flow rate control signal pressure Pi corresponding to the lever operation amount of the operator is guided to the signal pressure chamber 55 through the pump volume control signal passage 108 (see FIG. 1).
  • the pump volume control signal passage 108 includes a port 28 of the regulator housing 29, a signal pressure port 53 of the sleeve 50, and a back pressure port 44 of the spool 41.
  • the flow rate control signal pressure Pi is guided to the port 28 of the regulator housing 29 through a pipe (not shown) connected thereto.
  • a back pressure chamber 57 is defined between the sleeve 50 and the base end of the spool 41 and the plug 56.
  • the back pressure chamber 57 is communicated with the central chamber 21 in the regulator housing 29 of the pump 100 through the back pressure port 54.
  • the central chamber 21 communicates with the tank 101 (see FIG. 1) through a drain passage (not shown). Since the back pressure chamber 57 communicates with the tank 101, the spool 41 can move smoothly.
  • the sleeve 50 includes a tilt drive pressure port 52 communicating with the tilt drive pressure chamber 6 (see FIG. 2) of the tilt piston 16 and a source pressure port 51 communicating with the source pressure passage 105 (see FIG. 1). It is formed.
  • the pump discharge pressure P is guided to the original pressure port 51 as an original pressure through the original pressure passage 105 (see FIG. 1).
  • a tank port 48 communicating with the tank 101 through the central chamber 21 in the regulator housing 29 is formed.
  • a land portion 47 protruding in an annular shape is formed on the outer periphery of the spool 41.
  • the original pressure port 51 and the tank port 48 are selectively communicated with the tilt drive pressure port 52.
  • the tilt driving pressure Pc generated in the tilt driving pressure port 52 is adjusted.
  • the main pressure port 51 and the tilt drive pressure port 52 communicate with each other from the main pressure passage 105.
  • the tilt driving pressure Pc of the tilt driving pressure port 52 is increased by the pump discharge pressure P thus guided.
  • the tilting piston 16 tilts the swash plate 15 in a direction in which the tilt angle becomes smaller as the tilting driving pressure Pc increases. This reduces the pump volume.
  • the tank port 48 and the tilt drive pressure port 52 communicate with each other, and the tank port 48 passes through the tank passage 106.
  • the tilt driving pressure Pc guided to the tilt driving pressure port 52 is reduced by the guided tank pressure Pt.
  • the tilting piston 16 tilts the swash plate 15 in a direction in which the tilting angle increases as the tilting driving pressure Pc decreases. This increases the pump volume.
  • the sleeve 50 is inserted into the regulator housing 29 so as to be movable in the spool axis O direction.
  • the position of the sleeve 50 can be adjusted in the spool axis O direction.
  • the pump volume switching adjuster mechanism 59 includes a screw portion 64 formed on the outer periphery of the proximal end portion of the sleeve 50, a cover 45 that is screwed into the screw portion 64, and a nut 46 for preventing loosening.
  • the cover 45 is fixed so as to come into contact with the open end of the regulator housing 29.
  • the pump volume switching adjuster mechanism 59 moves the sleeve 50 relative to the pump housing 17 in the spool axis O direction by adjusting the screwing position of the sleeve 50 with respect to the cover 45. Thereby, the spring load of the flow control spring 49 is changed, and the timing at which the spool 41 is switched to the positions a and b (FIG. 1) is adjusted according to the flow control signal pressure Pi.
  • the regulator housing 29 and the sleeve 50 may be integrally formed.
  • the spool 41 has a tip portion protruding from the open end of the sleeve 50, and a spool-side spring receiver 42 is attached to the tip portion.
  • One end of the coil-shaped flow control spring 49 is seated on the spool-side spring receiver 42.
  • a rod 35 is provided in the regulator housing 29, a rod 35 is provided.
  • a cylindrical retainer 25 is slidably attached to the outer peripheral surface of the rod 35.
  • a shaft hole 26 is formed in the retainer 25 so as to extend on the spool shaft O.
  • the cylindrical rod 35 is slidably inserted into the shaft hole 26 of the retainer 25 at its outer peripheral surface.
  • a retainer side spring receiver 24 is attached to the retainer 25.
  • One end of a flow rate control spring 49 is seated on the retainer side spring receiver 24.
  • the flow rate control spring 49 is compressed and interposed between the spool-side spring receiver 42 and the retainer-side spring receiver 24.
  • the link 71 is fixed to the retainer 25.
  • the link 71 is a member that connects the retainer 25 and the tilting piston 16, and is provided from the regulator housing 29 to the pump housing 17.
  • One end of the link 71 is fitted and coupled to the outer periphery of the retainer 25.
  • the other end of the link 71 is fitted and coupled to the outer peripheral groove of the tilting piston 16.
  • the link 71 and the tilting piston 16 constitute a retainer moving mechanism 70 that moves the retainer 25 in the direction of the spool axis O in conjunction with the tilting operation of the swash plate 15.
  • the retainer moving mechanism 70 is not limited to the above-described configuration, and may be a structure in which the retainer 25 is interlocked with the swash plate 15 without using the tilting piston 16.
  • the pump housing 17 is provided with a guide 72 for slidably supporting the link 71.
  • the base end portion of the rod-shaped guide 72 is fixed to the pump housing 17, and the distal end portion of the guide 72 is slidably inserted into the hole of the link 71.
  • the guide 72 is formed to extend in parallel with the spool axis O.
  • the regulator 30 also has a function of performing horsepower control for suppressing the load of the pump 100 by moving the spool 41 in the direction of the spool axis O in accordance with the pump discharge pressure P of the pump 100 and adjusting the tilt driving pressure Pc. ing.
  • the regulator 30 spools the horsepower control piston 60 that moves in the direction of the spool axis O according to the pump discharge pressure P and the horsepower control piston 60 according to the tilt angle of the swash plate 15.
  • Horsepower control springs 31 and 32 that bias in the direction of the axis O, and a rod 35 provided between the horsepower control piston 60 and the spool 41 are provided.
  • the rod 35 is arranged so that the tip thereof faces the tip of the spool 41 with a gap 39.
  • a collar portion 38 that protrudes in an annular shape is formed.
  • Horsepower control springs 31 and 32 are interposed between the collar portion 38 and the retainer 25.
  • the horsepower control springs 31 and 32 are formed in a coil shape in which the winding diameters of the wire rods are different from each other.
  • a horsepower control spring 32 having a small winding diameter is disposed inside the horsepower control spring 31 having a large winding diameter.
  • the horsepower control spring 31 having a large winding diameter is compressed between the retainer 25 and the rod 35, and the horsepower control spring having a small winding diameter.
  • One end of 32 is separated from the retainer 25.
  • both ends of the horsepower control spring 32 abut against the retainer 25 and the rod 35 and are compressed. Thereby, the spring force of the horsepower control springs 31 and 32 applied to the horsepower control piston 60 increases stepwise.
  • the present invention is not limited to this, and one or three or more horsepower control springs may be provided between the retainer 25 and the rod 35.
  • the regulator housing 29 is provided with an adjuster spring 82 and a horsepower control adjuster mechanism 83 that adjust the spring load of the horsepower control spring 31.
  • the coil-shaped adjuster spring 82 is compressed and interposed between an adjuster link 81 connected to the rod 35 and an adjuster rod 84 that is slidably inserted into the adjuster link 81.
  • An adjuster screw 85 is screwed into a cover 86 that closes one end of the regulator housing 29.
  • the adjustment task screw 85 abuts on the base end of the adjustment rod 84.
  • a loosening prevention nut 87 is fastened to the adjustment task screw 85.
  • adjuster spring 82, adjuster rod 84, and adjuster screw 85 are disposed on the same axis.
  • the adjuster rod 84 and adjust task screw 85 may be integrally formed.
  • the rod 35 moves in the direction of the spool axis O, and the spring load of the horsepower control spring 31 is adjusted.
  • a cylindrical horsepower control cylinder 76 is provided in the regulator housing 29.
  • a horsepower control piston 60 is slidably inserted into the horsepower control cylinder 76.
  • the regulator housing 29 and the horsepower control cylinder 76 may be integrally formed.
  • the distal end surface of the horsepower control piston 60 protruding from the horsepower control cylinder 76 is in contact with the proximal end surface of the rod 35.
  • the present invention is not limited to this, and the rod 35 may be integrally formed with the horsepower control piston 60.
  • a shaft hole 62 is formed in the horsepower control piston 60, and a pin 61 is inserted into the shaft hole 62.
  • a first pressure chamber 63 is defined in the shaft hole 62 by the tip surface of the pin 61.
  • the first pressure chamber 63 is connected to the discharge passage 104 (see FIG. 1) through the through hole 67 of the horsepower control piston 60, the through hole 77 of the horsepower control cylinder 76, and the through hole 27 (see FIG. 2) of the regulator housing 29. Communicating with A pump discharge pressure P is guided to the first pressure chamber 63 through the discharge passage 104.
  • An annular stepped portion 65 is formed on the outer periphery of the horsepower control piston 60.
  • a second pressure chamber 66 is defined between the stepped portion 65 and the horsepower control cylinder 76.
  • the horsepower control signal pressure Ppw for switching the operation mode according to a command from the controller is guided to the second pressure chamber 66 through the horsepower control signal passage 107 (see FIG. 1).
  • the horsepower control signal passage 107 is configured by the through hole 22 of the regulator housing 29 and the through hole 78 of the horsepower control cylinder 76.
  • the spool 41, the retainer 25, the rod 35, and the horsepower control piston 60 are arranged on the spool axis O. As a result, the forces from the spool 41 and the horsepower control piston 60 act on the same axis at both ends of the rod 35.
  • a mechanism for guiding the rod 35 along the regulator housing 29 may be provided, and the rod 35 may be offset from the spool shaft O.
  • FIGS. 2 and 3 show a stop state of the pump 100 in which the operation of the engine 109 of the hydraulic excavator is stopped.
  • the stop state since the flow control signal pressure Pi is low, the spool 41 moves to the left by the spring force of the flow control spring 49. Thereby, the original pressure port 51 and the tilt drive pressure port 52 communicate with each other.
  • the pump discharge pressure P is substantially zero. Therefore, the tilting piston 16 contacts the plug 7 and the swash plate 15 is held at the maximum tilting angle position.
  • FIG. 4 shows a standby state of the pump 100 in which the hydraulic excavator engine 109 is operated and the pump 100 is operating and the hydraulic cylinder driving the boom is stopped.
  • the flow control signal pressure Pi guided to the signal pressure chamber 55 is adjusted to be low, so that the main pressure port 51 and the tilt drive pressure port 52 remain in communication.
  • the pump discharge pressure P led from the original pressure passage 105 increases, and the tilt driving pressure Pc led from the tilt driving pressure port 52 to the tilt driving pressure chamber 6 increases.
  • the tilting piston 16 that receives the tilt driving pressure Pc moves to the right as shown by the arrow B, the swash plate 15 tilts in the direction shown by the arrow C, and the swash plate 15 contacts the stopper 5. It is held at the minimum tilt angle position.
  • FIG. 5 shows a flow rate control state of the pump 100 in which the hydraulic cylinder expands and contracts by the hydraulic oil discharged from the pump 100.
  • the flow control signal pressure Pi guided to the signal pressure chamber 55 is increased based on the lever operation of the operator.
  • the spool 41 moves to the right against the spring force of the flow control spring 49, and the tank port 48 and the tilt drive pressure port 52 communicate with each other.
  • the tilt driving pressure Pc guided from the tilt driving pressure port 52 to the tilt driving pressure chamber 6 is lowered.
  • the tilting piston 16 that receives the tilting driving pressure Pc moves to the left as shown by the arrow D in FIG.
  • the swash plate 15 tilts in the direction shown by the arrow E, and the tilting piston 16 moves. It moves toward the maximum tilt angle position in contact with the plug 7.
  • the link 71 connected to the tilting piston 16 moves leftward in FIG. 5 and the retainer 25 also moves leftward, so that the flow control spring 49 is compressed.
  • the retainer 25 and the tilting piston 16 move so that the spring force of the flow control spring 49 and the flow control signal pressure Pi received by the spool 41 are balanced, the swash plate 15 tilts, and the tilt angle of the swash plate 15 is increased.
  • the pump volume is controlled accordingly.
  • FIG. 7 is a characteristic diagram showing the relationship between the flow control signal pressure Pi and the control flow Q supplied from the pump 100 to the hydraulic cylinder (not shown) in the flow control state.
  • the flow rate control state positive flow rate control is performed in which the control flow rate Q gradually increases as the flow rate control signal pressure Pi increases.
  • the standby state in which the swash plate 15 abuts against the stopper 5 corresponds to the point L at which the flow rate control signal pressure Pi becomes the minimum set value in the characteristic diagram of FIG.
  • the flow rate control state in which the tilting piston 16 comes into contact with the plug 7 to reach the maximum tilt angle position is a point H at which the flow rate control signal pressure Pi is increased to the maximum set value in the characteristic diagram of FIG. Equivalent to.
  • the pump volume control device 10 is configured so that the control flow Q increases as the flow control signal pressure Pi increases as shown in FIG.
  • the control flow rate Q of the hydraulic oil supplied to the hydraulic cylinder from is adjusted.
  • FIG. 6 shows a horsepower control state in which the horsepower control piston 60 moves and the tip of the rod 35 contacts the spool 41.
  • the horsepower control piston is adjusted so that the flow control signal pressure Pi, the signal pressure based on the pump discharge pressure P, the spring force of the flow control spring 49, the spring force of the horsepower control springs 31, 32, and the like are balanced. 60, the rod 35, and the spool 41 move integrally.
  • the horsepower control piston 60 pushes the spool 41 via the rod 35, so that the spool 41 moves to the left, and the tank port 48 and the tilt drive pressure port.
  • the state in which the main pressure port 51 and the tilt drive pressure port 52 are in communication with each other is switched from the state in which the 52 is in communication.
  • the tilt drive pressure Pc increases, and the tilt piston 16 moves away from the plug 7 and moves in the right direction indicated by the arrow F that decreases the tilt angle.
  • the link 71 connected to the tilting piston 16 moves to the right in FIG. 6 and the retainer 25 also moves to the right, so that the flow control spring 49 is extended and the horsepower control springs 31 and 32 are extended. Is compressed.
  • the tilting piston 16 moves in the direction of arrow F, and the swash plate 15 moves in the direction of arrow G to reduce the pump volume.
  • FIG. 8 is a characteristic diagram showing the relationship between the pump discharge pressure P and the control flow rate Q supplied from the pump 100 to the hydraulic cylinder in the horsepower control state.
  • an equal horsepower characteristic (characteristic in which the product of the pump discharge pressure P and the control flow rate Q is substantially constant) is obtained in which the control flow rate Q decreases as the pump discharge pressure P increases.
  • the state shown in FIG. 6 corresponds to the point J at which the control flow rate Q becomes the maximum value in the characteristic diagram of FIG.
  • the horsepower control signal pressure Ppw guided to the horsepower control piston 60 based on the command from the controller is adjusted to be high in the high load mode and adjusted to be low in the low load mode.
  • the horsepower control signal pressure Ppw guided to the second pressure chamber 66 is adjusted to be low in the low load mode, the horsepower control piston 60 moves leftward in FIG. 6 together with the rod 35 and the spool 41, and the tilt driving pressure is increased. Pc is increased. As a result, the pump volume is reduced and the load on the pump 100 is reduced.
  • the solid line shows the characteristics of the high load mode
  • the broken line shows the characteristics of the low load mode.
  • the pump discharge pressure P is lower than in the high load mode, the control flow rate Q is reduced, and the load (power) of the pump 100 is reduced.
  • the regulator 30 of the pump volume control apparatus 10 includes a pump volume switching valve 40 that adjusts the tilt driving pressure Pc by the spool 41 moving in the spool axis O direction, and the spool 41 according to the tilt angle of the swash plate 15.
  • Horsepower control springs 31 and 32 that urge in the direction of the axis O, and a gap 39 provided between the horsepower control piston 60 and the spool 41 are provided.
  • the tilt drive pressure Pc is changed by the spool 41 moving in accordance with the force acting on the spool 41 by the flow control signal pressure Pi. Adjusted.
  • the control flow rate Q of the hydraulic oil supplied to the hydraulic cylinder can be controlled according to the lever operation amount of the operator.
  • the spool In a horsepower control state in which the gap 39 is not formed between the horsepower control piston 60 and the spool 41 and the spool 41 is in contact with the horsepower control piston 60, the spool is controlled according to the force acting on the horsepower control piston 60 by the pump discharge pressure P.
  • the tilt drive pressure Pc is adjusted by moving 41. Therefore, it is possible to prevent the engine 100 from stopping due to an excessive load on the pump 100 and the like.
  • the spool 41 In the horsepower control state, the spool 41 is pushed by the horsepower control piston 60 and moves. Since the horsepower control piston 60 and the spool 41 do not have a rotation coupling portion or the like, there is no transmission delay caused by play or friction. Therefore, the operation responsiveness of the pump volume switching valve 40 can be improved and the pump volume control error can be reduced.
  • the spool 41 is pushed by the horsepower control piston 60 via the rod 35 and moves.
  • the spool 41, the rod 35, and the horsepower control piston 60 are arranged on the same axis.
  • the spool 41, the rod 35, and the horsepower control piston 60 move side by side on the same axis, so that the spool 41, the rod 35, and the horsepower control piston 60 move smoothly, and the operation response of the pump volume switching valve 40 is improved. Can be improved.
  • the spool 41 moves in the direction of decreasing the tilt drive pressure Pc as the flow control signal pressure Pi increases in the flow control state, and tilts as the pump discharge pressure P increases in the horsepower control state. It moves in the direction of increasing the driving pressure Pc.
  • the positive flow rate control is performed to increase the pump volume as the flow rate control signal pressure Pi increases.
  • horsepower control is performed to reduce the pump volume as the pump discharge pressure P increases.
  • the regulator 30 includes a retainer 25 provided so as to be movable in the axial direction with respect to the rod 35, and a retainer moving mechanism 70 that moves the retainer 25 by an operation in which the swash plate 15 tilts.
  • the horsepower control springs 31 and 32 are interposed between the retainer 25 and the rod 35, and the flow control spring 49 is interposed between the spool 41 and the retainer 25.
  • the retainer 25 moves in conjunction with the tilting operation of the swash plate 15, the horsepower control springs 31 and 32 expand and contract via the retainer 25, and the flow rate control spring 49 expands and contracts.
  • the rod 35 is disposed with a gap 39 with respect to the spool 41, so that the spring force of the flow control spring 49 and the force received by the spool 41 by the flow control signal pressure Pi are balanced.
  • the positive flow rate control is performed to increase the pump volume as the tilt drive pressure Pc is adjusted and the flow rate control signal pressure Pi increases.
  • the rod 35 abuts against the spool 41, and the tilt driving pressure Pc is adjusted by forcibly pushing the spool 41.
  • the retainer moving mechanism 70 includes a link 71 that connects the tilting piston 16 and the retainer 25. Thereby, since the movement of the tilting piston 16 is transmitted to the retainer 25 through the link 71, the structure of the retainer moving mechanism 70 can be simplified.
  • the link 71 fixes the positional relationship between the tilting piston 16 and the retainer 25 and does not have a rotation coupling portion or the like, it is possible to prevent a transmission delay caused by play or friction. Therefore, the operation response of the pump volume switching valve 40 can be improved and the pump volume control error can be reduced.
  • the retainer moving mechanism 70 includes a guide 72 that slidably supports the link 71.
  • the link 71 is slidably supported by the guide 72, so that the link 71 and the retainer 25 move along the guide 72, and the retainer 25 and the rod 35 are moved in a direction perpendicular to the spool axis O. Can be suppressed.
  • the regulator 30 includes an adjuster spring 82 that urges the rod 35 in a direction in which the horsepower control springs 31 and 32 are compressed, and a horsepower control adjuster mechanism 83 that adjusts the spring force of the adjuster spring 82.
  • the spring force of the adjuster spring 82 is adjusted by the horsepower control adjuster mechanism 83, the spring force of the horsepower control springs 31 and 32 is adjusted via the rod 35, and the load of the variable displacement pump 100 is adjusted.
  • the regulator 30 includes a first pressure chamber 63 defined by the horsepower control piston 60 and guided by the pump discharge pressure P, and a second pressure chamber 66 defined by the horsepower control piston 60 and guided by the horsepower control signal pressure Ppw. .
  • the horsepower control piston 60 moves the spool 41 in the direction in which the tilt drive pressure Pc decreases.
  • the horsepower control piston 60 moves to a position where the force received by the horsepower control piston 60 from the pump discharge pressure P and the horsepower control signal pressure Ppw and the spring force of the horsepower control springs 31 and 32 are balanced. Thereby, the load of the variable displacement pump 100 is adjusted according to the horsepower control signal pressure Ppw.
  • the pump volume switching valve 40 further includes a sleeve 50 into which the spool 41 is slidably inserted, and a pump volume switching adjuster mechanism 59 that adjusts the position of the sleeve 50 in the direction of the spool axis O.
  • the spring load of the flow control spring 49 can be changed by adjusting the position of the sleeve 50 by the pump volume switching adjuster mechanism 59, the timing at which the tilt drive pressure Pc increases or decreases according to the flow control signal pressure Pi. Can be adjusted.
  • FIG. 9 is a hydraulic circuit diagram of the pump volume control device in the present embodiment. Below, it demonstrates centering on a different point from 1st Embodiment, the same code
  • the pump volume control device 10 in the first embodiment is configured to perform positive flow rate control in which the control flow rate Q increases in proportion to an increase in the flow rate control signal pressure Pi in the flow rate control state.
  • the pump volume control device 10 in the present embodiment is configured to perform negative flow rate control in which the control flow rate Q decreases in proportion to an increase in the flow rate control signal pressure Pi in the flow rate control state.
  • the regulator 30 includes a spool-side spring receiver 90 connected to the spool 41 and a retainer-side spring receiver 91 connected to the retainer 25.
  • the retainer-side spring receiver 91 is disposed on the side closer to the sleeve 50 (FIG. 3) than the spool-side spring receiver 90 via the extension member 92.
  • the flow rate control spring 49 is compressed and interposed between the retainer side spring receiver 91 and the spool side spring receiver 90, and biases the spool 41 in a direction in which the tilt driving pressure Pc is lowered.
  • the flow control signal pressure Pi guided to the spool 41 acts against the flow control spring 49 in the direction in which the tilting drive pressure Pc increases.
  • the spool 41 moves in a direction in which the tilt drive pressure Pc is lowered by the spring force of the flow control spring 49.
  • the tilting piston 16 receiving the tilting driving pressure Pc holds the swash plate 15 at the maximum tilting angle, and the pump volume is maximized.
  • the spool 41 moves against the flow control spring 49 in the direction in which the tilt drive pressure Pc increases.
  • the tilting piston 16 that receives the tilt driving pressure Pc tilts the swash plate 15 in a direction in which the tilt angle becomes smaller, and the pump volume decreases.
  • FIG. 10 is a graph showing the relationship between the flow rate control signal pressure Pi and the control flow rate Q supplied from the pump 100 to the hydraulic cylinder in the flow rate control state where the spool 41 moves with a gap 39 between the spool 41 and the rod 35.
  • FIG. 10 At this time, negative flow control is performed in which the control flow Q gradually decreases as the flow control signal pressure Pi increases from a low value.
  • the horsepower control piston 60 that receives the pump discharge pressure P in the first pressure chamber 63 moves.
  • the control state is switched from the flow rate control state to the horsepower control state.
  • horsepower control is performed to reduce the pump volume as the pump discharge pressure P increases.
  • the spool 41 moves in the direction in which the tilt drive pressure Pc increases as the flow control signal pressure Pi increases in the flow control state, and the tilt drive pressure increases as the pump discharge pressure P increases in the horsepower control state. It moves in the direction of increasing Pc.
  • negative flow rate control is performed to reduce the pump volume as the flow rate control signal pressure Pi increases.
  • a swash plate type piston pump is illustrated as the pump 100, but the present invention is not limited to this, and other variable volume pumps may be used.
  • the pump volume control device provided in the pressure source of the hydraulic excavator is exemplified, but the present invention is not limited to this, and the present invention can also be applied to pump volume control devices provided in other machines, facilities, and the like.

Abstract

 ポンプ容積制御装置は、傾転ピストンと、スプールが移動することで傾転駆動圧を調節するポンプ容積切換弁と、傾転角に応じてスプールを付勢する流量制御スプリングと、ポンプ吐出圧に応じて移動する馬力制御ピストンと、傾転角に応じて馬力制御ピストンを付勢する馬力制御スプリングと、を備える。流量制御状態では、流量制御信号圧によりスプールに作用する力に応じてスプールが移動することで傾転駆動圧が調節され、馬力制御状態では、ポンプ吐出圧により馬力制御ピストンに作用する力に応じてスプールが移動することで傾転駆動圧が調節される。

Description

ポンプ容積制御装置
 本発明は、可変容積ポンプのポンプ容積を制御するポンプ容積制御装置に関する。
 油圧ショベル等の作業機に搭載される油圧機器の圧力源として、エンジンによって回転駆動される可変容積ポンプを使用することが知られている。
 JP10-281073Aは、可変容積ポンプのポンプ容積を調節する斜板と、斜板を傾転させる傾転ピストンと、傾転ピストンに導かれる傾転駆動圧を調節する電気制御レギュレータと、を備えるポンプ容積制御装置を開示している。
 電気制御レギュレータは、スプールが移動することで傾転ピストンに導かれる傾転駆動圧を調節するサーボ切換弁と、スプールを流量制御側レバーを介して移動させる流量制御用ピストンと、スプールを馬力制御側レバーを介して移動させる馬力制御用ピストンと、を備える。
 通常の運転時には、制御信号に応じて移動する流量制御用ピストンの作動によってスプールが流量制御側レバーを介して移動することでポンプの流量制御が行われる。
 制御系に異常が生じたり、ポンプの負荷が上昇してポンプの入力動力がエンジン等の駆動力を上回りそうになったりした場合には、ポンプ吐出圧に応じて移動する馬力制御用ピストンの作動によってスプールが馬力制御側レバーを介して移動することでポンプの流量制御が行われる。
 しかし、上記従来のポンプ容積制御装置では、流量制御用ピストン及び馬力制御用ピストンの動きが流量制御側レバー又は馬力制御側レバーを介してサーボ切換弁のスプールに伝達される。これにより、リンク機構のガタや摩擦に起因する伝達遅れによってサーボ切換弁の作動応答性が低下する可能性がある。よって、ポンプ容積を的確に制御することは難しい。
 本発明の目的は、可変容積ポンプのポンプ容積を的確に制御可能なポンプ容積制御装置を提供することである。
 本発明のある態様によれば、斜板の傾転角に応じてポンプのポンプ容積を変化させるポンプ容積制御装置であって、傾転駆動圧が高くなるほどポンプ容積が小さくなる方向に斜板を傾転させる傾転ピストンと、スプールが移動することで傾転駆動圧を調節するポンプ容積切換弁と、斜板の傾転角に応じてスプールを付勢する流量制御スプリングと、ポンプのポンプ吐出圧に応じて移動する馬力制御ピストンと、斜板の傾転角に応じて馬力制御ピストンを付勢する馬力制御スプリングと、を備え、馬力制御ピストンとスプールとの間に間隙が形成される流量制御状態では、流量制御信号圧によりスプールに作用する力に応じてスプールが移動することで傾転駆動圧が調節され、馬力制御ピストンとスプールとが当接する馬力制御状態では、ポンプ吐出圧により馬力制御ピストンに作用する力に応じてスプールが移動することで傾転駆動圧が調節される。
図1は、本発明の第1実施形態に係るポンプ容積制御装置の油圧回路図である。 図2は、可変容積ポンプ及びポンプ容積制御装置の断面図である。 図3は、図2のIII-III断面を示す断面図である。 図4は、スタンバイ状態におけるポンプ容積制御装置の動作を示す断面図である。 図5は、流量制御状態におけるポンプ容積制御装置の動作を示す断面図である。 図6は、馬力制御状態におけるポンプ容積制御装置の動作を示す断面図である。 図7は、流量制御信号圧と制御流量との関係を示す特性図である。 図8は、ポンプ吐出圧と制御流量との関係を示す特性図である。 図9は、本発明の第2実施形態に係るポンプ容積制御装置の油圧回路図である。 図10は、流量制御信号圧と制御流量との関係を示す特性図である。
 以下、添付図面を参照しながら本発明の実施形態について説明する。
 初めに、第1実施形態について説明する。
 図1は、本実施形態におけるポンプ容積制御装置の油圧回路図である。ポンプ容積制御装置10は、油圧ショベルに搭載される油圧機器の圧力源に設けられる。ポンプ容積制御装置10は、可変容積ポンプ100(以下、「ポンプ100」と称する。)のポンプ容積(ポンプ押しのけ容積)を制御する。
 ポンプ100は、タンク101の作動油を吸込通路103を通じて吸込み、ポンプ吐出圧Pに加圧した作動油を吐出通路104に吐出する。吐出通路104を通じて送られる作動油は、油圧ショベルのブームを駆動する油圧シリンダ(図示省略)に供給される。
 なお、作動油は、ブームに限らず、アーム又はバケット等を駆動する油圧シリンダや走行、旋回等を駆動する油圧モータに供給されていてもよい。
 また、本実施形態では、作動流体として作動油を用いるが、作動油の代わりに例えば水溶性代替液等を用いてもよい。
 ポンプ100は、エンジン109によって駆動される斜板式ピストンポンプである。ポンプ100は、斜板15の傾転角に応じてポンプ容積を変更可能である。
 ポンプ容積制御装置10は、斜板15の傾転角を変える傾転ピストン16と、傾転ピストン16に導かれる傾転駆動圧Pcを調節するレギュレータ30と、を備える。
 油圧ショベルに搭載されるコントローラ(図示省略)は、オペレータのレバー操作量に基づく操作信号を受信し、この操作信号に応じて油圧回路に設けられる電磁比例制御弁(図示省略)等の作動を制御することで、パイロット油圧としての流量制御信号圧Piを調節する。流量制御信号圧Piは、ポンプ容積制御信号通路108を通じてレギュレータ30に導かれる。なお、本実施形態では、電磁比例制御弁の作動を制御することで流量制御信号圧Piを調節しているが、オペレータのレバー操作量をパイロットバルブ等で直接パイロット油圧として流量制御信号圧Piを調節してもよい。
 レギュレータ30には、他の信号圧としてポンプ100のポンプ吐出圧Pが導かれる。レギュレータ30は、ポンプ吐出圧Pに応じて流量制御状態と馬力制御状態とに切り換わる。レギュレータ30は、ポンプ吐出圧Pが設定値より低い場合に流量制御状態となり、ポンプ吐出圧Pが設定値以上である場合に馬力制御状態となる。
 流量制御状態では、レギュレータ30は流量制御信号圧Piに応じて傾転ピストン16に導かれる傾転駆動圧Pcを調節する。
 馬力制御状態では、レギュレータ30はポンプ吐出圧Pに応じて傾転ピストン16に導かれる傾転駆動圧Pcを調節する。
 油圧ショベルのコントローラは、運転モードが高負荷モードと低負荷モードとに切り換えられる。高負荷モードでは後述するようにポンプ100の負荷を高くするために馬力制御信号圧Ppwが高く調節される。低負荷モードではポンプ100の負荷を低くするために馬力制御信号圧Ppwが低く調節される。レギュレータ30には、馬力制御信号通路107を通じて馬力制御信号圧Ppwが導かれる。コントローラは、運転モードに応じて油圧回路に設けられる電磁弁(図示省略)の作動を制御することで馬力制御信号圧Ppwを高負荷モード用信号圧と低負荷モード用信号圧とに切り換える。
 図2は、ポンプ100及びポンプ容積制御装置10の断面図である。
 ポンプ100は、エンジン109によって回転駆動されるシリンダブロック12と、シリンダブロック12に設けられる複数のシリンダ14内を往復動するピストン13と、ピストン13が追従する斜板15と、を備える。
 シリンダブロック12にはシャフト1が固定される。シャフト1の先端部はポンプハウジング17に軸受2を介して回転自在に支持され、シャフト1の中央部はポンプカバー19に軸受3を介して回転自在に支持される。エンジン109の動力はシャフト1の基端部1Aに伝達される。
 斜板15はポンプハウジング17に傾転軸受9を介して揺動自在に支持される。斜板15の傾転角が変化すると、ピストン13のシリンダ14に対するストローク量が変化し、ポンプ容積が変化する。
 斜板15の揺動中心軸Sはシリンダブロック12の回転軸Cに対してオフセットして配置される。これにより、斜板15は各ピストン13から受ける反力を合わせた力によって傾転角が大きくなる方向に付勢される。すなわち、揺動中心軸Sを回転軸Cに対してオフセットさせることが、斜板15を傾転方向に付勢する傾転付勢機構のように作用する。
 なお、斜板15とポンプハウジング17との間にスプリングやピストンを介装して傾転付勢機構としてもよい。
 傾転ピストン16は、ポンプハウジング17に形成される傾転シリンダ18に摺動自在に収容される。傾転ピストン16及び傾転シリンダ18は、シリンダブロック12の回転軸C及び後述するスプール軸Oと平行に延びるように配置される。
 傾転ピストン16の先端は、シュー8を介して斜板15の突出部16Aに摺接する。傾転ピストン16と傾転シリンダ18との間には傾転駆動圧室6が画成される。傾転ピストン16は、レギュレータ30から傾転駆動圧室6に導かれる傾転駆動圧Pcが高まるのに伴って図1における右方向に移動し、シュー8を介して斜板15を傾転角が小さくなる方向に傾転させる。
 ポンプハウジング17には傾転シリンダ18内に突出するプラグ7が螺合して設けられる。プラグ7は、先端面が傾転ピストン16の基端に当接することで、斜板15の最大傾転角を規定する。
 図2、図3に示すように、レギュレータ30は、ポンプハウジング17に取り付けられるレギュレータハウジング29を備える。
 レギュレータハウジング29の内部には、ポンプ容積切換弁40、流量制御スプリング49、馬力制御ピストン60、馬力制御スプリング31、32、ロッド35等が、ポンプ容積切換弁40のスプール41のスプール軸O方向に並んで収容される。
 ポンプ容積切換弁40は、筒状のスリーブ50と、スリーブ50に対してスプール軸O方向に摺動自在に収容されるスプール41と、を備える。
 スリーブ50の基端部にはプラグ56が螺合して取り付けられる。スプール41は、流量制御スプリング49によってプラグ56に向かう方向(図3における左方向)に付勢される。プラグ56は、先端面がスプール41の基端面に当接することで、スプール41のストロークを規制する。
 スプール41には、スプール41の基端に開口して軸方向に延びる軸孔43が形成される。軸孔43にはピン58が摺動自在に収容される。スプール41の軸孔43とピン58の先端との間には信号圧室55が画成される。スプール41及びピン58は、基端がプラグ56に当接することによって、図2、図3において左方向に移動することが規制される。
 信号圧室55には、オペレータのレバー操作量に応じた流量制御信号圧Piがポンプ容積制御信号通路108(図1参照)を通じて導かれる。
 ポンプ容積制御信号通路108は、レギュレータハウジング29のポート28とスリーブ50の信号圧ポート53とスプール41の背圧ポート44とによって構成される。レギュレータハウジング29のポート28には、これに接続する配管(図示省略)を通じて流量制御信号圧Piが導かれる。
 スリーブ50とスプール41の基端部とプラグ56との間には背圧室57が画成される。背圧室57は、背圧ポート54を通じてポンプ100のレギュレータハウジング29内の中央室21に連通される。中央室21は、ドレン通路(図示省略)を通じてタンク101(図1参照)と連通している。背圧室57がタンク101に連通していることで、スプール41が円滑に移動することができる。
 スリーブ50には、傾転ピストン16の傾転駆動圧室6(図2参照)に連通する傾転駆動圧ポート52と、元圧通路105(図1参照)に通じる元圧ポート51と、が形成される。元圧ポート51には元圧通路105(図1参照)を通じてポンプ吐出圧Pが元圧として導かれる。
 スプール41には、レギュレータハウジング29内の中央室21を通じてタンク101に連通するタンクポート48が形成される。
 スプール41の外周には環状に突出するランド部47が形成される。ランド部47がスプール軸O方向に移動すると、傾転駆動圧ポート52に対して元圧ポート51とタンクポート48とが選択的に連通する。これにより、傾転駆動圧ポート52に生じる傾転駆動圧Pcが調節される。
 スプール41が流量制御スプリング49に付勢されて図2、図3に示すように左方向に移動した状態では、元圧ポート51と傾転駆動圧ポート52とが連通し、元圧通路105から導かれるポンプ吐出圧Pによって傾転駆動圧ポート52の傾転駆動圧Pcが上昇する。傾転ピストン16は、傾転駆動圧Pcが上昇するのに応じて斜板15を傾転角が小さくなる方向に傾転させる。これにより、ポンプ容積が減少する。
 流量制御信号圧Piが高まるのに伴って、スプール41が図2、図3において右方向に移動すると、タンクポート48と傾転駆動圧ポート52とが連通し、タンク通路106を通じてタンクポート48に導かれるタンク圧Ptによって傾転駆動圧ポート52に導かれる傾転駆動圧Pcが低下する。傾転ピストン16は、傾転駆動圧Pcが低下するのに応じて斜板15を傾転角が大きくなる方向に傾転させる。これにより、ポンプ容積が増大する。
 スリーブ50はレギュレータハウジング29内にスプール軸O方向に移動可能に挿入される。スリーブ50の位置は、スプール軸O方向に調整可能である。
 ポンプ容積切換アジャスタ機構59は、スリーブ50の基端部の外周に形成されるネジ部64と、ネジ部64に螺合するカバー45及び緩み止め用のナット46と、を備える。カバー45は、レギュレータハウジング29の開口端に当接するように固定される。
 ポンプ容積切換アジャスタ機構59は、カバー45に対するスリーブ50の螺合位置を調整することで、スリーブ50をポンプハウジング17に対してスプール軸O方向に移動させる。これにより、流量制御スプリング49のバネ荷重が変わり、流量制御信号圧Piに応じてスプール41がポジションa、b(図1)に切り換わるタイミングが調整される。
 なお、これに限らず、レギュレータハウジング29とスリーブ50とは、一体形成してもよい。
 スプール41は、スリーブ50の開口端から突出する先端部を有し、先端部にスプール側バネ受け42が取り付けられる。コイル状の流量制御スプリング49の一端は、スプール側バネ受け42に着座する。
 レギュレータハウジング29内には、ロッド35が設けられる。ロッド35の外周面には、筒状のリテーナ25が外周面に摺動可能に取り付けられる。リテーナ25には軸孔26がスプール軸O上に延びるように形成される。円柱状のロッド35は、その外周面がリテーナ25の軸孔26に摺動自在に挿入される。
 リテーナ25にはリテーナ側バネ受け24が取り付けられる。リテーナ側バネ受け24には、流量制御スプリング49の一端が着座する。流量制御スプリング49は、スプール側バネ受け42とリテーナ側バネ受け24との間に圧縮して介装される。
 リテーナ25には、リンク71が固定される。リンク71は、リテーナ25と傾転ピストン16とを連結する部材であり、レギュレータハウジング29内からポンプハウジング17内までにわたって設けられる。リンク71の一端は、リテーナ25の外周に嵌合して結合される。リンク71の他端は、傾転ピストン16の外周溝に嵌合して結合される。
 リンク71及び傾転ピストン16は、斜板15が傾転する動作に連動してスプール軸O方向にリテーナ25を移動させるリテーナ移動機構70を構成する。
 なお、リテーナ移動機構70は、上述した構成に限らず、リテーナ25を傾転ピストン16を介さずに斜板15と連動させる構造であってもよい。
 図2に示すように、ポンプハウジング17には、リンク71を摺動自在に支持するガイド72が設けられる。ロッド状のガイド72の基端部はポンプハウジング17に固定され、ガイド72の先端部はリンク71の孔に摺動自在に挿入される。ガイド72はスプール軸Oと平行に延びるように形成される。
 リンク71はガイド72に摺動自在に支持されるので、リテーナ25、流量制御スプリング49及び馬力制御スプリング31、32のスプール軸Oに対して垂直な方向へのブレを抑制することができる。
 レギュレータ30は、ポンプ100のポンプ吐出圧Pに応じてスプール41をスプール軸O方向に移動して傾転駆動圧Pcを調節することにより、ポンプ100の負荷を抑える馬力制御を行う機能も有している。
 図2、図3に示すように、レギュレータ30は、ポンプ吐出圧Pに応じてスプール軸O方向に移動する馬力制御ピストン60と、斜板15の傾転角に応じて馬力制御ピストン60をスプール軸O方向に付勢する馬力制御スプリング31、32と、馬力制御ピストン60とスプール41との間に設けられるロッド35と、を備える。
 ロッド35は、その先端が間隙39を持ってスプール41の先端に対向するように配置される。
 ロッド35の基端部には、環状に突出する鍔部38が形成される。鍔部38とリテーナ25との間には、馬力制御スプリング31、32が介装される。
 馬力制御スプリング31、32は、互いに線材の巻径が異なるコイル状に形成される。巻径の大きい馬力制御スプリング31の内側に巻径の小さい馬力制御スプリング32が配置される。図2に示すように、斜板15の傾転角が最大になった状態では、巻径の大きい馬力制御スプリング31はリテーナ25とロッド35との間に圧縮され、巻径の小さい馬力制御スプリング32は、一端がリテーナ25から離れている。斜板15の傾転角が所定値より小さくなると、馬力制御スプリング32の両端がリテーナ25とロッド35とに当接して圧縮される。これにより、馬力制御ピストン60に付与される馬力制御スプリング31、32のバネ力が段階的に高まる。
 なお、これに限らず、リテーナ25とロッド35との間に1本又は3本以上の馬力制御スプリングを設けてもよい。
 図2に示すように、レギュレータハウジング29には、馬力制御スプリング31のバネ荷重を調整するアジャスタスプリング82及び馬力制御アジャスタ機構83が設けられる。
 コイル状のアジャスタスプリング82は、ロッド35に連結されるアジャスタリンク81と、アジャスタリンク81に摺動自在に挿入されるアジャスタロッド84と、の間に圧縮して介装される。
 レギュレータハウジング29の一端を閉塞するカバー86には、アジャスタスクリュ85が螺合して設けられる。アジャスタスクリュ85は、アジャスタロッド84の基端に当接する。アジャスタスクリュ85には緩み止め用ナット87が締結される。
 アジャスタスプリング82、アジャスタロッド84及びアジャスタスクリュ85は、同一軸上に配置される。
 なお、アジャスタロッド84とアジャスタスクリュ85とは、一体形成してもよい。
 カバー86に対するアジャスタスクリュ85の螺合位置を変えてアジャスタスプリング82のバネ荷重を調節することにより、ロッド35がスプール軸O方向に移動し、馬力制御スプリング31のバネ荷重が調節される。
 図2、図3に示すように、レギュレータハウジング29内には筒状の馬力制御シリンダ76が設けられる。馬力制御シリンダ76には、馬力制御ピストン60が摺動自在に挿入される。
 なお、これに限らず、レギュレータハウジング29と馬力制御シリンダ76とは、一体形成してもよい。
 馬力制御シリンダ76から突出する馬力制御ピストン60の先端面は、ロッド35の基端面に当接する。
 なお、これに限らず、ロッド35を馬力制御ピストン60と一体形成してもよい。
 馬力制御ピストン60には軸孔62が形成され、軸孔62にはピン61が挿入される。軸孔62内にはピン61の先端面によって第一圧力室63が画成される。第一圧力室63は、馬力制御ピストン60の通孔67と、馬力制御シリンダ76の通孔77と、レギュレータハウジング29の通孔27(図2参照)と、を通じて吐出通路104(図1参照)に連通している。第一圧力室63には、吐出通路104を通じてポンプ吐出圧Pが導かれる。
 ポンプ吐出圧Pが上昇するのに伴って、馬力制御ピストン60は図2、図3において左方向に移動し、馬力制御スプリング31、32のバネ力が大きくなる。
 馬力制御ピストン60の外周には、環状の段付き部65が形成される。段付き部65と馬力制御シリンダ76との間には第二圧力室66が画成される。
 第二圧力室66には、前述したようにコントローラの指令により運転モードを切り換える馬力制御信号圧Ppwが馬力制御信号通路107(図1参照)を通じて導かれる。馬力制御信号通路107は、レギュレータハウジング29の通孔22と、馬力制御シリンダ76の通孔78と、によって構成される。
 馬力制御信号圧Ppwが上昇すると、馬力制御ピストン60は図2、図3において右方向に移動し、馬力制御スプリング31、32のバネ力が小さくなる。
 スプール41とリテーナ25とロッド35と馬力制御ピストン60とは、スプール軸O上に並ぶように配置される。これにより、ロッド35の両端には、スプール41と馬力制御ピストン60とからの力が同一軸上に作用する。
 なお、上述した構成に限らず、ロッド35をレギュレータハウジング29に沿って案内する機構を設け、ロッド35をスプール軸Oからオフセットさせて配置してもよい。
 次に、ポンプ容積制御装置10の動作について説明する。
 図2~図5を参照して、流量制御状態の動作について説明する。流量制御状態では、スプール41とロッド35との間に間隙39があり、流量制御信号圧Piによってスプール41に作用する力と流量制御スプリング49のバネ力とが釣り合うようにスプール41が移動することで、傾転駆動圧室6に導かれる傾転駆動圧Pcが調節される。
 図2、図3は、油圧ショベルのエンジン109の運転が停止されたポンプ100の停止状態を示す。停止状態では、流量制御信号圧Piが低いため、スプール41は流量制御スプリング49のバネ力によって左方向に移動する。これにより、元圧ポート51と傾転駆動圧ポート52とが連通する。このとき、ポンプ100の運転は停止しているので、ポンプ吐出圧Pは略ゼロである。よって、傾転ピストン16がプラグ7に当接し、斜板15が最大傾転角位置に保持される。
 図4は、油圧ショベルのエンジン109が運転され、ポンプ100が作動している場合であってブームを駆動する油圧シリンダが停止しているポンプ100のスタンバイ状態を示す。スタンバイ状態では、信号圧室55に導かれる流量制御信号圧Piが低く調節されるので、元圧ポート51と傾転駆動圧ポート52とは連通したままである。ポンプ100の運転に伴って元圧通路105から導かれるポンプ吐出圧Pが高まるので、傾転駆動圧ポート52から傾転駆動圧室6に導かれる傾転駆動圧Pcが上昇する。その結果、傾転駆動圧Pcを受ける傾転ピストン16は矢印Bで示すように右方向に移動し、斜板15が矢印Cで示す方向に傾転し、斜板15がストッパ5に当接する最小傾転角位置に保持される。
 図5は、ポンプ100から吐出される作動油によって油圧シリンダが伸縮作動するポンプ100の流量制御状態を示す。流量制御状態では、オペレータのレバー操作に基づいて信号圧室55に導かれる流量制御信号圧Piが上昇する。流量制御信号圧Piが上昇すると、スプール41は流量制御スプリング49のバネ力に抗して右方向に移動し、タンクポート48と傾転駆動圧ポート52とが連通する。これにより、傾転駆動圧ポート52から傾転駆動圧室6に導かれる傾転駆動圧Pcが低くなる。その結果、傾転駆動圧Pcを受ける傾転ピストン16は、図5に矢印Dで示すように左方向に移動し、斜板15が矢印Eで示す方向に傾転し、傾転ピストン16がプラグ7に当接する最大傾転角位置に向かって移動する。このとき、傾転ピストン16に連結されたリンク71が図5において左方向に移動し、リテーナ25も共に左方向に移動するので、流量制御スプリング49が圧縮される。流量制御スプリング49のバネ力とスプール41が受ける流量制御信号圧Piとが釣り合うようにリテーナ25及び傾転ピストン16が移動することで斜板15が傾転し、斜板15の傾転角に応じてポンプ容積が制御される。
 図7は、流量制御状態において流量制御信号圧Piとポンプ100から油圧シリンダ(図示省略)に供給される制御流量Qとの関係を示す特性図である。流量制御状態では、流量制御信号圧Piが上昇するのに伴って制御流量Qが徐々に上昇する正流量制御が行われる。なお、図4に示すように斜板15がストッパ5に当接するスタンバイ状態は、図7の特性図において流量制御信号圧Piが最低設定値となる点Lに相当する。図5に示すように傾転ピストン16がプラグ7に当接して最大傾転角位置となる流量制御状態は、図7の特性図において流量制御信号圧Piが最大設定値まで高められる点Hに相当する。
 ポンプ容積制御装置10は、スプール41とロッド35との間に間隙39ができる流量制御状態では、図7に示すように、流量制御信号圧Piが高くなるほど制御流量Qが増えるように、ポンプ100から油圧シリンダに供給される作動油の制御流量Qを調整する。
 ポンプ100のポンプ吐出圧P(負荷)が設定値より上昇すると、図6に示すように、第一圧力室63でポンプ吐出圧Pを受ける馬力制御ピストン60がスプール41に近づく方向に移動する。図6は、馬力制御ピストン60が移動してロッド35の先端がスプール41に当接した馬力制御状態を示す。
 馬力制御状態では、流量制御信号圧Piと、ポンプ吐出圧Pに基づく信号圧と、流量制御スプリング49のバネ力と、馬力制御スプリング31、32のバネ力等とが釣り合うように、馬力制御ピストン60とロッド35とスプール41とが一体的に移動する。
 図6に示す状態からさらにポンプ吐出圧Pが上昇すると、馬力制御ピストン60がロッド35を介してスプール41を押すことにより、スプール41が左方向に移動し、タンクポート48と傾転駆動圧ポート52とが連通した状態から元圧ポート51と傾転駆動圧ポート52が連通した状態に切り換わる。これにより、傾転駆動圧Pcが上昇し、傾転ピストン16がプラグ7から離れて傾転角を小さくする矢印Fで示す右方向に移動する。このとき、傾転ピストン16に連結されたリンク71は図6において右方向に移動し、リテーナ25も共に右方向に移動するので、流量制御スプリング49が伸長されるとともに、馬力制御スプリング31、32が圧縮される。強制的にスプール41を移動させることによって、傾転ピストン16が矢印F方向へ移動し、斜板15が矢印G方向へ移動してポンプ容積が減少する。
 図8は、馬力制御状態においてポンプ吐出圧Pとポンプ100から油圧シリンダに供給される制御流量Qとの関係を示す特性図である。馬力制御状態では、ポンプ吐出圧Pが上昇するのに伴って制御流量Qが減少する等馬力特性(ポンプ吐出圧Pと制御流量Qとの積が略一定である特性)が得られる。なお、図6に示す状態は、図8の特性図において制御流量Qが最大値となる点Jに相当する。
 なお、コントローラの指令に基づいて馬力制御ピストン60に導かれる馬力制御信号圧Ppwは、高負荷モードで高く調節される一方、低負荷モードで低く調節される。低負荷モードで第二圧力室66に導かれる馬力制御信号圧Ppwが低く調節されると、馬力制御ピストン60がロッド35及びスプール41と一緒に図6において左方向に移動し、傾転駆動圧Pcが高められる。これにより、ポンプ容積が減少し、ポンプ100の負荷が低くなる。
 図8において、実線は高負荷モードの特性を示し、破線は低負荷モードの特性を示す。低負荷モードでは、高負荷モードに比べてポンプ吐出圧Pが低くなるとともに、制御流量Qが減少して、ポンプ100の負荷(仕事率)が低くなる。
 以上の実施形態によれば、以下に示す効果を奏する。
 ポンプ容積制御装置10のレギュレータ30は、スプール41がスプール軸O方向に移動することで傾転駆動圧Pcを調節するポンプ容積切換弁40と、斜板15の傾転角に応じてスプール41をスプール軸O方向に付勢する流量制御スプリング49と、ポンプ吐出圧Pに応じてスプール軸O方向に移動する馬力制御ピストン60と、斜板15の傾転角に応じて馬力制御ピストン60をスプール軸O方向に付勢する馬力制御スプリング31、32と、馬力制御ピストン60とスプール41との間に設けられる間隙39と、を備える。
 馬力制御ピストン60とスプール41との間に間隙39が形成される流量制御状態では、流量制御信号圧Piによりスプール41に作用する力に応じてスプール41が移動することで傾転駆動圧Pcが調節される。これにより、オペレータのレバー操作量に応じて油圧シリンダに供給される作動油の制御流量Qを制御することができる。
 馬力制御ピストン60とスプール41との間に間隙39が形成されず、スプール41が馬力制御ピストン60と当接する馬力制御状態では、ポンプ吐出圧Pにより馬力制御ピストン60に作用する力に応じてスプール41が移動することで傾転駆動圧Pcが調節される。よって、ポンプ100の負荷が過大になってエンジン109の運転が停止するエンスト等が生じることを防止できる。
 馬力制御状態では、スプール41は馬力制御ピストン60に押されて移動する。馬力制御ピストン60とスプール41とは、回転結合部等を持たないため、ガタや摩擦に起因する伝達遅れが生じることがない。よって、ポンプ容積切換弁40の作動応答性を向上させて、ポンプ容積の制御誤差を低減させることができる。
 さらに、レギュレータ30では、スプール41と馬力制御ピストン60との間にロッド35が設けられるので、馬力制御状態では、スプール41がロッド35を介して馬力制御ピストン60に押されて移動する。
 さらに、レギュレータ30では、スプール41とロッド35と馬力制御ピストン60とが同一軸上に配置される。これにより、スプール41とロッド35と馬力制御ピストン60とが同一軸上に並んで移動するので、スプール41、ロッド35及び馬力制御ピストン60が円滑に移動し、ポンプ容積切換弁40の作動応答性を向上させることができる。
 さらに、スプール41は、流量制御状態では流量制御信号圧Piが高まるのに伴って傾転駆動圧Pcを低くする方向に移動し、馬力制御状態ではポンプ吐出圧Pが高まるのに伴って傾転駆動圧Pcを高める方向に移動する。
 これにより、流量制御状態では流量制御信号圧Piが高まるのに伴ってポンプ容積を増大させる正流量制御が行われる。一方、馬力制御状態ではポンプ吐出圧Pが高まるのに伴ってポンプ容積を減少させる馬力制御が行われる。
 さらに、レギュレータ30は、ロッド35に対して軸方向に移動可能に設けられるリテーナ25と、斜板15が傾転する動作によってリテーナ25を移動させるリテーナ移動機構70と、を備える。馬力制御スプリング31、32はリテーナ25とロッド35との間に介装され、流量制御スプリング49はスプール41とリテーナ25との間に介装される。
 これにより、斜板15が傾転する動作に連動してリテーナ25が移動し、リテーナ25を介して馬力制御スプリング31、32が伸縮するとともに、流量制御スプリング49が伸縮する。これにより、流量制御状態では、ロッド35がスプール41に対して間隙39を有して配置されるので、流量制御スプリング49のバネ力と流量制御信号圧Piによってスプール41が受ける力とが釣り合うように傾転駆動圧Pcが調節され、流量制御信号圧Piが上昇するのに伴ってポンプ容積を増大させる正流量制御が行われる。一方、馬力制御状態では、ロッド35がスプール41に当接し、強制的にスプール41を押すことにより傾転駆動圧Pcが調節される。
 さらに、リテーナ移動機構70は、傾転ピストン16とリテーナ25とを連結するリンク71を備える。これにより、傾転ピストン16の動きがリンク71を介してリテーナ25に伝達されるので、リテーナ移動機構70の構造を簡素化することができる。
 さらに、リンク71は、傾転ピストン16とリテーナ25との位置関係を固定し、回転結合部等を持たないため、ガタや摩擦に起因する伝達遅れが生じることを防止することができる。よって、ポンプ容積切換弁40の作動応答性を向上させて、ポンプ容積の制御誤差を低減することができる。
 さらに、リテーナ移動機構70は、リンク71を摺動自在に支持するガイド72を備える。これにより、リンク71がガイド72に摺動自在に支持されるので、リンク71及びリテーナ25がガイド72に沿って移動し、リテーナ25及びロッド35のスプール軸Oに対して垂直な方向へのブレを抑制することができる。
 さらに、レギュレータ30は、馬力制御スプリング31、32を圧縮する方向にロッド35を付勢するアジャスタスプリング82と、アジャスタスプリング82のバネ力を調整する馬力制御アジャスタ機構83と、を備える。
 馬力制御アジャスタ機構83によってアジャスタスプリング82のバネ力が調節されるので、ロッド35を介して馬力制御スプリング31、32のバネ力が調節され、可変容積ポンプ100の負荷が調整される。
 さらに、レギュレータ30は、馬力制御ピストン60によって画成されポンプ吐出圧Pが導かれる第一圧力室63と、馬力制御ピストン60によって画成され馬力制御信号圧Ppwが導かれる第二圧力室66と、を備える。馬力制御状態では、馬力制御信号圧Ppwが上昇するのに伴って馬力制御ピストン60がスプール41を傾転駆動圧Pcが低くなる方向に移動させる。
 馬力制御ピストン60は、ポンプ吐出圧P及び馬力制御信号圧Ppwから馬力制御ピストン60が受ける力と馬力制御スプリング31、32のバネ力とが釣り合う位置に移動する。これにより、馬力制御信号圧Ppwに応じて可変容積ポンプ100の負荷が調整される。
 さらに、ポンプ容積切換弁40は、スプール41が摺動自在に挿入されるスリーブ50と、スリーブ50の位置をスプール軸O方向について調整するポンプ容積切換アジャスタ機構59と、を備える。
 ポンプ容積切換アジャスタ機構59によってスリーブ50の位置が調整されることにより、流量制御スプリング49のバネ荷重を変化させることができるので、流量制御信号圧Piに応じて傾転駆動圧Pcが増減するタイミングを調整することができる。
 次に、第2実施形態について説明する。
 図9は、本実施形態におけるポンプ容積制御装置の油圧回路図である。以下では、第1実施形態と異なる点を中心に説明し、第1実施形態のポンプ容積制御装置10と同一の構成には同一の符号を付して説明を省略する。
 第1実施形態におけるポンプ容積制御装置10は、流量制御状態において、流量制御信号圧Piが高まるのに比例して制御流量Qが上昇する正流量制御を行うように構成される。これに対して、本実施形態におけるポンプ容積制御装置10は、流量制御状態において、流量制御信号圧Piが高まるのに比例して制御流量Qが減少する負流量制御を行うように構成される。
 レギュレータ30は、スプール41に連結されるスプール側バネ受け90と、リテーナ25に連結されるリテーナ側バネ受け91と、を備える。リテーナ側バネ受け91は、延長部材92を介してスプール側バネ受け90よりスリーブ50(図3)に近接する側に配置される。流量制御スプリング49は、リテーナ側バネ受け91とスプール側バネ受け90との間に圧縮して介装され、スプール41を傾転駆動圧Pcが低くなる方向に付勢する。
 スプール41に導かれる流量制御信号圧Piは、流量制御スプリング49に抗してスプール41を傾転駆動圧Pcが上昇する方向に作用する。
 流量制御信号圧Piが低い状態では、スプール41は流量制御スプリング49のバネ力によって傾転駆動圧Pcが低くなる方向に移動する。この傾転駆動圧Pcを受ける傾転ピストン16は、斜板15を最大傾転角に保持し、ポンプ容積は最大になる。
 流量制御信号圧Piが高まると、スプール41は流量制御スプリング49に抗して傾転駆動圧Pcが上昇する方向に移動する。この傾転駆動圧Pcを受ける傾転ピストン16は、斜板15を傾転角が小さくなる方向に傾転させ、ポンプ容積は減少する。
 図10は、スプール41がロッド35との間に間隙39を有して移動する流量制御状態において、流量制御信号圧Piとポンプ100から油圧シリンダに供給される制御流量Qとの関係を示す特性図である。このとき、流量制御信号圧Piが低い値から高まるのに伴って制御流量Qが次第に減少する負流量制御が行われる。
 一方、ポンプ100の駆動負荷(ポンプ吐出圧P)が設定値より高まると、第一圧力室63でポンプ吐出圧Pを受ける馬力制御ピストン60が移動する。ロッド35がスプール41に当接すると、制御状態が流量制御状態から馬力制御状態に切り換わる。馬力制御状態では、第1実施形態と同様に、ポンプ吐出圧Pが高まるのに伴ってポンプ容積を減少させる馬力制御が行われる。
 以上の実施形態によれば、以下に示す効果を奏する。
 スプール41は、流量制御状態では流量制御信号圧Piが高まるのに伴って傾転駆動圧Pcが上昇する方向に移動し、馬力制御状態ではポンプ吐出圧Pが高まるのに伴って傾転駆動圧Pcが上昇する方向に移動する。
 これにより、流量制御状態では流量制御信号圧Piが高まるのに伴ってポンプ容積を減少させる負流量制御が行われる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一つを示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 例えば、上記実施形態では、ポンプ100として斜板式ピストンポンプを例示したが、これに限らず、他の可変容積ポンプを用いてもよい。
 さらに、上記実施形態では、油圧ショベルの圧力源に設けられるポンプ容積制御装置を例示したが、これに限らず、他の機械、設備等に設けられるポンプ容積制御装置にも適用可能である。
 本願は、2013年3月28日に日本国特許庁に出願された特願2013-070059に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (11)

  1.  斜板の傾転角に応じてポンプのポンプ容積を変化させるポンプ容積制御装置であって、
     傾転駆動圧が高くなるほどポンプ容積が小さくなる方向に前記斜板を傾転させる傾転ピストンと、
     スプールが移動することで傾転駆動圧を調節するポンプ容積切換弁と、
     前記斜板の傾転角に応じて前記スプールを付勢する流量制御スプリングと、
     前記ポンプのポンプ吐出圧に応じて移動する馬力制御ピストンと、
     前記斜板の傾転角に応じて前記馬力制御ピストンを付勢する馬力制御スプリングと、
    を備え、
     前記馬力制御ピストンと前記スプールとの間に間隙が形成される流量制御状態では、流量制御信号圧により前記スプールに作用する力に応じて前記スプールが移動することで傾転駆動圧が調節され、
     前記馬力制御ピストンと前記スプールとが当接する馬力制御状態では、ポンプ吐出圧により前記馬力制御ピストンに作用する力に応じて前記スプールが移動することで傾転駆動圧が調節される、
    ポンプ容積制御装置。
  2.  請求項1に記載のポンプ容積制御装置であって、
     前記馬力制御ピストンと前記スプールとの間にロッドが設けられる、
    ポンプ容積制御装置。
  3.  請求項2に記載のポンプ容積制御装置であって、
     前記スプールと前記ロッドと前記馬力制御ピストンとは、同一軸上に配置される、
    ポンプ容積制御装置。
  4.  請求項1に記載のポンプ容積制御装置であって、
     前記スプールは、前記流量制御状態では流量制御信号圧が高くなるのに伴って傾転駆動圧が低くなる方向に移動し、前記馬力制御状態ではポンプ吐出圧が高くなるのに伴って傾転駆動圧が高くなる方向に移動する、
    ポンプ容積制御装置。
  5.  請求項2に記載のポンプ容積制御装置であって、
     前記ロッドに対して前記ロッドの軸方向に移動可能に設けられるリテーナと、
     前記斜板が傾転するのに応じて前記リテーナを移動させるリテーナ移動機構と、
    をさらに備え、
     前記馬力制御スプリングは、前記リテーナと前記ロッドとの間に介装され、
     前記流量制御スプリングは、前記スプールと前記リテーナとの間に介装される、
    ポンプ容積制御装置。
  6.  請求項5に記載のポンプ容積制御装置であって、
     前記リテーナ移動機構は、前記傾転ピストンと前記リテーナとを連結するリンクを有する、
    ポンプ容積制御装置。
  7.  請求項6に記載のポンプ容積制御装置であって、
     前記リテーナ移動機構は、前記リンクを摺動自在に支持するガイドを有する、
    ポンプ容積制御装置。
  8.  請求項1に記載のポンプ容積制御装置であって、
     前記馬力制御スプリングを圧縮する方向に付勢するアジャスタスプリングと、
     前記アジャスタスプリングのバネ力を調整する馬力制御アジャスタ機構と、
    をさらに備える、
    ポンプ容積制御装置。
  9.  請求項1に記載のポンプ容積制御装置であって、
     前記馬力制御ピストンによって画成されポンプ吐出圧が導かれる第一圧力室と、
     前記馬力制御ピストンによって画成され馬力制御信号圧が導かれる第二圧力室と、
    をさらに備え、
     前記馬力制御状態では馬力制御信号圧が高くなるのに伴って前記馬力制御ピストンが前記スプールを傾転駆動圧が低くなる方向に移動させる、
    ポンプ容積制御装置。
  10.  請求項1に記載のポンプ容積制御装置であって、
     前記ポンプ容積切換弁は、前記スプールが摺動自在に挿入されるスリーブと、前記スリーブの位置を調整するポンプ容積切換アジャスタ機構と、を有する、
    ポンプ容積制御装置。
  11.  請求項1に記載のポンプ容積制御装置であって、
     前記スプールは、前記流量制御状態では流量制御信号圧が高くなるのに伴って傾転駆動圧が高くなる方向に移動し、前記馬力制御状態ではポンプ吐出圧が高くなるのに伴って傾転駆動圧が高くなる方向に移動する、
    ポンプ容積制御装置。
     
PCT/JP2014/050052 2013-03-28 2014-01-07 ポンプ容積制御装置 WO2014156207A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020157015495A KR101702250B1 (ko) 2013-03-28 2014-01-07 펌프 용적 제어 장치
CN201480003702.3A CN104870813B (zh) 2013-03-28 2014-01-07 泵容积控制装置
EP14776349.4A EP2933486B1 (en) 2013-03-28 2014-01-07 Pump volume control device
US14/654,850 US10145368B2 (en) 2013-03-28 2014-01-07 Pump volume control apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013070059A JP6111116B2 (ja) 2013-03-28 2013-03-28 ポンプ容積制御装置
JP2013-070059 2013-03-28

Publications (1)

Publication Number Publication Date
WO2014156207A1 true WO2014156207A1 (ja) 2014-10-02

Family

ID=51623217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050052 WO2014156207A1 (ja) 2013-03-28 2014-01-07 ポンプ容積制御装置

Country Status (6)

Country Link
US (1) US10145368B2 (ja)
EP (1) EP2933486B1 (ja)
JP (1) JP6111116B2 (ja)
KR (1) KR101702250B1 (ja)
CN (1) CN104870813B (ja)
WO (1) WO2014156207A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150337829A1 (en) * 2014-05-22 2015-11-26 Robert Bosch Gmbh Adjustment Device for a Hydrostatic Piston Machine, and Hydrostatic Axial Piston Machine
US20160177913A1 (en) * 2014-12-23 2016-06-23 Poclain Hydraulics Industrie Device for automatically switching the displacement of a machine with axial pistons

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101836854B1 (ko) * 2015-03-09 2018-03-09 주식회사 두산 가변용량형 유압 펌프의 사판 각도 제어용 서보피스톤
FR3053413B1 (fr) * 2016-06-29 2019-03-29 Airbus Helicopters Double circuit hydraulique a regulation de pression
JP7085058B2 (ja) * 2019-03-22 2022-06-15 Kyb株式会社 ポンプ容量制御装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10281073A (ja) 1997-04-08 1998-10-20 Kawasaki Heavy Ind Ltd ポンプの流量制御装置
JPH11148463A (ja) * 1997-11-13 1999-06-02 Hitachi Constr Mach Co Ltd 油圧ポンプ容量制御装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD110684A1 (ja) * 1974-03-20 1975-01-05
JPS60128999U (ja) * 1984-02-08 1985-08-29 株式会社小松製作所 可変液圧ポンプの容量制御装置
JPH0658111B2 (ja) * 1984-11-30 1994-08-03 株式会社小松製作所 可変容量型油圧ポンプの吐出量制御装置
JPS6418975A (en) * 1987-07-15 1989-01-23 Japan Metals & Chem Co Ltd Refractory material having excellent corrosion resistance against halogen-based flux
JP2801091B2 (ja) * 1991-02-19 1998-09-21 川崎重工業株式会社 可変容量型油圧ポンプの馬力制御装置
KR950007252B1 (ko) * 1991-11-30 1995-07-07 삼성중공업주식회사 가변용량형 유압펌프의 제어장치
KR950003064B1 (ko) * 1992-05-30 1995-03-30 삼성중공업 주식회사 가변용량형 유압펌프의 제어장치
JP3747061B2 (ja) * 1993-11-08 2006-02-22 ツェーエルテー・コモン・レイル・テクノロジーズ・アクチェンゲゼルシャフト 注入比調整ポンプのための制御装置
JP3321278B2 (ja) * 1993-12-24 2002-09-03 日立建機株式会社 油圧ポンプの容量制御装置
JP3868553B2 (ja) * 1996-10-15 2007-01-17 ボッシュ・レックスロス株式会社 可変容量ポンプの容量制御装置
JPH10184556A (ja) * 1996-12-20 1998-07-14 Hitachi Constr Mach Co Ltd 油圧ポンプ容量制御装置
CN1124412C (zh) * 1997-04-16 2003-10-15 住友重机械工业株式会社 斜盘式可变容量泵的控制装置
JP4033849B2 (ja) 2004-03-30 2008-01-16 株式会社カワサキプレシジョンマシナリ 可変容量型油圧ポンプ制御装置
JP4851857B2 (ja) * 2006-06-15 2012-01-11 東芝機械株式会社 ポンプ流量の制御方法および制御装置
JP5040316B2 (ja) * 2006-12-18 2012-10-03 株式会社不二越 ピストンポンプ
JP4936984B2 (ja) * 2007-05-11 2012-05-23 カヤバ工業株式会社 油圧回路
US8661804B2 (en) * 2009-12-11 2014-03-04 Caterpillar Inc. Control system for swashplate pump
KR101637571B1 (ko) * 2009-12-23 2016-07-20 두산인프라코어 주식회사 건설기계의 유압펌프 제어장치 및 제어방법
JP5918688B2 (ja) * 2012-12-11 2016-05-18 川崎重工業株式会社 可変容量型ポンプ用レギュレータ
KR101510397B1 (ko) * 2014-11-12 2015-04-09 정옥희 사판식 유압펌프용 레귤레이터

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10281073A (ja) 1997-04-08 1998-10-20 Kawasaki Heavy Ind Ltd ポンプの流量制御装置
JPH11148463A (ja) * 1997-11-13 1999-06-02 Hitachi Constr Mach Co Ltd 油圧ポンプ容量制御装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150337829A1 (en) * 2014-05-22 2015-11-26 Robert Bosch Gmbh Adjustment Device for a Hydrostatic Piston Machine, and Hydrostatic Axial Piston Machine
US10054113B2 (en) * 2014-05-22 2018-08-21 Robert Bosch Gmbh Adjustment device for a hydrostatic piston machine, and hydrostatic axial piston machine
US20160177913A1 (en) * 2014-12-23 2016-06-23 Poclain Hydraulics Industrie Device for automatically switching the displacement of a machine with axial pistons
CN105715616A (zh) * 2014-12-23 2016-06-29 波克兰液压工业设备公司 用于自动转换具有轴向活塞的设备的位移的装置
US10428788B2 (en) * 2014-12-23 2019-10-01 Poclain Hydraulics Industrie Device for automatically switching the displacement of a machine with axial pistons
CN105715616B (zh) * 2014-12-23 2020-06-26 波克兰液压工业设备公司 用于自动转换具有轴向活塞的设备的位移的装置

Also Published As

Publication number Publication date
US20150337813A1 (en) 2015-11-26
US10145368B2 (en) 2018-12-04
KR20150084982A (ko) 2015-07-22
EP2933486B1 (en) 2017-07-05
EP2933486A1 (en) 2015-10-21
KR101702250B1 (ko) 2017-02-03
JP6111116B2 (ja) 2017-04-05
CN104870813B (zh) 2016-12-07
EP2933486A4 (en) 2016-08-31
CN104870813A (zh) 2015-08-26
JP2014194159A (ja) 2014-10-09

Similar Documents

Publication Publication Date Title
WO2014156207A1 (ja) ポンプ容積制御装置
JP4997163B2 (ja) サーボレギュレータ
KR101210733B1 (ko) 굴삭기의 유압펌프용 레귤레이터
JP2015200412A (ja) 切り替え可能な流体静力学的調整デバイス
KR20150003366A (ko) 가변용량형 펌프용 레귤레이터
KR101675659B1 (ko) 펌프 제어 장치
KR101702253B1 (ko) 펌프 토출 유량 제어 장치
JP4997162B2 (ja) サーボレギュレータ
JP4869118B2 (ja) 馬力制御レギュレータ、馬力制御装置、及び、ピストンポンプ
WO2020195299A1 (ja) ポンプ容量制御装置
JP5204531B2 (ja) サーボレギュレータ
KR100506640B1 (ko) 정·역 가변형 사판식 피스톤 펌프의 서보제어 레귤레이터
JP6698359B2 (ja) フェールセーフ付油圧システム
KR102198500B1 (ko) 유압 펌프용 레귤레이터
JP3568510B2 (ja) 斜板形アキシャルピストンポンプの制御装置
JP2016011633A (ja) フェールセーフ付油圧駆動システム
JPH10274167A (ja) 可変容量形ポンプの流量制御装置
CN111989497B (zh) 多控制阀单元及油压挖掘机用油压驱动装置
JP6749758B2 (ja) 油圧ポンプ・モータ
KR200311574Y1 (ko) 피스톤 펌프 서보제어 레귤레이터의 피드백 구조
JP2009243663A (ja) サーボレギュレータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14776349

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157015495

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014776349

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014776349

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14654850

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE