WO2014156002A1 - 円筒型電池の製造方法 - Google Patents

円筒型電池の製造方法 Download PDF

Info

Publication number
WO2014156002A1
WO2014156002A1 PCT/JP2014/001314 JP2014001314W WO2014156002A1 WO 2014156002 A1 WO2014156002 A1 WO 2014156002A1 JP 2014001314 W JP2014001314 W JP 2014001314W WO 2014156002 A1 WO2014156002 A1 WO 2014156002A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
diameter
die
side wall
cylindrical
Prior art date
Application number
PCT/JP2014/001314
Other languages
English (en)
French (fr)
Inventor
大塚 正雄
米山 聡
後藤 浩之
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2015508015A priority Critical patent/JP6094910B2/ja
Priority to CN201480003681.5A priority patent/CN104885253B/zh
Publication of WO2014156002A1 publication Critical patent/WO2014156002A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0422Cells or battery with cylindrical casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing a cylindrical battery, and more particularly to a method for manufacturing a cylindrical battery that facilitates increasing the capacity of the battery.
  • an electrode group formed by winding a positive electrode and a negative electrode in a spiral shape with a separator interposed therebetween is housed in a metal battery can (battery case). After a predetermined amount of electrolyte is injected into the case, the upper part of the battery case is sealed with a sealing plate that also serves as either a positive electrode or a negative electrode.
  • the outer diameter of the electrode group is made somewhat smaller than the inner diameter of the battery can and a gap is created between them. .
  • the gap is left as it is, the wound electrode group is loosened and the battery performance may be lowered.
  • the diameter of the battery can is reduced after the electrode group is inserted into the battery can (see Patent Documents 1 and 2).
  • the battery can is reduced to a desired outer diameter by inserting the battery can from the lower side (bottom side) into a cylindrical die whose inner diameter is smaller than the initial outer diameter of the battery can. .
  • the battery can is formed such that the bottom outer surface swells outward due to distortion when the battery can is reduced in diameter. It may be deformed. As a result, the battery shape cannot be formed into a desired shape, and it is difficult to manage the battery height to the desired height.
  • Patent Document 2 uses a ring-shaped die to reduce the diameter of the battery can in the same manner as Patent Document 1, and presses the receiving die from the lower side to the bottom of the battery can to reduce the diameter. Is trying to prevent undesirable deformation of battery cans.
  • Patent Document 2 since the receiving die is pressed against the peripheral edge of the bottom of the battery can (see FIG. 2 of Patent Document 2), it is possible to prevent the portion from expanding outward (lower side). However, when the deformation force acting on the bottom of the battery can at the time of diameter reduction is large, it is not possible to prevent the center of the bottom from bulging outward.
  • the center part of the bottom part is prevented from bulging outward by pressing the receiving die from the lower side to the whole bottom part.
  • the reduced diameter distortion may not act in the direction in which the bottom portion swells outward, but may act in the direction in which the bottom portion is recessed inward.
  • a defective appearance of the battery occurs, and problems such as a defective contact when the battery is mounted on a predetermined device occur.
  • the present invention is a method for producing a cylindrical battery comprising an electrode group including a positive electrode, a negative electrode and a separator, and a battery can containing the electrode group
  • the battery can includes a circular bottom, a cylindrical side wall having an open end, and a connection between the bottom and the side wall, A step (a) of reducing the outer diameter Dc of the side wall from the initial outer diameter D1 after inserting the electrode group into the battery can;
  • the step (a) includes the step (a1) of inserting the battery can from the bottom side into a ring-shaped die having an inner diameter Dd smaller than the initial outer diameter D1, and the die at the opening end.
  • Including a step (a2) of applying a diameter-reducing force to the battery can by relatively moving in the direction of When the die and the battery can come into contact with each other and the application of the diameter reducing force is started, the contact start portion of the battery can is more than the inner surface of the peripheral edge of the bottom portion in the connection portion. It is related with the manufacturing method of the cylindrical battery in the position of the said opening edge part side of the axial direction.
  • the present invention it is possible to provide a method of manufacturing a cylindrical battery that can easily and effectively suppress deformation of the bottom when the battery can is reduced in diameter.
  • FIG. 1A It is a front view which shows schematic structure of an example of the diameter reducing apparatus which diameter-reduces the cylindrical battery of FIG. It is a front view which shows schematic structure of the other example of the diameter reducing apparatus which diameter-reduces the cylindrical battery of FIG. It is sectional drawing of a battery can and a die
  • FIG. 3A It is sectional drawing which took out and showed only the connection part of the bottom part and side wall of a battery can from FIG. 3A. It is sectional drawing which cut
  • the present invention relates to a method of manufacturing a battery including an electrode group including a positive electrode, a negative electrode, and a separator, and a battery can that accommodates the electrode group.
  • the battery can includes a circular bottom portion, a cylindrical side wall having an open end, and a connection portion between the bottom portion and the side wall.
  • the connecting portion is configured from a position at the beginning of bending at the boundary with the bottom of the battery can to a position at the end of bending at the boundary with the side wall.
  • the manufacturing method of this invention is equipped with the process (a) of reducing the outer diameter Dc of a side wall from the initial outer diameter D1 to the desired outer diameter D2, for example, after inserting an electrode group in a battery can.
  • the step (a) includes the step (a1) of inserting the battery can from the bottom side into a ring-shaped die having an inner diameter Dd smaller than the initial outer diameter D1, and the die at the open end of the side wall of the battery can A step (a2) of applying a diameter-reducing force to the battery can by moving it relatively in the direction of the part.
  • the contact start portion P1 when the die and the battery can come into contact with each other and the application of the diameter reducing force is started is the peripheral portion (19) at the bottom of the connecting portion (22). It is in the position of the opening edge part side of the axial direction of a battery can rather than inner side surface SA1.
  • the component force F2 in the radial direction of the battery can of the diameter reducing force F1 for reducing the diameter of the side wall of the battery can causes the battery can
  • the side wall can be effectively reduced in diameter and can be prevented from being deformed so that the bottom is bent.
  • the bottom portion is prevented from bulging outward (downward) or recessed inward. Furthermore, since the axial component force F3 of the battery can of the reduced diameter force F1 can be easily reduced, the side wall of the battery can can be prevented from rotating so as to fall inward, and the rotational force It is possible to prevent the bottom portion from expanding outward.
  • the radius of curvature of the connecting portion is R2 (see FIG. 3B) and the thickness of the peripheral edge portion of the bottom portion is t1
  • the radius of curvature R2 is preferably twice or more the thickness t1.
  • the component force F2 in the radial direction of the battery can of the diameter reducing force F1 due to the die is reduced from the starting point of the diameter reduction. It does not overlap with the bottom of the battery but acts to effectively reduce the diameter of the side wall of the battery can. Thereby, it is suppressed that component force F2 presses the bottom part which is circular from the outer peripheral side. Therefore, it can prevent that a bottom part bends and deform
  • the component force F3 is made smaller than the component force F2. Becomes easy. As a result, the rotational force for rotating the side wall in the direction in which the side wall of the battery can falls inward (counterclockwise direction in FIG. 3A) can be reduced. Thereby, it can prevent that the bottom part of a battery can deform
  • the method of preventing the bottom from expanding by holding the bottom from the lower side with a receiving mold is the thickness of the can wall, the hardness of the can wall material, and the frictional force between the die and the can surface. Susceptible to factors. If these factors fluctuate, the force for expanding the bottom portion when the diameter is reduced can be increased. And when such a deformation force becomes larger than expected, it may not be possible to suppress the bottom portion from swelling only by pressing with a receiving die, or the bottom portion may be deformed so as to be recessed inside instead of swelling outward.
  • the diameter reducing force F1 itself becomes larger than expected, and even if the component force F2 in the radial direction of the battery can increases accordingly, the component force F2 Acts in a position that does not overlap the bottom of the battery can. For this reason, it is possible to effectively and stably reduce the diameter of the side wall of the battery can while suppressing the swelling of the bottom, regardless of the other factors described above. As a result, a cylindrical battery having a good appearance can be stably manufactured.
  • the diameter of the battery can can be reduced stepwise by using a plurality of dies having different inner diameters Dd and gradually inserting the battery can into the dies having a smaller inner diameter Dd. it can.
  • the diameter reducing force applied to the battery can by one die can be reduced. Therefore, it is possible to more effectively prevent the bottom portion from being deformed, and it is possible to manufacture a cylindrical battery having a good external shape without deformation of the bottom portion of the can.
  • FIG. 1A is a perspective view showing an example of a cylindrical battery to which a method for manufacturing a cylindrical battery according to an embodiment of the present invention is applied.
  • FIG. 1B shows a simplified structure of the structure of the battery can.
  • a part of the battery is shown in a sectional view.
  • the battery can shows a state before grooving.
  • the broken line in FIG. 1B has shown the boundary X of a bottom part and a connection part, and the boundary Y of a side wall and a connection part.
  • the battery 100 in the illustrated example is a conceptual diagram, for example, an AA nickel metal hydride storage battery, and has a circular bottom 18, a cylindrical side wall 20 having an open end 20 a, and a connection part that connects the bottom 18 and the side wall 20.
  • a battery can 1 including 22 is provided.
  • the battery can 1 is made of a conductive material (for example, a cold rolled steel plate such as SPCC and SPCD, or a metal such as a nickel plated steel plate).
  • a substantially cylindrical electrode group 11 including a positive electrode 12, a negative electrode 13, and a separator 14 is accommodated inside the battery can 1 together with an alkaline electrolyte (not shown).
  • the electrode group 11 is formed by winding a positive electrode 12 and a negative electrode 13 in a spiral shape with a separator 14 interposed therebetween.
  • a negative electrode 13 is disposed on the outermost periphery of the electrode group 11, and the negative electrode 13 is in direct contact with the inner peripheral wall of the battery can 1.
  • the battery can 1 has a function as a negative electrode external terminal of the battery 100.
  • a gasket 2 formed of a ring-shaped insulating material (for example, resin) is disposed inside the opening end of the battery can 1.
  • the open end of the battery can 1 is closed by a cover plate (sealing plate) 3 made of a conductive material (for example, metal).
  • the sealing plate 3 is electrically insulated from the battery can 1 by the gasket 2.
  • a positive terminal plate 10 having a protrusion 10a is arranged on the sealing plate 3.
  • the positive terminal plate 10 is electrically connected to the sealing plate 3.
  • a groove 4 is provided along the opening end in order to securely fix the gasket 2.
  • the groove 4 is formed by denting the side wall of the battery can 1 inward.
  • the sealing plate 3 is sandwiched from above and below by the gasket 2, and the gasket 2 bends the side wall (groove forming wall) of the battery can 1 forming the groove 4 and the opening end of the battery can 1 inward.
  • the battery can 1 is fixed to the opening end of the battery can 1 by being sandwiched between the curled portions 1a.
  • the groove 4 in the illustrated example is compressed in the axial direction of the battery can 1.
  • the sealing plate 3 has a gas vent hole 8 in the center.
  • a rubber cylindrical valve body 9 is arranged so as to close the gas vent hole 8 from the outer surface side of the sealing plate 3.
  • the valve body 9 is accommodated in a protrusion formed on the positive electrode terminal plate 10 and is pressed toward the sealing plate 3 with a predetermined pressure by the inner surface of the top of the protrusion.
  • the gas vent hole 8 is normally airtightly closed by the valve body 9.
  • the valve body 9 is compressed by the gas pressure, the gas vent hole 8 is opened, and the gas is released from the inside of the battery can 1.
  • the sealing plate 3, the valve body 9, and the positive electrode terminal plate 10 form a safety valve.
  • An insulating member 16 with a circular slit is disposed between one end of the electrode group 11 (end on the side of the sealing plate 3) and the sealing plate 3, and the positive electrode lead 15 connected to the positive electrode 12 passes through the slit.
  • the positive electrode 12 and the sealing plate 3 are connected. Thereby, the positive electrode terminal plate 10 and the positive electrode 12 are electrically connected.
  • a circular insulating member 17 is also disposed between the other end of the electrode group 11 (the end on the bottom side of the battery can 1) and the bottom of the battery can 1.
  • the outer surface of the battery can 1 is coat
  • a donut-shaped insulating plate (leak prevention plate) 7 may be disposed between the curled portion 1 a and the exterior label 6.
  • FIG. 2A shows an example of a diameter reducing device.
  • FIG. 2B shows another example of the diameter reducing device.
  • a diameter reducing device 30A shown in FIG. 2A includes a moving mechanism 31 that moves the battery 100 along the axial direction of the battery can 1, and a ring-shaped diameter reducing die into which the battery moved by the moving mechanism 31 is inserted. 32A.
  • the moving mechanism 31 is connected to, for example, a vertical member 31a and a frame 31c having two horizontal members 31b disposed opposite to each other, an air cylinder 33 fixed to the frame 31c, and the air cylinder 33. It has a lower support member 34 that contacts the bottom of the battery and supports the battery from the lower side (bottom side) with a constant support force, and an upper support member 36 fixed to the frame 31c.
  • the battery 100 is supported by being sandwiched between a lower support member 34 and an upper support member 36.
  • a portion of the lower support member 34 that comes into contact with the bottom of the battery (hereinafter referred to as a receiving mold) is cylindrical, and can be brought into contact only with the peripheral edge of the bottom before the diameter reduction. Alternatively, the receiving mold can be formed so as to come into contact with the entire bottom before diameter reduction.
  • the moving mechanism 31 includes an electric motor 35 that generates a driving force for moving the battery supported by the frame 31c via the lower support member 34 and the upper support member 36 downward, and its output.
  • an electric motor 35 that generates a driving force for moving the battery supported by the frame 31c via the lower support member 34 and the upper support member 36 downward, and its output.
  • a ball screw 37 connected to a shaft (not shown) is included.
  • the rotational driving force generated by the electric motor 35 is converted into a linear downward driving force by the ball screw 37.
  • the frame 31c that supports the battery is moved downward by the downward driving force, and the battery is inserted into the die 32A from the bottom side, and moves downward in the die 32A.
  • the initial value (initial outer diameter) of the outer diameter (diameter) Dc of the battery can 1 (side wall 20) is D1
  • the inner diameter (minimum diameter) of the die 32A is Dda
  • Dda the diameter of the die 32A
  • the diameter reducing device 30B shown in FIG. 2B is different from the diameter reducing device 30A in FIG. 2A in that it includes two ring-shaped diameter reducing dies 32B and 32C.
  • the moving mechanism 31 of the diameter reducing device 30B is the same as that of the diameter reducing device 30A.
  • the dice 32B and 32C are arranged coaxially in the moving direction of the battery so that the battery 100 is first inserted into the dice 32B and then inserted into the dice 32C.
  • the dies having the same shape as the dies 32A can be used for the dies 32B and 32C, except that the inner diameter can be different.
  • FIG. 3A shows a cross-sectional view of a portion near the connection portion of the battery can cut along a plane including the central axis of the battery can.
  • FIG. 3B shows the connection portion in a cross-sectional view.
  • FIG. 3C is a cross-sectional view showing the die cut along a plane including the central axis.
  • the die 32 has a contact portion 38 that contacts the battery can 1 on the inner peripheral surface.
  • the contact portion 38 contacts the connection portion 22 of the battery can 1 so that the diameter reduction of the battery can 1 is started.
  • a portion (contact start portion) P1 of the outer surface of the battery can 1 when the diameter reducing force F1 starts to act on the battery can 1 due to contact with the contact portion 38 is in the axial direction of the battery can 1. It is above the inner side surface SA1 of the peripheral edge 19 (opening end side).
  • the angle ⁇ 1 between the diameter reducing force F1 and the axially upward component force F3 of the battery can 1 is preferably 50 ° or more, and more preferably 60 ° or more.
  • the component force F2 in the radial direction of the battery can 1 of the diameter reducing force F1 can be increased while the component force F3 in the axial direction can be decreased.
  • the contact portion 38 has a cross-sectional shape such that the central portion in the axial direction protrudes in an arc shape toward the inside of the die 32.
  • an angle formed by the inclined portion 38b that connects the base portion 39 of the die 32 and the top portion 38a of the contact portion 38 and the axial direction of the die 32 is defined as ⁇ 2.
  • the radius of curvature R1 is preferably 1 to 5 times the thickness t1 of the peripheral edge 19 of the bottom 18 of the battery can 1.
  • the angle ⁇ 2 is preferably 3 to 15 °.
  • the connecting portion 22 of the battery can 1 also has a cross-sectional shape having an arcuate outline, and its curvature radius is R2. More specifically, in the cross-sectional view in which the battery can 1 is cut along a plane including the central axis of the battery can 1, the curvature radius R ⁇ b> 2 is the curvature radius of the outer contour line of the battery can 1 at the connection portion 22.
  • the radius of curvature R2 is preferably at least twice the thickness t1 of the peripheral edge 19 of the bottom 18 and more preferably 2 to 5 times.
  • the battery can 1 is inserted into the hollow portion of the die 32 from the bottom 18 side with its axis aligned with the axis of the die 32 with the electrode group and the electrolyte contained therein. Thereby, the connection part 22 of the battery can 1 and the contact part 38 of the die
  • Example 1 A battery can was formed by deep drawing a cold-rolled steel sheet having a thickness of 0.5 mm using a transfer press. And the groove
  • the battery can (side wall) had an initial outer diameter (diameter) D1 of 14.2 mm, and the bottom and side walls had a thickness of 0.3 mm.
  • the radius of curvature R2 of the outer surface of the connecting portion between the bottom and the side wall was 0.7 mm.
  • the outer diameter of the bottom before the diameter reduction was 12.8 mm.
  • An electrode group was formed by winding a laminate having a separator between a positive electrode and a negative electrode in a spiral shape. This was inserted into a battery can and an alkaline electrolyte was injected. Thereafter, a sealing plate also serving as a positive electrode terminal was attached to the opening end of the battery can with a gasket provided at the periphery, and the opening edge of the battery can was curled inward to seal the opening end.
  • Ten test batteries were produced as described above.
  • the battery cans of 10 test batteries were sequentially reduced in diameter.
  • the cylindrical member was used for the part (henceforth a receiving type
  • the outer diameter was 13.5 mm.
  • the inner diameter of the receiving mold was reduced by 4 mm.
  • the center part of the bottom part was made not to contact the receiving mold.
  • the inner diameter Dd of the contact portion of the die was 14 mm, and the radius of curvature R1 was 0.3 mm.
  • the outer diameter Dc of the battery can after the reduction was 14 mm, which is the desired outer diameter D2, and the battery can was reduced by 0.2 mm.
  • the contact start portion P1 was above the inner side surface SA1 (reference surface) in the axial direction of the battery can. Then, after the diameter reduction, the test battery was removed from the diameter reduction device, and the amount of deformation of the 10 test batteries with the bottom of the battery can bulging outward (downward) due to the diameter reduction was measured.
  • ⁇ A contact-type shape measuring instrument was used to measure the deformation. More specifically, the contact terminal (25 ⁇ m needle) of the measuring instrument is brought into contact with the outer surface of the bottom portion of the battery can and moved from the center of the bottom portion to the peripheral portion at a feed rate of 0.5 mm / second. The bottom shape before diameter reduction and after diameter reduction was obtained. Then, the bottom shape before the diameter reduction and the bottom shape after the diameter reduction were overlapped, and the deformation amount was measured by the maximum difference in shape (usually the displacement amount at the bottom center). Then, an average value of the deformation amounts of the ten test batteries was calculated to obtain a bottom bulge amount.
  • Example 2 The first die (32B) having an inner diameter of 14.1 mm and the second die (32C) same as the die (32A) of Example 1 having an inner diameter of 14 mm were used. After insertion into one die (32B), the diameter was reduced in the order of insertion into the second die (32C). Other than that was carried out similarly to Example 1, and reduced the diameter of ten test batteries, and obtained the bottom swelling amount.
  • the radius of curvature of the contact portion of the first die (32B) is the same as the radius of curvature R1 of the contact portion of the second die (32C).
  • Example 1 As shown in FIG. 4, the test battery in which the initial outer diameter D1 of the side wall 20A of the battery can is 14.5 mm and the outer diameter of the bottom 18A before the diameter reduction is 13.1 mm is used. Ten test batteries were reduced in diameter in the same manner as in Example 1 except that the starting portion P1 was lower than the inner side surface SA1 of the peripheral edge of the bottom in the axial direction of the battery can. The bottom bulge amount was obtained.
  • Comparative Example 3 As shown in FIG. 6, a battery can in which the connecting portion 22C has a nonuniform curvature radius, the connecting portion 22C and the side wall 20C are not tangent, and the can wall is bent at the boundary is used.
  • the radius of curvature (R2) of the portion where the curvature of the connecting portion 22C is uniform was 1.2 mm.
  • the contact start portion P1 was lower than the inner side surface SA1 of the peripheral portion of the bottom in the axial direction of the battery can. Except for the above, the test batteries were reduced in diameter in the same manner as in Example 1 to obtain the bottom bulge amount.
  • the center of the connection portion was at a horizontal distance of 0.7 mm from the outer surface of the side wall.
  • Comparative Example 3 corresponds to the fact that when the battery can is manufactured by deep drawing, the center of the connecting portion may be biased to the side wall depending on the deep drawing method and the mold to be used. To do.
  • the component force F3 in the axial direction of the battery can of the diameter reducing force F1 is also larger than that in Examples 1 and 2. It is thought that it has grown. As a result, it is considered that the amount of bottom bulge is increased because a rotational force (counterclockwise rotational force in FIG. 3 and the like) that tilts the side wall of the battery can inwardly acts on the can wall.
  • ⁇ 1 angle between F3 and F1
  • ⁇ 1 was 50 ° or more.
  • ⁇ 1 was 40 ° or less.
  • the component force F3 is smaller than the component force F2. Therefore, it is considered that the bottom of the battery can was prevented from swelling because the can wall of the battery can does not rotate counterclockwise in FIG. It is considered that ⁇ 1 is more preferably 60 ° or more.
  • Example 2 in which a battery can was reduced in diameter by 0.1 mm step by step using two dies is an example in which only one die was used and 0.2 mm was reduced in diameter by one processing.
  • the bottom bulge amount was smaller than 1. This is because, when a plurality of dies are used and the diameter is reduced in stages, the external force received by the battery can from one die is reduced, so that the bottom of the battery can can be prevented more effectively. It is thought that it was made. However, no difference was observed between the two by visual inspection. As described above, when the cylindrical battery is reduced in diameter by setting the contact start portion P1 above the inner surface SA1 of the peripheral edge of the bottom in the axial direction of the battery can, the bottom of the battery can is outside. It was confirmed that a battery having a good appearance shape was obtained without being deformed so as to swell.
  • the outer diameter (diameter) of the battery can before diameter reduction is 14.5 mm, which is larger than Example 1 and the like, so that the space near the bottom of the battery can is widened, and the electrode group can be easily used as a battery can.
  • the electrode group can be easily used as a battery can.
  • the electrode on the outermost periphery of the electrode group if the space near the bottom of the battery can is not wide, the electrode is bent, and as a result, the capacity is reduced due to short-circuit failure or dropping of the active material. Such an inconvenience could be avoided by setting the outer diameter of the battery can to 14.5 mm.
  • the gap between the electrode group and the battery can was large, so that the electrolytic solution could easily penetrate into the electrode group.
  • the space near the bottom of the battery can could be expanded by reducing the radius of curvature R2 of the connecting portion, so that the electrode group could be easily inserted into the battery can.
  • the contact start portion is at a position on the opening end side of the battery can in the axial direction of the battery can relative to the inner surface of the peripheral edge of the bottom of the battery can.
  • the deformation of the bottom of the battery can when the diameter of the battery can is reduced can be suppressed.
  • a cylindrical battery having a desired shape and size can be stably manufactured.
  • SYMBOLS 1 ... Battery can, 2 ... Gasket, 3 ... Sealing plate, 4 ... Groove part, 6 ... Exterior label, 8 ... Hole, 9 ... Valve body, 10 ... Positive electrode terminal plate, 100 ... Battery, 10a ... Projection, 11 ... Electrode group , 12 ... Positive electrode, 13 ... Negative electrode, 14 ... Separator, 15 ... Positive electrode lead, 16 ... Insulating member, 17 ... Insulating member, 18, 18A, 18B, 18C ... Bottom, 19 ... Peripheral part, 20, 20A, 20B, 20C ... Side wall, 20a ... Open end, 22, 22A, 22B, 22C ... Connection part, 30A, 30B ...
  • Diameter reducing device 31 ... Moving mechanism, 32, 32A, 32B, 32C ... Dies, 33 ... Air cylinder, 35 ... Electric motor, 38: contact portion, R1, R2: curvature radius, D1: initial outer diameter, P1: contact start portion, SA1: inner surface, F1: reduced diameter force, F2, F3: component force

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Abstract

 前記円筒型電池を製造する方法であって、電池の電池缶は、円形の底部、開口端部を有する円筒状の側壁、および底部と前記側壁との接続部を含み、電極群を電池缶に挿入した後、側壁の外径Dcを初期外径D1から縮径する工程(a)を備え、工程(a)が、内径Ddが径D1よりも小さいリング状のダイスの中に、電池缶を底部側から挿入する工程(a1)、および、ダイスを開口端部の方向に相対的に移動させることで、電池缶に縮径力を印加する工程(a2)を含み、ダイスと電池缶とが接触して、縮径力の印加が開始されるときの接触開始部分が、接続部の中で、底部の周縁部の内側面よりも、電池缶の軸方向の開口端部側の位置にある、円筒型電池の製造方法。

Description

円筒型電池の製造方法
 本発明は、円筒型電池の製造方法に関し、特に、電池の高容量化を容易にする円筒型電池の製造方法に関する。
 近年、電子機器のコードレス化が急速に進む中、これらの電源として小型かつ軽量で高エネルギ密度を有する二次電池への要望が高まりつつある。従来、そのような電池は、正極と負極とを、両者間にセパレータを介在させて、渦巻状に捲回して構成した電極群を、金属製の電池缶(電池ケース)に収納し、その電池ケースに電解液を所定量注入した後、電池ケースの上部を正極および負極のいずれかの端子を兼ねた封口板で密閉して構成される。
 一方、電極群の電池缶への挿入を容易として生産性を向上させるために、電極群の外径を電池缶の内径に対してある程度小さくし、両者の間に隙間を生じさせることが行われる。この場合に、その隙間をそのまま放置すると、捲回した電極群に緩みが生じ、電池性能が低下することがある。このため、電極群を電池缶に挿入した後に、電池缶の径を縮径することが行われる(特許文献1および2参照)。
特開昭57-130368号公報 特開平7-314056号公報
 特許文献1では、内径が、電池缶の初期外径よりも小さい円筒状のダイスに、電池缶を下側(底部側)から挿入することで、電池缶を所望外径まで縮径している。このため、電池缶の側壁の下部とダイスとが接触し、電池缶の縮径が開始されると、電池缶が縮径されるときの歪みにより、底部外面が外側に膨らむように電池缶が変形することがある。その結果、電池形状を所望形状に形成することができなくなるとともに、電池高さを所望高さに管理することも困難となる。
 特許文献2は、リング状のダイスを使用して、特許文献1と同様の方法で電池缶を縮径するとともに、電池缶の底部に下側から受型を押し当てることで、縮径の際の電池缶の望ましくない変形を防止しようとしている。
 特許文献2では、電池缶の底部の周縁部に受型を押し当てているので(特許文献2の図2参照)、その部分が外側(下側)に膨らむのを抑えることができる。しかしながら、縮径の際に電池缶の底部に作用する変形力が大きいような場合には、底部の中央部が外側に膨らむのを抑えることはできない。
 上記の問題点に対して、底部の全体に下側から受型を押し当てることで、底部の中央部が外側に膨らむのを抑えることも考えられる。ところが、底部の全体に下側から受型を押し当てると、縮径の歪みが、底部が外側に膨らむ方向に作用せず、底部が内側に凹む方向に作用することがある。その結果、底部が外側に膨らむ場合と同様に、電池の外観不良が発生するとともに、電池を所定機器に装着した場合の接点不良などの課題が生ずる。
 さらに、底部に生じた変形を後で矯正することも考えられる。しかしながら、一旦、生じた変形を後で矯正しても、精度の高い平面を得ることは困難である。
 本発明は、正極、負極およびセパレータを含む電極群と、前記電極群を収容する電池缶とを具備した円筒型電池を製造する方法であって、
 前記電池缶は、円形の底部、開口端部を有する円筒状の側壁、および前記底部と前記側壁との接続部を含み、
 前記電極群を前記電池缶に挿入した後、前記側壁の外径Dcを初期外径D1から縮径する工程(a)を備え、
 前記工程(a)が、内径Ddが前記初期外径D1よりも小さいリング状のダイスの中に、前記電池缶を前記底部側から挿入する工程(a1)、および、前記ダイスを前記開口端部の方向に相対的に移動させることで、前記電池缶に縮径力を印加する工程(a2)を含み、
 前記ダイスと前記電池缶とが接触して、前記縮径力の印加が開始されるときの接触開始部分が、前記接続部の中で、前記底部の周縁部の内側面よりも、前記電池缶の軸方向の前記開口端部側の位置にある、円筒型電池の製造方法に関する。
 本発明によれば、電池缶を縮径するときの底部の変形を簡易かつ効果的に抑えることができる円筒型電池の製造方法を提供することができる。
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成及び内容の両方に関し、本発明の他の目的及び特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。
本発明の一実施形態に係る円筒型電池の製造方法により製造される電池の一例を示す、一部断面図である。 図1Aの電池に使用される電池缶の断面図である。 図1の円筒型電池を縮径する縮径装置の一例の概略構成を示す正面図である。 図1の円筒型電池を縮径する縮径装置の他の一例の概略構成を示す正面図である。 本発明の一実施形態に係る製造方法により円筒型電池を縮径するときの電池缶の底部と縮径用のダイスとの位置関係を示す、電池缶及びダイスの断面図である。 図3Aから電池缶の底部と側壁との接続部だけを取り出して示した断面図である。 ダイスを、中心軸を含む平面により切断した断面図である。 比較例1の円筒型電池を縮径するときの電池缶の底部と縮径用のダイスとの位置関係を示す、電池缶及びダイスの断面図である。 比較例2の円筒型電池を縮径するときの電池缶の底部と縮径用のダイスとの位置関係を示す、電池缶及びダイスの断面図である。 比較例3の円筒型電池を縮径するときの電池缶の底部と縮径用のダイスとの位置関係を示す、電池缶及びダイスの断面図である。
 本発明は、正極、負極およびセパレータを含む電極群と、その電極群を収容する電池缶とを具備した電池を製造する方法に関する。ここで、電池缶は、円形の底部、開口端部を有する円筒状の側壁、および、底部と側壁との接続部を含む。接続部は、電池缶の底部との境界の曲がり始めの位置から、側壁との境界の曲がり終わりの位置までを構成している。そして、本発明の製造方法は、電極群を電池缶に挿入した後、側壁の外径Dcを初期外径D1から、例えば所望外径D2まで縮径する工程(a)を備える。
 上記工程(a)は、内径Ddが初期外径D1よりも小さいリング状のダイスの中に、電池缶を底部側から挿入する工程(a1)、および、ダイスを、電池缶の側壁の開口端部の方向に相対的に移動させることで、電池缶に縮径力を印加する工程(a2)を含む。
 図3Aに示すように、ダイスと電池缶とが接触して、縮径力の印加が開始されるときの接触開始部分P1は、接続部(22)の中で、底部の周縁部(19)の内側面SA1よりも、電池缶の軸方向の開口端部側の位置にある。本発明によれば、接触開始部分P1が、そのような位置にあることで、電池缶の側壁を縮径するための縮径力F1の電池缶の径方向の分力F2により、電池缶の側壁を効果的に縮径できるとともに、底部が撓むように変形するのを抑えることができる。その結果、底部が外側(下側)に膨らんだり、内側に凹んだりするのを防止することができる。さらに、縮径力F1の電池缶の軸方向の分力F3も容易に小さくすることができるので、電池缶の側壁が内側に倒れるように回転するのを抑制することができ、その回転力により底部が外側に膨れるのを防止することができる。このとき、接続部の曲率半径をR2(図3B参照)とし、底部の周縁部の厚みをt1とすると、曲率半径R2は、厚みt1の2倍以上であることが好ましい。
 以上の点をより詳しく説明する。図3Aに示すように、接触開始部分P1が内側面SA1よりも上側にあると、縮径の開始時点から、ダイスによる縮径力F1の、電池缶の径方向の分力F2が、電池缶の底部とは重ならず、効果的に電池缶の側壁を縮径するように作用する。これにより、分力F2が、円形である底部を外周側から押圧することが抑えられる。したがって、底部が撓んで、電池缶の外側に膨らんだり、内側に凹んだりするように変形するのを防止することができる。
 また、縮径力F1の、電池缶の軸方向に平行な分力F3と、F1との間の角度θ1を大きくすることが容易となるので、分力F3を分力F2よりも小さくすることが容易となる。その結果、電池缶の側壁が内側に倒れる方向(図3Aで反時計回りの方向)に、側壁を回転させる回転力を小さくすることができる。これにより、その回転力で電池缶の底部が外側に膨らむように変形するのを防止することができる。
 なお、底部を下側から受型により抑えることで、底部が膨らむのを防止する方法は、缶壁の厚み、缶壁材料の硬度、およびダイスと缶表面との間の摩擦力等の他の要因の影響を受けやすい。これらの要因に変動があると、縮径の際に底部を膨らませようとする力も大きくなり得る。そして、そのような変形力が想定以上に大きくなると、受型で押さえるだけでは、底部が膨らむのを抑制できないか、または、底部が外側に膨らむ代わり内側に凹むように変形することがある。
 接触開始部分P1が内側面SA1よりも上側にあることで、縮径力F1自体が想定以上に大きくなり、それに応じて、電池缶の径方向の分力F2が大きくなっても、分力F2は電池缶の底部とは重ならない位置で作用する。このため、上記の他の要因によらず、底部の膨れを抑えながら、効果的、かつ安定的に電池缶の側壁を縮径することができる。その結果、良好な外観形状をした円筒型電池を安定的に製造することができる。
 ここで、電池缶の縮径は、内径Ddが異なる複数個のダイスを使用し、徐々に小さな内径Ddのダイスに電池缶を挿入することで、電池缶を、段階的に縮径することができる。これにより、ダイス1個当たりによって電池缶に印加される縮径力を小さくすることができる。よって、より効果的に底部の変形を防止することができ、缶底部の変形がない良好な外観形状をした円筒型電池を製造することができる。
 以下、図面を参照して、本発明の一実施形態について説明する。図1Aに、本発明の一実施形態に係る円筒型電池の製造方法が適用される円筒型電池の一例を斜視図により示す。図1Bに、電池缶の構造を、簡略化した断面図により示す。図1Aにおいては、電池の内部構造の理解を容易とするために、電池の一部分を断面図により示している。図1Bにおいては、電池缶は、溝入れする前の状態を示している。また、図1B中の破線は、底部と接続部との境界X、および側壁と接続部との境界Yを示している。
 図示例の電池100は、概念図であり、例えば単3形ニッケル水素蓄電池であり、円形の底部18、開口端部20aを有する円筒状の側壁20および底部18と側壁20とを接続する接続部22を含む電池缶1を備えている。電池缶1は導電性材料(例えば、SPCCおよびSPCD等の冷間圧延鋼板、またはニッケルメッキ鋼板等の金属)から形成されている。電池缶1の内部には、アルカリ電解液(図示せず)とともに、正極12、負極13及びセパレータ14を含む略円柱状の電極群11が収容されている。電極群11は、正極12および負極13を、間にセパレータ14を挟んで渦巻き状に捲回して形成されている。電極群11の最外周部には、負極13が配置されており、その負極13が、電池缶1の内周壁に直接接触している。
 以上の構成により、電池缶1は電池100の負極外部端子としての機能を有している。電池缶1の開口端部の内側には、リング状の絶縁材(例えば樹脂)から形成されたガスケット2が配置されている。電池缶1の開口端部は、導電性材料(例えば金属)から形成された蓋板(封口板)3により塞がれている。封口板3は、ガスケット2により電池缶1とは電気的に絶縁されている。封口板3の上には、突起10aを有する正極端子板10が配置されている。正極端子板10は、封口板3と電気的に接続されている。
 電池缶1の側壁の開口端部の近傍には、ガスケット2を確実に固定するために、開口端部に沿って、溝部4が設けられている。溝部4は、電池缶1の側壁を内側に凹ませて形成されている。封口板3は、周縁部をガスケット2により上下から挟まれ、そのガスケット2が、溝部4を形成する電池缶1の側壁(溝部形成壁)と、電池缶1の開口端部を内側に曲げたカール部1aとにより挟持されることで、電池缶1の開口端部に固定されている。なお、図示例の溝4は、電池缶1の軸方向に圧縮されている。
 封口板3は、中央部にガス抜き孔8を有している。そのガス抜き孔8を封口板3の外面側から塞ぐように、ゴム製の円柱状の弁体9が配置されている。弁体9は、正極端子板10に形成された突起の内部に収容されており、その突起の頂部の内側面により、所定の圧力で、封口板3に向かって押圧されている。これにより、通常時には、ガス抜き孔8は、弁体9により気密に閉塞されている。一方、電池缶1内でガスが発生してその内圧が高まった場合には弁体9がガス圧により圧縮され、ガス抜き孔8が開いて、電池缶1の内部からガスが放出される。このように、封口板3、弁体9及び正極端子板10は、安全弁を形成している。
 電極群11の一端部(封口板3側端部)と封口板3との間には、円形のスリット付きの絶縁部材16が配置され、正極12に接続された正極リード15が、そのスリットを通して、正極12と封口板3とを接続している。これにより、正極端子板10と正極12とが電気的に接続されている。電極群11の他端部(電池缶1の底部側端部)と電池缶1の底部との間にも円形の絶縁部材17が配置されている。そして、電池缶1の外側面は、底部を除いて、絶縁性の外装ラベル6で被覆されている。更に、カール部1aと外装ラベル6との間には、ドーナツ状の絶縁板(漏液防止板)7を配置してもよい。
 次に、電池缶の縮径について説明する。図2Aに、縮径装置の一例を示す。図2Bに、縮径装置の他の一例を示す。図2Aに示す縮径装置30Aは、電池100を電池缶1の軸方向に沿って移動させる移動機構31と、移動機構31により移動される電池が挿入される、リング状の縮径用のダイス32Aとを備えている。
 移動機構31は、例えば、垂直部材31a、およびその両端に対向配置された2つの水平部材31bを有する枠体31cと、枠体31cに固定されたエアシリンダ33と、エアシリンダ33と接続され、電池の底部と当接して、電池を一定の支持力で下側(底部側)から支持する下側支持部材34と、枠体31cに固定された上側支持部材36とを有する。電池100は、下側支持部材34と上側支持部材36とに挟まれて支持されている。下側支持部材34の電池の底部と当接する部分(以下、受型という)は筒状とし、縮径前の底部の周縁部とだけ当接させることができる。あるいは、受型は、縮径前の底部の全体と当接するように形成することもできる。
 そして、移動機構31は、下側支持部材34および上側支持部材36を介して枠体31cにより支持された電池を、下側に向かって押し動かすための駆動力を発生する電動機35と、その出力軸(図示せず)に接続された例えばボールねじ37とを含んでいる。電動機35が発生する回転駆動力は、ボールねじ37により、直線的な下向きの駆動力に変換される。その下向きの駆動力により、電池を支持した枠体31cが下向きに移動され、電池が、底部側からダイス32Aの中に挿入され、ダイス32Aの中を下に向かって移動する。ここで、電池缶1(側壁20)の外径(直径)Dcの初期値(初期外径)をD1とし、ダイス32Aの内径(最小径)をDdaとすると、Dda<D1である。これにより、径Dcが縮径される。なお、電池缶1を縮径した後の所望外径をD2とすると、D2=Ddaである。
 図2Bに示す縮径装置30Bは、2つのリング状の縮径用のダイス32Bおよび32Cを備える点が、図2Aの縮径装置30Aと異なっている。縮径装置30Bの移動機構31は、縮径装置30Aのものと同様である。ダイス32Bおよび32Cは、電池100が、初めにダイス32Bの中に挿入され、その後で、ダイス32Cの中に挿入されるように、電池の移動方向に同軸に並べて配置されている。なお、ダイス32B、32Cには、内径が異なり得ること以外、ダイス32Aと同じ形状のダイスを使用することができる。
 ダイス32Bの内径をDdb(Ddb<D1)とし、ダイス32Cの内径をDdc(Ddc<D1)とすると、Ddc<Ddbである。また、Ddc=Dda=D2とすることができる。2つのダイス32Bおよび32Cに電池100を順次挿入することで、電池缶1が段階的に縮径される。これにより、1個のダイスにより電池缶に印加される縮径力を小さくすることができる。よって、電池缶の底部が外側に膨出するような変形を、より効果的に抑制することができる。
 図3Aに、電池缶の接続部の近傍の部分を、電池缶の中心軸を含む平面により切断した断面図により示す。図3Bに、接続部を断面図により示す。図3Cに、ダイスを、中心軸を含む平面により切断した断面図により示す。
 図3Cに示すように、ダイス32は、内周側の面に、電池缶1と当接する当接部38を有している。当接部38が電池缶1の接続部22と当接することで、電池缶1の縮径が開始される。当接部38との当接により電池缶1に縮径力F1が作用し始めるときの電池缶1の外側面の部分(接触開始部分)P1は、電池缶1の軸方向において、底部18の周縁部19の内側面SA1よりも上側(開口端部側)にある。縮径力F1と、電池缶1の軸方向上向きの分力F3との間の角度θ1は、50°以上、さらには60°以上であることが好ましい。これにより、縮径力F1の、電池缶1の径方向の分力F2を大きくする一方で、軸方向の分力F3を小さくすることができる。
 当接部38は、軸方向における中央部がダイス32の内側に向かって円弧状に突出するような断面形状を有している。その頂部38aの断面形状の曲率半径をR1とする。また、ダイス32の基部39と当接部38の頂部38aとをつなぐ斜部38bと、ダイス32の軸方向とがなす角度をθ2とする。曲率半径R1は、電池缶1の底部18の周縁部19の厚みt1の1~5倍であるのが好ましい。角度θ2は、3~15°であるのが好ましい。
 一方、電池缶1の接続部22も、円弧状の輪郭線を有する断面形状を有しており、その曲率半径をR2とする。より具体的には、電池缶1を電池缶1の中心軸を含む平面で切断した断面図において、曲率半径R2は、接続部22における電池缶1の外側の輪郭線の曲率半径である。曲率半径R2は、底部18の周縁部19の厚みt1の2倍以上、さらには、2~5倍であるのが好ましい。
 電池缶1は、内部に電極群および電解液を収容した状態で、その軸心をダイス32の軸心と一致させて、ダイス32の中空部に底部18側から挿入される。これにより、電池缶1の接続部22と、ダイス32の当接部38とが接触開始部分P1で当接し、縮径装置30A(30B)による電池缶1の縮径が開始される。
 以下に、本発明の実施例を説明する。なお、本発明は、以下の実施例に限定されない。
(実施例1)
 トランスファープレスを使用して、厚みが0.5mmである冷延鋼板を深絞り加工することにより電池缶を形成した。そして、電池缶の側壁の開口端部の近傍に、側壁を一周するように幅が1mm、深さが1mmの溝を形成した。電池缶の全体にニッケルメッキを施した。電池缶(側壁)の初期外径(直径)D1は、14.2mmであり、底部および側壁の厚みは0.3mmであった。底部と側壁との接続部の外側面の曲率半径R2は、0.7mmであった。また、縮径前の底部の外径(底部と接続部との境界Xが描く円の直径)は、12.8mmであった。
 正極と負極との間にセパレータを挟んで積層したものを、渦巻状に捲回して、電極群を構成した。これを、電池缶に挿入し、アルカリ電解液を注入した。その後、正極端子を兼ねた封口板を、周縁部にガスケットを配して電池缶の開口端部に装着し、電池缶の開口縁を内側にカールさせて、開口端部を封口した。以上のようにして、試験用電池を10個作製した。
 図2Aに示したような、1つのダイス(32A)により電池缶を縮径する縮径装置を使用して、10個の試験用電池の電池缶を順次縮径した。このとき、下側支持部材34の、電池缶の底部と接する部分(以下、受型という)には、筒状の部材を使用し、その外径は、13.5mmとした。受型の内径は、それよりも4mmだけ小さくした。底部の中央部は、受型と接触しないようにした。ダイスの当接部の内径Ddは、14mmであり、曲率半径R1は、0.3mmであった。縮径後の電池缶の外径Dcは、所望外径D2である14mmになり、電池缶は、0.2mm縮径された。接触開始部分P1は、電池缶の軸方向において、内側面SA1(基準面)よりも上にあった。そして、縮径後に、試験用電池を縮径装置から取り外し、10個の試験用電池について、電池缶の底部が縮径により外側(下側)に膨らんだ変形量を測定した。
 変形量の測定には、接触式形状測定器を使用した。より具体的には、測定器の接触端子(25μmの針)を電池缶の底部の外側面に接触させて、底部中央から周縁部まで、送り速度0.5mm/秒で移動させることで、縮径前と縮径後の底部形状を得た。そして、縮径前の底部形状と縮径後の底部形状とを重ね合わせ、形状の最大の差異(通常は底部中央の変位量)により変形量を測定した。そして、10個の試験用電池の変形量の平均値を算出することで底部膨出量を得た。
(実施例2)
 内径が14.1mmである第1ダイス(32B)、および内径が14mmである、実施例1のダイス(32A)と同じ第2ダイス(32C)、の2つを使用し、試験用電池を第1ダイス(32B)に挿入した後、第2ダイス(32C)に挿入する順序で縮径した。それ以外は、実施例1と同様にして、10個の試験用電池を縮径し、底部膨出量を得た。第1ダイス(32B)の当接部の曲率半径は第2ダイス(32C)の当接部の曲率半径R1と同じである。
(比較例1)
 図4に示すように、電池缶の側壁20Aの初期外径D1が14.5mmであり、縮径前の底部18Aの外径が13.1mmである試験用電池を使用したこと、並びに、接触開始部分P1が、電池缶の軸方向において、底部の周縁部の内側面SA1よりも下側であったこと、以外は、実施例1と同様にして、10個の試験用電池を縮径し、底部膨出量を得た。
(比較例2)
 図5に示すように、接続部22Bの曲率半径(R2)が0.4mmであること、並びに、接触開始部分P1が、電池缶の軸方向において、底部の周縁部の内側面SA1よりも下側であったこと、以外は、実施例1と同様にして、10個の試験用電池を縮径し、底部膨出量を得た。
(比較例3)
 図6に示すように、接続部22Cの曲率半径が一様ではなく、接続部22Cと側壁20Cとは正接しておらず、境界で缶壁が折れ曲がっている電池缶を使用した。接続部22Cの曲率が一様な部分の曲率半径(R2)は1.2mmとした。また、接触開始部分P1は、電池缶の軸方向において、底部の周縁部の内側面SA1よりも下側であった。上記以外は、実施例1と同様にして、10個の試験用電池を縮径し、底部膨出量を得た。比較例3においては、接続部の中心は、水平距離で、側壁の外側面から0.7mmの位置にあった。側壁と底部とが正接している場合には、上記の距離は1.2mmである。したがって、比較例3においては、側壁と底部とが正接している場合よりも、接続部の中心は、水平距離で0.5mmだけ側壁寄りの位置にあった。このような比較例3は、深絞り加工により電池缶を製作する際に、深絞り加工の工法、および、使用する金型によっては、接続部の中心が側壁側に偏る場合があることと対応する。
 以上の結果を表1および表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1および2に示すように、実施例1および2は、底部膨出量が0.04mm以下であり、目視では、電池缶の底面の膨れはほとんど確認できなかった。これに対して、比較例1~3は、底部膨出量が0.22mm以上であり、目視でも、電池缶の底面の膨れを確認することができた。これは、比較例1~3では、接触開始部分P1が電池缶の軸方向において、底部の周縁部の内側面SA1よりも下側であったために、縮径開始時において、縮径力F1の電池缶の径方向の分力F2が底部を撓むように変形させたためと考えられる。また、縮径力F1自体も、比較例1~3は、実施例1および2よりも大きくなるために、縮径力F1の電池缶の軸方向の分力F3も実施例1および2と比べて、大きくなったものと考えられる。その結果、電池缶の側壁を内側に倒させるような回転力(図3等で反時計方向の回転力)が缶壁に作用するために、底部膨出量が大きくなったものと考えられる。
 作図により、縮径力F1の電池缶の軸方向からの傾きθ1(F3とF1との間の角度)を求めたところ、実施例1および2では、θ1は、50°以上であったのに対して、比較例1~3では、θ1は、40°以下であった。その結果、実施例1および2では、分力F3が、分力F2と比べて小さくなる。よって、電池缶の缶壁が図3等で反時計方向に回転しないために、電池缶の底部の膨れが防止できたものと考えられる。なお、θ1は、60°以上であるのがより好ましいと考えられる。
 また、2つのダイスを使用して電池缶を0.1mmずつ段階的に縮径した実施例2は、1つのダイスだけを使用して、0.2mmを1回の加工で縮径した実施例1よりも底部膨出量は小さかった。これは、ダイスを複数個使用して、段階的に縮径した方が、ダイス1個当たりから電池缶が受ける外力が小さくなるので、より効果的に電池缶の底面の膨れを防止することができたものと考えられる。しかしながら、目視によっては、両者の間に差異は認められなかった。以上のように、接触開始部分P1を、電池缶の軸方向において、底部の周縁部の内側面SA1よりも上側にすることで、円筒型電池を縮径したときに、電池缶の底部が外側に膨出するように変形せず、良好な外観形状の電池が得られることが確かめられた。
 比較例1では、縮径前の電池缶の外径(直径)は14.5mmであり、実施例1等よりも大きいので、電池缶の底部近傍の空間が広がり、電極群を電池缶に容易に挿入することができた。特に、電極群の最外周にある電極は、電池缶の底部近傍の空間が広くないと、電極が折れ曲がり、その結果、短絡不良や活物質の脱落による容量低下が発生する。電池缶の外径を14.5mmとすることで、そのような不都合は回避できた。また、電解液を電池缶に注入したときにも、電極群と電池缶との隙間が大きいために、電解液を電極群に容易に浸透させることができた。また、電解液が電池缶の外に漏れることも容易に防止できた。また、比較例2では、接続部の曲率半径R2を小さくすることで、電池缶の底部近傍の空間を拡げることができたため、電極群を電池缶に容易に挿入できた。
 本発明によれば、接触開始部分が、電池缶の底部の周縁部の内側面よりも、電池缶の軸方向で、電池缶の開口端部側の位置にあるという条件を少なくとも満たすことで、電池缶を縮径するときの、電池缶の底部の変形を抑えることができる。これにより、所望形状および寸法の円筒型電池を安定的に製造することができる。なお、内径が異なる複数個のダイスを使用して、電池缶を段階的に縮径するときには、各々のダイスが実際に電池缶と接触するときに、上記の条件が満たされていればよい。
 本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形及び改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神及び範囲から逸脱することなく、すべての変形及び改変を包含する、と解釈されるべきものである。
 1…電池缶、2…ガスケット、3…封口板、4…溝部、6…外装ラベル、8…孔、9…弁体、10…正極端子板、100…電池、10a…突起、11…電極群、12…正極、13…負極、14…セパレータ、15…正極リード、16…絶縁部材、17…絶縁部材、18,18A,18B,18C…底部、19…周縁部、20,20A,20B,20C…側壁、20a…開口端部、22,22A,22B,22C…接続部、30A,30B…縮径装置、31…移動機構、32,32A,32B,32C…ダイス、33…エアシリンダ、35…電動機、38…当接部、R1、R2…曲率半径、D1…初期外径、P1…接触開始部分、SA1…内側面、F1…縮径力、F2、F3…分力

Claims (2)

  1.  正極、負極およびセパレータを含む電極群と、前記電極群を収容する電池缶とを具備した円筒型電池を製造する方法であって、
     前記電池缶は、円形の底部、開口端部を有する円筒状の側壁、および前記底部と前記側壁との接続部を含み、
     前記電極群を前記電池缶に挿入した後、前記側壁の外径Dcを初期外径D1から縮径する工程(a)を備え、
     前記工程(a)が、内径Ddが前記初期外径D1よりも小さいリング状のダイスの中に、前記電池缶を前記底部側から挿入する工程(a1)、および、前記ダイスを前記開口端部の方向に相対的に移動させることで、前記電池缶に縮径力を印加する工程(a2)を含み、
     前記ダイスと前記電池缶とが接触して、前記縮径力の印加が開始されるときの接触開始部分が、前記接続部の中で、前記底部の周縁部の内側面よりも、前記電池缶の軸方向の前記開口端部側の位置にある、円筒型電池の製造方法。
  2.  前記内径Ddが異なる複数個の前記ダイスを使用して、段階的に、前記側壁の前記外径Dcを縮径する、請求項1記載の円筒型電池の製造方法。
     
     
PCT/JP2014/001314 2013-03-25 2014-03-10 円筒型電池の製造方法 WO2014156002A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015508015A JP6094910B2 (ja) 2013-03-25 2014-03-10 円筒型電池の製造方法
CN201480003681.5A CN104885253B (zh) 2013-03-25 2014-03-10 圆筒型电池的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013062214 2013-03-25
JP2013-062214 2013-03-25

Publications (1)

Publication Number Publication Date
WO2014156002A1 true WO2014156002A1 (ja) 2014-10-02

Family

ID=51623023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001314 WO2014156002A1 (ja) 2013-03-25 2014-03-10 円筒型電池の製造方法

Country Status (3)

Country Link
JP (1) JP6094910B2 (ja)
CN (1) CN104885253B (ja)
WO (1) WO2014156002A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180083939A (ko) 2015-12-03 2018-07-23 도요 고한 가부시키가이샤 전지 용기용 표면 처리 강판

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111919308A (zh) * 2018-04-06 2020-11-10 三洋电机株式会社 电池
CN112542640A (zh) * 2020-11-19 2021-03-23 深圳市豪鹏科技有限公司 电池壳体的缩径工艺、电池的制作工艺与缩径模具

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58176861A (ja) * 1982-04-09 1983-10-17 Sanyo Electric Co Ltd 円筒型電池の製造方法
JPH1027584A (ja) * 1996-07-10 1998-01-27 Haibaru:Kk 円筒形電池
JPH1097851A (ja) * 1996-07-31 1998-04-14 Haibaru:Kk 円筒形電池
JP2000285875A (ja) * 1999-03-31 2000-10-13 Matsushita Electric Ind Co Ltd 円筒型電池の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW363285B (en) * 1996-07-31 1999-07-01 Hival Ltd Cylindrical battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58176861A (ja) * 1982-04-09 1983-10-17 Sanyo Electric Co Ltd 円筒型電池の製造方法
JPH1027584A (ja) * 1996-07-10 1998-01-27 Haibaru:Kk 円筒形電池
JPH1097851A (ja) * 1996-07-31 1998-04-14 Haibaru:Kk 円筒形電池
JP2000285875A (ja) * 1999-03-31 2000-10-13 Matsushita Electric Ind Co Ltd 円筒型電池の製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180083939A (ko) 2015-12-03 2018-07-23 도요 고한 가부시키가이샤 전지 용기용 표면 처리 강판
KR20180087388A (ko) 2015-12-03 2018-08-01 도요 고한 가부시키가이샤 전지 용기용 표면 처리 강판
US10950828B2 (en) 2015-12-03 2021-03-16 Toyo Kohan Co., Ltd. Surface-treated steel sheet for battery containers
US11196114B2 (en) 2015-12-03 2021-12-07 Toyo Kohan Co., Ltd. Surface-treated steel plate for cell container
KR20230078837A (ko) 2015-12-03 2023-06-02 도요 고한 가부시키가이샤 전지 용기용 표면 처리 강판
KR20230078836A (ko) 2015-12-03 2023-06-02 도요 고한 가부시키가이샤 전지 용기용 표면 처리 강판
US11799156B2 (en) 2015-12-03 2023-10-24 Toyo Kohan Co., Ltd. Surface-treated steel sheet for cell container
US11824212B2 (en) 2015-12-03 2023-11-21 Toyo Kohan Co., Ltd. Surface-treated steel plate for cell container

Also Published As

Publication number Publication date
CN104885253B (zh) 2017-05-03
JP6094910B2 (ja) 2017-03-15
CN104885253A (zh) 2015-09-02
JPWO2014156002A1 (ja) 2017-02-16

Similar Documents

Publication Publication Date Title
JP4119612B2 (ja) 角形電池缶およびその製造方法
US7495889B2 (en) Process for manufacturing an electrochemical cell and an electrochemical cell
US20090068557A1 (en) Battery Can and Method of Manufacturing the Same
US20040185337A1 (en) Anode can for battery and manufacturing method thereof
JP6094910B2 (ja) 円筒型電池の製造方法
US11201367B2 (en) Flat battery
CN112335100A (zh) 电池
US11309128B2 (en) Capacitor with seat plate
JP2009230991A (ja) 円筒形電池及び円筒形電池の製造方法
JP2008078158A (ja) コイン形電池
WO2017203853A1 (ja) 密閉型電池および電池ケース
CN101752515B (zh) 用于制造电池壳体的方法和通过该方法制造的电池壳体
JP5551560B2 (ja) 円筒形電池
JP2006066308A (ja) コイン形電池
JP3022771B2 (ja) 筒形電池用ケースの製造方法
JP2009043584A (ja) 有底円筒形状の電池およびその製造方法とその製造装置
JP2018152483A (ja) コンデンサおよびその製造方法
EP2768042A1 (en) Electrochemical cell
JP5420871B2 (ja) 扁平形電池
US9614195B2 (en) Energy storage device and manufacturing method of the same
JP3599391B2 (ja) 角形電池の製造方法
JP5677868B2 (ja) 円筒形アルカリ電池用電池缶、および円筒形アルカリ電池
JP2003242938A (ja) 密閉式角型蓄電池とその製造方法
JP7178610B2 (ja) 電池
JP2010010060A (ja) 電池ケースの溝加工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14773705

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015508015

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14773705

Country of ref document: EP

Kind code of ref document: A1