WO2014155460A1 - 撮像レンズおよび撮像レンズを備えた撮像装置 - Google Patents

撮像レンズおよび撮像レンズを備えた撮像装置 Download PDF

Info

Publication number
WO2014155460A1
WO2014155460A1 PCT/JP2013/007604 JP2013007604W WO2014155460A1 WO 2014155460 A1 WO2014155460 A1 WO 2014155460A1 JP 2013007604 W JP2013007604 W JP 2013007604W WO 2014155460 A1 WO2014155460 A1 WO 2014155460A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging
focal length
imaging lens
conditional expression
Prior art date
Application number
PCT/JP2013/007604
Other languages
English (en)
French (fr)
Inventor
純弘 西畑
長 倫生
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2015507694A priority Critical patent/JPWO2014155460A1/ja
Publication of WO2014155460A1 publication Critical patent/WO2014155460A1/ja
Priority to US14/850,927 priority patent/US20160004034A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/60Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present invention relates to a fixed-focus imaging lens that forms an optical image of a subject on an imaging element such as a CCD (Charge-Coupled Device) or CMOS (Complementary-Metal-Oxide-Semiconductor), and a digital image that is mounted with the imaging lens.
  • the present invention relates to an imaging device such as a still camera, a mobile phone with a camera, and an information portable terminal (PDA: Personal Digital Assistant), a smartphone, a tablet terminal, and a portable game machine.
  • PDA Personal Digital Assistant
  • image sensors for image input are often mounted on mobile phones, smartphones, or tablet terminals.
  • An image sensor such as a CCD or a CMOS is used for a device having such an image capturing function.
  • these image pickup devices have been made more compact, and the entire image pickup apparatus and the image pickup lens mounted thereon are also required to be compact.
  • the number of pixels of the image sensor is increasing, and there is a demand for higher resolution and higher performance of the imaging lens. For example, performance corresponding to a high pixel of 5 megapixels or more, more preferably 8 megapixels or more is required.
  • the imaging lens has a 5 or 6 lens structure having a relatively large number of lenses.
  • a first lens having a positive refractive power a first lens having a positive refractive power
  • a second lens having a negative refractive power a third lens having a positive refractive power
  • a positive refractive power in order from the object side.
  • An imaging lens having a five-lens configuration including a fourth lens and a fifth lens having negative refractive power has been proposed.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide an imaging that can achieve high imaging performance from the central field angle to the peripheral field angle while shortening the overall length and widening the field angle.
  • An object of the present invention is to provide a lens and an imaging apparatus that can obtain a high-resolution captured image by mounting the imaging lens.
  • the imaging lens of the present invention has, in order from the object side, a first lens having a positive refractive power and having a convex surface facing the object side; A second lens having a biconcave shape; A third lens having a biconvex shape; A fourth lens having a positive refractive power; A fifth lens having negative refracting power, having a concave surface facing the image side, and having at least one inflection point on the image side surface; Is substantially composed of 5 lenses, and satisfies the following conditional expression (1).
  • d45 the distance on the optical axis between the fourth lens and the fifth lens f1234: the combined focal length of the first lens to the fourth lens.
  • the imaging lens of the present invention since the configuration of the lens elements of the first lens to the fifth lens is optimized in a lens configuration of five as a whole, the overall length is shortened and a wide angle of view is achieved. In addition, a lens system having high resolution performance can be realized.
  • “consisting essentially of five lenses” means that the imaging lens of the present invention has substantially no power other than the five lenses, a diaphragm or a cover. It is meant to include an optical element other than a lens such as glass, a lens flange, a lens barrel, an image sensor, a mechanism portion such as a camera shake correction mechanism, and the like.
  • a lens including an aspheric surface is considered in a paraxial region.
  • the optical performance can be further improved by satisfying the following preferable configuration.
  • the imaging lens of the present invention preferably further includes an aperture stop disposed on the object side of the object side surface of the second lens.
  • the imaging lens of the present invention preferably satisfies any of the following conditional expressions (1-1) to (9-1).
  • any one of conditional expressions (1) to (9-1) may be satisfied, or any combination may be satisfied.
  • conditional expressions (3) and (3-1) it is assumed that
  • a high-resolution imaging signal can be obtained based on the high-resolution optical image obtained by the imaging lens of the present invention.
  • the configuration of each lens element is optimized, and in particular, the shapes of the first lens and the fifth lens are suitably configured.
  • a lens system that can achieve a wide angle of view and a high imaging performance from the central angle of view to the peripheral angle of view can be realized.
  • an imaging signal corresponding to the optical image formed by the imaging lens having high imaging performance of the present invention is output, a high-resolution captured image can be obtained. Can do.
  • FIG. 1 illustrates a first configuration example of an imaging lens according to an embodiment of the present invention, and is a lens cross-sectional view corresponding to Example 1.
  • FIG. FIG. 2 is a lens cross-sectional view illustrating a second configuration example of an imaging lens according to an embodiment of the present invention and corresponding to Example 2; 3 is a lens cross-sectional view illustrating a third configuration example of an imaging lens according to an embodiment of the present invention and corresponding to Example 3.
  • FIG. 4 is a lens cross-sectional view illustrating a fourth configuration example of an imaging lens according to an embodiment of the present invention and corresponding to Example 4;
  • FIG. 5 is a lens cross-sectional view illustrating a fifth configuration example of an imaging lens according to an embodiment of the present invention and corresponding to Example 5.
  • FIG. 2 is a lens cross-sectional view illustrating a second configuration example of an imaging lens according to an embodiment of the present invention and corresponding to Example 2
  • 3 is a lens cross-sectional view illustrating a third configuration example of an
  • FIG. 6 is a lens cross-sectional view illustrating a sixth configuration example of an imaging lens according to an embodiment of the present invention and corresponding to Example 6;
  • FIG. FIG. 3 is a ray diagram of the imaging lens shown in FIG. 2.
  • FIG. 4 is an aberration diagram showing various aberrations of the imaging lens according to Example 1 of the present invention, in which (A) is spherical aberration, (B) is astigmatism (field curvature), (C) is distortion, and (D). Indicates lateral chromatic aberration.
  • FIG. 1 is spherical aberration
  • B is astigmatism (field curvature)
  • C is distortion
  • D Indicates lateral chromatic aberration.
  • FIG. 6 is an aberration diagram showing various aberrations of the imaging lens according to Example 2 of the present invention, in which (A) is spherical aberration, (B) is astigmatism (field curvature), (C) is distortion, and (D). Indicates lateral chromatic aberration.
  • It is an aberration diagram which shows the various aberrations of the imaging lens which concerns on Example 3 of this invention, (A) is spherical aberration, (B) is astigmatism (field curvature), (C) is a distortion aberration, (D). Indicates lateral chromatic aberration.
  • FIG. 4 It is an aberration diagram which shows the various aberrations of the imaging lens which concerns on Example 4 of this invention, (A) is spherical aberration, (B) is astigmatism (field curvature), (C) is distortion aberration, (D). Indicates lateral chromatic aberration. It is an aberration diagram which shows the various aberrations of the imaging lens which concerns on Example 5 of this invention, (A) is spherical aberration, (B) is astigmatism (field curvature), (C) is distortion aberration, (D). Indicates lateral chromatic aberration.
  • FIG. 6 It is an aberration diagram which shows the various aberrations of the imaging lens which concerns on Example 6 of this invention, (A) is spherical aberration, (B) is astigmatism (field curvature), (C) is distortion aberration, (D). Indicates lateral chromatic aberration.
  • FIG. 1 shows a first configuration example of an imaging lens according to the first embodiment of the present invention.
  • This configuration example corresponds to the lens configuration of a first numerical example (Tables 1 and 2) described later.
  • FIGS. 2 to 6 show cross-sectional configurations of second to sixth configuration examples corresponding to lens configurations of numerical examples (Tables 3 to 12) according to second to sixth embodiments described later. Show.
  • the symbol Ri designates the curvature of the i-th surface, which is numbered sequentially so as to increase toward the image side (imaging side), with the surface of the lens element closest to the object side being the first. Indicates the radius.
  • FIG. 7 is an optical path diagram of the imaging lens L according to the second embodiment shown in FIG. 2, and shows the optical paths of the axial light beam 2 and the light beam 3 with the maximum field angle from an object point at an infinite distance. Show.
  • the imaging lens L includes various imaging devices using imaging elements such as CCDs and CMOSs, particularly relatively small portable terminal devices such as digital still cameras, mobile phones with cameras, smartphones, and tablet terminals. And suitable for use in PDAs and the like.
  • the imaging lens L includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, and a fifth lens L5 in order from the object side along the optical axis Z1. Yes.
  • FIG. 14 shows an overview of a mobile phone terminal that is the imaging apparatus 1 according to the embodiment of the present invention.
  • An imaging apparatus 1 according to an embodiment of the present invention includes an imaging lens L according to the present embodiment and an imaging element 100 such as a CCD that outputs an imaging signal corresponding to an optical image formed by the imaging lens L (see FIG. 1). ).
  • the image sensor 100 is disposed on the imaging surface (image surface R14) of the imaging lens L.
  • FIG. 15 shows an overview of a smartphone that is the imaging device 501 according to the embodiment of the present invention.
  • An imaging device 501 according to an embodiment of the present invention includes an imaging lens L according to this embodiment and an imaging element 100 such as a CCD that outputs an imaging signal corresponding to an optical image formed by the imaging lens L (see FIG. 1). ) And a camera unit 541.
  • the image sensor 100 is disposed on the imaging surface (imaging surface) of the imaging lens L.
  • Various optical members CG may be disposed between the fifth lens L5 and the image sensor 100 depending on the configuration of the camera side on which the lens is mounted.
  • a flat optical member such as a cover glass for protecting the imaging surface or an infrared cut filter may be disposed.
  • a flat cover glass provided with a coating having a filter effect such as an infrared cut filter or an ND filter, or a material having the same effect may be used.
  • the imaging lens L preferably further includes an aperture stop St disposed on the object side of the object side surface of the second lens L2.
  • an imaging surface imaging device
  • “arranged on the object side from the object side surface of the second lens” means that the position of the aperture stop in the optical axis direction is the same as the intersection of the axial marginal ray and the object side surface of the second lens L2.
  • “arranged closer to the object side than the object side surface of the first lens” means that the position of the aperture stop in the optical axis direction is the same as the intersection of the axial marginal ray and the object side surface of the first lens L1. It means that it is at the object side from the position.
  • the lenses of the fourth to sixth configuration examples are configuration examples in which the aperture stop St is disposed closer to the object side than the object side surface of the first lens L1. 3 to 3 (FIGS. 1 to 3), and an aperture stop St is disposed on the object side of the second lens L2 from the object side.
  • the aperture stop St shown here does not necessarily indicate the size or shape, but indicates the position on the optical axis Z1.
  • the aperture stop St when the aperture stop St is disposed on the object side with respect to the object side surface of the first lens L1 in the optical axis direction, the aperture stop St is preferably disposed on the image side with respect to the surface vertex of the first lens L1. .
  • the aperture stop St when the aperture stop St is arranged on the image side with respect to the surface vertex of the first lens L1, the entire length of the imaging lens including the aperture stop St can be shortened.
  • the aperture stop St is disposed on the image side of the surface vertex of the first lens L1, but the present invention is not limited to this, and the aperture stop St is disposed at the surface vertex of the first lens L1. It may be arranged on the object side with respect to the surface vertex.
  • the aperture stop St may be disposed between the first lens L1 and the second lens L2 in the optical axis direction.
  • the curvature of field can be favorably corrected.
  • the aperture stop St is closer to the object side than the object side surface of the first lens L1 in the optical axis direction.
  • the imaging device Optimal optical performance can be realized by applying an imaging element realized in recent years with the development of technology, in which the reduction in light receiving efficiency and the occurrence of color mixing due to the increase in incident angle are reduced.
  • the first lens L1 has a positive refractive power in the vicinity of the optical axis, and has a convex surface facing the object side in the vicinity of the optical axis.
  • the first lens L1 which is the lens closest to the object side, has a positive refractive power and has a convex surface facing the object side in the vicinity of the optical axis, whereby the overall length can be suitably shortened.
  • the overall length is suitably shortened while favorably correcting spherical aberration. can do.
  • the rear principal point position of the first lens L1 is set on the object side. It becomes easy to approach and the full length can be shortened suitably.
  • the second lens L2 has a biconcave shape in the vicinity of the optical axis.
  • the overall length can be suitably shortened while favorably correcting axial chromatic aberration and spherical aberration.
  • the third lens L3 has a biconvex shape in the vicinity of the optical axis. As a result, it is possible to suitably shorten the overall length while favorably correcting the spherical aberration.
  • the fourth lens L4 has a positive refractive power in the vicinity of the optical axis. As a result, the overall length can be suitably shortened.
  • the fourth lens L4 may have a meniscus shape with a concave surface facing the object side. As a result, astigmatism can be suitably corrected.
  • the fifth lens L5 has a negative refractive power in the vicinity of the optical axis and has a concave surface facing the image side in the vicinity of the optical axis.
  • the imaging lens can be more preferably configured as a telephoto type as a whole, and the overall length is preferably shortened. Can do.
  • the fifth lens L5 since the fifth lens L5 has a negative refractive power in the vicinity of the optical axis, it is possible to suitably correct the field curvature.
  • the fifth lens L5 has at least one inflection point within the effective diameter of the image side surface.
  • the “inflection point” on the image side surface of the fifth lens L5 is a point at which the image side surface shape of the fifth lens L5 switches from a convex shape to a concave shape (or from a concave shape to a convex shape) with respect to the image side. Means.
  • the position of the inflection point can be arranged at an arbitrary position radially outward from the optical axis as long as it is within the effective diameter of the image side surface of the fifth lens L5.
  • the image-side surface of the fifth lens L5 into a shape having at least one inflection point, image formation of light rays that pass through the optical system, particularly in the periphery of the image formation region An increase in the angle of incidence on the surface (image sensor) can be suppressed.
  • the imaging lens L since the configuration of the lens elements of the first to fifth lenses L1 to L5 is optimized in a lens configuration of five as a whole, a wide angle of view is achieved while shortening the overall length. And a lens system having high resolution performance can be realized.
  • an aspherical surface for at least one surface of each of the first lens L1 to the fifth lens L5 for high performance.
  • each of the lenses L1 to L5 constituting the imaging lens L is a single lens instead of a cemented lens. This is because the number of aspheric surfaces is larger than in the case where any one of the lenses L1 to L5 is a cemented lens, so that the degree of freedom in designing each lens is increased, and the overall length can be suitably shortened.
  • Conditional expression (1) shortens the back focus and balances the thicknesses of the first lens L1 to the fifth lens L5, thereby shortening the overall length and correcting the field curvature to widen the angle. This defines a preferable numerical range of the ratio of the distance d45 on the optical axis between the fourth lens L4 and the fifth lens L5 to the combined focal length f1234 of the first lens L1 to the fourth lens L4.
  • the fifth lens L5 since the fifth lens L5 has a negative refractive power, the combined refractive power of the first lens L1 to the fourth lens L4 is always positive.
  • the distance d45 on the optical axis between the fourth lens L4 and the fifth lens L5 with respect to the combined focal length f1234 of the first lens L1 to the fourth lens L4 is set so as not to be less than the lower limit of the conditional expression (1).
  • the principal point position can be made closer to the object side, and the back focus is shortened, so that the overall length can be suitably shortened.
  • the Petzval sum can be reduced, the curvature of field can be corrected well, and a wide angle of view can be achieved.
  • the distance d45 on the optical axis between the fourth lens L4 and the fifth lens L5 With respect to the combined focal length f1234 of the first lens L1 to the fourth lens L4 so as not to exceed the upper limit of the conditional expression (1). Since the thickness of the first lens L1 to the fifth lens L5 can be reduced, the overall length can be suitably shortened. In order to further enhance this effect, it is more preferable to satisfy the conditional expression (1-1), and it is more preferable to satisfy the conditional expression (1-2).
  • the distance d45 on the optical axis between the fourth lens L4 and the fifth lens L5 and the focal length f of the entire system satisfy the following conditional expression (2).
  • Conditional expression (2) is similar to (1) in that the back focus is shortened and the thicknesses of the first lens L1 to the fifth lens L5 are balanced, thereby shortening the total length and reducing the curvature of field.
  • a preferable numerical range of the ratio of the distance d45 on the optical axis of the fourth lens L4 and the fifth lens L5 to the focal length f of the entire system for correcting and widening the angle is defined.
  • the fifth lens L5 since the fifth lens L5 has a negative refractive power, the combined refractive power of the first lens L1 to the fourth lens L4 is always positive.
  • the principal point position can be further increased. Since it can be on the object side and the back focus is shortened, the overall length can be suitably shortened. Further, since the Petzval sum can be reduced, the curvature of field can be corrected well, and a wide angle of view can be achieved.
  • the first lens L1 to the fifth lens Since the thickness of the lens L5 can be reduced, the overall length can be suitably shortened. In order to further enhance this effect, it is more preferable to satisfy the conditional expression (2-1), and it is more preferable to satisfy the conditional expression (2-2).
  • the paraxial radius of curvature R2f of the object side surface of the second lens L2 and the paraxial radius of curvature R2r of the image side surface of the second lens L2 satisfy the following conditional expression (3).
  • Conditional expression (3) defines a preferable numerical range of the paraxial radius of curvature R2f of the object side surface of the second lens L2 and the paraxial radius of curvature R2r of the image side surface of the second lens L2.
  • the paraxial radius of curvature R5f of the object side surface of the fifth lens L5 and the paraxial radius of curvature R5r of the image side surface of the fifth lens L5 satisfy the following conditional expression (4).
  • the overall length can be suitably shortened. In order to enhance this effect, it is more preferable to satisfy the conditional expression (4-1), and it is more preferable to satisfy the conditional expression (4-2).
  • the focal length f of the entire system, the half angle of view ⁇ , and the paraxial radius of curvature R5r of the image side surface of the fifth lens L5 satisfy the following conditional expression (5).
  • Conditional expression (5) defines a preferable numerical range of the ratio of the paraxial image height (f ⁇ tan ⁇ ) to the paraxial radius of curvature R5r of the image side surface of the fifth lens L5.
  • the paraxial image height (f ⁇ tan ⁇ ) With respect to the paraxial radius of curvature R5r of the image side surface of the fifth lens L5 so as not to be below the lower limit of the conditional expression (5), the paraxial image height (f The absolute value of the paraxial radius of curvature R5r of the image-side surface of the fifth lens L5, which is the most image-side surface of the imaging lens with respect to tan ⁇ ), is not excessively large, and the overall length is shortened while the image is shortened. The surface curvature can be sufficiently corrected.
  • the paraxial image height (f ⁇ tan ⁇ ) with respect to the paraxial radius of curvature R5r of the image side surface of the fifth lens L5 so as not to exceed the upper limit of the conditional expression (5).
  • the absolute value of the paraxial radius of curvature R5r of the image side surface of the fifth lens L5 which is the most image side surface of the imaging lens with respect to (f ⁇ tan ⁇ ) does not become too small. It is possible to suppress an increase in the incident angle of the light beam passing through the image forming surface (imaging device). In order to enhance this effect, it is preferable to satisfy the conditional expression (5-1).
  • the combined focal length f12 of the first lens L1 and the second lens L2 and the focal length f of the entire system satisfy the following conditional expression (6).
  • Conditional expression (6) defines a preferable numerical range of the ratio of the focal length f of the entire system to the combined focal length f12 of the first lens L1 and the second lens L2.
  • the first lens L1 and the second lens L2 By maintaining the combined refractive power of the first lens L1 and the second lens L2 so as not to exceed the upper limit of the conditional expression (6), the first lens L1 and the second lens L2 with respect to the refractive power of the entire system.
  • the combined refractive power and the chromatic aberration are not excessively strong, and in particular, spherical aberration and axial chromatic aberration can be corrected well. In order to enhance this effect, it is more preferable to satisfy the conditional expression (6-1).
  • the focal length f1 of the first lens L1 and the focal length f of the entire system satisfy the following conditional expression (7).
  • Conditional expression (7) defines a preferable numerical range of the ratio of the focal length f of the entire system to the focal length f1 of the first lens L1.
  • the focal length f5 of the fifth lens L5 and the focal length f of the entire system satisfy the following conditional expression (8).
  • Conditional expression (8) defines a preferable numerical range of the ratio of the focal length f of the entire system to the focal length f5 of the fifth lens L5.
  • the refractive power of the fifth lens L5 does not become too weak with respect to the refractive power of the entire system, and the field curvature
  • the total length can be suitably shortened while favorably correcting the above. In order to enhance this effect, it is more preferable to satisfy the conditional expression (8-1).
  • the focal length f2 of the second lens L2 and the focal length f of the entire system satisfy the following conditional expression (9).
  • Conditional expression (9) defines a preferable numerical range of the ratio of the focal length f of the entire system to the focal length f2 of the second lens L2.
  • the refractive power of the second lens L2 does not become too strong with respect to the refractive power of the entire system, and preferably the total length Can be shortened.
  • the refractive power of the second lens L2 does not become too weak with respect to the refractive power of the entire system. Chromatic aberration can be corrected satisfactorily. In order to enhance this effect, it is more preferable to satisfy the conditional expression (9-1).
  • the imaging lens according to the second to sixth embodiments of the present invention will be described in detail with reference to FIGS.
  • all surfaces of the first lens L1 to the fifth lens L5 are aspherical.
  • the imaging lens according to the second to sixth embodiments of the present invention has a positive refractive power in order from the object side and has a convex surface facing the object side, as in the first embodiment.
  • the imaging lens L according to the second, third and sixth embodiments shown in FIGS. 2, 3 and 6 has the same lens configuration as the first embodiment and the first lens L1 to the fifth lens L5.
  • the same function and effect as the corresponding configuration of the first embodiment can be obtained.
  • the imaging lens L according to the fourth and fifth embodiments shown in FIGS. 4 and 5 is configured such that the first lens L1 has a meniscus shape with a convex surface facing the object side, and the first lens L1 is the object side.
  • the configuration of the first lens L1 to the fifth lens L5 is the same as that of the first embodiment except that it has a meniscus shape with a convex surface facing to the first embodiment.
  • the rear principal point position of the first lens L1 can be easily moved to the object side, and the overall length can be shortened more suitably.
  • the same effects as the corresponding configurations of the first embodiment can be obtained by the configurations of the first lens L1 to the fifth lens L5 that are common to the first embodiment. .
  • the imaging lens according to the embodiment of the present invention since the configuration of each lens element is optimized in the lens configuration of five as a whole, a wide angle of view is shortened while shortening the overall length. It is possible to realize a lens system having high resolution performance.
  • Tables 1 and 2 below show specific lens data corresponding to the configuration of the imaging lens shown in FIG.
  • Table 1 shows basic lens data
  • Table 2 shows data related to aspheric surfaces.
  • the surface of the lens element closest to the object side is the first (aperture stop St is the first) and heads toward the image side.
  • the value (mm) of the curvature radius of the i-th surface from the object side is shown in correspondence with the reference symbol Ri in FIG.
  • the column of the surface interval Di indicates the interval (mm) on the optical axis between the i-th surface Si and the i + 1-th surface Si + 1 from the object side.
  • the value of the refractive index for the d-line (587.56 nm) of the j-th optical element from the object side is shown.
  • the column of ⁇ dj shows the Abbe number value for the d-line of the j-th optical element from the object side.
  • Each lens data includes values of the focal length f (mm), back focus Bf (mm), and total lens length TL (mm) of the entire system as various data. Note that the back focus Bf represents a value converted into air, and the value converted into air is similarly used for the back focus in the entire lens length TL.
  • both surfaces of the first lens L1 to the fifth lens L5 are all aspherical.
  • the basic lens data in Table 1 shows the numerical value of the radius of curvature near the optical axis (paraxial radius of curvature) as the radius of curvature of these aspheric surfaces.
  • Table 2 shows aspherical data in the imaging lens of Example 1.
  • E indicates that the subsequent numerical value is a “power exponent” with a base of 10
  • the numerical value represented by an exponential function with the base of 10 is Indicates that the value before “E” is multiplied. For example, it indicates that "1.0E-02" is "1.0 ⁇ 10- 2".
  • Z is the length (mm) of a perpendicular line drawn from a point on the aspheric surface at a height h from the optical axis to the tangential plane (plane perpendicular to the optical axis) of the apex of the aspheric surface.
  • Z Depth of aspheric surface (mm)
  • h Distance from the optical axis to the lens surface (height) (mm)
  • Ai i-th order (i is an integer of 3 or more) aspheric coefficient
  • KA aspheric coefficient.
  • both surfaces of the first lens L1 to the fifth lens L5 are all aspherical.
  • FIGS. 8A to 8D are diagrams showing spherical aberration, astigmatism, distortion (distortion aberration), and chromatic aberration of magnification (chromatic aberration of magnification) in the imaging lens of Example 1, respectively.
  • Each aberration diagram showing spherical aberration, astigmatism (field curvature) and distortion (distortion aberration) shows aberrations with the d-line (wavelength 587.56 nm) as the reference wavelength.
  • the spherical aberration diagram and the lateral chromatic aberration diagram also show aberrations for the g-line (wavelength 435.83 nm), the F-line (wavelength 486.1 nm), and the C-line (wavelength 656.27 nm).
  • the solid line indicates the sagittal direction (S), and the broken line indicates the tangential direction (T).
  • Fno. Indicates the F number, and ⁇ indicates the half angle of view.
  • Table 13 shows a summary of values relating to the conditional expressions (1) to (9) according to the present invention for each of Examples 1 to 6.
  • the imaging lens of the present invention is not limited to the embodiment and each example, and various modifications can be made.
  • the values of the radius of curvature, the surface interval, the refractive index, the Abbe number, and the aspherical coefficient of each lens component are not limited to the values shown in the numerical examples, but may take other values.
  • the description is based on the premise that the fixed focus is used.
  • the entire lens system can be extended, or a part of the lenses can be moved on the optical axis to enable autofocusing.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

【課題】全長の短縮化、広画角化および高解像化を実現した撮像レンズおよびこの撮像レンズを備えた撮像装置を実現する。 【解決手段】撮像レンズが、物体側から順に、正の屈折力を有し、物体側に凸面を向けた形状である第1レンズ(L1)と、両凹形状である第2レンズ(L2)と、両凸形状である第3レンズ(L3)と、負の屈折力を有する第4レンズ(L4)と、負の屈折力を有し、像側に凹面を向けた形状であり、像側の面に少なくとも1つの変曲点を有する第5レンズ(L5)とから構成される実質的に5個のレンズからなり、所定の条件式を満足する。

Description

撮像レンズおよび撮像レンズを備えた撮像装置
 本発明は、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)等の撮像素子上に被写体の光学像を結像させる固定焦点の撮像レンズ、およびその撮像レンズを搭載して撮影を行うデジタルスチルカメラやカメラ付き携帯電話機および情報携帯端末(PDA:Personal Digital Assistance)、スマートフォン、タブレット型端末および携帯型ゲーム機等の撮像装置に関する。
 パーソナルコンピュータの一般家庭等への普及に伴い、撮影した風景や人物像等の画像情報をパーソナルコンピュータに入力することができるデジタルスチルカメラが急速に普及している。また、携帯電話、スマートフォン、またはタブレット型端末に画像入力用のカメラモジュールが搭載されることも多くなっている。このような撮像機能を有する機器には、CCDやCMOSなどの撮像素子が用いられている。近年、これらの撮像素子のコンパクト化が進み、撮像機器全体ならびにそれに搭載される撮像レンズにも、コンパクト性が要求されている。また同時に、撮像素子の高画素化も進んでおり、撮像レンズの高解像、高性能化が要求されている。例えば5メガピクセル以上、よりさらに好適には8メガピクセル以上の高画素に対応した性能が要求されている。
 このような要求を満たすために、撮像レンズをレンズ枚数が比較的多い5枚または6枚構成とすることが考えられる。例えば、特許文献1および2には、物体側から順に正の屈折力を有する第1レンズ、負の屈折力を有する第2レンズ、正の屈折力を有する第3レンズ、正の屈折力を有する第4レンズ、および負の屈折力を有する第5レンズからなる5枚構成の撮像レンズが提案されている。
特開2012-189894号公報 米国公開特許2012/0087019号明細書
 一方、特に携帯端末、スマートフォンまたはタブレット端末のような薄型化が進む装置に用いられる撮像レンズには、レンズ全長の短縮化および広画角化の要求が益々高まっている。しかしながら、上記特許文献1の撮像レンズは、全長が十分に短縮化ができていない。また、上記特許文献2の撮像レンズは、画角が狭いという問題がある。
 本発明は上述の点に鑑みてなされたもので、その目的は、全長の短縮化および広画角化を図りつつ、中心画角から周辺画角まで高い結像性能を実現することができる撮像レンズ、およびその撮像レンズを搭載して高解像の撮像画像を得ることができる撮像装置を提供することにある。
 本発明の撮像レンズは、物体側から順に、正の屈折力を有し、物体側に凸面を向けた形状である第1レンズと、
 両凹形状である第2レンズと、
 両凸形状である第3レンズと、
 正の屈折力を有する第4レンズと、
 負の屈折力を有し、像側に凹面を向けた形状であり、像側の面に少なくとも1つの変曲点を有する第5レンズと、
 から構成される実質的に5個のレンズからなり、下記条件式(1)を満足することを特徴とするものである。
 0.13<d45/f1234<0.3    (1)
ただし、
d45:第4レンズと第5レンズとの光軸上の間隔
f1234:第1レンズから第4レンズの合成焦点距離
とする。
 本発明の撮像レンズによれば、全体として5枚というレンズ構成において、第1レンズから第5レンズの各レンズ要素の構成を最適化したので、全長を短縮化し、かつ広画角化を図りながらも、高解像性能を有するレンズ系を実現することができる。
 なお、本発明の撮像レンズにおいて、「実質的に5個のレンズからなり」とは、本発明の撮像レンズが、5個のレンズ以外に、実質的にパワーを有さないレンズ、絞りやカバーガラス等レンズ以外の光学要素、レンズフランジ、レンズバレル、撮像素子、手振れ補正機構等の機構部分、等を持つものも含むことを意味する。また、上記のレンズの面形状や屈折力の符号は、非球面が含まれているものについては近軸領域で考えるものとする。
 本発明の撮像レンズにおいて、さらに、次の好ましい構成を採用して満足することで、光学性能をより良好なものとすることができる。
 本発明の撮像レンズにおいて、第2レンズの物体側の面より物体側に配置された開口絞りをさらに備えていることが好ましい。
 本発明の撮像レンズは、以下の条件式(1-1)から(9-1)のいずれかを満足することが好ましい。なお、好ましい態様としては、条件式(1)から(9-1)のいずれか1つを満足するものでもよく、あるいは任意の組合せを満足するものでもよい。なお条件式(3)、(3-1)においては、|R2f|>|R2r|であるものとする。

 0.14<d45/f1234<0.25    (1-1)
 0.11<d45/f<0.3     (2)
 0.11<d45/f<0.25    (2-1)
 0<(R2f+R2r)/(R2f-R2r)<0.5     (3)
 0.1<(R2f+R2r)/(R2f-R2r)<0.35  (3-1)
 -1<(R5f+R5r)/(R5f-R5r)<0.08   (4)
 -0.5<(R5f+R5r)/(R5f-R5r)<0.07 (4-1)
 0.5<f・tanω/R5r<10   (5)
 0.7<f・tanω/R5r<3    (5―1)
 0.7<f/f12<1.2  (6)
 0.8<f/f12<1    (6-1)
 0.8<f/f1<2.5   (7)
 1<f/f1<2       (7-1)
 -2.5<f/f5<-1.2   (8)
 -2<f/f5<-1.4     (8-1)
 -2.5<f/f2<-0.7   (9)
 -1.3<f/f2<-0.8   (9-1)
ただし、
f:全系の焦点距離
f1:第1レンズの焦点距離
f2:第2レンズの焦点距離
f5:第5レンズの焦点距離
f12:第1レンズと第2レンズとの合成焦点距離
f1234:第1レンズから第4レンズの合成焦点距離
R2f:第2レンズの物体側の面の近軸曲率半径
R2r:第2レンズの像側の面の近軸曲率半径
R5f:第5レンズの物体側の面の近軸曲率半径
R5r:第5レンズの像側の面の近軸曲率半径
ω:半画角
 本発明による撮像装置は、本発明の撮像レンズを備えたものである。
 本発明による撮像装置では、本発明の撮像レンズによって得られた高解像の光学像に基づいて高解像の撮像信号を得ることができる。
 本発明の撮像レンズによれば、全体として5枚というレンズ構成において、各レンズ要素の構成を最適化し、特に第1レンズおよび第5レンズの形状を好適に構成したので、全長を短縮化しつつ、広画角化を図ることができ、かつ中心画角から周辺画角まで高い結像性能を有するレンズ系を実現できる。
 また、本発明の撮像装置によれば、本発明の高い結像性能を有する撮像レンズによって形成された光学像に応じた撮像信号を出力するようにしたので、高解像の撮影画像を得ることができる。
本発明の一実施形態に係る撮像レンズの第1の構成例を示すものであり、実施例1に対応するレンズ断面図である。 本発明の一実施形態に係る撮像レンズの第2の構成例を示すものであり、実施例2に対応するレンズ断面図である。 本発明の一実施形態に係る撮像レンズの第3の構成例を示すものであり、実施例3に対応するレンズ断面図である。 本発明の一実施形態に係る撮像レンズの第4の構成例を示すものであり、実施例4に対応するレンズ断面図である。 本発明の一実施形態に係る撮像レンズの第5の構成例を示すものであり、実施例5に対応するレンズ断面図である。 本発明の一実施形態に係る撮像レンズの第6の構成例を示すものであり、実施例6に対応するレンズ断面図である。 図2に示す撮像レンズの光線図である。 本発明の実施例1に係る撮像レンズの諸収差を示す収差図であり、(A)は球面収差、(B)は非点収差(像面湾曲)、(C)は歪曲収差、(D)は倍率色収差を示す。 本発明の実施例2に係る撮像レンズの諸収差を示す収差図であり、(A)は球面収差、(B)は非点収差(像面湾曲)、(C)は歪曲収差、(D)は倍率色収差を示す。 本発明の実施例3に係る撮像レンズの諸収差を示す収差図であり、(A)は球面収差、(B)は非点収差(像面湾曲)、(C)は歪曲収差、(D)は倍率色収差を示す。 本発明の実施例4に係る撮像レンズの諸収差を示す収差図であり、(A)は球面収差、(B)は非点収差(像面湾曲)、(C)は歪曲収差、(D)は倍率色収差を示す。 本発明の実施例5に係る撮像レンズの諸収差を示す収差図であり、(A)は球面収差、(B)は非点収差(像面湾曲)、(C)は歪曲収差、(D)は倍率色収差を示す。 本発明の実施例6に係る撮像レンズの諸収差を示す収差図であり、(A)は球面収差、(B)は非点収差(像面湾曲)、(C)は歪曲収差、(D)は倍率色収差を示す。 本発明に係る撮像レンズを備えた携帯電話端末である撮像装置を示す図。 本発明に係る撮像レンズを備えたスマートフォンである撮像装置を示す図。
 以下、本発明の実施形態について図面を参照して詳細に説明する。
 図1は、本発明の第1の実施形態に係る撮像レンズの第1の構成例を示している。この構成例は、後述の第1の数値実施例(表1、表2)のレンズ構成に対応している。同様にして、後述の第2から第6の実施形態に係る数値実施例(表3~表12)のレンズ構成に対応する第2から第6の構成例の断面構成を図2~図6に示す。図1~図6において、符号Riは、最も物体側のレンズ要素の面を1番目として、像側(結像側)に向かうに従い順次増加するようにして符号を付したi番目の面の曲率半径を示す。符号Diは、i番目の面とi+1番目の面との光軸Z1上の面間隔を示す。なお、各構成例共に基本的な構成は同じであるため、以下では、図1に示した撮像レンズの構成例を基本にして説明し、必要に応じて図2~図6の構成例についても説明する。また、図7は図2に示す第2の実施形態に係る撮像レンズLにおける光路図であり、無限遠の距離にある物点からの軸上光束2および最大画角の光束3の各光路を示す。
 本発明の実施形態に係る撮像レンズLは、CCDやCMOS等の撮像素子を用いた各種撮像機器、特に比較的小型の携帯端末機器、例えばデジタルスチルカメラ、カメラ付き携帯電話機、スマートフォン、タブレット型端末およびPDA等に用いて好適なものである。この撮像レンズLは、光軸Z1に沿って、物体側から順に、第1レンズL1と、第2レンズL2と、第3レンズL3と、第4レンズL4と、第5レンズL5とを備えている。
 図14に、本発明の実施形態に係る撮像装置1である携帯電話端末の概観図を示す。本発明の実施形態に係る撮像装置1は、本実施形態に係る撮像レンズLと、この撮像レンズLによって形成された光学像に応じた撮像信号を出力するCCDなどの撮像素子100(図1参照)とを備えて構成される。撮像素子100は、この撮像レンズLの結像面(像面R14)に配置される。
 図15に、本発明の実施形態に係る撮像装置501であるスマートフォンの概観図を示す。本発明の実施形態に係る撮像装置501は、本実施形態に係る撮像レンズLと、この撮像レンズLによって形成された光学像に応じた撮像信号を出力するCCDなどの撮像素子100(図1参照)とを有するカメラ部541を備えて構成される。撮像素子100は、この撮像レンズLの結像面(撮像面)に配置される。
 第5レンズL5と撮像素子100との間には、レンズを装着するカメラ側の構成に応じて、種々の光学部材CGが配置されていてもよい。例えば撮像面保護用のカバーガラスや赤外線カットフィルタなどの平板状の光学部材が配置されていてもよい。この場合、光学部材CGとして例えば平板状のカバーガラスに、赤外線カットフィルタやNDフィルタ等のフィルタ効果のあるコートが施されたもの、あるいは同様の効果を有する材料を使用してもよい。
 また、光学部材CGを用いずに、第5レンズL5にコートを施す等して光学部材CGと同等の効果を持たせるようにしてもよい。これにより、部品点数の削減と全長の短縮化を図ることができる。
 この撮像レンズLはまた、第2レンズL2の物体側の面より物体側に配置された開口絞りStを備えることが好ましい。このように、開口絞りStを第2レンズL2の物体側の面よりも物体側に配置したことにより、特に結像領域の周辺部において、光学系を通過する光線の結像面(撮像素子)への入射角が大きくなるのを抑制することができる。この効果をさらに高めるために、開口絞りStを、第1レンズL1の物体側の面より物体側に配置することが好ましい。なお、「第2レンズの物体側の面より物体側に配置」とは、光軸方向における開口絞りの位置が、軸上マージナル光線と第2レンズL2の物体側の面との交点と同じ位置かそれより物体側にあることを意味する。同様に、「第1レンズの物体側の面より物体側に配置」とは、光軸方向における開口絞りの位置が、軸上マージナル光線と第1レンズL1の物体側の面との交点と同じ位置かそれより物体側にあることを意味する。
 本実施形態において、第4から第6の構成例のレンズ(図4~6)が、開口絞りStが第1レンズL1の物体側の面より物体側に配置された構成例であり、第1から第3の構成例のレンズが(図1~3)、開口絞りStが第2レンズL2の物体側より物体側に配置された構成例である。なお、ここに示す開口絞りStは必ずしも大きさや形状を表すものではなく、光軸Z1上の位置を示すものである。
 さらに、開口絞りStを光軸方向において第1レンズL1の物体側の面よりも物体側に配置した場合において、開口絞りStを第1レンズL1の面頂点よりも像側に配置することが好ましい。このように、開口絞りStを第1レンズL1の面頂点よりも像側に配置した場合には、開口絞りStを含めた撮像レンズの全長を短縮化することができる。また、本実施形態において、開口絞りStは第1レンズL1の面頂点よりも像側に配置されているが、これに限定されず、開口絞りStは第1レンズL1の面頂点に配置されていてもよく、面頂点よりも物体側に配置されていてもよい。開口絞りStが第1レンズL1の面頂点よりも物体側に配置されている場合には、開口絞りStが第1レンズL1の面頂点よりも像側に配置されている場合より周辺光量の確保の観点からはやや不利であるが、結像領域の周辺部において、光学系を通過する光線の結像面(撮像素子)への入射角が大きくなるのをさらに好適に抑制することができる。
 また、図1~3に示す第1から第3の実施形態に係る撮像レンズのように、開口絞りStを光軸方向において第1レンズL1と第2レンズL2との間に配置してもよい。この場合には、像面湾曲を良好に補正することができる。なお、開口絞りStを光軸方向において第1レンズL1と第2レンズL2との間に配置した場合には、開口絞りStを光軸方向において第1レンズL1の物体側の面より物体側に配置した場合よりもテレセントリック性を確保する、すなわち、主光線を光軸にできるだけ平行な状態にする(撮像面における入射角度がゼロに近くなるようにする)ためには不利であるものの、撮像素子技術の発展に伴い近年実現された、入射角度の増大に起因する受光効率の低下や混色の発生が従来よりも低減された撮像素子を適用することにより、好適な光学性能を実現することができる。
 この撮像レンズLにおいて、第1レンズL1は、光軸近傍において正の屈折力を有し、光軸近傍において物体側に凸面を向けた形状である。最も物体側のレンズである第1レンズL1を、正の屈折力を有し、光軸近傍で物体側に凸面を向けた形状とすることにより、全長を好適に短縮化できる。また、第1から第3および第6の実施形態に示されるように、第1レンズL1が両凸形状である場合には、球面収差を良好に補正しつつ、好適に全長の短縮化を実現することができる。また、第4および第5の実施形態に示されるように、第1レンズL1が物体側に凸面を受けたメニスカス形状である場合には、第1レンズL1の後側主点位置を物体側に寄せやすくなり、全長を好適に短縮化できる。
 第2レンズL2は、光軸近傍において両凹形状である。このことにより、軸上の色収差および球面収差を良好に補正しつつ、好適に全長の短縮化を実現することができる。
 第3レンズL3は、光軸近傍において両凸形状である。このことにより、球面収差を良好に補正しつつ、好適に全長の短縮化を実現することができる。
 第4レンズL4は、光軸近傍において正の屈折力を有する。このことにより、全長を好適に短縮化できる。第4レンズL4は、物体側に凹面を向けたメニスカス形状としてもよい。このことにより、非点収差を好適に補正することができる。
 第5レンズL5は、光軸近傍において負の屈折力を有し、光軸近傍において像側に凹面を向けた形状である。撮像レンズの最も像側に光軸近傍において負の屈折力を有するレンズを配置することで、より好適に撮像レンズを全体としてテレフォト型の構成とすることができ、全長を好適に短縮化することができる。また、第5レンズL5が光軸近傍で負の屈折力を有することにより、像面湾曲を好適に補正することができる。また、第5レンズL5を光軸近傍において像側に凹面を向けた形状とすることにより、より好適に全長の短縮化を実現しつつ、像面湾曲を良好に補正することができる。この効果をさらに高めるために、各実施形態に示すように、第5レンズL5を光軸近傍において両凹形状とすることが好ましい。
 また、第5レンズL5は、像側の面の有効径内に少なくとも1つの変曲点を有する。第5レンズL5の像側の面における「変曲点」とは、第5レンズL5の像側の面形状が像側に対して凸形状から凹形状(または凹形状から凸形状)に切り替わる点を意味する。変曲点の位置は、第5レンズL5の像側の面の有効径内であれば光軸から半径方向外側の任意の位置に配置することができる。各実施形態に示すように、第5レンズL5の像側の面を少なくとも1つの変曲点を有する形状とすることにより、特に結像領域の周辺部において、光学系を通過する光線の結像面(撮像素子)への入射角が大きくなるのを抑制することができる。
 上記撮像レンズLによれば、全体として5枚というレンズ構成において、第1から第5レンズL1~L5の各レンズ要素の構成を最適化したので、全長を短縮化しつつ、広画角化を図ることができ、かつ高解像性能を有するレンズ系を実現できる。
 この撮像レンズLは、高性能化のために、第1レンズL1から第5レンズL5のそれぞれのレンズの少なくとも一方の面に、非球面を用いることが好適である。
 また、撮像レンズLを構成する各レンズL1~L5は接合レンズでなく単レンズとすることが好ましい。各レンズL1~L5のいずれかを接合レンズとした場合よりも、非球面数が多いため、各レンズの設計自由度が高くなり、好適に全長の短縮化を図ることができるからである。
 次に、以上のように構成された撮像レンズLの条件式に関する作用および効果をより詳細に説明する。
 まず、第4レンズL4と第5レンズL5との光軸上の間隔d45、および第1レンズL1から第4レンズL4の合成焦点距離f1234は、以下の条件式(1)を満足することが好ましい。
 0.13<d45/f1234<0.3    (1)
 条件式(1)は、バックフォーカスを短縮し、かつ第1レンズL1から第5レンズL5の厚さのバランスを取ることにより、全長を短縮し、かつ像面湾曲を補正して広角化するための、第1レンズL1から第4レンズL4の合成焦点距離f1234に対する第4レンズL4と第5レンズL5との光軸上の間隔d45の比の好ましい数値範囲を規定するものである。本実施形態においては、第5レンズL5は負の屈折力を有するため、第1レンズL1から第4レンズL4の合成屈折力は必ず正となる。したがって、条件式(1)の下限以下とならないように、第1レンズL1から第4レンズL4の合成焦点距離f1234に対する第4レンズL4と第5レンズL5との光軸上の間隔d45を設定することにより、主点位置をより物体側にすることができ、バックフォーカスが短くなるため、好適に全長を短縮化できる。また、ペッツバール和を小さくできるため、像面湾曲を良好に補正することができ、広画角化が可能となる。条件式(1)の上限以上とならないように、第1レンズL1から第4レンズL4の合成焦点距離f1234に対する第4レンズL4と第5レンズL5との光軸上の間隔d45を設定することにより、第1レンズL1から第5レンズL5の厚さを薄くできるため、好適に全長を短縮化できる。この効果をより高めるために、条件式(1-1)を満足することがより好ましく、条件式(1-2)を満足することがさらに好ましい。
 0.14<d45/f1234<0.25   (1-1)
 0.15<d45/f1234<0.2    (1-2)
 また、第4レンズL4と第5レンズL5との光軸上の間隔d45および全系の焦点距離fは、以下の条件式(2)を満足することが好ましい。
 0.11<d45/f<0.3    (2)
 条件式(2)は、(1)と同様に、バックフォーカスを短縮し、かつ第1レンズL1から第5レンズL5の厚さのバランスを取ることにより、全長を短縮し、かつ像面湾曲を補正して広角化するための、全系の焦点距離fに対する第4レンズL4および第5レンズL5の光軸上の間隔d45の比の好ましい数値範囲を規定するものである。本実施形態においては、第5レンズL5は負の屈折力を有するため、第1レンズL1から第4レンズL4の合成屈折力は必ず正となる。したがって、条件式(2)の下限以下とならないように、全系の焦点距離fに対する第4レンズL4と第5レンズL5との光軸上の間隔d45を設定することにより、主点位置をより物体側にすることができ、バックフォーカスが短くなるため、好適に全長を短縮化できる。また、ペッツバール和を小さくできるため、像面湾曲を良好に補正することができ、広画角化が可能となる。条件式(2)の上限以上とならないように、全系の焦点距離fに対する第4レンズL4と第5レンズL5との光軸上の間隔d45を設定することにより、第1レンズL1から第5レンズL5の厚さを薄くできるため、好適に全長を短縮化できる。この効果をより高めるために、条件式(2-1)を満足することがより好ましく、条件式(2-2)を満足することがさらに好ましい。
 0.11<d45/f<0.25   (2-1)
 0.12<d45/f<0.2    (2-2)
 第2レンズL2の物体側の面の近軸曲率半径R2fおよび第2レンズL2の像側の面の近軸曲率半径R2rは、以下の条件式(3)を満足することが好ましい。
 0<(R2f+R2r)/(R2f-R2r)<0.5    (3)
 ただし、|R2f|>|R2r|である。
 条件式(3)は、第2レンズL2の物体側の面の近軸曲率半径R2fおよび第2レンズL2の像側の面の近軸曲率半径R2rの好ましい数値範囲を規定するものである。条件式(3)の下限以下とならないように、第2レンズL2の物体側の面の近軸曲率半径R2fおよび第2レンズL2の像側の面の近軸曲率半径R2rを設定することにより、全長を好適に短縮化できる。条件式(3)の上限以上とならないように、第2レンズL2の物体側の面の近軸曲率半径R2fおよび第2レンズL2の像側の面の近軸曲率半径R2rを設定することにより、非点収差を良好に補正することができる。この効果をより高めるために、条件式(3-1)を満足することがより好ましく、条件式(3-2)を満足することがさらに好ましい。
 0.1<(R2f+R2r)/(R2f-R2r)<0.35   (3-1)
 0.11<(R2f+R2r)/(R2f-R2r)<0.3    (3-2)
 第5レンズL5の物体側の面の近軸曲率半径R5fおよび第5レンズL5の像側の面の近軸曲率半径R5rは、以下の条件式(4)を満足することが好ましい。
 -1<(R5f+R5r)/(R5f-R5r)<0.08    (4)
 条件式(4)は、第5レンズL5の物体側の面の近軸曲率半径R5fおよび第5レンズL5の像側の面の近軸曲率半径R5rの好ましい数値範囲を規定するものである。条件式(4)の下限以下とならないように、第5レンズL5の物体側の面の近軸曲率半径R5fおよび第5レンズL5の像側の面の近軸曲率半径R5rを設定することにより、非点収差を良好に補正することができる。条件式(4)の上限以上とならないように、第5レンズL5の物体側の面の近軸曲率半径R5fおよび第5レンズL5の像側の面の近軸曲率半径R5rを設定することにより、全長を好適に短縮化できる。この効果をより高めるために、条件式(4-1)を満足することがより好ましく、条件式(4-2)を満足することがさらに好ましい。
 -0.5<(R5f+R5r)/(R5f-R5r)<0.07   (4-1)
 -0.4<(R5f+R5r)/(R5f-R5r)<0.06   (4-2)
 また、全系の焦点距離f、半画角ω、第5レンズL5の像側の面の近軸曲率半径R5rは、以下の条件式(5)を満足することが好ましい。
 0.5<f・tanω/R5r<10    (5)
 条件式(5)は、第5レンズL5の像側の面の近軸曲率半径R5rに対する近軸像高(f・tanω)の比の好ましい数値範囲を規定するものである。条件式(5)の下限以下とならないように、第5レンズL5の像側の面の近軸曲率半径R5rに対する近軸像高(f・tanω)を設定することで、近軸像高(f・tanω)に対して撮像レンズの最も像側の面である第5レンズL5の像側の面の近軸曲率半径R5rの絶対値が大きくなりすぎず、全長の短縮化を実現しつつ、像面湾曲を十分に補正することができる。また、条件式(5)の上限以上とならないように、第5レンズL5の像側の面の近軸曲率半径R5rに対する近軸像高(f・tanω)を設定することで、近軸像高(f・tanω)に対して撮像レンズの最も像側の面である第5レンズL5の像側の面の近軸曲率半径R5rの絶対値が小さくなりすぎず、特に中間画角において、光学系を通過する光線の結像面(撮像素子)への入射角が大きくなるのを抑制することができる。この効果をより高めるために、条件式(5-1)を満足することが好ましい。
 0.7<f・tanω/R5r<3    (5―1)
 また、第1レンズL1と第2レンズL2との合成焦点距離f12および全系の焦点距離fは、以下の条件式(6)を満足することが好ましい。
 0.7<f/f12<1.2    (6)
 条件式(6)は、第1レンズL1と第2レンズL2との合成焦点距離f12に対する全系の焦点距離fの比の好ましい数値範囲を規定するものである。条件式(6)の下限以下とならないように、第1レンズL1と第2レンズL2との合成屈折力を確保することにより、全系の屈折力に対して第1レンズL1と第2レンズL2との合成屈折力が弱くなりすぎず、好適に全長を短縮化することできる。条件式(6)の上限以上とならないように、第1レンズL1と第2レンズL2との合成屈折力を維持することにより、全系の屈折力に対して第1レンズL1と第2レンズL2との合成屈折力が強くなりすぎず、特に球面収差および軸上色収差を良好に補正することができる。この効果をより高めるために、条件式(6-1)を満足することがより好ましい。
 0.8<f/f12<1   (6-1)
 また、第1レンズL1の焦点距離f1および全系の焦点距離fは、以下の条件式(7)を満足することが好ましい。
 0.8<f/f1<2.5    (7)
 条件式(7)は、第1レンズL1の焦点距離f1に対する全系の焦点距離fの比の好ましい数値範囲を規定するものである。条件式(7)の下限以下とならないように、第1レンズL1の屈折力を確保することにより、全系の屈折力に対して第1レンズL1の正の屈折力が弱くなりすぎず、好適に全長を短縮化することできる。条件式(7)の上限以上とならないように、第1レンズL1の屈折力を維持することにより、全系の屈折力に対して第1レンズL1の正の屈折力が強くなりすぎず、特に球面収差が良好に補正できる。この効果をより高めるために、条件式(7-1)を満足することがより好ましく、条件式(7-2)を満足することがさらに好ましい。
 1<f/f1<2       (7-1)
 1.4<f/f1<1.8   (7-2)
 また、第5レンズL5の焦点距離f5および全系の焦点距離fは、以下の条件式(8)を満足することが好ましい。
 -2.5<f/f5<-1.2    (8)
 条件式(8)は、第5レンズL5の焦点距離f5に対する全系の焦点距離fの比の好ましい数値範囲を規定するものである。条件式(8)の下限以下とならないように、第5レンズL5の屈折力を維持することにより、全系の正の屈折力に対して第5レンズL5の屈折力が強くなりすぎず、特に中間画角において、光学系を通過する光線の結像面(撮像素子)への入射角が大きくなるのを抑制することができる。条件式(8)の上限以上とならないように、第5レンズL5の屈折力を確保することにより、全系の屈折力に対して第5レンズL5の屈折力が弱くなりすぎず、像面湾曲を良好に補正しつつ、好適に全長の短縮化を実現することができる。この効果をより高めるために、条件式(8-1)を満足することがより好ましい。
 -2<f/f5<-1.4    (8-1)
 また、第2レンズL2の焦点距離f2および全系の焦点距離fは、以下の条件式(9)を満足することが好ましい。
 -2.5<f/f2<-0.7    (9)
 条件式(9)は、第2レンズL2の焦点距離f2に対する全系の焦点距離fの比の好ましい数値範囲を規定するものである。条件式(9)の下限以下とならないように、第2レンズL2の屈折力を維持することにより、全系の屈折力に対して第2レンズL2の屈折力が強くなりすぎず、好適に全長を短縮化することできる。条件式(9)の上限以上とならないように、第2レンズL2の屈折力を確保することにより、全系の屈折力に対して第2レンズL2の屈折力が弱くなりすぎず、特に軸上色収差を良好に補正することができる。この効果をより高めるために、条件式(9-1)を満足することがより好ましい。
 -1.3<f/f2<-0.8    (9-1)
 次に、図2~図6を参照しながら、本発明の第2から第6の実施形態に係る撮像レンズについて詳細に説明する。図1~図6に示す第1から第6の実施形態に係る撮像レンズは、第1レンズL1から第5レンズL5のすべての面が非球面形状とされている。また、本発明の第2から第6の実施形態に係る撮像レンズは、第1の実施形態と同様に、物体側から順に、正の屈折力を有し、物体側に凸面を向けた形状である第1レンズL1と、両凹形状である第2レンズL2と、両凸形状である第3レンズL3と、正の屈折力を有する第4レンズL4と、負の屈折力を有し、像側に凹面を向けた形状であり、像側の面に少なくとも1つの変曲点を有する第5レンズL5とから構成される実質的に5個のレンズから構成される。このため、以下の第2から第6の実施形態においては、各レンズ群を構成する各レンズの他の詳細な構成についてのみ説明する。また、第1から第6の実施形態の間で互いに共通する構成の作用効果はそれぞれ同じ作用効果を有するため、実施形態の順番が早いものについて構成およびその作用効果を説明し、その他の実施形態の共通する構成およびその作用効果の重複説明を省略する。
 図2、図3および図6に示す第2、第3および第6の実施形態に係る撮像レンズLは、第1の実施形態と第1レンズL1から第5レンズL5のレンズの構成を共通としており、これらのレンズの各構成によれば第1の実施形態のそれぞれ対応する構成と同じ作用効果が得られる。
 図4および図5に示す第4および第5の実施形態に係る撮像レンズLは、第1レンズL1が物体側に凸面を向けたメニスカス形状を有するように構成し、第1レンズL1が物体側に凸面を向けたメニスカス形状を有することを除いて、第1の実施形態と第1レンズL1から第5レンズL5の構成を共通としている。第1レンズL1を物体側に凸面を向けたメニスカス形状を有するものとすることで、第1レンズL1の後側主点位置を物体側に寄せやすくなり、全長をより好適に短縮化できる。また、第4および第5の実施形態において、第1の実施形態と共通する第1レンズL1から第5レンズL5の各構成によって第1の実施形態のそれぞれ対応する構成と同じ作用効果が得られる。
なお、第4から第6の実施形態に係る撮像レンズは、条件式(1-2)の上限を満足しないものとなっている。
 以上説明したように、本発明の実施形態に係る撮像レンズによれば、全体として5枚というレンズ構成において、各レンズ要素の構成を最適化したので、全長を短縮化しつつ、広画角化を図り、かつ高解像性能を有するレンズ系を実現できる。
 また、適宜好ましい条件を満足することで、より高い結像性能を実現できる。また、本実施形態に係る撮像装置によれば、本実施形態に係る高性能の撮像レンズによって形成された光学像に応じた撮像信号を出力するようにしたので、中心画角から周辺画角まで高解像の撮影画像を得ることができる。
 次に、本発明の実施形態に係る撮像レンズの具体的な数値実施例について説明する。以下では、複数の数値実施例をまとめて説明する。
 後掲の表1および表2は、図1に示した撮像レンズの構成に対応する具体的なレンズデータを示している。特に表1にはその基本的なレンズデータを示し、表2には非球面に関するデータを示す。表1に示したレンズデータにおける面番号Siの欄には、実施例1に係る撮像レンズについて、最も物体側のレンズ要素の面を1番目(開口絞りStを1番目)として、像側に向かうに従い順次増加するようにして符号を付したi番目の面の番号を示している。曲率半径Riの欄には、図1において付した符号Riに対応させて、物体側からi番目の面の曲率半径の値(mm)を示す。面間隔Diの欄についても、同様に物体側からi番目の面Siとi+1番目の面Si+1との光軸上の間隔(mm)を示す。Ndjの欄には、物体側からj番目の光学要素のd線(587.56nm)に対する屈折率の値を示す。νdjの欄には、物体側からj番目の光学要素のd線に対するアッベ数の値を示す。なお、各レンズデータには、諸データとして、全系の焦点距離f(mm)とバックフォーカスBf(mm)とレンズ全長TL(mm)の値をそれぞれ示す。なお、このバックフォーカスBfは空気換算した値を表しており、レンズ全長TLにおいてバックフォーカス分は同様に空気換算した値を用いている。
 この実施例1に係る撮像レンズは、第1レンズL1から第5レンズL5の両面がすべて非球面形状となっている。表1の基本レンズデータには、これらの非球面の曲率半径として、光軸近傍の曲率半径(近軸曲率半径)の数値を示している。
 表2には実施例1の撮像レンズにおける非球面データを示す。非球面データとして示した数値において、記号“E”は、その次に続く数値が10を底とした“べき指数”であることを示し、その10を底とした指数関数で表される数値が“E”の前の数値に乗算されることを示す。例えば、「1.0E-02」であれば、「1.0×10-」であることを示す。
 非球面データとしては、以下の式(A)によって表される非球面形状の式における各係数Ai,KAの値を記す。Zは、より詳しくは、光軸から高さhの位置にある非球面上の点から、非球面の頂点の接平面(光軸に垂直な平面)に下ろした垂線の長さ(mm)を示す。
 Z=C・h/{1+(1-KA・C・h}+ΣAi・h ……(A)
ただし、
Z:非球面の深さ(mm)
h:光軸からレンズ面までの距離(高さ)(mm)
C:近軸曲率=1/R
(R:近軸曲率半径)
Ai:第i次(iは3以上の整数)の非球面係数
KA:非球面係数
とする。
 以上の実施例1の撮像レンズと同様にして、図2~図6に示した撮像レンズの構成に対応する具体的なレンズデータを実施例2から実施例6として、表3~表12に示す。これらの実施例1~6に係る撮像レンズでは、第1レンズL1から第5レンズL5の両面がすべて非球面形状となっている。
 図8(A)~(D)はそれぞれ、実施例1の撮像レンズにおける球面収差、非点収差、ディストーション(歪曲収差)、および倍率色収差(倍率の色収差)図を示している。球面収差、非点収差(像面湾曲)、ディストーション(歪曲収差)を表す各収差図には、d線(波長587.56nm)を基準波長とした収差を示す。球面収差図、倍率色収差図には、g線(波長435.83nm)、F線(波長486.1nm)、およびC線(波長656.27nm)についての収差も示す。非点収差図において、実線はサジタル方向(S)、破線はタンジェンシャル方向(T)の収差を示す。また、Fno.はFナンバーを、ωは半画角をそれぞれ示す。
 同様に、実施例2から実施例6の撮像レンズについての諸収差を図9(A)~(D)から図13(A)~(D)に示す。
 また、表13には、本発明に係る各条件式(1)~(9)に関する値を、各実施例1~6についてそれぞれまとめたものを示す。
 以上の各数値データおよび各収差図から分かるように、各実施例について、全長を短縮化しながらも高い結像性能が実現されている。
 なお、本発明の撮像レンズには、実施形態および各実施例に限定されず種々の変形実施が可能である。例えば、各レンズ成分の曲率半径、面間隔、屈折率、アッベ数、非球面係数の値などは、各数値実施例で示した値に限定されず、他の値をとり得る。
 また、各実施例では、すべて固定焦点で使用する前提での記載とされているが、フォーカス調整可能な構成とすることも可能である。例えばレンズ系全体を繰り出したり、一部のレンズを光軸上で動かしてオートフォーカス可能な構成とすることも可能である。
Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002

Figure JPOXMLDOC01-appb-T000003

Figure JPOXMLDOC01-appb-T000004

Figure JPOXMLDOC01-appb-T000005

Figure JPOXMLDOC01-appb-T000006

Figure JPOXMLDOC01-appb-T000007

Figure JPOXMLDOC01-appb-T000008

Figure JPOXMLDOC01-appb-T000009

Figure JPOXMLDOC01-appb-T000010

Figure JPOXMLDOC01-appb-T000011

Figure JPOXMLDOC01-appb-T000012

Figure JPOXMLDOC01-appb-T000013

Claims (20)

  1.  物体側から順に、
     正の屈折力を有し、物体側に凸面を向けた形状である第1レンズと、
     両凹形状である第2レンズと、
     両凸形状である第3レンズと、
     正の屈折力を有する第4レンズと、
     負の屈折力を有し、像側に凹面を向けた形状であり、像側の面に少なくとも1つの変曲点を有する第5レンズと、
     から構成される実質的に5個のレンズからなり、下記条件式(1)を満足することを特徴とする撮像レンズ。
     0.13<d45/f1234<0.3    (1)
    ただし、
    d45:前記第4レンズと前記第5レンズとの光軸上の間隔
    f1234:前記第1レンズから前記第4レンズの合成焦点距離
    とする。
  2.  さらに以下の条件式を満足する請求項1記載の撮像レンズ。
     0.11<d45/f<0.3    (2)
    ただし、
    d45:前記第4レンズと前記第5レンズとの光軸上の間隔
    f:全系の焦点距離
    とする。
  3.  さらに以下の条件式を満足する請求項1または2記載の撮像レンズ。
     0<(R2f+R2r)/(R2f-R2r)<0.5    (3)
    ただし、
    R2f:前記第2レンズの物体側の面の近軸曲率半径
    R2r:前記第2レンズの像側の面の近軸曲率半径
    |R2f|>|R2r|
    とする。
  4.  さらに以下の条件式を満足する請求項1から3のいずれか1項記載の撮像レンズ。
     -1<(R5f+R5r)/(R5f-R5r)<0.08    (4)
    ただし、
    R5f:前記第5レンズの物体側の面の近軸曲率半径
    R5r:前記第5レンズの像側の面の近軸曲率半径
    とする。
  5.  さらに以下の条件式を満足する請求項1から4のいずれか1項記載の撮像レンズ。
     0.5<f・tanω/R5r<10    (5)
    ただし、
    f:全系の焦点距離
    ω:半画角
    R5r:前記第5レンズの像側の面の曲率半径
    とする。
  6.  さらに以下の条件式を満足する請求項1から5のいずれか1項記載の撮像レンズ。
     0.7<f/f12<1.2    (6)
    ただし、
    f:全系の焦点距離
    f12:前記第1レンズと前記第2レンズとの合成焦点距離
    とする。
  7.  さらに以下の条件式を満足する請求項1から6のいずれか1項記載の撮像レンズ。
     0.8<f/f1<2.5    (7)
    ただし、
    f:全系の焦点距離
    f1:前記第1レンズの焦点距離
    とする。
  8.  さらに以下の条件式を満足する請求項1から7のいずれか1項記載の撮像レンズ。
     -2.5<f/f5<-1.2    (8)
    ただし、
    f:全系の焦点距離
    f5:前記第5レンズの焦点距離
    とする。
  9.  さらに以下の条件式を満足する請求項1から8のいずれか1項記載の撮像レンズ。
     -2.5<f/f2<-0.7    (9)
    ただし、
    f:全系の焦点距離
    f2:前記第2レンズの焦点距離
    とする。
  10.  前記第2レンズの物体側の面より物体側に配置された開口絞りをさらに備えた請求項1から9のいずれか1項記載の撮像レンズ。
  11.  さらに以下の条件式を満足する請求項1から10のいずれか1項記載の撮像レンズ。
     0.14<d45/f1234<0.25    (1-1)
    ただし、
    d45:前記第4レンズと前記第5レンズとの光軸上の間隔
    f1234:前記第1レンズから前記第4レンズの合成焦点距離
    とする。
  12.  さらに以下の条件式を満足する請求項1から11のいずれか1項記載の撮像レンズ。
     0.11<d45/f<0.25    (2-1)
    ただし、
    d45:前記第4レンズと前記第5レンズとの光軸上の間隔
    f:全系の焦点距離
    とする。
  13.  さらに以下の条件式を満足する請求項1から12のいずれか1項記載の撮像レンズ。
     0.1<(R2f+R2r)/(R2f-R2r)<0.35    (3-1)
    ただし、
    R2f:前記第2レンズの物体側の面の近軸曲率半径
    R2r:前記第2レンズの像側の面の近軸曲率半径
    |R2f|>|R2r|
    とする。
  14.  さらに以下の条件式を満足する請求項1から13のいずれか1項記載の撮像レンズ。
     -0.5<(R5f+R5r)/(R5f-R5r)<0.07    (4-1)
    ただし、
    R5f:前記第5レンズの物体側の面の近軸曲率半径
    R5r:前記第5レンズの像側の面の近軸曲率半径
    とする。
  15.  さらに以下の条件式を満足する請求項1から14のいずれか1項記載の撮像レンズ。
     0.7<f・tanω/R5r<3    (5―1)
    ただし、
    f:全系の焦点距離
    ω:半画角
    R5r:前記第5レンズの像側の面の曲率半径
    とする。
  16.  さらに以下の条件式を満足する請求項1から15のいずれか1項記載の撮像レンズ。
     0.8<f/f12<1    (6-1)
    ただし、
    f:全系の焦点距離
    f12:前記第1レンズと前記第2レンズの合成焦点距離
    とする。
  17.  さらに以下の条件式を満足する請求項1から16のいずれか1項記載の撮像レンズ。
     1<f/f1<2    (7-1)
    ただし、
    f:全系の焦点距離
    f1:第1レンズの焦点距離
    とする。
  18.  さらに以下の条件式を満足する請求項1から17のいずれか1項記載の撮像レンズ。
     -2<f/f5<-1.4    (8-1)
    ただし、
    f:全系の焦点距離
    f5:前記第5レンズの焦点距離
    とする。
  19.  さらに以下の条件式を満足する請求項1から18のいずれか1項記載の撮像レンズ。
     -1.3<f/f2<-0.8    (9-1)
    ただし、
    f:全系の焦点距離
    f2:前記第2レンズの焦点距離
    とする。
  20.  請求項1に記載の撮像レンズを有する撮像装置。
PCT/JP2013/007604 2013-03-29 2013-12-26 撮像レンズおよび撮像レンズを備えた撮像装置 WO2014155460A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015507694A JPWO2014155460A1 (ja) 2013-03-29 2013-12-26 撮像レンズおよび撮像レンズを備えた撮像装置
US14/850,927 US20160004034A1 (en) 2013-03-29 2015-09-10 Imaging lens and imaging apparatus provided with the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-072283 2013-03-29
JP2013072283 2013-03-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/850,927 Continuation US20160004034A1 (en) 2013-03-29 2015-09-10 Imaging lens and imaging apparatus provided with the same

Publications (1)

Publication Number Publication Date
WO2014155460A1 true WO2014155460A1 (ja) 2014-10-02

Family

ID=51622559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/007604 WO2014155460A1 (ja) 2013-03-29 2013-12-26 撮像レンズおよび撮像レンズを備えた撮像装置

Country Status (4)

Country Link
US (1) US20160004034A1 (ja)
JP (1) JPWO2014155460A1 (ja)
TW (1) TWM484110U (ja)
WO (1) WO2014155460A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5922853B1 (ja) * 2016-01-27 2016-05-24 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. 撮像レンズ
US9411133B1 (en) 2015-02-02 2016-08-09 Largan Precision Co., Ltd. Imaging lens system, image capturing device and electronic device
TWI617829B (zh) * 2017-06-05 2018-03-11 玉晶光電股份有限公司 光學成像鏡頭
CN110609375A (zh) * 2019-09-25 2019-12-24 浙江舜宇光学有限公司 光学成像镜头
TWI750615B (zh) * 2020-01-16 2021-12-21 大立光電股份有限公司 取像用光學透鏡組、取像裝置及電子裝置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014155465A1 (ja) * 2013-03-29 2014-10-02 富士フイルム株式会社 撮像レンズおよび撮像レンズを備えた撮像装置
TWI545365B (zh) 2015-02-17 2016-08-11 大立光電股份有限公司 取像鏡頭組、取像裝置及電子裝置
KR101813329B1 (ko) * 2015-10-13 2017-12-28 삼성전기주식회사 촬상 광학계
CN106154494B (zh) * 2016-03-18 2019-03-22 玉晶光电(厦门)有限公司 光学镜片组
JP6377096B2 (ja) * 2016-04-04 2018-08-22 カンタツ株式会社 撮像レンズ
CN106526793B (zh) * 2016-08-29 2019-01-11 玉晶光电(厦门)有限公司 光学镜片组
TWI594037B (zh) * 2016-11-24 2017-08-01 大立光電股份有限公司 影像擷取鏡頭組、取像裝置及電子裝置
WO2019019530A1 (zh) * 2017-07-25 2019-01-31 浙江舜宇光学有限公司 光学成像镜头
CN107656358B (zh) * 2017-11-08 2022-10-28 浙江舜宇光学有限公司 光学镜头
CN108761726A (zh) * 2018-06-11 2018-11-06 福建福光股份有限公司 一种大通光机器视觉光学系统
TWI674449B (zh) 2018-09-26 2019-10-11 大立光電股份有限公司 攝像光學系統、取像裝置及電子裝置
CN112835174B (zh) * 2019-11-22 2023-11-07 江西欧菲光学有限公司 光学成像系统、取像装置及电子设备
CN111352220B (zh) * 2020-05-26 2020-08-25 瑞声通讯科技(常州)有限公司 摄像光学镜头

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5346729A (en) * 1976-10-08 1978-04-26 Minolta Camera Co Ltd Lens system
JPS61188510A (ja) * 1985-02-18 1986-08-22 Canon Inc 大口径の撮影レンズ
JPS62251710A (ja) * 1986-04-25 1987-11-02 Olympus Optical Co Ltd コンパクトなズ−ムレンズ
JPH02167516A (ja) * 1988-12-21 1990-06-27 Minolta Camera Co Ltd マイクロフィルム投影レンズ系
JPH05113537A (ja) * 1991-10-22 1993-05-07 Olympus Optical Co Ltd プラスチツクを用いたズームレンズ
JPH10123418A (ja) * 1996-10-17 1998-05-15 Ricoh Co Ltd 前絞り2群ズームレンズ
JP2010262269A (ja) * 2009-04-07 2010-11-18 Fujifilm Corp 撮像レンズおよび撮像装置、ならびに携帯端末機器
JP2011227362A (ja) * 2010-04-22 2011-11-10 Konica Minolta Opto Inc 像シフト可能な撮像レンズ,撮像光学装置及びデジタル機器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI435135B (zh) * 2010-10-06 2014-04-21 Largan Precision Co Ltd 光學透鏡系統
TWI429979B (zh) * 2011-04-13 2014-03-11 Largan Precision Co Ltd 光學影像透鏡組
TWI436089B (zh) * 2011-08-04 2014-05-01 Largan Precision Co Ltd 影像拾取光學透鏡組

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5346729A (en) * 1976-10-08 1978-04-26 Minolta Camera Co Ltd Lens system
JPS61188510A (ja) * 1985-02-18 1986-08-22 Canon Inc 大口径の撮影レンズ
JPS62251710A (ja) * 1986-04-25 1987-11-02 Olympus Optical Co Ltd コンパクトなズ−ムレンズ
JPH02167516A (ja) * 1988-12-21 1990-06-27 Minolta Camera Co Ltd マイクロフィルム投影レンズ系
JPH05113537A (ja) * 1991-10-22 1993-05-07 Olympus Optical Co Ltd プラスチツクを用いたズームレンズ
JPH10123418A (ja) * 1996-10-17 1998-05-15 Ricoh Co Ltd 前絞り2群ズームレンズ
JP2010262269A (ja) * 2009-04-07 2010-11-18 Fujifilm Corp 撮像レンズおよび撮像装置、ならびに携帯端末機器
JP2011227362A (ja) * 2010-04-22 2011-11-10 Konica Minolta Opto Inc 像シフト可能な撮像レンズ,撮像光学装置及びデジタル機器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9411133B1 (en) 2015-02-02 2016-08-09 Largan Precision Co., Ltd. Imaging lens system, image capturing device and electronic device
JP5922853B1 (ja) * 2016-01-27 2016-05-24 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. 撮像レンズ
TWI617829B (zh) * 2017-06-05 2018-03-11 玉晶光電股份有限公司 光學成像鏡頭
CN110609375A (zh) * 2019-09-25 2019-12-24 浙江舜宇光学有限公司 光学成像镜头
TWI750615B (zh) * 2020-01-16 2021-12-21 大立光電股份有限公司 取像用光學透鏡組、取像裝置及電子裝置

Also Published As

Publication number Publication date
TWM484110U (zh) 2014-08-11
JPWO2014155460A1 (ja) 2017-02-16
US20160004034A1 (en) 2016-01-07

Similar Documents

Publication Publication Date Title
JP5886230B2 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP5698872B2 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP6000179B2 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP5687390B2 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP5735712B2 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
WO2014155460A1 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP5911819B2 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP5937035B2 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP5785324B2 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP5937036B2 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
WO2013145547A1 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
WO2013114812A1 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
WO2013099255A1 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP2014115456A (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP6150317B2 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP2014240918A (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP2014209163A (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP5727679B2 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
WO2014103198A1 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
WO2014155459A1 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP5722507B2 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
WO2014103197A1 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
WO2014155465A1 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
WO2014103199A1 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
WO2014034027A1 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13879942

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015507694

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13879942

Country of ref document: EP

Kind code of ref document: A1