WO2013145547A1 - 撮像レンズおよび撮像レンズを備えた撮像装置 - Google Patents
撮像レンズおよび撮像レンズを備えた撮像装置 Download PDFInfo
- Publication number
- WO2013145547A1 WO2013145547A1 PCT/JP2013/001107 JP2013001107W WO2013145547A1 WO 2013145547 A1 WO2013145547 A1 WO 2013145547A1 JP 2013001107 W JP2013001107 W JP 2013001107W WO 2013145547 A1 WO2013145547 A1 WO 2013145547A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens
- imaging
- imaging lens
- conditional expression
- refractive power
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0045—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/18—Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
Definitions
- the present invention relates to a fixed-focus imaging lens that forms an optical image of a subject on an imaging device such as a CCD (Charge-Coupled Device) or CMOS (Complementary-Metal-Oxide-Semiconductor), and a digital that performs imaging by mounting the imaging lens.
- the present invention relates to an imaging apparatus such as a still camera, a camera-equipped mobile phone, an information portable terminal (PDA: Personal Digital Assistance), a smartphone, and a portable game machine.
- the six-lens imaging lens described in Patent Document 1 is required to further reduce the overall length.
- the ratio of the total length of the lens described in Patent Document 2 is large with respect to the size of the image sensor, and the total length becomes longer when applied in proportion to a relatively large image sensor. It is required to do.
- the present invention has been made in view of such problems, and an object of the present invention is to provide an imaging that can achieve high imaging performance from a central field angle to a peripheral field angle while reducing the overall length and increasing the image size.
- An object of the present invention is to provide a lens and an imaging apparatus that can obtain a high-resolution captured image by mounting the imaging lens.
- the imaging lens of the present invention has, in order from the object side, a first lens having a positive refractive power and a convex surface facing the object side, a negative refractive power, and a concave surface facing the image side.
- a fifth lens having a concave surface on the side, a negative refracting power, and an aspherical surface in which the image side surface is concave on the image side near the optical axis and convex on the periphery. It is characterized by comprising substantially 6 lenses composed of 6 lenses.
- the configuration of each lens element is optimized in a lens configuration of 6 lenses as a whole, and particularly the shapes of the first lens, the third lens, the fifth lens, and the sixth lens are preferably configured. Therefore, it is possible to realize a lens system having high resolution performance while shortening the overall length.
- substantially consists of six lenses means that the imaging lens of the present invention has substantially no power other than the six lenses, a stop, It is meant to include an optical element other than a lens such as a cover glass, a lens flange, a lens barrel, an image sensor, a mechanism portion such as a camera shake correction mechanism, and the like.
- the optical performance can be further improved by satisfying the following preferable configuration.
- the third lens is a biconvex lens.
- the aperture stop is preferably disposed on the object side of the object side surface of the second lens, and is disposed on the object side of the object side surface of the first lens. Is more preferable.
- the fifth lens has an aspherical shape in which the image side surface has a concave shape on the image side in the vicinity of the optical axis and a convex shape in the peripheral portion.
- the imaging lens of the present invention preferably satisfies any of the following conditional expressions (1) to (4-2).
- one satisfying any one of conditional expressions (1) to (4-2) may be satisfied, or any combination may be satisfied.
- ⁇ d5 ⁇ 35 (1) ⁇ d5 ⁇ 33 (1-1) ⁇ d5 ⁇ 31 (1-2) ⁇ d2 ⁇ 35 (2) 0.9 ⁇ f3 / f1 (3) 1.0 ⁇ f3 / f1 ⁇ 10 (3-1) 1.0 ⁇ f3 / f1 ⁇ 8 (3-2) 1.0 ⁇ f3 / f1 ⁇ 5 (3-3) 0.4 ⁇ f6 / f2 ⁇ 1.3 (4) 0.5 ⁇ f6 / f2 ⁇ 1.2 (4-1) 0.55 ⁇ f6 / f2 ⁇ 1.1 (4-2) However, f1: focal length of the first lens, f2: focal length of the second lens, f3: focal length of the third lens, f6: Focal length of the sixth lens ⁇
- An imaging apparatus includes the imaging lens of the present invention.
- a high-resolution imaging signal can be obtained based on the high-resolution optical image obtained by the imaging lens of the present invention.
- each lens element is optimized in the lens configuration of 6 lenses as a whole, and particularly the shapes of the first lens and the sixth lens are suitably configured, so that the overall length is shortened. It is possible to realize a lens system having a large image size and a high imaging performance from the central field angle to the peripheral field angle.
- an imaging signal corresponding to the optical image formed by the imaging lens having high imaging performance of the present invention is output, a high-resolution captured image can be obtained. Can do.
- FIG. 1 is a lens cross-sectional view illustrating a first configuration example of an imaging lens according to an embodiment of the present invention and corresponding to Example 1.
- FIG. FIG. 2 is a lens cross-sectional view illustrating a second configuration example of an imaging lens according to an embodiment of the present invention and corresponding to Example 2; 3 is a lens cross-sectional view illustrating a third configuration example of an imaging lens according to an embodiment of the present invention and corresponding to Example 3.
- FIG. 4 is a lens cross-sectional view illustrating a fourth configuration example of an imaging lens according to an embodiment of the present invention and corresponding to Example 4;
- FIG. 5 is a lens cross-sectional view illustrating a fifth configuration example of an imaging lens according to an embodiment of the present invention and corresponding to Example 5.
- FIG. 1 is a lens cross-sectional view illustrating a first configuration example of an imaging lens according to an embodiment of the present invention and corresponding to Example 1.
- FIG. FIG. 2 is a lens cross-sectional view illustrating a second configuration
- FIG. 6 is a lens cross-sectional view illustrating a sixth configuration example of an imaging lens according to an embodiment of the present invention and corresponding to Example 6.
- FIG. 7 is a lens cross-sectional view illustrating a seventh configuration example of an imaging lens according to an embodiment of the present invention and corresponding to Example 7.
- FIG. 8 shows an eighth configuration example of the imaging lens according to an embodiment of the present invention, and is a lens cross-sectional view corresponding to Example 8.
- FIG. 9 is a lens cross-sectional view illustrating a ninth configuration example of an imaging lens according to an embodiment of the present invention and corresponding to Example 9.
- FIG. 10 is a lens cross-sectional view illustrating a tenth configuration example of an imaging lens according to an embodiment of the present invention and corresponding to Example 10.
- FIG. 11 shows an eleventh configuration example of the imaging lens according to the embodiment of the invention, and is a lens cross-sectional view corresponding to Example 11.
- FIG. 12 is a lens cross-sectional view illustrating a twelfth configuration example of an imaging lens according to an embodiment of the present invention and corresponding to Example 12.
- FIG. FIG. 4 is an aberration diagram showing various aberrations of the imaging lens according to Example 1 of the present invention, in which (A) is spherical aberration, (B) is astigmatism (field curvature), (C) is distortion, and (D). Indicates lateral chromatic aberration.
- FIG. 1 It is an aberration diagram which shows the various aberrations of the imaging lens which concerns on Example 2 of this invention, (A) is spherical aberration, (B) is astigmatism (field curvature), (C) is distortion aberration, (D). Indicates lateral chromatic aberration. It is an aberration diagram which shows the various aberrations of the imaging lens which concerns on Example 3 of this invention, (A) is spherical aberration, (B) is astigmatism (field curvature), (C) is a distortion aberration, (D). Indicates lateral chromatic aberration.
- FIG. 4 It is an aberration diagram which shows the various aberrations of the imaging lens which concerns on Example 4 of this invention, (A) is spherical aberration, (B) is astigmatism (field curvature), (C) is distortion aberration, (D). Indicates lateral chromatic aberration. It is an aberration diagram which shows the various aberrations of the imaging lens which concerns on Example 5 of this invention, (A) is spherical aberration, (B) is astigmatism (field curvature), (C) is distortion aberration, (D). Indicates lateral chromatic aberration.
- FIG. 6 It is an aberration diagram which shows the various aberrations of the imaging lens which concerns on Example 6 of this invention, (A) is spherical aberration, (B) is astigmatism (field curvature), (C) is distortion aberration, (D). Indicates lateral chromatic aberration. It is an aberration diagram which shows the various aberrations of the imaging lens which concerns on Example 7 of this invention, (A) is spherical aberration, (B) is astigmatism (field curvature), (C) is distortion aberration, (D). Indicates lateral chromatic aberration.
- FIG. 8 It is an aberration diagram which shows the various aberrations of the imaging lens which concerns on Example 8 of this invention, (A) is spherical aberration, (B) is astigmatism (field curvature), (C) is distortion aberration, (D). Indicates lateral chromatic aberration. It is an aberration diagram showing various aberrations of the imaging lens according to Example 9 of the present invention, (A) is spherical aberration, (B) is astigmatism (field curvature), (C) is distortion, (D) Indicates lateral chromatic aberration.
- FIG. 10 It is an aberration diagram which shows the various aberrations of the imaging lens which concerns on Example 10 of this invention, (A) is spherical aberration, (B) is astigmatism (field curvature), (C) is distortion aberration, (D). Indicates lateral chromatic aberration. It is an aberration diagram which shows the various aberrations of the imaging lens which concerns on Example 11 of this invention, (A) is spherical aberration, (B) is astigmatism (field curvature), (C) is distortion aberration, (D). Indicates lateral chromatic aberration.
- FIG. 12 It is an aberration diagram which shows the various aberrations of the imaging lens which concerns on Example 12 of this invention, (A) is spherical aberration, (B) is astigmatism (field curvature), (C) is a distortion aberration, (D). Indicates lateral chromatic aberration.
- FIG. 1 shows a first configuration example of an imaging lens according to an embodiment of the present invention.
- This configuration example corresponds to the lens configuration of a first numerical example (Tables 1 and 13) described later.
- FIGS cross-sectional configurations of second to twelfth configuration examples corresponding to lens configurations of second to twelfth numerical examples (Tables 2 to 12 and Tables 14 to 24) described later are shown in FIGS.
- the symbol Ri is the curvature of the i-th surface that is numbered sequentially so as to increase toward the image side (imaging side) with the surface of the lens element closest to the object as the first. Indicates the radius.
- the symbol Di indicates the surface interval on the optical axis Z1 between the i-th surface and the i + 1-th surface. Since the basic configuration is the same for each configuration example, the configuration example of the imaging lens shown in FIG. 1 will be basically described below, and the configuration examples of FIGS. explain.
- the imaging lens L includes various imaging devices using an imaging device such as a CCD or a CMOS, particularly a relatively small portable terminal device such as a digital still camera, a mobile phone with a camera, a smartphone, and It is suitable for use in PDAs and the like.
- the imaging lens L includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens in order from the object side along the optical axis Z1. And a lens L6.
- FIG. 25 shows an overview of a mobile phone terminal that is the imaging device 1 according to the embodiment of the present invention.
- An imaging device 1 according to an embodiment of the present invention includes an imaging lens L according to the present embodiment and an imaging element 100 such as a CCD that outputs an imaging signal corresponding to an optical image formed by the imaging lens L (see FIG. 1).
- the image sensor 100 is disposed on the imaging surface (image surface R16) of the imaging lens L.
- FIG. 26 shows an overview of a smartphone that is the imaging device 501 according to the embodiment of the present invention.
- An image pickup apparatus 501 according to the embodiment of the present invention includes an image pickup lens L according to this embodiment and an image pickup device 100 such as a CCD that outputs an image pickup signal corresponding to an optical image formed by the image pickup lens L (see FIG. 1)).
- the image sensor 100 is disposed on the imaging surface (imaging surface) of the imaging lens L.
- Various optical members CG may be arranged between the sixth lens L6 and the image sensor 100 according to the configuration on the camera side where the lens is mounted.
- a flat optical member such as a cover glass for protecting the imaging surface or an infrared cut filter may be disposed.
- a flat cover glass provided with a coating having a filter effect such as an infrared cut filter or an ND filter may be used.
- the sixth lens L6 may be coated to have the same effect as the optical member CG. Thereby, the number of parts can be reduced and the total length can be shortened.
- the imaging lens L preferably further includes an aperture stop St disposed on the object side of the object side surface of the second lens L2.
- the aperture stop St is arranged on the object side of the object side surface of the second lens, so that the light beam passing through the optical system (imaging element), particularly in the periphery of the imaging region. An increase in the incident angle can be suppressed.
- the aperture stop St is disposed closer to the object side than the object side surface of the first lens in the optical axis direction.
- the aperture stop St is “arranged on the object side from the object side surface of the second lens” means that the position of the aperture stop in the optical axis direction is between the axial marginal ray and the object side surface of the second lens L2. It means that it is at the same position as the intersection or on the object side, and the aperture stop St is “located on the object side from the object side surface of the first lens” means that the position of the aperture stop in the optical axis direction is the axis It means that it is at the same position as the intersection of the upper marginal ray and the object side surface of the first lens L1 or closer to the object side.
- the lenses of the first to twelfth configuration examples FIGS.
- the aperture stop St is disposed closer to the object side than the object side surface of the first lens L1.
- the aperture stop St is disposed on the image side with respect to the surface vertex of the first lens L1, but the present invention is not limited to this, and the aperture stop St is disposed on the object side with respect to the surface vertex of the first lens L1. It may be arranged.
- the aperture stop St is disposed on the object side with respect to the surface vertex of the first lens L1
- the amount of peripheral light is secured more than when the aperture stop St is disposed on the image side with respect to the surface vertex of the first lens L1.
- it is somewhat disadvantageous from this viewpoint it is possible to more suitably suppress an increase in the incident angle of the light beam passing through the optical system to the imaging surface (imaging device) in the peripheral portion of the imaging region.
- the first lens L1 has a positive refractive power in the vicinity of the optical axis.
- the first lens L1 has a convex surface facing the object side in the vicinity of the optical axis.
- the most object-side surface of the lens system is convex toward the object side. It can be located on the object side, and the overall length can be suitably shortened.
- the second lens L2 has a negative refractive power in the vicinity of the optical axis.
- the second lens L2 has a concave surface facing the image side in the vicinity of the optical axis.
- the third lens L3 has a positive refractive power in the vicinity of the optical axis.
- the third lens L3 has a convex surface facing the object side in the vicinity of the optical axis. Since the third lens L3 has a convex surface facing the object side in the vicinity of the optical axis, the second lens L2 and the third lens L3 have a shape corresponding to the second lens L2 with the concave surface facing the image side.
- the distance on the optical axis can be shortened, and the overall length can be further shortened. It is further preferable that the third lens L3 has a biconvex shape in the vicinity of the optical axis.
- the image side surface of the third lens L3 convex toward the image side, the refraction from the first lens L1 to the third lens L3 is suppressed while suppressing the influence on the aberration of the light beam passing through the peripheral portion of the optical system.
- the force can be made stronger, and the overall length can be shortened more suitably.
- the fourth lens L4 has a positive refractive power in the vicinity of the optical axis.
- the fifth lens L5 has a negative refractive power in the vicinity of the optical axis.
- the fifth lens L5 has a concave surface facing the image side in the vicinity of the optical axis.
- the fifth lens L5 is configured to have a concave surface facing the image side in the vicinity of the optical axis, so that the overall length can be suitably shortened.
- the fifth lens L5 has an aspherical shape in which the image-side surface has a concave shape on the image side in the vicinity of the optical axis and a convex shape in the peripheral portion.
- the incident angle of the light beam passing through the optical system on the imaging surface (imaging device) is increased particularly in the peripheral part of the imaging region. It is possible to suppress the decrease in the light receiving efficiency in the peripheral portion of the imaging region while realizing a reduction in the overall length.
- the peripheral part here means a radial direction outer side from about 60% of the maximum effective radius.
- the sixth lens L6 has a negative refractive power in the vicinity of the optical axis.
- the sixth lens L6 has a concave surface facing the image side in the vicinity of the optical axis.
- the sixth lens L6 is configured to have a concave surface facing the image side in the vicinity of the optical axis, so that the overall length can be suitably shortened.
- the sixth lens L6 has an aspherical shape in which the image-side surface has a concave shape on the image side in the vicinity of the optical axis and a convex shape in the peripheral portion.
- the sixth lens L6 has an aspherical shape in which the surface on the image side is concave on the image side in the vicinity of the optical axis and has a convex shape on the periphery, so that the light passing through the optical system, particularly in the periphery of the imaging region It is possible to suppress an increase in the incident angle to the imaging surface (imaging device), and it is possible to suppress a decrease in light receiving efficiency in the peripheral portion of the imaging region while realizing a reduction in the total length.
- the peripheral part here means a radial direction outer side from about 60% of the maximum effective radius.
- the first lens L1 having a positive refractive power, the second lens L2 having a negative refractive power, and the third lens L3 having a positive refractive power constitute the main refractive power of the entire lens system.
- the overall length can be suitably shortened with respect to the pixel size, and a large image size can be realized.
- the configuration of the first lens L1 to the third lens L3 it is possible to satisfactorily correct the axial chromatic aberration and the spherical aberration.
- the fourth lens L4 is provided to increase the refractive power
- the fifth lens L5 and the sixth lens L6 having negative refractive power are adjacent to the fourth lens L4 on the image side.
- the rear principal point of the entire lens system can be positioned closer to the object side, and the overall length can be shortened satisfactorily.
- an aspherical surface for at least one surface of each of the first lens L1 to the sixth lens L6 for high performance.
- each of the lenses L1 to L6 constituting the imaging lens L is a single lens instead of a cemented lens. This is because the number of aspheric surfaces is larger than when any one of the lenses L1 to L6 is a cemented lens, so that the degree of freedom in design of each lens is increased, and the overall length can be suitably shortened.
- conditional expression (1) defines a preferable numerical range of the Abbe number ⁇ d5 with respect to the d-line of the fifth lens L5. If the upper limit of conditional expression (1) is exceeded, axial chromatic aberration tends to be undercorrected, and magnification chromatic aberration at the periphery of the imaging region tends to be over, making it difficult to perform good correction.
- conditional expression (1) the axial chromatic aberration and the lateral chromatic aberration at the periphery of the imaging region can be favorably corrected by configuring the fifth lens L5 with a highly dispersed material.
- conditional expression (1-1) it is more preferable to satisfy the following conditional expression (1-1), and it is even more preferable to satisfy the conditional expression (1-2).
- conditional expression (2) defines a preferable numerical range of the Abbe number ⁇ d2 with respect to the d-line of the second lens L2. If the upper limit of conditional expression (2) is exceeded, it will be difficult to satisfactorily correct axial chromatic aberration. For this reason, axial chromatic aberration can be satisfactorily corrected by satisfying the conditional expression (2) and configuring the second lens L2 with a high dispersion material.
- conditional expression (3) defines a preferable numerical range of the focal length f3 of the third lens L3 and the focal length f1 of the first lens L1.
- conditional expression (3) defines a preferable numerical range of the focal length f3 of the third lens L3 and the focal length f1 of the first lens L1.
- the ratio of the focal length f3 of the third lens L3 and the focal length f1 of the first lens L1 more preferably satisfies the conditional expression (3-1). If the upper limit of conditional expression (3-1) is exceeded, it will be difficult to correct curvature of field. Therefore, various aberrations can be corrected satisfactorily by satisfying the range of conditional expression (3-1). Further, by satisfying the lower limit of the conditional expression (3-1), it is possible to more suitably shorten the length of the entire lens system. In order to enhance this effect, it is more preferable to satisfy the conditional expression (3-2), and it is even more preferable to satisfy the conditional expression (3-3). 1.0 ⁇ f3 / f1 ⁇ 10 (3-1) 1.0 ⁇ f3 / f1 ⁇ 8 (3-2) 1.0 ⁇ f3 / f1 ⁇ 5 (3-3)
- conditional expression (4) defines a preferable numerical range of the focal length f6 of the sixth lens L6 and the focal length f2 of the second lens L2.
- conditional expression (4) When the upper limit of conditional expression (4) is exceeded, the refractive power of the sixth lens L6 is too weak with respect to the refractive power of the second lens L2, so correction of field curvature tends to be undercorrected. It is difficult to obtain good image performance. For this reason, by satisfying the range of conditional expression (4), it is possible to correct the field curvature well. In order to enhance this effect, it is more preferable to satisfy the conditional expression (4-1), and it is even more preferable to satisfy the conditional expression (4-2). 0.5 ⁇ f6 / f2 ⁇ 1.2 (4-1) 0.55 ⁇ f6 / f2 ⁇ 1.1 (4-2)
- the configuration of each lens element is optimized in the lens configuration of six as a whole, and in particular, the first lens L1 and the sixth lens L6. Since the shape is suitably configured, it is possible to realize a lens system having a large image size and high resolution performance while shortening the overall length.
- the imaging signal corresponding to the optical image formed by the high-performance imaging lens L according to the present embodiment is output.
- a high-resolution captured image can be obtained up to the angle of view.
- Tables 1 and 13 below show specific lens data corresponding to the configuration of the imaging lens shown in FIG.
- Table 1 shows basic lens data
- Table 13 shows data related to aspheric surfaces.
- the surface of the lens element closest to the object side is the first (aperture stop St is the first) and heads toward the image side.
- the value (mm) of the curvature radius of the i-th surface from the object side is shown in correspondence with the reference symbol Ri in FIG.
- the column of the surface interval Di indicates the interval (mm) on the optical axis between the i-th surface Si and the i + 1-th surface Si + 1 from the object side.
- the value of the refractive index for the d-line (587.56 nm) of the j-th optical element from the object side is shown.
- the column of ⁇ dj shows the Abbe number value for the d-line of the j-th optical element from the object side.
- Table 1 shows various data as focal length f (mm), back focus Bf (mm), F number Fno., Total angle of view 2 ⁇ (°), and total lens length TL (mm). ) Respectively.
- the back focus Bf in each table represents an air-converted value, and the air focus value is used for the back focus Bf for the entire lens length TL.
- both surfaces of the first lens L1 to the sixth lens L6 are all aspherical.
- the basic lens data in Table 1 shows the numerical value of the radius of curvature near the optical axis (paraxial radius of curvature) as the radius of curvature of these aspheric surfaces.
- Table 13 shows aspherical data in the imaging lens of Example 1.
- E indicates that the subsequent numerical value is a “power exponent” with a base of 10
- the numerical value represented by an exponential function with the base of 10 is Indicates that the value before “E” is multiplied.
- “1.0E-02” indicates “1.0 ⁇ 10 ⁇ 2 ”.
- Z is the length (mm) of a perpendicular line drawn from a point on the aspheric surface at a height h from the optical axis to the tangential plane (plane perpendicular to the optical axis) of the apex of the aspheric surface.
- Z C ⁇ h 2 / ⁇ 1+ (1 ⁇ K ⁇ C 2 ⁇ h 2 ) 1/2 ⁇ + ⁇ Ai ⁇ h i (A)
- Z Depth of aspheric surface (mm)
- h Distance from the optical axis to the lens surface (height) (mm)
- C: Paraxial curvature 1 / R (R: paraxial radius of curvature)
- K aspheric coefficient
- FIGS. 13A to 13D are diagrams showing spherical aberration, astigmatism, distortion (distortion aberration), and chromatic aberration of magnification (chromatic aberration of magnification) in the imaging lens of Example 1, respectively.
- Each aberration diagram showing spherical aberration, astigmatism (field curvature) and distortion (distortion aberration) shows aberrations with the d-line (wavelength 587.56 nm) as the reference wavelength.
- the spherical aberration diagram and the lateral chromatic aberration diagram also show aberrations for the F-line (wavelength 486.1 nm) and the C-line (wavelength 656.27 nm).
- the spherical aberration diagram also shows aberrations with respect to the g-line (wavelength 435.83 nm).
- the solid line indicates the sagittal direction (S), and the broken line indicates the tangential direction (T).
- Fno Indicates the F number, and ⁇ indicates the half angle of view.
- Table 25 shows a summary of the values for the conditional expressions (1) to (4) according to the present invention for each of the examples 1 to 12.
- the imaging lens of the present invention is not limited to the embodiment and each example, and various modifications can be made.
- the values of the radius of curvature, the surface interval, the refractive index, the Abbe number, and the aspherical coefficient of each lens component are not limited to the values shown in the numerical examples, but may take other values.
- the description is based on the premise that the fixed focus is used.
- the entire lens system can be extended, or a part of the lenses can be moved on the optical axis to enable autofocusing.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
Description
νd5<35 (1)
νd5<33 (1-1)
νd5<31 (1-2)
νd2<35 (2)
0.9<f3/f1 (3)
1.0<f3/f1<10 (3-1)
1.0<f3/f1<8 (3-2)
1.0<f3/f1<5 (3-3)
0.4<f6/f2<1.3 (4)
0.5<f6/f2<1.2 (4-1)
0.55<f6/f2<1.1 (4-2)
ただし、
f1:第1レンズの焦点距離、
f2:第2レンズの焦点距離、
f3:第3レンズの焦点距離、
f6:第6レンズの焦点距離
νd2:第2レンズのd線に関するアッベ数
νd5:第5レンズのd線に関するアッベ数
とする。
νd5<35 (1)
条件式(1)は、第5レンズL5のd線に関するアッベ数νd5の好ましい数値範囲をそれぞれ規定する。条件式(1)の上限を上まわると、軸上色収差が補正不足になりやすくなり、また結像領域の周辺部の倍率色収差もオーバーになりやすくなるため、良好な補正が難しくなってしまう。条件式(1)を満足することで、第5レンズL5を高分散の材質により構成することにより、軸上色収差および結像領域の周辺部の倍率色収差を良好に補正することができる。この観点から、下記条件式(1-1)を満たすことがより好ましく、条件式(1-2)を満たすことがよりさらに好ましい。
νd5<33 (1-1)
νd5<31 (1-2)
νd2<35 (2)
条件式(2)は、第2レンズL2のd線に関するアッベ数νd2の好ましい数値範囲をそれぞれ規定する。条件式(2)の上限を上まわると、軸上色収差を良好に補正することが難しくなる。このため、条件式(2)を満足して第2レンズL2を高分散の材質により構成することにより、軸上色収差を良好に補正できる。
0.9<f3/f1 (3)
条件式(3)は、第3レンズL3の焦点距離f3および第1レンズL1の焦点距離f1の好ましい数値範囲を規定するものである。条件式(3)の下限を下まわる場合には、第3レンズL3の正の屈折力に対して第1レンズL1の正の屈折力が弱くなりすぎて、全長の短縮化が難しくなる。このため、条件式(3)の範囲を満たすことで、好適にレンズ系全体の長さを短縮化できる。また、第3レンズL3の焦点距離f3および第1レンズL1の焦点距離f1の比は、条件式(3-1)を満たすことがより好ましい。条件式(3-1)の上限を上まわると、像面湾曲の補正が困難となる。このため、条件式(3-1)の範囲を満たすことで、諸収差を良好に補正することができる。また、条件式(3-1)の下限を満たすことで、さらに好適にレンズ系全体の長さを短縮化できる。この効果をより高めるために、条件式(3-2)を満たすことがより好ましく、条件式(3-3)を満たすことがよりさらに好ましい。
1.0<f3/f1<10 (3-1)
1.0<f3/f1<8 (3-2)
1.0<f3/f1<5 (3-3)
0.4<f6/f2<1.3 (4)
条件式(4)は、第6レンズL6の焦点距離f6と第2レンズL2の焦点距離f2の好ましい数値範囲を規定するものである。条件式(4)の下限を下まわる場合には、第6レンズL6の屈折力が第2レンズL2の屈折力に対して強すぎるものとなるため、像面湾曲の補正が補正過剰になりやすく、良好な画像性能を得ることが難しい。条件式(4)の上限を上まわる場合には、第6レンズL6の屈折力が第2レンズL2の屈折力に対して弱すぎるものとなるため、像面湾曲の補正が補正不足になりやすく、良好な画像性能を得ることが難しい。このため、条件式(4)の範囲を満たすことで、像面湾曲を良好に補正することができる。この効果をより高めるために、条件式(4-1)を満たすことがより好ましく、条件式(4-2)を満たすことがよりさらに好ましい。
0.5<f6/f2<1.2 (4-1)
0.55<f6/f2<1.1 (4-2)
ただし、
Z:非球面の深さ(mm)
h:光軸からレンズ面までの距離(高さ)(mm)
C:近軸曲率=1/R
(R:近軸曲率半径)
Ai:第i次(iは3以上の整数)の非球面係数
K:非球面係数
Claims (17)
- 物体側から順に、
正の屈折力を有し、かつ、物体側に凸面を向けた第1レンズと、
負の屈折力を有し、かつ、像側に凹面を向けた第2レンズと、
正の屈折力を有し、かつ、物体側に凸面を向けた第3レンズと、
正の屈折力を有する第4レンズと、
負の屈折力を有し、かつ、像側に凹面を向けた第5レンズと、
負の屈折力を有し、かつ、像側の面が光軸近傍で像側に凹形状となり、周辺部で凸形状となる非球面形状である第6レンズと、
から構成される実質的に6個のレンズからなることを特徴とする撮像レンズ。 - 前記第3レンズが両凸レンズであることを特徴とする請求項1記載の撮像レンズ。
- 以下の条件式を満足することを特徴とする請求項1または2に記載の撮像レンズ。
νd5<35 (1)
ただし、
νd5:前記第5レンズのd線に関するアッベ数
とする。 - さらに以下の条件式を満足することを特徴とする請求項3に記載の撮像レンズ。
νd5<33 (1-1) - さらに以下の条件式を満足することを特徴とする請求項4に記載の撮像レンズ。
νd5<31 (1-2) - 開口絞りが前記第2レンズの物体側の面より物体側に配置されていることを特徴とする請求項1から5のいずれか1項に記載の撮像レンズ。
- 前記開口絞りが前記第1レンズの物体側の面より物体側に配置されていることを特徴とする請求項6に記載の撮像レンズ。
- さらに以下の条件式を満足することを特徴とする請求項1から7のいずれか1項記載の撮像レンズ。
0.9<f3/f1 (3)
ただし、
f1:前記第1レンズの焦点距離、
f3:前記第3レンズの焦点距離
とする。 - さらに以下の条件式を満足することを特徴とする請求項8に記載の撮像レンズ。
1.0<f3/f1<10 (3-1) - さらに以下の条件式を満足することを特徴とする請求項9に記載の撮像レンズ。
1.0<f3/f1<8 (3-2) - さらに以下の条件式を満足することを特徴とする請求項10に記載の撮像レンズ。
1.0<f3/f1<5 (3-3) - さらに以下の条件式を満足することを特徴とする請求項1から11のいずれか1項に記載の撮像レンズ。
0.4<f6/f2<1.3 (4)
ただし、
f2:前記第2レンズの焦点距離、
f6:前記第6レンズの焦点距離
とする。 - さらに以下の条件式を満足することを特徴とする請求項12に記載の撮像レンズ。
0.5<f6/f2<1.2 (4-1) - さらに以下の条件式を満足することを特徴とする請求項13に記載の撮像レンズ。
0.55<f6/f2<1.1 (4-2) - 前記第5レンズが像側の面が光軸近傍で像側に凹形状となり、周辺部で凸形状となる非球面形状であることを特徴とする請求項1から14のいずれか1項に記載の撮像レンズ。
- さらに以下の条件式を満足することを特徴とする請求項1から15のいずれか1項に記載の撮像レンズ。
νd2<35 (2)
ただし、
νd2:前記第2レンズのd線に関するアッベ数
とする。 - 請求項1から16のいずれか1項に記載された撮像レンズを備えたことを特徴とする撮像装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013535189A JP5823527B2 (ja) | 2012-03-26 | 2013-02-26 | 撮像レンズおよび撮像レンズを備えた撮像装置 |
CN201390000041.XU CN203606554U (zh) | 2012-03-26 | 2013-02-26 | 成像透镜和提供有成像透镜的成像装置 |
US14/073,269 US8749896B2 (en) | 2012-03-26 | 2013-11-06 | Imaging lens and imaging apparatus provided with the imaging lens |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-068605 | 2012-03-26 | ||
JP2012068605 | 2012-03-26 | ||
US201261637600P | 2012-04-24 | 2012-04-24 | |
US61/637,600 | 2012-04-24 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/073,269 Continuation US8749896B2 (en) | 2012-03-26 | 2013-11-06 | Imaging lens and imaging apparatus provided with the imaging lens |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013145547A1 true WO2013145547A1 (ja) | 2013-10-03 |
Family
ID=49258872
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/001107 WO2013145547A1 (ja) | 2012-03-26 | 2013-02-26 | 撮像レンズおよび撮像レンズを備えた撮像装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8749896B2 (ja) |
JP (1) | JP5823527B2 (ja) |
CN (1) | CN203606554U (ja) |
TW (1) | TW201344234A (ja) |
WO (1) | WO2013145547A1 (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014155466A1 (ja) * | 2013-03-26 | 2014-10-02 | 富士フイルム株式会社 | 撮像レンズおよび撮像レンズを備えた撮像装置 |
US8867149B2 (en) | 2013-03-05 | 2014-10-21 | Largan Precision Co., Ltd. | Photographing lens assembly |
WO2014175058A1 (ja) * | 2013-04-22 | 2014-10-30 | コニカミノルタ株式会社 | 撮像レンズ、撮像装置及び携帯端末 |
JP2015007748A (ja) * | 2013-05-31 | 2015-01-15 | カンタツ株式会社 | 撮像レンズ |
KR20150070858A (ko) * | 2013-12-17 | 2015-06-25 | 삼성전자주식회사 | 촬상 렌즈 시스템 및 이를 채용한 촬상 장치 |
JP5752850B2 (ja) * | 2012-04-02 | 2015-07-22 | 富士フイルム株式会社 | 撮像レンズおよび撮像レンズを備えた撮像装置 |
CN104808320A (zh) * | 2015-01-23 | 2015-07-29 | 玉晶光电(厦门)有限公司 | 光学成像镜头及应用该光学成像镜头的电子装置 |
JP2015158569A (ja) * | 2014-02-24 | 2015-09-03 | カンタツ株式会社 | 6枚の光学素子構成の撮像レンズ |
CN108333722A (zh) * | 2013-12-19 | 2018-07-27 | 三星电机株式会社 | 镜头模块 |
US10859800B2 (en) | 2016-04-04 | 2020-12-08 | Kantatsu Co., Ltd. | Imaging lens |
Families Citing this family (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5602305B2 (ja) * | 2011-06-15 | 2014-10-08 | 富士フイルム株式会社 | 撮像レンズおよび撮像レンズを備えた撮像装置 |
TWI474072B (zh) | 2012-06-14 | 2015-02-21 | Largan Precision Co Ltd | 光學影像鏡片系統組 |
JP5975386B2 (ja) * | 2012-08-17 | 2016-08-23 | 株式会社オプトロジック | 撮像レンズ |
TWI448725B (zh) | 2012-10-22 | 2014-08-11 | Largan Precision Co Ltd | 影像擷取光學鏡片系統 |
TWI510806B (zh) * | 2013-02-04 | 2015-12-01 | Largan Precision Co Ltd | 光學拾像系統組 |
TWI457591B (zh) | 2013-04-25 | 2014-10-21 | Largan Precision Co Ltd | 攝影系統鏡片組 |
TWI463168B (zh) | 2013-05-30 | 2014-12-01 | Largan Precision Co Ltd | 結像鏡片系統組及取像裝置 |
TWI471593B (zh) | 2014-03-06 | 2015-02-01 | 玉晶光電股份有限公司 | 光學成像鏡頭及應用此鏡頭之電子裝置 |
CN104122651B (zh) * | 2014-03-06 | 2017-04-12 | 玉晶光电(厦门)有限公司 | 光学成像镜头及应用该光学成像镜头的电子装置 |
TWI484212B (zh) | 2014-03-06 | 2015-05-11 | 玉晶光電股份有限公司 | 光學成像鏡頭及應用該光學成像鏡頭的電子裝置 |
JP2015169889A (ja) * | 2014-03-10 | 2015-09-28 | 富士フイルム株式会社 | 撮像レンズおよび撮像レンズを備えた撮像装置 |
TWI553332B (zh) | 2014-04-18 | 2016-10-11 | 玉晶光電股份有限公司 | 光學成像鏡頭及應用該光學成像鏡頭的電子裝置 |
TWI477807B (zh) * | 2014-05-23 | 2015-03-21 | Largan Precision Co Ltd | 取像用光學鏡頭、取像裝置及可攜裝置 |
KR102009430B1 (ko) * | 2014-05-26 | 2019-08-09 | 삼성전기주식회사 | 촬상 광학계 |
CN104238074B (zh) * | 2014-05-29 | 2016-11-02 | 玉晶光电(厦门)有限公司 | 可携式电子装置与其光学成像镜头 |
US10133030B2 (en) * | 2014-06-17 | 2018-11-20 | Samsung Electro-Mechanics Co., Ltd. | High resolution lens module |
TWI489133B (zh) * | 2014-06-20 | 2015-06-21 | Largan Precision Co Ltd | 取像光學系統、取像裝置以及可攜式裝置 |
CN105334599B (zh) | 2014-08-12 | 2017-09-26 | 玉晶光电(厦门)有限公司 | 光学成像镜头及应用该光学成像镜头的电子装置 |
TWI536067B (zh) | 2014-10-03 | 2016-06-01 | 先進光電科技股份有限公司 | 光學成像系統 |
KR102126419B1 (ko) | 2014-10-20 | 2020-06-24 | 삼성전기주식회사 | 촬상 광학계 |
CN105629447B (zh) | 2014-10-29 | 2018-04-03 | 玉晶光电(厦门)有限公司 | 光学成像镜头及应用此镜头之电子装置 |
KR101709834B1 (ko) * | 2014-10-30 | 2017-02-23 | 삼성전기주식회사 | 렌즈 모듈 |
TWI519809B (zh) | 2014-12-05 | 2016-02-01 | 大立光電股份有限公司 | 取像光學鏡片組、取像裝置及電子裝置 |
CN104808321B (zh) | 2015-01-23 | 2017-05-10 | 玉晶光电(厦门)有限公司 | 光学成像镜头及应用此镜头的电子装置 |
US9874721B2 (en) | 2015-02-09 | 2018-01-23 | Apple Inc. | Camera lens system |
US10274700B2 (en) | 2015-05-21 | 2019-04-30 | Apple Inc. | Camera lens system |
KR20170043279A (ko) * | 2015-10-13 | 2017-04-21 | 삼성전기주식회사 | 촬상 광학계 |
TWI588526B (zh) * | 2016-01-22 | 2017-06-21 | 大立光電股份有限公司 | 成像用光學鏡頭組、取像裝置及電子裝置 |
CN106094165A (zh) * | 2016-04-29 | 2016-11-09 | 玉晶光电(厦门)有限公司 | 光学成像镜头及应用此镜头的电子装置 |
CN108431663B (zh) * | 2016-11-29 | 2020-03-20 | 华为技术有限公司 | 用于拍摄图像的标准到远摄镜头系统 |
KR101956704B1 (ko) | 2016-12-20 | 2019-03-11 | 삼성전기주식회사 | 촬상 광학계 |
TWI625567B (zh) | 2017-10-16 | 2018-06-01 | 大立光電股份有限公司 | 成像用光學鏡頭、取像裝置及電子裝置 |
JP7396788B2 (ja) * | 2018-08-08 | 2023-12-12 | 東京晨美光学電子株式会社 | 撮像レンズ |
CN111190270B (zh) * | 2020-04-13 | 2020-07-14 | 江西联益光学有限公司 | 光学镜头及成像设备 |
CN112285900B (zh) * | 2020-12-29 | 2021-05-04 | 常州市瑞泰光电有限公司 | 摄像光学镜头 |
CN114706197B (zh) * | 2022-04-28 | 2023-09-05 | 江西晶超光学有限公司 | 光学镜头、摄像模组及电子设备 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01142518A (ja) * | 1987-11-27 | 1989-06-05 | Minolta Camera Co Ltd | 2焦点切替レンズ系 |
JPH10123418A (ja) * | 1996-10-17 | 1998-05-15 | Ricoh Co Ltd | 前絞り2群ズームレンズ |
KR20100040357A (ko) * | 2008-10-10 | 2010-04-20 | 엘지이노텍 주식회사 | 촬상 렌즈 |
KR20110024872A (ko) * | 2009-09-03 | 2011-03-09 | 엘지이노텍 주식회사 | 렌즈모듈 |
CN202067015U (zh) * | 2011-03-25 | 2011-12-07 | 大立光电股份有限公司 | 摄影用光学镜头组 |
WO2012008357A1 (ja) * | 2010-07-16 | 2012-01-19 | コニカミノルタオプト株式会社 | 撮像レンズ |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013182090A (ja) * | 2012-02-29 | 2013-09-12 | Konica Minolta Inc | 撮像レンズ、撮像装置、及び携帯端末 |
-
2013
- 2013-02-26 JP JP2013535189A patent/JP5823527B2/ja not_active Expired - Fee Related
- 2013-02-26 WO PCT/JP2013/001107 patent/WO2013145547A1/ja active Application Filing
- 2013-02-26 CN CN201390000041.XU patent/CN203606554U/zh not_active Expired - Lifetime
- 2013-03-15 TW TW102109277A patent/TW201344234A/zh unknown
- 2013-11-06 US US14/073,269 patent/US8749896B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01142518A (ja) * | 1987-11-27 | 1989-06-05 | Minolta Camera Co Ltd | 2焦点切替レンズ系 |
JPH10123418A (ja) * | 1996-10-17 | 1998-05-15 | Ricoh Co Ltd | 前絞り2群ズームレンズ |
KR20100040357A (ko) * | 2008-10-10 | 2010-04-20 | 엘지이노텍 주식회사 | 촬상 렌즈 |
KR20110024872A (ko) * | 2009-09-03 | 2011-03-09 | 엘지이노텍 주식회사 | 렌즈모듈 |
WO2012008357A1 (ja) * | 2010-07-16 | 2012-01-19 | コニカミノルタオプト株式会社 | 撮像レンズ |
CN202067015U (zh) * | 2011-03-25 | 2011-12-07 | 大立光电股份有限公司 | 摄影用光学镜头组 |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5752850B2 (ja) * | 2012-04-02 | 2015-07-22 | 富士フイルム株式会社 | 撮像レンズおよび撮像レンズを備えた撮像装置 |
US8867149B2 (en) | 2013-03-05 | 2014-10-21 | Largan Precision Co., Ltd. | Photographing lens assembly |
US11009682B2 (en) | 2013-03-05 | 2021-05-18 | Largan Precision Co., Ltd. | Photographing lens assembly |
US10215964B2 (en) | 2013-03-05 | 2019-02-26 | Largan Precision Co., Ltd. | Photographing lens assembly |
US9140876B2 (en) | 2013-03-05 | 2015-09-22 | Largan Precision Co., Ltd. | Photographing lens assembly |
US9448385B2 (en) | 2013-03-05 | 2016-09-20 | Largan Precision Co., Ltd. | Photographing lens assembly |
WO2014155466A1 (ja) * | 2013-03-26 | 2014-10-02 | 富士フイルム株式会社 | 撮像レンズおよび撮像レンズを備えた撮像装置 |
US9575291B2 (en) | 2013-03-26 | 2017-02-21 | Fujifilm Corporation | Imaging lens and imaging apparatus equipped with the imaging lens |
JPWO2014175058A1 (ja) * | 2013-04-22 | 2017-02-23 | コニカミノルタ株式会社 | 撮像レンズ、撮像装置及び携帯端末 |
WO2014175058A1 (ja) * | 2013-04-22 | 2014-10-30 | コニカミノルタ株式会社 | 撮像レンズ、撮像装置及び携帯端末 |
JP2015007748A (ja) * | 2013-05-31 | 2015-01-15 | カンタツ株式会社 | 撮像レンズ |
KR20150070858A (ko) * | 2013-12-17 | 2015-06-25 | 삼성전자주식회사 | 촬상 렌즈 시스템 및 이를 채용한 촬상 장치 |
KR102180476B1 (ko) | 2013-12-17 | 2020-11-18 | 삼성전자주식회사 | 촬상 렌즈 시스템 및 이를 채용한 촬상 장치 |
CN108333722A (zh) * | 2013-12-19 | 2018-07-27 | 三星电机株式会社 | 镜头模块 |
CN108333722B (zh) * | 2013-12-19 | 2020-08-11 | 三星电机株式会社 | 镜头模块 |
JP2015158569A (ja) * | 2014-02-24 | 2015-09-03 | カンタツ株式会社 | 6枚の光学素子構成の撮像レンズ |
CN104808320A (zh) * | 2015-01-23 | 2015-07-29 | 玉晶光电(厦门)有限公司 | 光学成像镜头及应用该光学成像镜头的电子装置 |
US10859800B2 (en) | 2016-04-04 | 2020-12-08 | Kantatsu Co., Ltd. | Imaging lens |
Also Published As
Publication number | Publication date |
---|---|
US20140071543A1 (en) | 2014-03-13 |
TW201344234A (zh) | 2013-11-01 |
JP5823527B2 (ja) | 2015-11-25 |
US8749896B2 (en) | 2014-06-10 |
CN203606554U (zh) | 2014-05-21 |
JPWO2013145547A1 (ja) | 2015-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5823527B2 (ja) | 撮像レンズおよび撮像レンズを備えた撮像装置 | |
JP5752850B2 (ja) | 撮像レンズおよび撮像レンズを備えた撮像装置 | |
JP5827688B2 (ja) | 撮像レンズおよび撮像レンズを備えた撮像装置 | |
JP5886230B2 (ja) | 撮像レンズおよび撮像レンズを備えた撮像装置 | |
JP5735712B2 (ja) | 撮像レンズおよび撮像レンズを備えた撮像装置 | |
JP5698872B2 (ja) | 撮像レンズおよび撮像レンズを備えた撮像装置 | |
JP5687390B2 (ja) | 撮像レンズおよび撮像レンズを備えた撮像装置 | |
JP5911819B2 (ja) | 撮像レンズおよび撮像レンズを備えた撮像装置 | |
JP5800438B2 (ja) | 撮像レンズおよび撮像レンズを備えた撮像装置 | |
JP5706584B2 (ja) | 撮像レンズおよび撮像レンズを備えた撮像装置 | |
JP5602299B2 (ja) | 撮像レンズおよび撮像レンズを備えた撮像装置 | |
JP5785324B2 (ja) | 撮像レンズおよび撮像レンズを備えた撮像装置 | |
JP5937036B2 (ja) | 撮像レンズおよび撮像レンズを備えた撮像装置 | |
WO2014155460A1 (ja) | 撮像レンズおよび撮像レンズを備えた撮像装置 | |
JP2014240918A (ja) | 撮像レンズおよび撮像レンズを備えた撮像装置 | |
WO2012172781A1 (ja) | 撮像レンズおよび撮像レンズを備えた撮像装置 | |
JP5727679B2 (ja) | 撮像レンズおよび撮像レンズを備えた撮像装置 | |
JP5722507B2 (ja) | 撮像レンズおよび撮像レンズを備えた撮像装置 | |
WO2014155459A1 (ja) | 撮像レンズおよび撮像レンズを備えた撮像装置 | |
WO2014103197A1 (ja) | 撮像レンズおよび撮像レンズを備えた撮像装置 | |
WO2014103199A1 (ja) | 撮像レンズおよび撮像レンズを備えた撮像装置 | |
WO2014034027A1 (ja) | 撮像レンズおよび撮像レンズを備えた撮像装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201390000041.X Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 2013535189 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13770367 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13770367 Country of ref document: EP Kind code of ref document: A1 |