WO2014103198A1 - 撮像レンズおよび撮像レンズを備えた撮像装置 - Google Patents

撮像レンズおよび撮像レンズを備えた撮像装置 Download PDF

Info

Publication number
WO2014103198A1
WO2014103198A1 PCT/JP2013/007225 JP2013007225W WO2014103198A1 WO 2014103198 A1 WO2014103198 A1 WO 2014103198A1 JP 2013007225 W JP2013007225 W JP 2013007225W WO 2014103198 A1 WO2014103198 A1 WO 2014103198A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
focal length
imaging
conditional expression
imaging lens
Prior art date
Application number
PCT/JP2013/007225
Other languages
English (en)
French (fr)
Inventor
近藤 雅人
隆行 野田
長 倫生
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201390001001.7U priority Critical patent/CN204807789U/zh
Publication of WO2014103198A1 publication Critical patent/WO2014103198A1/ja
Priority to US14/745,474 priority patent/US9513467B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/60Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only

Definitions

  • the present invention relates to a fixed-focus imaging lens that forms an optical image of a subject on an imaging element such as a CCD (Charge-Coupled Device) or CMOS (Complementary-Metal-Oxide-Semiconductor), and a digital image that is mounted with the imaging lens.
  • the present invention relates to an imaging device such as a still camera, a mobile phone with a camera, and an information portable terminal (PDA: Personal Digital Assistant), a smartphone, a tablet terminal, and a portable game machine.
  • PDA Personal Digital Assistant
  • the imaging lens has a 5 or 6 lens structure having a relatively large number of lenses.
  • a first lens having a positive refractive power a first lens having a positive refractive power
  • a second lens having a negative refractive power a third lens having a positive refractive power
  • a negative refractive power in order from the object side.
  • An imaging lens having a five-lens configuration including a fourth lens and a fifth lens having negative refractive power has been proposed.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide an imaging lens capable of realizing high imaging performance from the central angle of view to the peripheral angle of view while reducing the overall length, and the imaging thereof.
  • An object of the present invention is to provide an imaging device that can be mounted with a lens and obtain a high-resolution captured image.
  • the imaging lens of the present invention has a biconvex shape in order from the object side, a first lens having a surface with a smaller absolute value of the radius of curvature facing the object side, a negative refractive power, and an image side
  • a second lens having a concave surface
  • a third lens having a meniscus shape with a convex surface facing the object side
  • a fourth lens having a negative refractive power and a meniscus shape having a convex surface facing the image side
  • a negative lens A fifth lens having a refracting power and a meniscus shape having a concave surface facing the image side and having at least one inflection point on the image side surface. It is characterized by that.
  • the imaging lens of the present invention since the configuration of the lens elements of the first lens to the fifth lens is optimized in a lens configuration of five lenses as a whole, it has high resolution performance while shortening the overall length. A lens system can be realized.
  • substantially consists of five lenses means that the imaging lens of the present invention has substantially no power other than the five lenses, a diaphragm, It is meant to include an optical element other than a lens such as a cover glass, a lens flange, a lens barrel, an image sensor, a mechanism portion such as a camera shake correction mechanism, and the like.
  • a lens including an aspheric surface is considered in a paraxial region.
  • the optical performance can be further improved by satisfying the following preferable configuration.
  • the imaging lens of the present invention preferably satisfies any of the following conditional expressions (1) to (9). In addition, as a preferable aspect, it may satisfy any one of conditional expressions (1) to (9), or may satisfy any combination.
  • An imaging apparatus includes the imaging lens of the present invention.
  • a high-resolution imaging signal can be obtained based on the high-resolution optical image obtained by the imaging lens of the present invention.
  • the configuration of each lens element is optimized, and particularly the shape of the third lens is preferably configured.
  • a lens system having high imaging performance up to the peripheral field angle can be realized.
  • an imaging signal corresponding to the optical image formed by the imaging lens having high imaging performance of the present invention is output, a high-resolution captured image can be obtained. Can do.
  • FIG. 1 is a lens cross-sectional view illustrating a first configuration example of an imaging lens according to an embodiment of the present invention and corresponding to Example 1.
  • FIG. FIG. 2 is a lens cross-sectional view illustrating a second configuration example of an imaging lens according to an embodiment of the present invention and corresponding to Example 2; 3 is a lens cross-sectional view illustrating a third configuration example of an imaging lens according to an embodiment of the present invention and corresponding to Example 3.
  • FIG. 4 is a lens cross-sectional view illustrating a fourth configuration example of an imaging lens according to an embodiment of the present invention and corresponding to Example 4;
  • FIG. FIG. 5 is a ray diagram of the imaging lens illustrated in FIG. 4.
  • FIG. 4 is a lens cross-sectional view illustrating a first configuration example of an imaging lens according to an embodiment of the present invention and corresponding to Example 1.
  • FIG. FIG. 2 is a lens cross-sectional view illustrating a second configuration example of an imaging lens according to an embodiment of the present invention and corresponding to
  • FIG. 6 is an aberration diagram showing various aberrations of the imaging lens according to Example 1 of the present invention, in which (A) is spherical aberration, (B) is a sine condition violation amount, (C) is astigmatism (field curvature), D) shows distortion, and (E) shows lateral chromatic aberration.
  • It is an aberration diagram which shows the various aberrations of the imaging lens which concerns on Example 2 of this invention, (A) is spherical aberration, (B) is a sine condition violation amount, (C) is astigmatism (field curvature), ( D) shows distortion, and (E) shows lateral chromatic aberration.
  • FIG. 1 shows a first configuration example of an imaging lens according to the first embodiment of the present invention.
  • This configuration example corresponds to the lens configuration of a first numerical example (Tables 1 and 2) described later.
  • FIGS. 2 to 4 show cross-sectional configurations of second to fourth configuration examples corresponding to imaging lenses according to second to fourth embodiments described later.
  • the second to fourth configuration examples correspond to the lens configurations of second to fourth numerical examples (Tables 3 to 8) described later.
  • the symbol Ri is the curvature of the i-th surface, where the surface of the lens element closest to the object is the first, and the number is increased sequentially toward the image side (imaging side). Indicates the radius.
  • FIG. 5 is an optical path diagram of the imaging lens L shown in FIG. 4, and shows optical paths of the axial light beam 2 and the light beam 3 having the maximum field angle from an object point at an infinite distance.
  • the imaging lens L includes various imaging devices using imaging elements such as CCDs and CMOSs, in particular, relatively small portable terminal devices such as digital still cameras, mobile phones with cameras, smartphones, tablets. It is suitable for use in type terminals and PDAs.
  • the imaging lens L includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, and a fifth lens L5 in order from the object side along the optical axis Z1. Yes.
  • FIG. 10 shows an overview of a mobile phone terminal that is the imaging device 1 according to the embodiment of the present invention.
  • An imaging device 1 according to an embodiment of the present invention includes an imaging lens L according to the present embodiment and an imaging element 100 such as a CCD that outputs an imaging signal corresponding to an optical image formed by the imaging lens L (see FIG. 1).
  • the image sensor 100 is disposed on the imaging surface (image surface R14) of the imaging lens L.
  • FIG. 11 shows an overview of a smartphone that is the imaging device 501 according to the embodiment of the present invention.
  • An image pickup apparatus 501 according to the embodiment of the present invention includes an image pickup lens L according to this embodiment and an image pickup device 100 such as a CCD that outputs an image pickup signal corresponding to an optical image formed by the image pickup lens L (see FIG. 1)).
  • the image sensor 100 is disposed on the imaging surface (image surface R14) of the imaging lens L.
  • Various optical members CG may be arranged between the fifth lens L5 and the image sensor 100 according to the configuration on the camera side where the lens is mounted.
  • a flat optical member such as a cover glass for protecting the imaging surface or an infrared cut filter may be disposed.
  • a flat cover glass provided with a filter effect coating such as an infrared cut filter or an ND filter, or a material having the same effect may be used.
  • the fifth lens L5 may be coated to have the same effect as the optical member CG. Thereby, the number of parts can be reduced and the total length can be shortened.
  • the imaging lens L preferably further includes an aperture stop St disposed on the object side of the object side surface of the second lens L2.
  • the aperture stop St is arranged on the object side of the object side surface of the second lens L1, so that an image forming surface (imaging device) of the light beam passing through the optical system, particularly in the periphery of the image forming region. It is possible to suppress an increase in the incident angle. In order to further enhance this effect, it is preferable to dispose the aperture stop St closer to the object side than the object side surface of the first lens L1.
  • “arranged closer to the object side than the object side surface of the second lens” means that the position of the aperture stop in the optical axis direction is the same as the intersection of the axial marginal ray and the object side surface of the second lens L2. It means that it is on the object side.
  • “arranged closer to the object side than the object side surface of the first lens L1” means that the position of the aperture stop in the optical axis direction is the same as the intersection of the axial marginal ray and the object side surface of the first lens L1. It means that it is at the object side from the position.
  • the aperture stop St when the aperture stop St is disposed on the object side with respect to the object side surface of the first lens L1 in the optical axis direction, the aperture stop St is preferably disposed on the image side with respect to the surface vertex of the first lens L1. .
  • the entire length of the imaging lens including the aperture stop St can be shortened.
  • the aperture stop St is disposed on the object side from the object side surface of the first lens L1, and the aperture stop St is disposed on the first lens L1. It is the example of a structure arrange
  • the present invention is not limited to this embodiment, and the aperture stop St may be disposed on the object side with respect to the surface vertex of the first lens L1.
  • the aperture stop St When the aperture stop St is disposed on the object side with respect to the surface vertex of the first lens L1, the amount of peripheral light is secured more than when the aperture stop St is disposed on the image side with respect to the surface vertex of the first lens L1.
  • it is somewhat disadvantageous from this viewpoint it is possible to more suitably suppress an increase in the incident angle of the light beam passing through the optical system to the imaging surface (imaging device) in the peripheral portion of the imaging region.
  • the first lens L1 has a biconvex shape in the vicinity of the optical axis, and the surface with the smaller absolute value of the radius of curvature is directed to the object side near the optical axis.
  • the first lens L1 which is the lens closest to the object side, has a positive refracting power with a strength that can suitably realize a reduction in the overall length. Therefore, the overall length can be suitably shortened.
  • the first lens L1 is more than the case where the first lens L1 is a meniscus lens in the vicinity of the optical axis.
  • the lens L1 has a biconvex shape near the optical axis, the absolute value of the radius of curvature near the optical axis of the first lens L1 can be relatively increased. For this reason, when the first lens L1 has a biconvex shape in the vicinity of the optical axis, spherical aberration and coma aberration can be corrected more favorably.
  • the first lens L1 has a biconvex shape in which the surface with the smaller radius of curvature near the optical axis faces the object side, so that the surface with the smaller radius of curvature near the optical axis. Since the rear principal point position of the first lens L1 can be moved closer to the object side than in the case of a biconvex shape facing the image side, the overall length can be shortened more suitably.
  • the second lens L2 has a negative refractive power in the vicinity of the optical axis. This makes it possible to satisfactorily correct spherical aberration and axial chromatic aberration that occur when the light beam passes through the first lens L1.
  • the second lens L2 has a concave surface facing the image side in the vicinity of the optical axis. As a result, the rear principal point position of the second lens L2 can be moved toward the object side, so that the overall length can be suitably shortened.
  • the second lens L2 is preferably biconcave in the vicinity of the optical axis.
  • the second lens L2 is made to be more than the case where the second lens L2 is a meniscus lens in the vicinity of the optical axis.
  • the absolute value of the radius of curvature in the vicinity of the optical axis of the second lens L2 can be relatively increased. For this reason, when the second lens L2 has a biconcave shape in the vicinity of the optical axis, the occurrence of spherical aberration can be more suitably suppressed.
  • the second lens L2 has a biconcave shape in the vicinity of the optical axis, and a surface having a smaller absolute value of the radius of curvature is directed to the image side in the vicinity of the optical axis.
  • a surface having a smaller absolute value of the radius of curvature is directed to the image side in the vicinity of the optical axis.
  • the third lens L3 preferably has a positive refractive power in the vicinity of the optical axis. This makes it possible to correct spherical aberration more satisfactorily. As shown in the first embodiment, the third lens L3 has a meniscus shape with a convex surface facing the object side in the vicinity of the optical axis. If the third lens L3 has a meniscus shape with a convex surface facing the object side in the vicinity of the optical axis, the position of the rear principal point of the third lens L3 can be brought closer to the object side, which is preferable. Shortening of the overall length can be realized.
  • the fourth lens L4 has a negative refractive power in the vicinity of the optical axis.
  • the fourth lens L4 and the fifth lens L5 described later have negative refractive power in the vicinity of the optical axis, so that the first lens L1 to the third lens L3 are regarded as an optical system having one positive refractive power.
  • the entire imaging lens can be configured as a telephoto type, so that the rear principal point position of the entire imaging lens is determined. It can be brought closer to the object side, and the overall length can be suitably shortened.
  • the fourth lens has a meniscus shape with a convex surface facing the image side in the vicinity of the optical axis. As a result, astigmatism can be suitably corrected.
  • the fifth lens L5 has a negative refractive power in the vicinity of the optical axis.
  • the imaging lens can be more suitably configured as a telephoto type as a whole, and the overall length is preferable. Can be shortened.
  • the fifth lens L5 has a negative refractive power in the vicinity of the optical axis, it is possible to suitably correct the field curvature.
  • the fifth lens L5 has a meniscus shape with a concave surface facing the image side in the vicinity of the optical axis. Accordingly, it is possible to favorably correct the curvature of field while realizing the shortening of the total length more suitably.
  • the fifth lens L5 has at least one inflection point within the effective diameter of the image side surface.
  • the “inflection point” on the image side surface of the fifth lens L5 is a point at which the image side surface shape of the fifth lens L5 switches from a convex shape to a concave shape (or from a concave shape to a convex shape) with respect to the image side.
  • the position of the inflection point can be arranged at an arbitrary position outside the optical axis in the radial direction as long as it is within the effective diameter of the image side surface of the fifth lens L5, and preferably the radial direction of the fifth lens L5. It is preferable to arrange 40% to 70% of the maximum effective radius toward the outside.
  • the surface on the image side of the fifth lens L5 has a shape having at least one inflection point, so that the light beam that passes through the optical system, particularly in the periphery of the imaging region, can be obtained. It is possible to suppress an increase in the incident angle on the imaging surface (image pickup device).
  • the peripheral part here means the radial direction outer side from about 50 to 70% of the maximum effective radius.
  • the imaging lens L since the configuration of the lens elements of the first to fifth lenses L5 is optimized in a lens configuration of five as a whole, the lens system having high resolution performance while reducing the overall length. Can be realized.
  • This imaging lens L preferably uses an aspherical surface for at least one surface of each of the first lens L1 to the fifth lens L5 for high performance.
  • each of the lenses L1 to L5 constituting the imaging lens L is a single lens instead of a cemented lens. This is because the number of aspheric surfaces is larger than when any one of the lenses L1 to L5 is a cemented lens, so that the degree of freedom in designing each lens is increased, and the overall length can be suitably shortened.
  • conditional expression (1) defines a preferable numerical range of the ratio of the focal length f in the entire system to the combined focal length f45 of the fourth lens L4 and the fifth lens L5. If the lower limit of condition (1) is not reached, the negative refractive power of the fourth lens L4 and the fifth lens L5 is too strong for the refractive power of the entire system. It becomes difficult to sufficiently suppress an increase in the angle of incidence on the image plane (imaging device).
  • conditional expression (1) If the upper limit of conditional expression (1) is exceeded, the negative refractive power of the fourth lens L4 and the fifth lens L5 with respect to the refractive power of the entire system is too weak, and the rear principal point position is determined. Since it becomes difficult to bring it to the object side sufficiently, it is disadvantageous for shortening the total length. For this reason, by satisfying conditional expression (1), the rear principal point position can be sufficiently moved closer to the object side, and the total length can be suitably shortened. In addition, the ray passing through the optical system, particularly at an intermediate angle of view, can be obtained. It is possible to suppress an increase in the incident angle on the imaging surface (image pickup device). In order to further enhance this effect, it is more preferable to satisfy the conditional expression (1-1). ⁇ 0.42 ⁇ f / f45 ⁇ 0.23 (1-1)
  • conditional expression (2) defines a preferable numerical range of the ratio of the paraxial image height (f ⁇ tan ⁇ ) to the paraxial radius of curvature R5r of the image side surface of the fifth lens L5.
  • conditional expression (3) defines a preferable numerical range of the ratio of the focal length f3 of the third lens L3 and the focal length f1 of the first lens L1. If the lower limit of conditional expression (3) is not reached, the refractive power of the third lens L3 becomes too strong with respect to the refractive power of the first lens L1, making it difficult to realize a reduction in the overall length.
  • conditional expression (3) If the upper limit of conditional expression (3) is exceeded, the refractive power of the third lens L3 becomes too weak with respect to the refractive power of the first lens L1, making it difficult to correct spherical aberration well. For this reason, by satisfying the range of conditional expression (3), it is possible to correct spherical aberration satisfactorily while realizing shortening of the overall length. In order to enhance this effect, it is preferable to satisfy the conditional expression (3-1). 2.5 ⁇ f3 / f1 ⁇ 8 (3-1)
  • conditional expression (4) defines a preferable numerical range of the paraxial radius of curvature R3f of the object side surface of the third lens L3 and the paraxial radius of curvature R3r of the image side surface of the third lens L3. If the lower limit of conditional expression (4) is not reached, it is disadvantageous for shortening the total length.
  • conditional expression (4) If the upper limit of conditional expression (4) is exceeded, it will be difficult to correct spherical aberration. Therefore, by satisfying conditional expression (4), it is possible to satisfactorily correct spherical aberration while preferably shortening the overall length. In order to further enhance this effect, it is more preferable to satisfy the following conditional expression (4-1). ⁇ 0.8 ⁇ (R3f ⁇ R3r) / (R3f + R3r) ⁇ 0.2 (4-1)
  • conditional expression (5) defines a preferable numerical range of the paraxial radius of curvature R3f of the object side surface of the third lens L3 and the paraxial radius of curvature R2r of the image side surface of the second lens L2.
  • conditional expression (5) Even when the upper limit of conditional expression (5) is exceeded or below the lower limit, the absolute value of the sine condition violation amount increases and the occurrence of coma is likely to occur, so that coma can be sufficiently corrected. It becomes difficult. Therefore, by satisfying conditional expression (5), it is possible to appropriately set the sine condition violation amount by suppressing the increase in the absolute value of the sine condition violation amount, particularly at a low angle of view, and to improve coma aberration. It can be corrected. In order to further enhance this effect, it is more preferable to satisfy the following conditional expression (5-1). ⁇ 0.3 ⁇ (R2r ⁇ R3f) / (R2r + R3f) ⁇ 0.05 (5-1)
  • conditional expression (6) defines a preferable numerical range of the ratio of the focal length f of the entire system to the focal length f1 of the first lens L1. If the lower limit of conditional expression (6) is not reached, the positive refractive power of the first lens L1 becomes too weak with respect to the refractive power of the entire system, making it difficult to shorten the overall length.
  • conditional expression (6) When the upper limit of conditional expression (6) is exceeded, the positive refractive power of the first lens L1 becomes too strong with respect to the refractive power of the entire system, and correction of spherical aberration becomes particularly difficult. Therefore, by satisfying the range of conditional expression (6), it is possible to satisfactorily correct spherical aberration while shortening the overall length. In order to further enhance this effect, it is more preferable to satisfy the conditional expression (6-1). 0.9 ⁇ f / f1 ⁇ 1.4 (6-1)
  • conditional expression (7) defines a preferable numerical range of the ratio of the focal length f of the entire system to the focal length f3 of the third lens L3. If the lower limit of conditional expression (7) is not reached, the refractive power of the third lens L3 becomes too weak with respect to the refractive power of the entire system, making it difficult to shorten the overall length.
  • conditional expression (7) If the upper limit of conditional expression (7) is exceeded, the refractive power of the third lens L3 becomes too strong with respect to the refractive power of the entire system, making it difficult to correct spherical aberration. For this reason, by satisfying the range of conditional expression (7), it is possible to satisfactorily correct spherical aberration while shortening the overall length. In order to enhance this effect, it is more preferable to satisfy the conditional expression (7-1). 0.15 ⁇ f / f3 ⁇ 0.4 (7-1)
  • conditional expression (8) defines a preferable numerical range of the ratio of the focal length f of the entire system to the focal length f2 of the second lens L2. If the lower limit of conditional expression (8) is not reached, the refractive power of the second lens L2 becomes too strong with respect to the positive refractive power of the entire system, making it difficult to shorten the overall length.
  • conditional expression (8) If the upper limit of conditional expression (8) is exceeded, the refractive power of the second lens L2 becomes too weak with respect to the refractive power of the entire system, making it difficult to correct longitudinal chromatic aberration. For this reason, by satisfying the range of conditional expression (8), it is possible to suitably correct the longitudinal chromatic aberration while shortening the overall length. In order to further enhance this effect, it is more preferable to satisfy the conditional expression (8-1). -0.8 ⁇ f / f2 ⁇ -0.5 (8-1)
  • the distance D7 on the optical axis between the third lens L3 and the fourth lens L4 and the focal length f of the entire system satisfy the following conditional expression (9). 0.05 ⁇ D7 / f ⁇ 0.2 (9)
  • Conditional expression (9) defines a preferable numerical range of the ratio of the distance D7 on the optical axis between the third lens L3 and the fourth lens L4 with respect to the focal length f of the entire system.
  • the imaging lens according to each embodiment regards the first lens L1 to the third lens L3 as one optical system (first lens group) having a positive refractive power, and the fourth lens L4.
  • the fifth lens L5 When the fifth lens L5 is regarded as one optical system (second lens group) having a negative refractive power, the entire imaging lens has a telephoto type configuration. If the lower limit of conditional expression (9) is not reached, the distance between the first lens group and the second lens group on the optical axis becomes too small, and the imaging lens L is configured as a telephoto type as described above. As a result, the effect of shortening the overall length is weakened. If the upper limit of conditional expression (9) is exceeded, it is likely that the negative refractive power of the second lens group will need to be made stronger than the positive refractive power of the first lens group, and astigmatism will be reduced. It becomes difficult to correct well. For this reason, by satisfying the range of conditional expression (9), astigmatism can be favorably corrected while shortening the overall length.
  • the imaging lens according to the second to fourth embodiments of the present invention will be described in detail with reference to FIGS.
  • all surfaces of the first lens L1 to the fifth lens L5 are aspherical.
  • the imaging lens according to the second to fourth embodiments of the present invention has a biconvex shape in the vicinity of the optical axis and in the vicinity of the optical axis toward the object side in order from the object side.
  • the second lens L2 can be formed in a meniscus shape having a concave surface facing the image side in the vicinity of the optical axis.
  • the second lens L2 has a surface having a positive refractive power in the vicinity of the optical axis on the object side, and a surface having a negative refractive power in the vicinity of the optical axis on the image side. It becomes easier to realize shortening.
  • the lens configuration of the third lens L3 to the fifth lens L5 is the same as that of the first embodiment, and according to each configuration of these lenses, each of the first embodiment. The same effect as the corresponding configuration can be obtained.
  • the imaging lens L according to the third and fourth embodiments shown in FIGS. 3 and 4 has the same lens configuration as that of the first embodiment and the first lens L1 to the fifth lens L5. According to the configuration, the same operational effects as the corresponding configurations of the first embodiment can be obtained.
  • the imaging lens according to the embodiment of the present invention since the configuration of each lens element is optimized in a lens configuration of 5 lenses as a whole, the overall length is shortened and high resolution performance is achieved. Can be realized.
  • the imaging signal corresponding to the optical image formed by the high-performance imaging lens according to the present embodiment is output.
  • a high-resolution captured image can be obtained up to the corner.
  • Tables 1 and 2 below show specific lens data corresponding to the configuration of the imaging lens shown in FIG.
  • Table 1 shows basic lens data
  • Table 2 shows data related to aspheric surfaces.
  • the surface of the lens element closest to the object side is the first (aperture stop St is the first) and heads toward the image side.
  • the value (mm) of the curvature radius of the i-th surface from the object side is shown in correspondence with the reference symbol Ri in FIG.
  • the column of the surface interval Di indicates the interval (mm) on the optical axis between the i-th surface Si and the i + 1-th surface Si + 1 from the object side.
  • the value of the refractive index for the d-line (587.56 nm) of the j-th optical element from the object side is shown.
  • the column of ⁇ dj shows the Abbe number value for the d-line of the j-th optical element from the object side.
  • Each lens data indicates the values of the focal length f (mm) and back focus Bf (mm) of the entire system as various data.
  • the back focus Bf represents a value converted into air.
  • both surfaces of the first lens L1 to the fifth lens L5 are all aspherical.
  • the basic lens data in Table 1 shows the numerical value of the radius of curvature near the optical axis (paraxial radius of curvature) as the radius of curvature of these aspheric surfaces.
  • Table 2 shows aspherical data in the imaging lens of Example 1.
  • E indicates that the subsequent numerical value is a “power exponent” with a base of 10
  • the numerical value represented by an exponential function with the base of 10 is Indicates that the value before “E” is multiplied.
  • “1.0E-02” indicates “1.0 ⁇ 10 ⁇ 2 ”.
  • Z is the length (mm) of a perpendicular line drawn from a point on the aspheric surface at a height h from the optical axis to the tangential plane (plane perpendicular to the optical axis) of the apex of the aspheric surface.
  • Z C ⁇ h 2 / ⁇ 1+ (1 ⁇ KA ⁇ C 2 ⁇ h 2 ) 1/2 ⁇ + ⁇ Ai ⁇ h i (A)
  • Z Depth of aspheric surface (mm)
  • h Distance from the optical axis to the lens surface (height) (mm)
  • KA aspheric coefficient
  • both surfaces of the first lens L1 to the fifth lens L5 are all aspherical.
  • FIGS. 6A to 6E are diagrams showing spherical aberration, sine condition violation amount, astigmatism, distortion (distortion aberration), and chromatic aberration of magnification (chromatic aberration of magnification) in the imaging lens of Example 1, respectively.
  • Each aberration diagram showing spherical aberration, sine condition violation amount, astigmatism (curvature of field), and distortion (distortion aberration) shows aberrations with d-line (wavelength 587.56 nm) as a reference wavelength.
  • the spherical aberration diagram and the lateral chromatic aberration diagram also show aberrations for the F-line (wavelength 486.1 nm) and the C-line (wavelength 656.27 nm).
  • the spherical aberration diagram also shows aberrations with respect to the g-line (wavelength 435.83 nm).
  • the solid line indicates the sagittal direction (S), and the broken line indicates the tangential direction (T).
  • Fno Indicates the F number, and ⁇ indicates the half angle of view.
  • Table 9 shows a summary of values relating to the conditional expressions (1) to (9) according to the present invention for each of Examples 1 to 4.
  • the imaging lens of the present invention is not limited to the embodiment and each example, and various modifications can be made.
  • the values of the radius of curvature, the surface interval, the refractive index, the Abbe number, and the aspherical coefficient of each lens component are not limited to the values shown in the numerical examples, but may take other values.
  • the description is based on the premise that the fixed focus is used. However, it is possible to adopt a configuration in which focus adjustment is possible.
  • the entire lens system can be extended, or a part of the lenses can be moved on the optical axis to enable autofocusing.
  • a surface having a large absolute value of the radius of curvature of the meniscus shape near the optical axis may be configured as a plane near the optical axis. .
  • a lens having a meniscus shape near the optical axis may be a plano-convex lens or a plano-concave lens in which the surface having a large absolute value of the radius of curvature of the meniscus shape of the lens is a plane near the optical axis. Good.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

【課題】全長の短縮化および高解像化を実現した撮像レンズおよびこの撮像レンズを備えた撮像装置を実現する。 【解決手段】撮像レンズが、物体側から順に、両凸形状であり、物体側に曲率半径の絶対値の小さい方の面を向けた第1レンズ(L1)と、負の屈折力を有し、像側に凹面を向けた第2レンズ(L2)と、物体側に凸面を向けたメニスカス形状である第3レンズ(L3)と、負の屈折力を有し、像側に凸面を向けたメニスカス形状である第4レンズ(L4)と、負の屈折力を有し、像側に凹面を向けたメニスカス形状であり、像側の面に少なくとも1つの変曲点を有する第5レンズ(L5)とから構成される実質的に5個のレンズからなる。

Description

撮像レンズおよび撮像レンズを備えた撮像装置
 本発明は、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)等の撮像素子上に被写体の光学像を結像させる固定焦点の撮像レンズ、およびその撮像レンズを搭載して撮影を行うデジタルスチルカメラやカメラ付き携帯電話機および情報携帯端末(PDA:Personal Digital Assistance)、スマートフォン、タブレット型端末および携帯型ゲーム機等の撮像装置に関する。
 近年、パーソナルコンピュータの一般家庭等への普及に伴い、撮影した風景や人物像等の画像情報をパーソナルコンピュータに入力することができるデジタルスチルカメラが急速に普及している。また、携帯電話、スマートフォン、またはタブレット型端末に画像入力用のカメラモジュールが搭載されることも多くなっている。このような撮像機能を有する機器には、CCDやCMOSなどの撮像素子が用いられている。近年、これらの撮像素子のコンパクト化が進み、撮像機器全体ならびにそれに搭載される撮像レンズにも、コンパクト性が要求されている。また同時に、撮像素子の高画素化も進んでおり、撮像レンズの高解像、高性能化が要求されている。例えば5メガピクセル以上、よりさらに好適には8メガピクセル以上の高画素に対応した性能が要求されている。
 このような要求を満たすために、撮像レンズをレンズ枚数が比較的多い5枚または6枚構成とすることが考えられる。例えば、特許文献1および2には、物体側から順に正の屈折力を有する第1レンズ、負の屈折力を有する第2レンズ、正の屈折力を有する第3レンズ、負の屈折力を有する第4レンズ、負の屈折力を有する第5レンズからなる5枚構成の撮像レンズを提案している。
米国特許第8000031号明細書 米国特許出願公開第2012/0087019号明細書
 一方、特に携帯端末、スマートフォンまたはタブレット端末のような薄型化が進む装置に用いられる撮像レンズには、レンズ全長の短縮化の要求が益々高まっている。このために、上記特許文献1および2に記載の撮像レンズは全長をさらに短縮化することが求められる。
 本発明は上述の点に鑑みてなされたもので、その目的は、全長の短縮化を図りつつ、中心画角から周辺画角まで高い結像性能を実現することができる撮像レンズ、およびその撮像レンズを搭載して高解像の撮像画像を得ることができる撮像装置を提供することにある。
 本発明の撮像レンズは、物体側から順に、両凸形状であり、物体側に曲率半径の絶対値の小さい方の面を向けた第1レンズと、負の屈折力を有し、像側に凹面を向けた第2レンズと、物体側に凸面を向けたメニスカス形状である第3レンズと、負の屈折力を有し、像側に凸面を向けたメニスカス形状である第4レンズと、負の屈折力を有し、像側に凹面を向けたメニスカス形状であり、像側の面に少なくとも1つの変曲点を有する第5レンズと、から構成される実質的に5個のレンズからなることを特徴とする。
 本発明の撮像レンズによれば、全体として5枚というレンズ構成において、第1レンズから第5レンズの各レンズ要素の構成を最適化したので、全長を短縮化しながらも、高解像性能を有するレンズ系を実現することができる。
 なお、本発明の撮像レンズにおいて、「実質的に5個のレンズからなり、」とは、本発明の撮像レンズが、5個のレンズ以外に、実質的にパワーを有さないレンズ、絞りやカバーガラス等レンズ以外の光学要素、レンズフランジ、レンズバレル、撮像素子、手振れ補正機構等の機構部分、等を持つものも含むことを意味する。また、上記のレンズの面形状や屈折力の符号は、非球面が含まれているものについては近軸領域で考えるものとする。
 本発明の撮像レンズにおいて、さらに、次の好ましい構成を採用して満足することで、光学性能をより良好なものとすることができる。
 本発明の撮像レンズは、以下の条件式(1)から(9)のいずれかを満足することが好ましい。なお、好ましい態様としては、条件式(1)から(9)のいずれか一つを満たすものでもよく、あるいは任意の組合せを満たすものでもよい。
 -0.6<f/f45<-0.1      (1)
 -0.42<f/f45<-0.23    (1-1)
 0.5<f・tanω/R5r<10    (2)
 1.5<f・tanω/R5r<4.5   (2-1)
 1<f3/f1<10           (3)
 2.5<f3/f1<8          (3-1)
 -1<(R3f-R3r)/(R3f+R3r)<0       (4)
 -0.8<(R3f-R3r)/(R3f+R3r)<-0.2  (4-1)
 -1<(R2r-R3f)/(R2r+R3f)<0       (5)
 -0.3<(R2r-R3f)/(R2r+R3f)<-0.05 (5-1)
 0.8<f/f1<1.5    (6)
 0.9<f/f1<1.4    (6-1)
 0.1<f/f3<0.6    (7)
 0.15<f/f3<0.4   (7-1)
 -1<f/f2<-0.2    (8)
 -0.8<f/f2<-0.5  (8-1)
 0.05<D7/f<0.2   (9)
ただし、
 f45:第4レンズと第5レンズの合成焦点距離
 f:全系の焦点距離
 ω:半画角
 R5r:第5レンズの像側の面の近軸曲率半径
 f3:第3レンズの焦点距離
 f1:第1レンズの焦点距離
 R3f:第3レンズの物体側の面の近軸曲率半径
 R3r:第3レンズの像側の面の近軸曲率半径
 R2r:第2レンズの像側の面の近軸曲率半径
 f2:第2レンズの焦点距離
 D7:第3レンズと第4レンズの光軸上の間隔
とする。
 本発明による撮像装置は、本発明の撮像レンズを備えたものである。
 本発明による撮像装置では、本発明の撮像レンズによって得られた高解像の光学像に基づいて高解像の撮像信号を得ることができる。
 本発明の撮像レンズによれば、全体として5枚というレンズ構成において、各レンズ要素の構成を最適化し、特に第3レンズの形状を好適に構成したので、全長を短縮化しつつ、中心画角から周辺画角まで高い結像性能を有するレンズ系を実現できる。
 また、本発明の撮像装置によれば、本発明の高い結像性能を有する撮像レンズによって形成された光学像に応じた撮像信号を出力するようにしたので、高解像の撮影画像を得ることができる。
本発明の一実施の形態に係る撮像レンズの第1の構成例を示すものであり、実施例1に対応するレンズ断面図である。 本発明の一実施の形態に係る撮像レンズの第2の構成例を示すものであり、実施例2に対応するレンズ断面図である。 本発明の一実施の形態に係る撮像レンズの第3の構成例を示すものであり、実施例3に対応するレンズ断面図である。 本発明の一実施の形態に係る撮像レンズの第4の構成例を示すものであり、実施例4に対応するレンズ断面図である。 図4に示す撮像レンズの光線図である。 本発明の実施例1に係る撮像レンズの諸収差を示す収差図であり、(A)は球面収差、(B)は正弦条件違反量、(C)は非点収差(像面湾曲)、(D)は歪曲収差、(E)は倍率色収差を示す。 本発明の実施例2に係る撮像レンズの諸収差を示す収差図であり、(A)は球面収差、(B)は正弦条件違反量、(C)は非点収差(像面湾曲)、(D)は歪曲収差、(E)は倍率色収差を示す。 本発明の実施例3に係る撮像レンズの諸収差を示す収差図であり、(A)は球面収差、(B)は正弦条件違反量、(C)は非点収差(像面湾曲)、(D)は歪曲収差、(E)は倍率色収差を示す。 本発明の実施例4に係る撮像レンズの諸収差を示す収差図であり、(A)は球面収差、(B)は正弦条件違反量、(C)は非点収差(像面湾曲)、(D)は歪曲収差、(E)は倍率色収差を示す。 本発明に係る撮像レンズを備えた携帯電話端末である撮像装置を示す図。 本発明に係る撮像レンズを備えたスマートフォンである撮像装置を示す図。
 以下、本発明の実施の形態について図面を参照して詳細に説明する。
 図1は、本発明の第1の実施の形態に係る撮像レンズの第1の構成例を示している。この構成例は、後述の第1の数値実施例(表1、表2)のレンズ構成に対応している。同様にして、後述の第2乃至第4の実施形態に係る撮像レンズに対応する第2乃至第4の構成例の断面構成を図2~図4に示す。第2乃至第4の構成例は、後述の第2乃至第4の数値実施例(表3~表8)のレンズ構成に対応している。図1~図4において、符号Riは、最も物体側のレンズ要素の面を1番目として、像側(結像側)に向かうに従い順次増加するようにして符号を付したi番目の面の曲率半径を示す。符号Diは、i番目の面とi+1番目の面との光軸Z1上の面間隔を示す。なお、各構成例共に基本的な構成は同じであるため、以下では、図1に示した撮像レンズの構成例を基本にして説明し、必要に応じて図2~図4の構成例についても説明する。また、図5は図4に示す撮像レンズLにおける光路図であり、無限遠の距離にある物点からの軸上光束2および最大画角の光束3の各光路を示す。
 本発明の実施の形態に係る撮像レンズLは、CCDやCMOS等の撮像素子を用いた各種撮像機器、特に、比較的小型の携帯端末機器、例えばデジタルスチルカメラ、カメラ付き携帯電話機、スマートフォン、タブレット型端末およびPDA等に用いて好適なものである。この撮像レンズLは、光軸Z1に沿って、物体側から順に、第1レンズL1と、第2レンズL2と、第3レンズL3と、第4レンズL4と、第5レンズL5とを備えている。
 図10に、本発明の実施の形態にかかる撮像装置1である携帯電話端末の概観図を示す。本発明の実施の形態に係る撮像装置1は、本実施の形態に係る撮像レンズLと、この撮像レンズLによって形成された光学像に応じた撮像信号を出力するCCDなどの撮像素子100(図1参照)とを備えて構成される。撮像素子100は、この撮像レンズLの結像面(像面R14)に配置される。
 図11に、本発明の実施の形態にかかる撮像装置501であるスマートフォンの概観図を示す。本発明の実施の形態に係る撮像装置501は、本実施の形態に係る撮像レンズLと、この撮像レンズLによって形成された光学像に応じた撮像信号を出力するCCDなどの撮像素子100(図1参照)とを有するカメラ部541を備えて構成される。撮像素子100は、この撮像レンズLの結像面(像面R14)に配置される。
 第5レンズL5と撮像素子100との間には、レンズを装着するカメラ側の構成に応じて、種々の光学部材CGが配置されていても良い。例えば撮像面保護用のカバーガラスや赤外線カットフィルタなどの平板状の光学部材が配置されていても良い。この場合、光学部材CGとして例えば平板状のカバーガラスに、赤外線カットフィルタやNDフィルタ等のフィルタ効果のあるコートが施されたもの、あるいは同様の効果を有する材料を使用しても良い。
 また、光学部材CGを用いずに、第5レンズL5にコートを施す等して光学部材CGと同等の効果を持たせるようにしても良い。これにより、部品点数の削減と全長の短縮を図ることができる。
 この撮像レンズLはまた、第2レンズL2の物体側の面より物体側に配置された開口絞りStを備えることが好ましい。このように、開口絞りStを第2レンズL1の物体側の面よりも物体側に配置したことにより、特に結像領域の周辺部において、光学系を通過する光線の結像面(撮像素子)への入射角が大きくなるのを抑制することができる。この効果を更に高めるために、開口絞りStを、第1レンズL1の物体側の面より物体側に配置することが好ましい。なお、「第2レンズの物体側の面より物体側に配置」とは、光軸方向における開口絞りの位置が、軸上マージナル光線と第2レンズL2の物体側の面の交点と同じ位置かそれより物体側にあることを意味する。同様に、「第1レンズL1の物体側の面より物体側に配置」とは、光軸方向における開口絞りの位置が、軸上マージナル光線と第1レンズL1の物体側の面の交点と同じ位置かそれより物体側にあることを意味する。
 さらに、開口絞りStを光軸方向において第1レンズL1の物体側の面よりも物体側に配置した場合において、開口絞りStを第1レンズL1の面頂点よりも像側に配置することが好ましい。このように、開口絞りStを第1レンズL1の面頂点よりも像側に配置した場合には、開口絞りStを含めた撮像レンズの全長を短縮化することができる。なお、第1乃至第4の実施形態に係る撮像レンズ(図1~4)は、開口絞りStが第1レンズL1の物体側の面より物体側に配置され、開口絞りStを第1レンズL1の面頂点よりも像側に配置された構成例である。また、本実施の形態に限定されず、開口絞りStが第1レンズL1の面頂点よりも物体側に配置されていてもよい。開口絞りStが第1レンズL1の面頂点よりも物体側に配置されている場合には、開口絞りStが第1レンズL1の面頂点よりも像側に配置されている場合より周辺光量の確保の観点からはやや不利であるが、結像領域の周辺部において、光学系を通過する光線の結像面(撮像素子)への入射角が大きくなるのをさらに好適に抑制することができる。
 この撮像レンズLにおいて、第1レンズL1は、光軸近傍で両凸形状であり、光軸近傍で曲率半径の絶対値の小さい方の面を物体側に向けている。第1レンズL1が光軸近傍で両凸形状である場合には、最も物体側のレンズである第1レンズL1を、好適に全長の短縮化を実現可能な強さの正の屈折力を備えたものとすることが容易になるため、好適に全長を短縮化することができる。また、光軸近傍で同程度の強さの正の屈折力を有する第1レンズL1を実現するためには、第1レンズL1を光軸近傍でメニスカス形状のレンズとした場合よりも、第1レンズL1を光軸近傍で両凸形状とした場合の方が、第1レンズL1の光軸近傍の曲率半径の絶対値を相対的に大きくすることができる。このため、第1レンズL1を光軸近傍で両凸形状とした場合には、球面収差およびコマ収差をより良好に補正することができる。また、第1レンズL1を、光軸近傍で曲率半径の絶対値の小さい方の面を物体側に向けた両凸形状とすることにより、光軸近傍で曲率半径の絶対値の小さい方の面を像側に向けた両凸形状とした場合よりも第1レンズL1の後側主点位置を物体側に寄せることができるため、より全長を好適に短縮化できる。
 第2レンズL2は、光軸近傍において負の屈折力を有する。このことより、光線が第1レンズL1を通過する際に生じた球面収差および軸上の色収差を良好に補正することができる。また、第2レンズL2は光軸近傍において像側に凹面を向けている。これにより、第2レンズL2の後側主点位置を物体側に寄せることができるため、好適に全長を短縮化することができる。また、第2レンズL2を光軸近傍で両凹形状とすることが好ましい。光軸近傍で同程度の強さの負の屈折力を有する第2レンズを実現するためには、第2レンズL2を光軸近傍でメニスカス形状のレンズとした場合よりも、第2レンズL2を光軸近傍で両凹形状とした場合の方が、第2レンズL2の光軸近傍の曲率半径の絶対値を相対的に大きくすることができる。このため、第2レンズL2を光軸近傍で両凹形状とした場合には、球面収差の発生をより好適に抑制できる。また、第1の実施形態に示すように、第2レンズL2が、光軸近傍において両凹形状であり、光軸近傍において像側に曲率半径の絶対値の小さい方の面を向けていることが好ましい。この場合には、光軸近傍で両凹形状であることにより球面収差を良好に補正しつつ、光軸近傍において像側に曲率半径の絶対値の小さい方の面を向けていることにより、第2レンズL2の後側主点位置を物体側に寄せることができるため、より好適に全長を短縮化することができる。
 第3レンズL3は、光軸近傍において正の屈折力を有することが好ましい。このことにより、球面収差をより良好に補正することができる。また、第1の実施形態に示すように、第3レンズL3は、光軸近傍において物体側に凸面を向けたメニスカス形状である。第3レンズL3を、光軸近傍において物体側に凸面を向けたメニスカス形状とした場合には、第3レンズL3の後側主点位置をより好適に物体側に寄せることができるため、好適に全長の短縮化を実現することができる。
 第4レンズL4は、光軸近傍において負の屈折力を有する。第4レンズL4と後述の第5レンズL5を光軸近傍において負の屈折力を有するものとすることにより、第1レンズL1から第3レンズL3を1つの正の屈折力を有する光学系としてみなし、第4レンズL4と第5レンズL5を負の屈折力を有する1つの光学系としてみなすと、撮像レンズ全体としてテレフォト型の構成とすることができるため、撮像レンズ全体の後側主点位置を物体側に寄せることができ、全長を好適に短縮化することができる。また、第1の実施形態に示すように、第4レンズは、光軸近傍において像側に凸面を向けたメニスカス形状である。このことにより、非点収差を好適に補正することができる。
 第5レンズL5は、光軸近傍において負の屈折力を有する。上述のように、撮像レンズの最も像側に光軸近傍において負の屈折力を有するレンズを配置することで、より好適に撮像レンズを全体としてテレフォト型の構成とすることができ、全長を好適に短縮化することができる。また、第5レンズL5が光軸近傍で負の屈折力を有することにより、像面湾曲を好適に補正することができる。また、第5レンズL5は光軸近傍において像側に凹面を向けたメニスカス形状である。このことにより、より好適に全長の短縮化を実現しつつ、像面湾曲を良好に補正することができる。
 また、第5レンズL5は、像側の面の有効径内に少なくとも1つの変曲点を有する。第5レンズL5の像側の面における「変曲点」とは、第5レンズL5の像側の面形状が像側に対して凸形状から凹形状(または凹形状から凸形状)に切り替わる点を意味する。変曲点の位置は、第5レンズL5の像側の面の有効径内であれば光軸から半径方向外側の任意の位置に配置することができ、好ましくは、第5レンズL5の半径方向外側に向かって最大有効半径の4割から7割に配置することが好ましい。第1の実施形態に示すように、第5レンズL5の像側の面を少なくとも1つの変曲点を有する形状とすることにより、特に結像領域の周辺部において、光学系を通過する光線の結像面(撮像素子)への入射角が大きくなるのを抑制することができる。なお、ここでいう周辺部は、最大有効半径の略5から7割より半径方向外側を意味する。
 上記撮像レンズLによれば、全体として5枚というレンズ構成において、第1ないし第5レンズL5の各レンズ要素の構成を最適化したので、全長を短縮化しつつ、高解像性能を有するレンズ系を実現できる。
 この撮像レンズLは、高性能化のために、第1レンズL1乃至第5レンズL5のそれぞれのレンズの少なくとも一方の面に、非球面を用いることが好適である。
 また、撮像レンズLを構成する各レンズL1乃至L5は接合レンズでなく単レンズとすることが好ましい。各レンズL1乃至L5のいずれかを接合レンズとした場合よりも、非球面数が多いため、各レンズの設計自由度が高くなり、好適に全長の短縮化を図ることができるからである。
 次に、以上のように構成された撮像レンズLの条件式に関する作用および効果をより詳細に説明する。
 まず、全系における焦点距離fと第4レンズL4および第5レンズL5の合成焦点距離f45は、以下の条件式(1)を満足することが好ましい。
 -0.6<f/f45<-0.1      (1)
 条件式(1)は、第4レンズL4および第5レンズL5の合成焦点距離f45に対する全系における焦点距離fの比の好ましい数値範囲を規定する。条件(1)の下限を下回ると、全系の屈折力に対して第4レンズL4と第5レンズL5による負の屈折力が強すぎて、特に中間画角で、光学系を通過する光線の結像面(撮像素子)への入射角が大きくなるのを十分抑制することが難しくなる。また、条件式(1)の上限を上回ると、全系の屈折力に対して第4レンズL4と第5レンズL5の2つのレンズによる負の屈折力が弱すぎて、後側主点位置を十分に物体側に寄せることが難しくなるため、全長の短縮化に不利である。このため、条件式(1)を満たすことにより、後側主点位置を十分に物体側に寄せて、好適に全長を短縮化でき、また、特に中間画角で、光学系を通過する光線の結像面(撮像素子)への入射角が大きくなるのを抑制することができる。この効果をより高めるために、条件式(1-1)を満たすことがさらに好ましい。
 -0.42<f/f45<-0.23    (1-1)
 また、全系の焦点距離f、半画角ω、第5レンズL5の像側の面の近軸曲率半径R5rは、以下の条件式(2)を満足することが好ましい。
 0.5<f・tanω/R5r<10    (2)
 条件式(2)は、第5レンズL5の像側の面の近軸曲率半径R5rに対する近軸像高(f・tanω)の比の好ましい数値範囲を規定するものである。条件式(2)の下限を下回る場合には、近軸像高(f・tanω)に対して撮像レンズの最も像側の面である第5レンズの像側の面の近軸曲率半径R5rの絶対値が大きくなりすぎて、全長の短縮化を実現しつつ、像面湾曲を十分に補正することが難しくなる。また、条件式(2)の上限を上回る場合には、近軸像高(f・tanω)に対して撮像レンズの最も像側の面である第5レンズの像側の面の近軸曲率半径R5rの絶対値が小さくなりすぎて、中間画角において、光学系を通過する光線の結像面(撮像素子)への入射角が大きくなるのを抑制することが難しくなる。このため、条件式(2)の範囲を満たすことで、中間画角において、光学系を通過する光線の結像面(撮像素子)への入射角が大きくなるのを好適に抑制しながらも、全長を短縮化し、かつ、好適に像面湾曲を補正することができる。この効果をより高めるために、条件式(2-1)を満たすことが好ましい。
 1.5<f・tanω/R5r<4.5   (2-1)
 また、第3レンズL3の焦点距離f3および第1レンズL1の焦点距離f1は、以下の条件式(3)を満足することが好ましい。
 1<f3/f1<10    (3)
 条件式(3)は、第3レンズL3の焦点距離f3および第1レンズL1の焦点距離f1の比の好ましい数値範囲を規定するものである。条件式(3)の下限を下回ると、第3レンズL3の屈折力が第1レンズL1の屈折力に対して強くなりすぎて、全長の短縮化を実現することが難しくなる。条件式(3)の上限を上回ると、第3レンズL3の屈折力が第1レンズL1の屈折力に対して弱くなりすぎて、球面収差を良好に補正することが難しくなる。このため、条件式(3)の範囲を満たすことで、全長の短縮化を実現しつつ、球面収差を良好に補正することができる。この効果をより高めるために、条件式(3-1)を満たすことが好ましい。
 2.5<f3/f1<8       (3-1)
 また、第3レンズL3の物体側の面の近軸曲率半径R3fと第3レンズL3の像側の面の近軸曲率半径R3rは、以下の条件式(4)を満足することが好ましい。
 -1<(R3f-R3r)/(R3f+R3r)<0      (4)
 条件式(4)は、第3レンズL3の物体側の面の近軸曲率半径R3fと第3レンズL3の像側の面の近軸曲率半径R3rの好ましい数値範囲をそれぞれ規定する。条件式(4)の下限を下回る場合には、全長の短縮化に不利である。条件式(4)の上限を上回る場合には、球面収差の補正が難しくなる。このため、条件式(4)を満足することで、好適に全長の短縮化を図りつつ、球面収差を良好に補正できる。この効果をより高めるために、下記条件式(4-1)を満たすことがより好ましい。
 -0.8<(R3f-R3r)/(R3f+R3r)<-0.2 (4-1)
 また、第3レンズL3の物体側の面の近軸曲率半径R3fと第2レンズL2の像側の面の近軸曲率半径R2rは、以下の条件式(5)を満足することが好ましい。
 -1<(R2r-R3f)/(R2r+R3f)<0      (5)
 条件式(5)は、第3レンズL3の物体側の面の近軸曲率半径R3fと第2レンズL2の像側の面の近軸曲率半径R2rの好ましい数値範囲をそれぞれ規定する。条件式(5)の上限を上回る場合にも、下限を下回る場合にも、正弦条件違反量の絶対値が増大してコマ収差の発生を招きやすくなるため、コマ収差を十分に補正することが難しくなる。このため、条件式(5)を満足することで、特に低画角において正弦条件違反量の絶対値の増大を抑制して正弦条件違反量を適切に設定することができ、コマ収差を良好に補正することができる。この効果をより高めるために、下記条件式(5-1)を満たすことがより好ましい。
 -0.3<(R2r-R3f)/(R2r+R3f)<-0.05 (5-1)
 また、第1レンズL1の焦点距離f1および全系の焦点距離fは、以下の条件式(6)を満足することがより好ましい。
 0.8<f/f1<1.5    (6)
 条件式(6)は、第1レンズL1の焦点距離f1に対する全系の焦点距離fの比の好ましい数値範囲を規定するものである。条件式(6)の下限を下回る場合には、全系の屈折力に対して第1レンズL1の正の屈折力が弱くなりすぎて、全長を短縮化することが難しくなる。条件式(6)の上限を上回る場合には、全系の屈折力に対して第1レンズL1の正の屈折力が強くなりすぎて、特に球面収差の補正が難しくなる。このため、条件式(6)の範囲を満たすことで、全長を短縮化しつつ、球面収差を良好に補正することができる。この効果をより高めるために、条件式(6-1)を満たすことがより好ましい。
 0.9<f/f1<1.4    (6-1)
 また、第3レンズL3の焦点距離f3および全系の焦点距離fは、以下の条件式(7)を満足することが好ましい。
 0.1<f/f3<0.6    (7)
 条件式(7)は、第3レンズL3の焦点距離f3に対する全系の焦点距離fの比の好ましい数値範囲を規定するものである。条件式(7)の下限を下回る場合には、全系の屈折力に対して第3レンズL3の屈折力が弱くなりすぎて、全長を短縮化することが難しくなる。条件式(7)の上限を上回る場合には、全系の屈折力に対して第3レンズL3の屈折力が強くなりすぎて、球面収差の補正が難しくなる。このため、条件式(7)の範囲を満たすことで、全長を短縮化しつつ、球面収差を良好に補正することができる。この効果をより高めるために、条件式(7-1)を満たすことがより好ましい。
 0.15<f/f3<0.4   (7-1)
 また、第2レンズL2の焦点距離f2および全系の焦点距離fは、以下の条件式(8)を満足することが好ましい。
 -1<f/f2<-0.2    (8)
 条件式(8)は、第2レンズL2の焦点距離f2に対する全系の焦点距離fの比の好ましい数値範囲を規定するものである。条件式(8)の下限を下回る場合には、全系の正の屈折力に対して第2レンズL2の屈折力が強くなりすぎて、全長を短縮化することが難しくなる。条件式(8)の上限を上回る場合には、全系の屈折力に対して第2レンズL2の屈折力が弱くなりすぎて、軸上色収差の補正が難しくなる。このため、条件式(8)の範囲を満たすことで、全長を短縮化しつつ、好適に軸上色収差を補正することができる。この効果をより高めるために、条件式(8-1)を満たすことがより好ましい。
 -0.8<f/f2<-0.5  (8-1)
 また、第3レンズL3と第4レンズL4の光軸上の間隔D7と全系の焦点距離fは、以下の条件式(9)を満足することが好ましい。
 0.05<D7/f<0.2   (9)
 条件式(9)は、全系の焦点距離fに対する第3レンズL3と第4レンズL4の光軸上の間隔D7の比の好ましい数値範囲を規定するものである。先述のように、本各実施形態に係る撮像レンズは、第1レンズL1から第3レンズL3を1つの正の屈折力を有する光学系(第1のレンズ群)としてみなし、第4レンズL4と第5レンズL5を負の屈折力を有する1つの光学系(第2のレンズ群)としてみなすと、撮像レンズ全体としてテレフォト型の構成とされている。条件式(9)の下限を下回る場合には、第1のレンズ群と第2のレンズ群の光軸上の距離が小さくなりすぎて、撮像レンズLを上記のようにテレフォト型の構成にしたことによる全長の短縮化の効果が弱くなってしまう。また、条件式(9)の上限を上回る場合には、第1のレンズ群の正の屈折力に対して第2のレンズ群の負の屈折力を強くする必要が生じやすく、非点収差を良好に補正することが難しくなる。このため、条件式(9)の範囲を満たすことで、全長を短縮化しつつ、非点収差を良好に補正することができる。
 次に、図2~4を参照しながら、本発明の第2乃至第4の実施形態にかかる撮像レンズについて詳細に説明する。図1乃至図4に示す第1乃至第4の実施形態に係る撮像レンズは、第1レンズL1から第5レンズL5の全ての面が非球面形状とされている。また、本発明の第2乃至第4の実施形態にかかる撮像レンズは、第1の実施形態と同様に、物体側から順に、光軸近傍で両凸形状であり、光軸近傍で物体側に曲率半径の絶対値の小さい方の面を向けた第1レンズL1と、光軸近傍で負の屈折力を有し、光軸近傍で像側に凹面を向けた第2レンズL2と、光軸近傍で物体側に凸面を向けたメニスカス形状である第3レンズL3と、光軸近傍で負の屈折力を有し、光軸近傍で像側に凸面を向けたメニスカス形状である第4レンズL4と、光軸近傍で負の屈折力を有し、光軸近傍で像側に凹面を向けたメニスカス形状であり、像側の面に少なくとも1つの変曲点を有する第5レンズL5とから構成される。このため、以下の第1から第4の実施形態においては、各レンズ群を構成する各レンズの他の詳細な構成についてのみ説明する。また、第1から第4の実施形態の間で互いに共通する構成の作用効果はそれぞれ同じ作用効果を有するため、実施形態の順番が早いものについて構成及びその作用効果を説明し、その他の実施形態の共通する構成及びその作用効果の重複説明を省略する。
 また、図2に示す第2の実施形態のように、第2レンズL2を光軸近傍において像側に凹面を向けたメニスカス形状とすることができる。この場合には、第2レンズL2が光軸近傍において正の屈折力を有する面を物体側に配置し、光軸近傍において負の屈折力を有する面を像側に配置しているため、全長の短縮化をより実現しやすくなる。また、第2の実施形態においては、第1の実施形態と第3レンズL3ないし第5レンズL5のレンズの構成を共通としており、これらのレンズの各構成によれば第1の実施形態のそれぞれ対応する構成と同じ作用効果が得られる。
 図3および4に示す第3および第4の実施形態にかかる撮像レンズLは、第1の実施形態と第1レンズL1ないし第5レンズL5のレンズの構成を共通としており、これらのレンズの各構成によれば第1の実施形態のそれぞれ対応する構成と同じ作用効果が得られる。
 以上説明したように、本発明の実施の形態に係る撮像レンズによれば、全体として5枚というレンズ構成において、各レンズ要素の構成を最適化したので、全長が短縮化され、高解像性能を有するレンズ系を実現できる。
 また、適宜好ましい条件を満足することで、より高い結像性能を実現できる。また、本実施の形態に係る撮像装置によれば、本実施の形態に係る高性能の撮像レンズによって形成された光学像に応じた撮像信号を出力するようにしたので、中心画角から周辺画角まで高解像の撮影画像を得ることができる。
 次に、本発明の実施の形態に係る撮像レンズの具体的な数値実施例について説明する。以下では、複数の数値実施例をまとめて説明する。
 後掲の表1および表2は、図1に示した撮像レンズの構成に対応する具体的なレンズデータを示している。特に表1にはその基本的なレンズデータを示し、表2には非球面に関するデータを示す。表1に示したレンズデータにおける面番号Siの欄には、実施例1に係る撮像レンズについて、最も物体側のレンズ要素の面を1番目(開口絞りStを1番目)として、像側に向かうに従い順次増加するようにして符号を付したi番目の面の番号を示している。曲率半径Riの欄には、図1において付した符号Riに対応させて、物体側からi番目の面の曲率半径の値(mm)を示す。面間隔Diの欄についても、同様に物体側からi番目の面Siとi+1番目の面Si+1との光軸上の間隔(mm)を示す。Ndjの欄には、物体側からj番目の光学要素のd線(587.56nm)に対する屈折率の値を示す。νdjの欄には、物体側からj番目の光学要素のd線に対するアッベ数の値を示す。なお、各レンズデータには、諸データとして、全系の焦点距離f(mm)とバックフォーカスBf(mm)の値をそれぞれ示す。なお、このバックフォーカスBfは空気換算した値を表している。
 この実施例1に係る撮像レンズは、第1レンズL1乃至第5レンズL5の両面がすべて非球面形状となっている。表1の基本レンズデータには、これらの非球面の曲率半径として、光軸近傍の曲率半径(近軸曲率半径)の数値を示している。
 表2には実施例1の撮像レンズにおける非球面データを示す。非球面データとして示した数値において、記号“E”は、その次に続く数値が10を底とした“べき指数”であることを示し、その10を底とした指数関数で表される数値が“E”の前の数値に乗算されることを示す。例えば、「1.0E-02」であれば、「1.0×10-2」であることを示す。
 非球面データとしては、以下の式(A)によって表される非球面形状の式における各係数Ai,KAの値を記す。Zは、より詳しくは、光軸から高さhの位置にある非球面上の点から、非球面の頂点の接平面(光軸に垂直な平面)に下ろした垂線の長さ(mm)を示す。
 Z=C・h2/{1+(1-KA・C2・h21/2}+ΣAi・hi ……(A)
ただし、
 Z:非球面の深さ(mm)
 h:光軸からレンズ面までの距離(高さ)(mm)
 C:近軸曲率=1/R
 (R:近軸曲率半径)
 Ai:第i次(iは3以上の整数)の非球面係数
 KA:非球面係数
とする。
 以上の実施例1の撮像レンズと同様にして、図2~図4に示した撮像レンズの構成に対応する具体的なレンズデータを実施例2乃至実施例4として、表3~表8に示す。これらの実施例1~4に係る撮像レンズでは、第1レンズL1乃至第5レンズL5の両面がすべて非球面形状となっている。
 図6(A)~(E)はそれぞれ、実施例1の撮像レンズにおける球面収差、正弦条件違反量、非点収差、ディストーション(歪曲収差)、倍率色収差(倍率の色収差)図を示している。球面収差、正弦条件違反量、非点収差(像面湾曲)、ディストーション(歪曲収差)を表す各収差図には、d線(波長587.56nm)を基準波長とした収差を示す。球面収差図、倍率色収差図には、F線(波長486.1nm)、C線(波長656.27nm)についての収差も示す。また、球面収差図には、g線(波長435.83nm)についての収差も示す。非点収差図において、実線はサジタル方向(S)、破線はタンジェンシャル方向(T)の収差を示す。また、Fno.はFナンバーを、ωは半画角をそれぞれ示す。
 同様に、実施例2乃至実施例4の撮像レンズについての諸収差を図7(A)~(E)乃至図9(A)~(E)に示す。
 また、表9には、本発明に係る各条件式(1)~(9)に関する値を、各実施例1~4についてそれぞれまとめたものを示す。
 以上の各数値データおよび各収差図から分かるように、各実施例について、全長を短縮化しながらも高い結像性能が実現されている。
 なお、本発明の撮像レンズには、実施の形態および各実施例に限定されず種々の変形実施が可能である。例えば、各レンズ成分の曲率半径、面間隔、屈折率、アッベ数、非球面係数の値などは、各数値実施例で示した値に限定されず、他の値をとり得る。
 また、各実施例では、すべて固定焦点で使用する前提での記載とされているが、フォーカス調整可能な構成とすることも可能である。例えばレンズ系全体を繰り出したり、一部のレンズを光軸上で動かしてオートフォーカス可能な構成とすることも可能である。また、本発明の撮像レンズは、光軸近傍でメニスカス形状とされた各レンズにおいて、光軸近傍でメニスカス形状の曲率半径の絶対値が大きい面を、光軸近傍で平面として構成してもよい。言い換えると、光軸近傍でメニスカス形状とされたレンズを、該レンズのメニスカス形状の曲率半径の絶対値が大きい面を光軸近傍で平面とした平凸形状のレンズまたは平凹形状のレンズとしてもよい。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009

Claims (19)

  1.  物体側から順に、
     両凸形状であり、物体側に曲率半径の絶対値の小さい方の面を向けた第1レンズと、
     負の屈折力を有し、像側に凹面を向けた第2レンズと、
     物体側に凸面を向けたメニスカス形状である第3レンズと、
     負の屈折力を有し、像側に凸面を向けたメニスカス形状である第4レンズと、
     負の屈折力を有し、像側に凹面を向けたメニスカス形状であり、像側の面に少なくとも1つの変曲点を有する第5レンズと、
     から構成される実質的に5個のレンズからなることを特徴とする撮像レンズ。
  2.  さらに以下の条件式を満足することを特徴とする請求項1に記載の撮像レンズ。
     -0.6<f/f45<-0.1      (1)
    ただし、
     f:全系の焦点距離
     f45:前記第4レンズと前記第5レンズの合成焦点距離
    とする。
  3.  さらに以下の条件式を満足することを特徴とする請求項1または2に記載の撮像レンズ。
     0.5<f・tanω/R5r<10    (2)
    ここで、
     f:全系の焦点距離
     ω:半画角
     R5r:前記第5レンズの像側の面の近軸曲率半径
    とする。
  4.  さらに以下の条件式を満足することを特徴とする請求項1から3のいずれか1項に記載の撮像レンズ。
     1<f3/f1<10           (3)
    ここで、
     f3:前記第3レンズの焦点距離
     f1:前記第1レンズの焦点距離
    とする。
  5.  さらに以下の条件式を満足することを特徴とする請求項1から4のいずれか1項に記載の撮像レンズ。
     -1<(R3f-R3r)/(R3f+R3r)<0       (4)
    ここで、
     R3f:前記第3レンズの物体側の面の近軸曲率半径
     R3r:前記第3レンズの像側の面の近軸曲率半径
    とする。
  6.  さらに以下の条件式を満足することを特徴とする請求項1から5のいずれか1項に記載の撮像レンズ。
     -1<(R2r-R3f)/(R2r+R3f)<0       (5)
    ここで、
     R2r:前記第2レンズの像側の面の近軸曲率半径
     R3f:前記第3レンズの物体側の面の近軸曲率半径
    とする。
  7.  さらに以下の条件式を満足することを特徴とする請求項1から6のいずれか1項に記載の撮像レンズ。
     0.8<f/f1<1.5    (6)
    ここで、
     f:全系の焦点距離
     f1:前記第1レンズの焦点距離
    とする。
  8.  さらに以下の条件式を満足することを特徴とする請求項1から7のいずれか1項に記載の撮像レンズ。
     0.1<f/f3<0.6    (7)
    ここで、
     f:全系の焦点距離
     f3:前記第3レンズの焦点距離
    とする。
  9.  さらに以下の条件式を満足することを特徴とする請求項1から8のいずれか1項に記載の撮像レンズ。
     -1<f/f2<-0.2    (8)
    ここで、
     f:全系の焦点距離
     f2:前記第2レンズの焦点距離
    とする。
  10.  さらに以下の条件式を満足することを特徴とする請求項1から9のいずれか1項に記載の撮像レンズ。
     0.05<D7/f<0.2   (9)
    ここで、
     f:全系の焦点距離
     D7:前記第3レンズと前記第4レンズの光軸上の間隔
    とする。
  11.  さらに以下の条件式を満足することを特徴とする請求項1から10のいずれか1項に記載の撮像レンズ。
     -0.42<f/f45<-0.23    (1-1)
    ただし、
     f:全系の焦点距離
     f45:前記第4レンズと前記第5レンズの合成焦点距離
    とする。
  12.  さらに以下の条件式を満足することを特徴とする請求項1から11のいずれか1項に記載の撮像レンズ。
     1.5<f・tanω/R5r<4.5   (2-1)
    ここで、
     f:全系の焦点距離
     ω:半画角
     R5r:前記第5レンズの像側の面の近軸曲率半径
    とする。
  13.  さらに以下の条件式を満足することを特徴とする請求項1から12のいずれか1項に記載の撮像レンズ。
     2.5<f3/f1<8          (3-1)
    ここで、
     f3:前記第3レンズの焦点距離
     f1:前記第1レンズの焦点距離
    とする。
  14.  さらに以下の条件式を満足することを特徴とする請求項1から13のいずれか1項に記載の撮像レンズ。
     -0.8<(R3f-R3r)/(R3f+R3r)<-0.2  (4-1)
    ここで、
     R3f:前記第3レンズの物体側の面の近軸曲率半径
     R3r:前記第3レンズの像側の面の近軸曲率半径
    とする。
  15.  さらに以下の条件式を満足することを特徴とする請求項1から14のいずれか1項に記載の撮像レンズ。
     -0.3<(R2r-R3f)/(R2r+R3f)<-0.05 (5-1)
    ここで、
     R2r:前記第2レンズの像側の面の近軸曲率半径
     R3f:前記第3レンズの物体側の面の近軸曲率半径
    とする。
  16.  さらに以下の条件式を満足することを特徴とする請求項1から15のいずれか1項に記載の撮像レンズ。
     0.9<f/f1<1.4    (6-1)
    ここで、
     f:全系の焦点距離
     f1:前記第1レンズの焦点距離
    とする。
  17.  さらに以下の条件式を満足することを特徴とする請求項1から16のいずれか1項に記載の撮像レンズ。
     0.15<f/f3<0.4   (7-1)
    ここで、
     f:全系の焦点距離
     f3:前記第3レンズの焦点距離
    とする。
  18.  さらに以下の条件式を満足することを特徴とする請求項1から17のいずれか1項に記載の撮像レンズ。
     -0.8<f/f2<-0.5  (8-1)
    ここで、
     f:全系の焦点距離
     f2:前記第2レンズの焦点距離
    とする。
  19.  請求項1に記載された撮像レンズを備えたことを特徴とする撮像装置。
PCT/JP2013/007225 2012-12-25 2013-12-09 撮像レンズおよび撮像レンズを備えた撮像装置 WO2014103198A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201390001001.7U CN204807789U (zh) 2012-12-25 2013-12-09 摄像透镜以及具备摄像透镜的摄像装置
US14/745,474 US9513467B2 (en) 2012-12-25 2015-06-22 Imaging lens and imaging apparatus equipped with the imaging lens

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-281683 2012-12-25
JP2012281683 2012-12-25
US201361755239P 2013-01-22 2013-01-22
US61/755,239 2013-01-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/745,474 Continuation US9513467B2 (en) 2012-12-25 2015-06-22 Imaging lens and imaging apparatus equipped with the imaging lens

Publications (1)

Publication Number Publication Date
WO2014103198A1 true WO2014103198A1 (ja) 2014-07-03

Family

ID=51020322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/007225 WO2014103198A1 (ja) 2012-12-25 2013-12-09 撮像レンズおよび撮像レンズを備えた撮像装置

Country Status (3)

Country Link
US (1) US9513467B2 (ja)
CN (1) CN204807789U (ja)
WO (1) WO2014103198A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9323028B2 (en) 2013-05-14 2016-04-26 Largan Precision Co., Ltd. Optical image capturing system

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5890219B2 (ja) * 2012-03-29 2016-03-22 カンタツ株式会社 撮像レンズ
WO2014155459A1 (ja) * 2013-03-26 2014-10-02 富士フイルム株式会社 撮像レンズおよび撮像レンズを備えた撮像装置
WO2014155465A1 (ja) * 2013-03-29 2014-10-02 富士フイルム株式会社 撮像レンズおよび撮像レンズを備えた撮像装置
TWI526713B (zh) * 2015-02-02 2016-03-21 大立光電股份有限公司 攝影鏡頭組、取像裝置及電子裝置
CN104898256B (zh) * 2015-02-13 2017-06-06 玉晶光电(厦门)有限公司 光学成像镜头及应用该光学成像镜头的电子装置
KR102663749B1 (ko) * 2016-02-17 2024-05-08 삼성전자주식회사 옵티칼 렌즈 어셈블리, 장치, 및 이미지 형성 방법
TWI701474B (zh) * 2019-07-17 2020-08-11 大立光電股份有限公司 光學成像鏡頭組、取像裝置及電子裝置
CN111123482A (zh) * 2020-01-19 2020-05-08 厦门力鼎光电股份有限公司 一种光学镜头
JP6686240B1 (ja) * 2020-02-25 2020-04-22 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド 撮像レンズ

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011085733A (ja) * 2009-10-15 2011-04-28 Hitachi Maxell Ltd 撮像レンズ系
KR20120018573A (ko) * 2010-08-23 2012-03-05 삼성전기주식회사 초소형 광학계
US20120087020A1 (en) * 2010-10-06 2012-04-12 Largan Precision Co., Ltd. Optical lens system
US20120092778A1 (en) * 2010-10-15 2012-04-19 Largan Precision Co., Ltd. Optical imaging lens assembly
US8179615B1 (en) * 2011-01-07 2012-05-15 Largan Precision Co. Image pickup optical lens assembly
US20120188656A1 (en) * 2009-07-14 2012-07-26 Largan Precision Co., Ltd. Imaging lens system
CN202583582U (zh) * 2012-01-12 2012-12-05 大立光电股份有限公司 取像系统
JP2013011710A (ja) * 2011-06-29 2013-01-17 Optical Logic Inc 撮像レンズ
TW201310059A (zh) * 2012-11-02 2013-03-01 Largan Precision Co Ltd 結像鏡頭組
JP2013054099A (ja) * 2011-09-01 2013-03-21 Optical Logic Inc 撮像レンズ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI401485B (zh) 2010-06-10 2013-07-11 Largan Precision Co Ltd 成像光學鏡片組

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120188656A1 (en) * 2009-07-14 2012-07-26 Largan Precision Co., Ltd. Imaging lens system
JP2011085733A (ja) * 2009-10-15 2011-04-28 Hitachi Maxell Ltd 撮像レンズ系
KR20120018573A (ko) * 2010-08-23 2012-03-05 삼성전기주식회사 초소형 광학계
US20120087020A1 (en) * 2010-10-06 2012-04-12 Largan Precision Co., Ltd. Optical lens system
US20120092778A1 (en) * 2010-10-15 2012-04-19 Largan Precision Co., Ltd. Optical imaging lens assembly
US8179615B1 (en) * 2011-01-07 2012-05-15 Largan Precision Co. Image pickup optical lens assembly
JP2013011710A (ja) * 2011-06-29 2013-01-17 Optical Logic Inc 撮像レンズ
JP2013054099A (ja) * 2011-09-01 2013-03-21 Optical Logic Inc 撮像レンズ
CN202583582U (zh) * 2012-01-12 2012-12-05 大立光电股份有限公司 取像系统
TW201310059A (zh) * 2012-11-02 2013-03-01 Largan Precision Co Ltd 結像鏡頭組

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9323028B2 (en) 2013-05-14 2016-04-26 Largan Precision Co., Ltd. Optical image capturing system

Also Published As

Publication number Publication date
US9513467B2 (en) 2016-12-06
CN204807789U (zh) 2015-11-25
US20150286036A1 (en) 2015-10-08

Similar Documents

Publication Publication Date Title
JP5886230B2 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP6000179B2 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP5735712B2 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP5752856B2 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP5687390B2 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP5911819B2 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP5937035B2 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP5785324B2 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP5937036B2 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
WO2014155460A1 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
WO2013175783A1 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
WO2014155466A1 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP2014209163A (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP2014240918A (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP6150317B2 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP2015022145A (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
WO2014103198A1 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
WO2014103197A1 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP5727679B2 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP5718532B2 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
WO2014103199A1 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
WO2014155459A1 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
WO2014155465A1 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP5722507B2 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP5946790B2 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201390001001.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13867370

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13867370

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP