WO2014152006A2 - Anti-hepcidin antibodies and uses thereof - Google Patents

Anti-hepcidin antibodies and uses thereof Download PDF

Info

Publication number
WO2014152006A2
WO2014152006A2 PCT/US2014/026804 US2014026804W WO2014152006A2 WO 2014152006 A2 WO2014152006 A2 WO 2014152006A2 US 2014026804 W US2014026804 W US 2014026804W WO 2014152006 A2 WO2014152006 A2 WO 2014152006A2
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
hepcidin
antigen
binding fragment
seq
Prior art date
Application number
PCT/US2014/026804
Other languages
English (en)
French (fr)
Other versions
WO2014152006A3 (en
Inventor
Mark Westerman
Vaughn OSTLAND
Huiling Han
Patrick GUTSCHOW
Keith WESTERMAN
Gordana Olbina
Original Assignee
Intrinsic Lifesciences, Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to NZ631098A priority Critical patent/NZ631098A/en
Priority to CN201910169118.XA priority patent/CN110041427B/zh
Application filed by Intrinsic Lifesciences, Llc filed Critical Intrinsic Lifesciences, Llc
Priority to DK14771150.1T priority patent/DK2968503T3/en
Priority to RU2015144105A priority patent/RU2668391C2/ru
Priority to US14/771,135 priority patent/US9657098B2/en
Priority to ES14771150T priority patent/ES2695166T3/es
Priority to MX2015011772A priority patent/MX359794B/es
Priority to BR112015022123-8A priority patent/BR112015022123B1/pt
Priority to AU2014236677A priority patent/AU2014236677B2/en
Priority to EP14771150.1A priority patent/EP2968503B1/en
Priority to CN201480027805.3A priority patent/CN105263514B/zh
Priority to CA2904357A priority patent/CA2904357C/en
Priority to JP2016502250A priority patent/JP6463331B2/ja
Priority to KR1020157029178A priority patent/KR102218494B1/ko
Publication of WO2014152006A2 publication Critical patent/WO2014152006A2/en
Publication of WO2014152006A3 publication Critical patent/WO2014152006A3/en
Priority to IL241079A priority patent/IL241079A0/en
Priority to HK16108494.6A priority patent/HK1220379A1/zh
Priority to US15/485,141 priority patent/US9803011B2/en
Priority to US15/693,164 priority patent/US10239941B2/en
Priority to AU2018214008A priority patent/AU2018214008B2/en
Priority to IL261547A priority patent/IL261547B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/26Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against hormones ; against hormone releasing or inhibiting factors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/3955Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/06Antianaemics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/33Crossreactivity, e.g. for species or epitope, or lack of said crossreactivity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/34Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value

Definitions

  • Iron is an essential trace element required for growth and development of living organisms. In mammals, iron content is regulated by controlling iron absorption, iron recycling, and release of iron from the cells in which it is stored. Iron is predominantly absorbed in the duodenum and upper jejunum by enterocytes. Iron is recycled from degraded red cells by reticuloendothelial macrophages in bone marrow, hepatic Kupffer cells and spleen. Iron release is controlled by ferroportin, a major iron export protein located on the cell surface of enterocytes, macrophages and hepatocytes, the main cells capable of releasing iron into plasma. Hepcidin binds to ferroportin and decreases its functional activity by causing it to be internalized from the cell surface and degraded. (Nemeth et ah, Science, 306:2090-3, 2004).
  • antibodies and antigen-binding fragments thereof that bind to hepcidin (Hep) or a hepcidin peptide.
  • Hep hepcidin
  • an antibody, or antigen- binding fragment thereof that specifically binds to the N-terminus of hepcidin or a hepcidin peptide and neutralizes the activity of hepcidin in vitro and/or in vivo.
  • said heavy chain variable region comprises:
  • said light chain variable region comprises: [0011] (i) a CDR1 having an amino acid sequence of any one of SEQ ID NOS: 64-66,
  • said heavy chain variable region comprises:
  • said light chain variable region comprises:
  • an antibody, or antigen-binding fragment thereof, provided herein comprises IgGl or an IgG4 variable heavy chain and variable light chain.
  • an antibody, or antigen-binding fragment thereof, that specifically binds to hepcidin or a hepcidin peptide that is prepared by injecting a rodent (i.e., mouse, rat or rabbit) with a peptide having an amino acid sequence of any one of SEQ ID NOS: 19-27.
  • the peptide is conjugated to a carrier (e.g., keyhole limpet hemocyanin (KLH)) or administered with an adjuvant (complete Freund's adjuvant (CFA) or incomplete Freund's adjuvant (IFA)).
  • a hapten e.g., dinitrophenol [DNP]
  • a hepcidin peptide to which an antibody, or antigen-binding fragment thereof, binds may have, in some instances, an amino acid sequence of SEQ ID NO: 19.
  • an antibody, or antigen-binding fragment thereof that specifically binds to an epitope comprising amino acid sequence of any one of Hep-5, Hep-9, Hep-20, Hep 22 and Hep25.
  • the antibody, or antigen-binding fragment thereof specifically binds to an epitope comprising an amino acid sequence of Hep-20 (SEQ ID NO: 22), Hep 22 (SEQ ID NO: 23) and Hep25 (SEQ ID NO: 19). [0028] In one embodiment, the antibody, or antigen-binding fragment thereof, specifically binds to an epitope comprising Hep-5 (SEQ ID NO: 25) or Hep-9 (SEQ ID NO: 24). In another embodiment, provided herein is an antibody, or antigen-binding fragment thereof, that specifically binds to an epitope comprising amino acid residues 1-9 of hepcidin. In another embodiment, the antibody, or antigen-binding fragment thereof, specifically binds to 2, 3, 4, 5, 6, 7, 8, or 9 amino acid residues of an epitope comprising amino acid residues 1-9 of hepcidin.
  • the antibody, or antigen-binding fragment thereof is monoclonal antibody comprising a heavy chain CDR1 encoded by SEQ ID NO: 55, a heavy CDR2 encoded by SEQ ID NO: 58, a heavy chain CDR3 encoded by SEQ ID NO: 61, a light chain CDR1 encoded by SEQ ID NO: 64, a light CDR2 encoded by SEQ ID NO: 67, and a light chain CDR3 encoded by SEQ ID NO: 70.
  • the antibody, or antigen-binding fragment thereof is monoclonal antibody comprising a heavy chain CDR1 encoded by SEQ ID NO: 56, a heavy CDR2 encoded by SEQ ID NO: 59, a heavy chain CDR3 encoded by SEQ ID NO: 61, a light chain CDR1 encoded by SEQ ID NO: 65, a light CDR2 encoded by SEQ ID NO: 68, and a light chain CDR3 encoded by SEQ ID NO: 71.
  • the antibody, or antigen-binding fragment thereof is monoclonal antibody comprising a heavy chain CDR1 encoded by SEQ ID NO: 57, a heavy CDR2 encoded by SEQ ID NO: 60, a heavy chain CDR3 encoded by SEQ ID NO: 63, a light chain CDR1 encoded by SEQ ID NO: 66, a light CDR2 encoded by SEQ ID NO: 69, and a light chain CDR3 encoded by SEQ ID NO: 72.
  • the antibody may be, for example, a monoclonal antibody, a chimeric antibody, a human antibody, or a humanized antibody.
  • a humanized variable heavy chain comprises an amino acid sequence set forth as SEQ ID NO: 40.
  • a humanized variable light chain comprises an amino acid sequence set forth as SEQ ID NO: 38.
  • an antibody, or antigen-binding fragment thereof comprises a heavy chain variable region framework region; and a light chain variable region framework region as set forth in the Sequence Listing below where the CDRs identified in any one of SEQ ID NOS: 1-18 are inserted into the framework region utilizing Kabat numbering.
  • the antigen-binding fragment may be, for example, a Fab fragment, a Fab' fragment, a F(ab')2 fragment, an Fv fragment, an scFv fragment, a single chain binding polypeptide, a Fd fragment, a variable heavy chain, a variable light chain or a dAb fragment.
  • An antigen-binding fragment may be, for example, an AVIMER, a diabody, or a heavy chain dimer.
  • a heavy chain dimer may be, for example, a camelid or a shark heavy chain construct.
  • An antibody, or antigen-binding fragment thereof, described herein may have a dissociation constant (Kd) of about 1 to about 10 pM, from about 10 to about 20 pM, from about 1 to about 29 pM, from about 30 to about 40 pM, from about 10 to about 100 pM, or from about 20 to about 500 pM.
  • Kd dissociation constant
  • An antibody, or antigen-binding fragment thereof, described herein may have a dissociation constant (Kd) of less than about 500 pM, less than about 400 pM, less than about 300 pM, less than about 200 pM, less than about 100 pM, less than about 75 pM, less than about 50 pM, less than about 30 pM, less than about 25 pM, less than about 20 pM, less than about 18 pM, less than about 15 pM, less than about 10 pM, less than about 7.5 pM, less than about 5 pM, less than about 2.5 pM, or less than about 1 pM.
  • Kd dissociation constant
  • An antibody, or antigen-binding fragment thereof, described herein may have an affinity for hepcidin or a hepcidin peptide of from about 10 "9 to about 10 "14 , from about 10 "10 to about 10 " 14 , from about 10 "11 to about 10 “14 , from about 10 "12 to about 10 “14 , from about 10 "13 to about 10 " 14 , from about 10 "10 to about 10 "11 , from about 10 "11 to about 10 "12 , from about 10 "12 to about 10 " 13 , or 10 "13 to about 10 "14 .
  • composition comprising an antibody, or antigen-binding fragment, described herein, and an acceptable carrier or excipient.
  • nucleic acid molecule comprising a nucleotide sequence that encodes an antibody, or antigen-binding fragment thereof, described herein.
  • an expression vector comprising the nucleic acid molecule, operably linked to a regulatory control sequence.
  • a host cell comprising a vector or a nucleic acid molecule provided herein.
  • a method of using the host cell to produce an antibody comprising culturing the host cell under suitable conditions such that the nucleic acid is expressed to produce the antibody.
  • provided herein is a method of treating a disorder of iron homeostasis in a subject in need thereof, comprising administering to said subject a composition described herein.
  • a method of modulating hepcidin activity in a subject in need thereof comprising administering to said subject a composition described herein.
  • a method for treating a disorder of iron homeostasis in a subject in need thereof comprising administering to said subject a composition described herein.
  • provided herein is a method of treating hemochromatosis in a subject in need thereof, comprising administering to said subject a composition described herein.
  • a method of treating anemia in a subject in need thereof comprising administering to said subject a composition described herein.
  • provided herein is a method of treating or reducing inflammation in a subject in need thereof, comprising administering to said subject a composition described herein.
  • inflammation to be treated or reduced is chronic inflammation.
  • a method of treating an inflammatory disease in a subject in need thereof comprising administering to said subject a composition described herein.
  • a method of treating an infection in a subject in need thereof comprising administering to said subject a composition described herein.
  • An infection may be, for example, a bacterial, fungal, or viral infection.
  • IRIDA Iron refractory iron deficiency anemia
  • provided herein is a method of treating Anemia of Inflammation (AI) and Anemia of Chronic Disease (ACD).
  • provided herein is a method of treating chronic kidney disease (CKD).
  • CKD chronic kidney disease
  • CCIA Chemotherapy Induced Anemia
  • a method of treating neuro -inflammatory diseases which are associated with elevated hepcidin.
  • erythropoiesis stimulators include, but are not limited to, erythropoietin, an erythropoietin variant, an erythropoiesis stimulating agent (ESA; such as, for example, Epoetin alfa [e.g., Procrit®, Epogen®, etc.], Epoetin beta [e.g.,
  • NeoRecormon etc.
  • Darbepoetin alfa e.g., Aranesp®, etc.
  • Methoxy polyethylene glycol- epoetin beta e.g., Mircera®, etc.
  • HIF hypoxia inducible factor
  • a bone marrow derived erythroid factor e.g. erythroferrone
  • a mini-hepcidin peptide see, e.g., U.S. Publication No. 20120040894, by Ganz et al., which is incorporated herein by reference
  • an antisense inhibitor of hepcidin see, e.g., U.S. Publication No.
  • RNA inhibitor of hepcidin (Id.), miRNA inhibitor of hepcidin(/ ⁇ i.), an anti-BMP-2 antibody (Id.), an anti-BMP-4 antibody (Id.), an anti-BMP-6 antibody (Id.), a small molecule inhibitor (Id.), an anti-IL-6 antibody (see, e.g., U.S. Publication No.
  • an anti-TNF-alpha antibody methotrexate
  • an anti-inflammatory agent e.g., a steroid [e.g., a corticosteroid, etc.]; a non-steroidal inflammatory drug [NSAID; e.g., aspirin, ibuprofen, naproxen, a cyclooxygenase (COX) enzyme inhibitor, etc.
  • NSAID non-steroidal inflammatory drug
  • COX cyclooxygenase
  • an immune selective anti- inflammatory derivative [ImSAID; e.g., tripeptide FEG (Phe-Glu-Gly) and its D-isomer feG]
  • hemojuvelin an antibody that binds erythropoietin, and combinations thereof.
  • the antibody, or antigen-binding fragment thereof, that specifically binds hepcidin and the erythropoiesis stimulator are administered concurrently or sequentially.
  • injection may be, for example, intravenous, subcutaneous, intramuscular injection, or spinal injection into the cerebrospinal fluid (CSF).
  • CSF cerebrospinal fluid
  • the container means may be any suitable container which may house a liquid or lyophilized composition including, but not limited to, a vial, syringe, bottle, an in intravenous (IV) bag or ampoule.
  • a syringe may be able to hold any volume of liquid suitable for injection into a subject including, but not limited to, 0.5 cc, 1 cc, 2 cc, 5 cc, 10 cc or more.
  • kits comprising a composition or compositions described herein.
  • a kit for treating a disorder associated with elevated hepcidin levels or a disorder of iron homeostasis comprising an antibody, or an antigen-binding fragment thereof, as described herein and an erythropoiesis stimulator. It would be understood, in some instances, that hepcidin can be in the normal range but inappropriately elevated relative to iron stores.
  • kits for treating a disorder associated with elevated hepcidin levels or a disorder of iron homeostasis comprising an antibody, or an antigen-binding fragment thereof, as described herein, and a label attached to or packaged with the container, the label describing use of the antibody, or an antigen-binding fragment thereof, with an
  • kits for treating a disorder associated with elevated hepcidin levels comprising an erythropoiesis stimulator and a label attached to or packaged with the container, the label describing use of the erythropoiesis stimulator with an antibody, or an antigen-binding fragment thereof, as described herein.
  • Figure 1 Examples of hepcidin peptide antigen sequences used to immunize BALB/c mice for hybridoma production and discovery of MAbs H32, 583, and 1B1.
  • Figure 2 Example of a first round screen of isolated hybridomas using neutravidin coated plates coated with K18-biotin hepcidin-25 and detected by anti-mouse IgG (H+L) conjugated HRP. Displayed are optical densities (OD) at 450 nm following HRP development and stop solution addition. Note positive signals (>2.0 OD) in Column 9 rows D-F. Positive and negative control wells are G12 and HI 2, respectively.
  • Figure 3 Example of a second round screen of isolated hybridomas from first round screens determined to be positive (Figure 2) using rabbit anti-mouse Fc coated plates to capture mouse IgG from hybridoma supernatants. Bound mouse IgGs are then screened for binding to K18-biotin hepcidin-25 using streptavidin conjugated HRP. Displayed are optical densities (OD) at 450 nm following HRP development and stop solution added. Note positive signals (>2.0 OD) in Column 9 row D. Positive and negative control wells are G12 and H12, respectively.
  • Figure 4 Screening for functional activity of hybridomas positive for anti-hepcidin binding. Wells were coated with anti-mouse Fc antibodies and blocked. In duplicate wells, each indicated hybridoma supernatant was added to binding buffer containing 1 ng NT-biotin hepcidin-25 tracer, with or without 100 ng synthetic hepcidin-25. Binding of the NT-biotin hepcidin-25 was detected with SA-HRP as OD at 450 nm after addition of stop solution to the wells.
  • Antibody 5 A3 (as did 4B1 and 5A4) showed excellent binding in buffer without hepcidin- 25 and was completed blocked by hepcidin-25 in the binding buffer indicating hybridoma 5A3 contained an antibody that bound to both NT-biotin hepcidin-25 and synthetic hepcidin-25 in solution.
  • the clone ultimately derived from hybridoma 5 A3 was later renamed MAb 583; thus, data for MAb 583 is shown in the 5 A3 wells.
  • FIG. 5 Characteristics of MAbs 583, 1B1, and H32, including antigens, serum titers of immunized BALB/c mice, injection sites, injection frequency, tissue(s) used for hybridoma production, and success rates through each round of screening leading to these isolated, functional anti-hepcidin monoclonal antibodies.
  • FIG. 6 Overall success rates for functional anti-hepcidin-25 MAbs across 8 MAb development campaigns. A total of 11,845 hybridomas were screened for the discovery of MAbs H32, 583, and lBl .
  • Figure 7 Reducing SDS-PAGE analysis of purification of MAb 583 on a Protein A column. Crude preparations of diluted hybridoma supernatants, flow-through fractions collected during column washing, and highly purified MAb 583 (Purification Lot 003) and 1B1
  • Figure 8 ELISA analysis of neutralization of MAb 583 in solution by hepcidin-25.
  • This solution-based screen tested the ability of 0.0, and 0.1-8.0 ng synthetic hepcidin-25 (x axis) to block (neutralize) the binding of 20 ng MAb 583 in solution.
  • Synthetic hepcidin (0.1-8.0 ng) was added to 20 ng MAb 583 for two hours in binding buffer.
  • the hepcidin-25 treated MAb 583 solutions were added to duplicate wells with hepcidin-25 (200 ng/well) covalently bound to maleic anhydride activated micro we 11 plates. Binding to hepcidin-25 by MAb 583 was detected using rabbit anti-mouse IgG (H+L) conjugated to HRP with TMB as the substrate.
  • MAb 583 binding to bound hepcidin-25 is quantified by spectrophotometry after addition of stop solution by measuring OD (optical density) at 450 nm.
  • Figure 9 Non-reducing tricine SDS-PAGE gel (left panel) stained with Coomassie and Western blot (right panel) of hepcidin-25, hepcidin-22, hepcidin-20, and protegrin (1.5 ⁇ g/lane) probed with MAb 583. Lane descriptions are provided in the legend below the blot.
  • Figure 10 Coomassie stained reducing SDS-PAGE and Western blots of binding activity of MAb 583 and MAb 1B1 against hepcidin-25, hepcidin-20, K18-biotin hepcidin-25, K24-biotin hepcidin-25, and NT-biotin hepcidin-25. Lane descriptions are provided in the legend below the blot.
  • FIG. 11 Biacore analysis of binding affinities of MAb 583 at 24 ⁇ g/ml, for K18-biotin hepcidin-25, NT-biotin hepcidin-25, and K24-biotin hepcidin-25 bound to a streptavidin coated Biacore chip.
  • the data show high affinity and picomolar dissociation constants for MAb 583 for NT-biotin hepcidin-25, and approximately one log decreased affinity constants for K18-biotin hepcidin-25 and K24-biotin hepcidin-25, respectively.
  • FIG. 12 Biacore analysis of binding affinities of MAb 583 at 5 ⁇ g/ml for K18-biotin hepcidin-25 and NT-biotin hepcidin-25 bound to a streptavidin coated Biacore chip. There is little change in the slope of the Biacore trace over 1200 seconds (20 minutes) indicating a low binding dissociation constants for MAb 583 for K18-biotin hepcidin-25 and NT-biotin hepcidin- 25.
  • FIG. 13 Binding affinity results from Biacore experiments shown in Figure 12. The data show higher affinity and picomolar association (KA) and lower dissociation constants (KD) for MAb 583 for K18-biotin hepcidin-25 than NT-biotin hepcidin-25 than when assessed at 24 ⁇ g/ml.
  • Figure 14 Biacore data showing the binding affinity of MAb 1B1 at 24 ⁇ for K18- biotin hepcidin-25, NT-biotin hepcidin-25, and K24-biotin hepcidin-25.
  • MAb 1B1 has strong binding affinity for K24-biotin hepcidin-25, lower affinity for K18-biotin hepcidin-25, and no affinity for NT-biotin hepcidin-25. This experiment was conducted for 500 seconds and a no dissociation of 1B1 was observed or calculable by the Biacore instrument after binding to K24-biotin hepcidin-25 and K18-biotin hepcidin-25 over 500 seconds.
  • FIG. 15 Biacore data showing binding affinity of MAb 1B1 at 24 ⁇ for K24- biotin hepcidin-25. These data show strong affinity of 1B1 for K24-biotin hepcidin-25 and no dissociation of MAb 1B1 from K24-biotin hepcidin-25 over 500 seconds suggesting a low picomolar to femtamolar dissociation constant for 1B1 for hepcidin-25 is possible.
  • Figure 16 ELISA standard curve analysis of binding of hepcidin-25, hepcidin-22, and hepcidin-20 to MAb 583 antibody coated at 100 ng/ml per well. The relative binding of the NT- biotin hepcidin-25 tracer (1 ng/well) relative to hepcidin-25, hepcidin-22, and hepcidin-20 was measured by ELISA. Four parameter logistical regression analysis was conducted using
  • FIG. 17 ELISA analysis of binding to murine hepcidin-1 (mouse hepcidin-25), protegrin, and hepcidin-( 10-25) peptide to MAb 583 compared to NT-biotin hepcidin-25. These data show that there is no binding of MAb 583 to murine hepcidin-1, protegrin, or an oxidized and refolded hepcidin-( 10-25) peptide containing the proper cysteine bonds for this region of hepcidin-25 at concentrations up to 2000 ng/ml.
  • FIG. 18 ELISA analysis of binding of hepcidin-( 10-25) peptide to MAb 1B1.
  • the results indicate that MAb 1B1 has no binding affinity for an oxidized and refolded hepcidin-(10- 25) peptide containing the proper cysteine bonds for this region when compared to hepcidin-25.
  • K18-biotin hepcidin-25 was used for detection. Note that there is no binding of hepcidin-( 10-25) peptide to MAb 1B1 at concentrations up to 2000 ng/ml.
  • FIG. 19 ELISA analysis of binding of hepcidin-( 10-25) to MAb 1B1.
  • the results indicate that MAb 1B1 has no binding affinity for an oxidized and refolded hepcidin-( 10-25) peptide containing the proper cysteine bonds for this region when compared to hepcidin-25.
  • NT- biotin hepcidin-25 was used for detection. Note that there is no binding of hepcidin-( 10-25) to MAb 1B1 at concentrations up to 2000 ng/ml of the hepcidin-( 10-25) peptide.
  • FIG. 20 Flow cytometry of Fpn-GFP cells treated with MAb 583.
  • Cells were induced overnight with ponasterone to induce expression of murine Fpn-GFP. The next day, ponasterone was removed by washing, and hepcidin-25 and MAb 583 antibodies added for 24 hours.
  • Hepcidin-25 was used at 100 ng/ml concentration (37 nM).
  • MAb 583 was added at 10-times, 2- times or l/3rd of hepcidin concentration (370 nM, 74 nM and 10 nM).
  • the control MAb was a failed anti-hepcidin monoclonal antibody when screened in vitro by ELISA and was used at the highest concentration (370 nM). Note that 10 nM MAb 583 neutralized completely 37 nM hepcidin-25 and its biological activity leading to degradation of FPN-GFP.
  • Figure 21 Percent (%) change in FPN-GFP fluorescence in HEK cells treated with MAb 583 at concentrations from 10-370 nM in the presence of 37 nM hepcidin-25.
  • FIG. 22 Flow cytometry of Fpn-GFP cells treated with MAb 583.
  • Cells were induced overnight with ponasterone to induce expression of murine Fpn-GFP. Next day, ponasterone was removed by washing, and hepcidin-25 and MAb 583 antibodies added for 24 hours.
  • Hepcidin-25 was used at 100 ng/ml concentration (37 nM).
  • MAb 583 was added at l/3rd, l/6th, l/12th, and l/24th the molar concentration of hepcidin-25 in these cell based assays of MAb 583 biological activity.
  • the control MAb was a failed anti-hepcidin monoclonal antibody when screened in vitro by ELISA and was used at the highest concentration (370 nM). Note that 2.5 nM MAb 583 neutralized significantly (-23% decrease) 37 nM hepcidin-25 and it biological activity leading to degradation of FPN-GFP at 1/1 th of the molar ratio in vitro.
  • Figure 23 Percent (%) change in FPN-GFP fluorescence in HEK cells treated with MAb 583 at concentrations from 0.62-10 nM in the presence of 37 nM hepcidin-25 as described in Figure 22.
  • FIG. 24 Ferritin assay of Fpn-GFP cells treated with MAb 583.
  • HEK cells were induced overnight with ponasterone to induce expression of murine Fpn-GFP and iron transport into the media. The next day, ponasterone was removed by washing, and hepcidin-25 and MAb 583 antibodies added for 24 hours.
  • Hepcidin-25 was used at 100 ng/ml concentration (37 nM).
  • MAb 583 was added at 10-times, 2-times or l/3rd of hepcidin concentration (370 nM, 74 nM and 10 nM).
  • the control MAb was a failed anti-hepcidin monoclonal antibody when screened in vitro by ELISA and was used at the highest concentration (370 nM). Note that 10 nM MAb 583 significantly neutralized 37 nM hepcidin-25 and it biological activity leading to degradation of FPN-GFP and retention of intracellular ferritin bound iron. Proteins were extracted using RIPA buffer and intracellular ferritin concentrations determined using ferritin ELISA (Ramco).
  • FIG. 25 Ferritin assay of Fpn-GFP cells treated with MAb 583.
  • HEK cells were induced overnight with ponasterone to induce expression of murine Fpn-GFP and iron transport into the media.
  • ponasterone was removed by washing, and hepcidin-25 and MAb 583 antibodies added for 24 hours.
  • Hepcidin-25 was used at 100 ng/ml concentration (37 nM) and MAb 583 antibody at l/3rd, l/6th, l/12th, and l/24th the molar concentration of hepcidin-25 in these cell based assay of MAb 583 biological activity.
  • the control MAb (sham MAb) was a failed anti-hepcidin monoclonal antibody when screened in vitro by ELISA and was used at the highest concentration (370 nM). Note that 2.5-5 nM 583 significantly neutralized 37 nM hepcidin-25 and it biological activity leading to degradation of FPN-GFP and retention of intracellular ferritin bound iron. Proteins were extracted using RIPA buffer and intracellular ferritin concentrations determined using ferritin ELISA (Ramco).
  • Figure 26 Percent (%) change of intracellular ferritin concentration in HEK cells treated with MAb 583 at concentrations from 0.62-10 nM in the presence of 37 nM hepcidin-25 as described in Figure 25.
  • mice in group 3 received an additional 0.5 mg of MAb 583 and 24 hours later groups 1-4 received a single injection of 50 ⁇ g of human hepcidin-25 and group 5 received PBS. All mice were sacrificed 2 hours later and serum iron was measured.
  • FIG. 29 Comparison of the MAb 583 chimera to murine MAb 583 for binding to a Hepcidin-25 coated ELISA plate. 100 ng hepcidin-25 was covalently bound to wells of a maleic anhydride activated 96 well microplate. Increasing amounts of MAb 583 chimera (BAP070-01; 3650 ng/ml; open squares) and murine MAb 583 (positive control MAb; open triangles) were added to microwell plate and allowed to bind for one hour. Binding of MAb 583 chimera was detected by rabbit anti-human IgGi (H+L) HRP.
  • Bound murine MAb 583 antibody was detected with anti-mouse IgGi (H+L) conjugated with HRP. The reactions were stopped with IN HC1 at 5 minutes after TMB was added to the wells and read immediately. Binding was quantified as OD on a spectrophotometer at 450 nm after addition of stop solution.
  • X axis Antibody concentration in ng/ml; and Y axis: OD 450 nm values.
  • FIG. 30 MAb 583 chimera binding to a hepcidin-25 coated ELISA plate. 100 ng hepcidin-25 was covalently bound to wells of a maleic anhydride activated 96 well microplate. Increasing amounts of MAb 583 chimera (BAP070-01; 3650 ng/ml; filled circles) and supernatant from cells transfected with empty vector (BAP070; filled squares) were added to microwell plate and allowed to bind for 2 hours. Binding of MAb 583 chimera was detected by rabbit anti- human IgGl (H+L) HRP with TMB as substrate. Binding was quantified on a spectrophotometer at 450 nm after addition of stop solution.
  • FIG. 31 Hepcidin-25 standard curve produced using the BAP070-01 MAb 583 chimera.
  • Wells on microwell plate were coated with 150ng/ml Protein G and blocked.
  • the Mab 583 chimera (BAP070-01) was added to the wells at 150ng/well and allowed to bind for one hours.
  • Known concentrations of synthetic hepcidin-25 was added to assay buffer containing NT- biotin hepcidin-25 (lng/well), mixed, and added to 8 duplicate wells and allowed to compete for two hours.
  • the wells were washed and SA-HRP with TMB substrate was used to detect binding of the NT-biotin hepcidin-25 tracer. Binding was quantified on a spectrophotometer at 450 nm after addition of stop solution.
  • the standard curve was generated using Graphpad Prism software (San Diego, CA) using a 4-parameter logistical regression.
  • FIG. 32 Binding of MAb 583 chimera to NT-biotin hepcidin-25 on neutravidin coated microwell plates. Wells on microwell plate were coated with 150ng/ml neutravidin and blocked. The NT-biotin hepcidin-25 tracer was added to wells at lng/well and allowed to bind for one hour. The Mab 583 chimera (BAP070-01) was added to the wells at 150ng/well along with synthetic hepcidin-25 at known concentrations and allowed to compete for binding to NT- biotin hepcidin-25 for one hour. Binding of the Mab 583 chimera was detected using rabbit anti- human IgGl (H+L) HRP with TMB as substrate. Binding was quantified by spectropscopy at 450 nm after addition of stop solution. The points represent the two duplicates (filled diamonds and squares) and the mean (filled triangles).
  • antibody refers to an immunoglobulin (Ig) whether natural or partly or wholly synthetically produced.
  • Ig immunoglobulin
  • the term also covers any polypeptide or protein having a binding domain which is, or is homologous to, an antigen-binding domain.
  • the term further includes “antigen-binding fragments” and other interchangeable terms for similar binding fragments such as described below.
  • Complementarity determining region (CDR) grafted antibodies and other humanized antibodies are also contemplated by this term.
  • Native antibodies and native immunoglobulins are usually heterotetrameric glycoproteins of about 150,000 Daltons, composed of two identical light (L) chains and two identical heavy (H) chains. Each light chain is typically linked to a heavy chain by one covalent disulfide bond, while the number of disulfide linkages varies among the heavy chains of different immunoglobulin isotypes. Each heavy and light chain also has regularly spaced intrachain disulfide bridges. Each heavy chain has at one end a variable domain (“V H ”) followed by a number of constant domains ("C H "). Each light chain has a variable domain at one end
  • V L variable domain
  • C L constant domain
  • polypeptide as used herein, mean that the corresponding polynucleotide sequence or portion thereof, or amino acid sequence or portion thereof, is derived, from a sequence that has been designed, or synthesized de novo, or modified, compared to an equivalent naturally-occurring sequence.
  • Synthetic polynucleotides (antibodies or antigen binding fragments) or synthetic genes can be prepared by methods known in the art, including but not limited to, the chemical synthesis of nucleic acid or amino acid sequences. Synthetic genes are typically different from naturally-occurring genes, either at the amino acid, or polynucleotide level, (or both) and are typically located within the context of synthetic expression control sequences.
  • synthetic gene sequences can include amino acid, or polynucleotide, sequences that have been changed, for example, by the replacement, deletion, or addition, of one or more, amino acids, or nucleotides, thereby providing an antibody amino acid sequence, or a polynucleotide coding sequence that is different from the source sequence.
  • Synthetic gene polynucleotide sequences may not necessarily encode proteins with different amino acids, compared to the natural gene; for example, they can also encompass synthetic polynucleotide sequences that incorporate different codons but which encode the same amino acid (i.e., the nucleotide changes represent silent mutations at the amino acid level).
  • variable domain refers to the variable domains of antibodies that are used in the binding and specificity of each particular antibody for its particular antigen.
  • variability is not evenly distributed throughout the variable domains of antibodies. Rather, it is concentrated in three segments called hypervariable regions (also known as CDRs) in both the light chain and the heavy chain variable domains. More highly conserved portions of variable domains are called the "framework regions" or "FRs.”
  • the variable domains of unmodified heavy and light chains each contain four FRs (FR1, FR2, FR3 and FR4), largely adopting a ⁇ -sheet configuration interspersed with three CDRs which form loops connecting and, in some cases, part of the ⁇ -sheet structure.
  • the CDRs in each chain are held together in close proximity by the FRs and, with the CDRs from the other chain, contribute to the formation of the antigen-binding site of antibodies (see Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health,
  • hypervariable region refers to the amino acid residues of an antibody which are responsible for antigen-binding.
  • the CDRs comprise amino acid residues from three sequence regions which bind in a complementary manner to an antigen and are known as CDR1, CDR2, and CDR3 for each of the V H and V L chains.
  • the CDRs typically correspond to approximately residues 24-34 (CDRLl), 50-56 (CDRL2) and 89-97 (CDRL3), and in the heavy chain variable domain the CDRs typically correspond to approximately residues 31-35 (CDRHl), 50-65 (CDRH2) and 95-102 (CDRH3) according to Kabat et al., Sequences of Proteins of
  • the CDRs of different antibodies may contain insertions, thus the amino acid numbering may differ.
  • the Kabat numbering system accounts for such insertions with a numbering scheme that utilizes letters attached to specific residues (e.g., 27 A, 27B, 27C, 27D, 27E, and 27F of CDRLl in the light chain) to reflect any insertions in the numberings between different antibodies.
  • the CDRs typically correspond to approximately residues 26-32 (CDRLl), 50-52 (CDRL2) and 91-96 (CDRL3)
  • the CDRs typically correspond to approximately residues 26-32 (CDRLl), 50-52 (CDRL2) and 91-96
  • framework region refers to framework amino acid residues that form a part of the antigen binding pocket or groove.
  • the framework residues form a loop that is a part of the antigen binding pocket or groove and the amino acids residues in the loop may or may not contact the antigen.
  • Framework regions generally comprise the regions between the CDRs.
  • the FRs typically correspond to approximately residues 0-23 (FRLl), 35-49 (FRL2), 57-88 (FRL3), and 98-109 and in the heavy chain variable domain the FRs typically correspond to approximately residues 0-30 (FRH1), 36-49 (FRH2), 66-94 (FRH3), and 103-133 according to Kabat et al, Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991)). As discussed above with the Kabat numbering for the light chain, the heavy chain too accounts for insertions in a similar manner ⁇ e.g., 35 A, 35B of CDRHl in the heavy chain).
  • the FRs typically correspond to approximately residues 0-25 (FRLl), 33-49 (FRL2) 53-90 (FRL3), and 97-109 (FRL4)
  • the FRs typically correspond to approximately residues 0-25 (FRHl), 33-52 (FRH2), 56-95 (FRH3), and 102-113 (FRH4) according to Chothia and Lesk, J. Mol. Biol, 196: 901-917 (1987)).
  • the loop amino acids of a FR can be assessed and determined by inspection of the three-dimensional structure of an antibody heavy chain and/or antibody light chain.
  • the three-dimensional structure can be analyzed for solvent accessible amino acid positions as such positions are likely to form a loop and/or provide antigen contact in an antibody variable domain. Some of the solvent accessible positions can tolerate amino acid sequence diversity and others ⁇ e.g., structural positions) are, generally, less diversified.
  • the three dimensional structure of the antibody variable domain can be derived from a crystal structure or protein modeling.
  • Constant domains (Fc) of antibodies are not involved directly in binding an antibody to an antigen but, rather, exhibit various effector functions, such as participation of the antibody in antibody-dependent cellular toxicity via interactions with, for example, Fc receptors (FcR). Fc domains can also increase bioavailability of an antibody in circulation following administration to a subject.
  • immunoglobulins can be assigned to different classes. There are five major classes of immunoglobulins: IgA, IgD, IgE, IgG, and IgM, and several of these can be further divided into subclasses (isotypes), e.g., IgGl, IgG2, IgG3, IgG4, IgAl, and IgA2.
  • the heavy-chain constant domains (Fc) that correspond to the different classes of immunoglobulins are called ⁇ , ⁇ , ⁇ , ⁇ , and ⁇ , respectively.
  • the subunit structures and three-dimensional configurations of different classes of immunoglobulins are well known.
  • the "light chains" of antibodies (immunoglobulins) from any vertebrate species can be assigned to one of two clearly distinct types, called kappa or (" ⁇ ") and lambda or (" ⁇ "), based on the amino acid sequences of their constant domains.
  • antibody fragment or a “functional fragment of an antibody” are used interchangeably herein to refer to one or more fragments of an antibody that retain the ability to specifically bind to an antigen.
  • Non-limiting examples of antibody fragments included within such terms include, but are not limited to, (i) a Fab fragment, a monovalent fragment consisting of the VL, VH, CL and CHI domains; (ii) a F(ab') 2 fragment, a bivalent fragment containing two Fab fragments linked by a disulfide bridge at the hinge region; (iii) a Fd fragment consisting of the VH and CHI domains; (iv) a Fv fragment containing the VL and VH domains of a single arm of an antibody, (v) a dAb fragment (Ward et al.
  • F(ab') 2 " and "Fab"' moieties can be produced by treating an Ig with a protease such as pepsin and papain, and include antibody fragments generated by digesting
  • immunoglobulin near the disulfide bonds existing between the hinge regions in each of the two heavy chains.
  • papain cleaves IgG upstream of the disulfide bonds existing between the hinge regions in each of the two heavy chains to generate two homologous antibody fragments in which an light chain composed of VL and CL (light chain constant region), and a heavy chain fragment composed of VH and Cu y i ( ⁇ ) region in the constant region of the heavy chain) are connected at their C terminal regions through a disulfide bond.
  • Fab' an antibody fragment composed of VL and CL (light chain constant region)
  • Pepsin also cleaves IgG downstream of the disulfide bonds existing between the hinge regions in each of the two heavy chains to generate an antibody fragment slightly larger than the fragment in which the two above-mentioned Fab' are connected at the hinge region.
  • This antibody fragment is called F(ab') 2 .
  • the Fab fragment also contains the constant domain of the light chain and the first constant domain (CHI) of the heavy chain.
  • Fab' fragments differ from Fab fragments by the addition of a few residues at the carboxyl terminus of the heavy chain CHI domain including one or more cysteine(s) from the antibody hinge region.
  • Fab'-SH is the designation herein for Fab' in which the cysteine residue(s) of the constant domains bear a free thiol group.
  • F(ab') 2 antibody fragments originally were produced as pairs of Fab' fragments which have hinge cysteines between them. Other chemical couplings of antibody fragments are also known.
  • Fv refers to an antibody fragment which contains a complete antigen- recognition and antigen-binding site. This region consists of a dimer of one heavy chain and one light chain variable domain in tight, non-covalent or covalent association (disulfide linked Fv's have been described in the art, Reiter et al. (1996) Nature Biotechnology 14: 1239-1245). It is in this configuration that the three CDRs of each variable domain interact to define an antigen- binding site on the surface of the V H -V L dimer.
  • a combination of one or more of the CDRs from each of the V H and V L chains confer antigen-binding specificity to the antibody.
  • the CDRH3 and CDRL3 could be sufficient to confer antigen-binding specificity to an antibody when transferred to V H and V L chains of a recipient antibody or antigen-binding fragment thereof and this combination of CDRs can be tested for binding, affinity, etc. using any of the techniques described herein.
  • Even a single variable domain (or half of an Fv comprising only three CDRs specific for an antigen) has the ability to recognize and bind antigen, although likely at a lower affinity than when combined with a second variable domain.
  • V L and V H the two domains of a Fv fragment
  • V L and V H can be joined using recombinant methods by a synthetic linker that enables them to be made as a single protein chain in which the V L and V H regions pair to form monovalent molecules
  • scFv single chain Fv
  • Such scFvs are also intended to be encompassed within the term "antigen-binding portion" of an antibody.
  • sequences of specific scFv can be linked to an Fc region cDNA or genomic sequences, in order to generate expression vectors encoding complete Ig (e.g., IgG) molecules or other isotypes.
  • V H and V L can also be used in the generation of Fab, Fv or other fragments of Igs using either protein chemistry or recombinant DNA technology.
  • Single-chain Fv or “sFv” antibody fragments comprise the V H and V L domains of an antibody, wherein these domains are present in a single polypeptide chain.
  • the Fv polypeptide further comprises a polypeptide linker between the V H and V L domains which enables the sFv to form the desired structure for antigen binding.
  • AVIMERTM refers to a class of therapeutic proteins of human origin, which are unrelated to antibodies and antibody fragments, and are composed of several modular and reusable binding domains, referred to as A-domains (also referred to as class A module, complement type repeat, or LDL-receptor class A domain). They were developed from human extracellular receptor domains by in vitro exon shuffling and phage display (Silverman et al., 2005, Nat. Biotechnol. 23: 1493-1494; Silverman et al, 2006, Nat. Biotechnol. 24:220).
  • the resulting proteins can contain multiple independent binding domains that can exhibit improved affinity (in some cases, sub-nano molar) and specificity compared with single-epitope binding proteins. See, for example, U.S. Patent Application Publ. Nos. 2005/0221384, 2005/0164301, 2005/0053973 and 2005/0089932, 2005/0048512, and 2004/0175756, each of which is hereby incorporated by reference herein in its entirety.
  • Each of the known 217 human A-domains comprises ⁇ 35 amino acids ( ⁇ 4 kDa); and these domains are separated by linkers that average five amino acids in length.
  • Native A- domains fold quickly and efficiently to a uniform, stable structure mediated primarily by calcium binding and disulfide formation.
  • a conserved scaffold motif of only 12 amino acids is required for this common structure.
  • the end result is a single protein chain containing multiple domains, each of which represents a separate function.
  • Each domain of the proteins binds independently and the energetic contributions of each domain are additive. These proteins were called "AVIMERsTM" from avidity multimers.
  • diabodies refers to small antibody fragments with two antigen- binding sites, which fragments comprise a heavy chain variable domain (V H ) connected to a light chain variable domain (V L ) in the same polypeptide chain (V H -V L ).
  • V H heavy chain variable domain
  • V L light chain variable domain
  • the domains are forced to pair with the complementary domains of another chain and create two antigen-binding sites.
  • Diabodies are described more fully in, for example, EP 404,097; WO 93/11161; and Hollinger et al, Proc. Natl. Acad. Sci. USA 90:6444 6448 (1993).
  • Antigen-binding polypeptides also include heavy chain dimers such as, for example, antibodies from camelids and sharks.
  • Camelid and shark antibodies comprise a homodimeric pair of two chains of V-like and C-like domains (neither has a light chain). Since the V H region of a heavy chain dimer IgG in a camelid does not have to make hydrophobic interactions with a light chain, the region in the heavy chain that normally contacts a light chain is changed to hydrophilic amino acid residues in a camelid. V H domains of heavy-chain dimer IgGs are called V HH domains.
  • Shark Ig-NARs comprise a homodimer of one variable domain (termed a V-NAR domain) and five C-like constant domains (C-NAR domains).
  • camelids the diversity of antibody repertoire is determined by the CDRs 1, 2, and 3 in the V H or V HH regions.
  • the CDR3 in the camel V HH region is characterized by its relatively long length, averaging 16 amino acids (Muyldermans et al, 1994, Protein Engineering 7(9): 1129). This is in contrast to CDR3 regions of antibodies of many other species.
  • the CDR3 of mouse V H has an average of 9 amino acids.
  • Humanized forms of non-human ⁇ e.g., murine) antibodies include chimeric antibodies which contain minimal sequence derived from a non-human Ig.
  • humanized antibodies are human IgGs (recipient antibody) in which one or more of the CDRs of the recipient are replaced by CDRs from a non-human species antibody (donor antibody) such as mouse, rat, rabbit or non-human primate having the desired specificity, affinity and binding function.
  • donor antibody such as mouse, rat, rabbit or non-human primate having the desired specificity, affinity and binding function.
  • one or more FR amino acid residues of the human Ig are replaced by corresponding non-human amino acid residues.
  • humanized antibodies can contain residues which are not found in the recipient antibody or in the donor antibody. These modifications can be made to refine antibody performance, if needed.
  • a humanized antibody can comprise substantially all of at least one and, in some cases two, variable domains, in which all or substantially all of the hypervariable regions correspond to those of a non-human immunoglobulin and all, or substantially all, of the FRs are those of a human immunoglobulin sequence.
  • the humanized antibody optionally can also include at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin.
  • Fc immunoglobulin constant region
  • a humanized antibody also includes antibodies in which part, or all of the CDRs of the heavy and light chain are derived from a non-human monoclonal antibody, substantially all the remaining portions of the variable regions are derived from human variable region (both heavy and light chain), and the constant regions are derived from a human constant region.
  • the CDR1, CDR2 and CDR3 regions of the heavy and light chains are derived from a non-human antibody.
  • at least one CDR ⁇ e.g., a CDR3) of the heavy and light chains is derived from a non-human antibody.
  • Various combinations of CDR1, CDR2, and CDR3 can be derived from a non-human antibody and are contemplated herein.
  • one or more of the CDR1, CDR2 and CDR3 regions of each of the heavy and light chains are derived from the sequences provided herein.
  • the term "monoclonal antibody” as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed against a single antigenic site. Furthermore, in contrast to conventional (polyclonal) antibody preparations, which can include different antibodies directed against different determinants (epitopes), each monoclonal antibody is directed against a single determinant on the antigen.
  • the modifier "monoclonal” indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method.
  • monoclonal antibodies can be made by the hybridoma method first described by Kohler et al., Nature 256:495 (1975), or can be made by recombinant DNA methods (see, e.g., U.S. Pat. No. 4,816,567).
  • the monoclonal antibodies can be isolated from phage antibody libraries using the techniques described in Clackson et al, Nature 352:624-628 (1991) and Marks et al, J. Mol. Biol. 222:581-597 (1991), for example.
  • Antibodies can be isolated and purified from the culture supernatant or ascites mentioned above by saturated ammonium sulfate precipitation, euglobulin precipitation method, caproic acid method, caprylic acid method, ion exchange chromatography (DEAE or DE52), or affinity chromatography using anti-Ig column or a protein A, G or L column such as described in more detail below.
  • Exemplary antibodies for use in the compositions and methods described herein are intact immunoglobulin molecules, such as, for example, a humanized antibody or those portions of a humanized Ig molecule that contain the antigen binding site (i.e., paratope) or a single heavy chain and a single light chain, including those portions known in the art as Fab, Fab ' , F(ab) ' , F(ab ' ) 2 , Fd, scFv, a variable heavy domain, a variable light domain, a variable NAR domain, bi-specific scFv, a bi-specific Fab 2 , a tri-specific Fab 3 and a single chain binding polypeptides and others also referred to as antigen-binding fragments.
  • variable regions or portions thereof may be fused to, connected to, or otherwise joined to one or more constant regions or portions thereof to produce any of the antibodies or fragments thereof described herein. This may be accomplished in a variety of ways known in the art, including but not limited to, molecular cloning techniques or direct synthesis of the nucleic acids encoding the molecules. Exemplary non-limiting methods of constructing these molecules can also be found in the examples described herein.
  • Linear antibodies comprise a pair of tandem Fd segments (V H -C H 1-V H -C H 1) which form a pair of antigen binding regions. Linear antibodies can be bispecific or
  • anti-hepcidin antibodies disclosed herein can also be constructed to fold into multivalent forms, which may improve binding affinity, specificity and/or increased half-life in blood. Multivalent forms of anti-hepcidin antibodies can be prepared by techniques known in the art.
  • Bispecific or multispecific antibodies include cross-linked or "heteroconjugate" antibodies.
  • one of the antibodies in the heteroconjugate can be coupled to avidin, the other to biotin.
  • Heteroconjugate antibodies may be made using any convenient cross-linking methods. Suitable cross-linking agents are well known in the art, and are disclosed in U.S. Pat. No. 4,676,980, along with a number of cross-linking techniques. Another method is designed to make tetramers by adding a streptavidin-coding sequence at the C-terminus of the scFv.
  • Streptavidin is composed of four subunits, so when the scFv-streptavidin is folded, four subunits associate to form a tetramer (Kipriyanov et al., Hum Antibodies Hybridomas 6(3): 93-101 (1995), the disclosure of which is incorporated herein by reference in its entirety).
  • the interface between a pair of antibody molecules can be engineered to maximize the percentage of heterodimers which are recovered from recombinant cell culture.
  • One interface comprises at least a part of the C H 3 domain of an antibody constant domain.
  • one or more small amino acid side chains from the interface of the first antibody molecule are replaced with larger side chains ⁇ e.g., tyrosine or tryptophan).
  • Compensatory "cavities" of identical or similar size to the large side chain(s) are created on the interface of the second antibody molecule by replacing large amino acid side chains with smaller ones ⁇ e.g., alanine or threonine).
  • This provides a mechanism for increasing the yield of the heterodimer over other unwanted end- products such as homodimers. See WO 96/27011 published Sep. 6, 1996.
  • bispecific or multispecific antibodies can be prepared using chemical linkage.
  • Brennan et al, Science 229:81 (1985) describe a procedure wherein intact antibodies are proteolytically cleaved to generate F(ab') 2 fragments. These fragments are reduced in the presence of the dithiol complexing agent sodium arsenite to stabilize vicinal dithiols and prevent intermolecular disulfide formation.
  • the Fab' fragments generated are then converted to thionitrobenzoate (TNB) derivatives.
  • One of the Fab'-TNB derivatives is then reconverted to the Fab'-thiol by reduction with mercaptoethylamine and is mixed with an equimolar amount of the other Fab'-TNB derivative to form the bispecific antibody.
  • the bispecific antibodies produced can be used as agents for the selective Fab'-TNB derivatives.
  • bispecific antibodies have been produced using leucine zippers, e.g., GCN4.
  • leucine zippers e.g., GCN4.
  • the leucine zipper peptides from the Fos and Jun proteins were linked to the Fab' portions of two different antibodies by gene fusion.
  • the antibody homodimers were reduced at the hinge region to form monomers and then re-oxidized to form the antibody heterodimers. This method can also be utilized for the production of antibody homodimers.
  • minibody refers to a scFv fused to CH 3 via a peptide linker
  • a “maxibody” refers to a bivalent scFv covalently attached to the
  • Fc region of an immunoglobulin see, for example, Fredericks et al, Protein Engineering, Design & Selection, 17:95-106 (2004) and Powers et al, Journal of Immunological Methods, 251 : 123-135 (2001).
  • an "intrabody” refers to a single chain antibody which demonstrates intracellular expression and can manipulate intracellular protein function (Biocca, et al., EMBO J. 9: 101-108, 1990; Colby et al, Proc Natl Acad Sci USA. 101 : 17616-21, 2004).
  • Intrabodies which comprise cell signal sequences which retain the antibody construct in intracellular regions, may be produced as described in Mhashilkar et al, (EMBO J 14: 1542-51, 1995) and Wheeler et al. (FASEB J. 17: 1733-5. 2003).
  • Transbodies are cell-permeable antibodies in which a protein transduction domains (PTD) is fused with single chain variable fragment (scFv) antibodies Heng et al, (Med Hypotheses. 64: 1105-8, 2005).
  • antibodies that are SMIPs or binding domain immunoglobulin fusion proteins specific for target protein. These constructs are single- chain polypeptides comprising antigen binding domains fused to immunoglobulin domains necessary to carry out antibody effector functions. See e.g., WO 03/041600, U.S. Patent publication 20030133939 and US Patent Publication 20030118592, which are hereby incorporated by reference.
  • the application contemplates a single chain binding polypeptide having a heavy chain variable region, and/or a light chain variable region which binds an epitope described herein and has, optionally, an immunoglobulin Fc region.
  • a single chain variable fragment scFv
  • Methods of preparing single chain binding polypeptides are known in the art (e.g., U.S. Patent Application No.
  • germline gene segments or “germline sequences” refer to the genes from the germline (the haploid gametes and those diploid cells from which they are formed).
  • the germline DNA contains multiple gene segments that encode a single Ig heavy or light chain. These gene segments are carried in the germ cells but cannot be transcribed and translated into heavy and light chains until they are arranged into functional genes.
  • these gene segments are randomly shuffled by a dynamic genetic system capable of generating more than 10 8 specificities. Most of these gene segments are published and collected by the germline database.
  • Binding affinity and/or avidity of antibodies or antigen-binding fragments thereof may be improved by modifying framework regions.
  • Methods for modifications of framework regions are known in the art and are contemplated herein.
  • Selection of one or more relevant framework amino acid positions to altered depends on a variety of criteria.
  • One criterion for selecting relevant framework amino acids to change can be the relative differences in amino acid framework residues between the donor and acceptor molecules. Selection of relevant framework positions to alter using this approach has the advantage of avoiding any subjective bias in residue determination or any bias in CDR binding affinity contribution by the residue.
  • immunosorbent refers to antibodies or antigen-binding fragments thereof that are specific to a sequence of amino acid residues ("binding site” or “epitope"), yet if are cross-reactive to other peptides/proteins, are not toxic at the levels at which they are formulated for administration to human use.
  • binding refers to a direct association between two molecules, due to, for example, covalent, electrostatic, hydrophobic, and ionic and/or hydrogen-bond interactions under physiological conditions, and including interactions such as salt bridges and water bridges and any other conventional binding means.
  • binding agent binds to the binding site with greater affinity than it binds unrelated amino acid sequences.
  • affinity is at least 1-fold greater, at least 2-fold greater, at least 3-fold greater, at least 4-fold greater, at least 5-fold greater, at least 6-fold greater, at least 7-fold greater, at least 8-fold greater, at least 9-fold greater, 10-fold greater, at least 20-fold greater, at least 30-fold greater, at least 40-fold greater, at least 50-fold greater, at least 60-fold greater, at least 70-fold greater, at least 80-fold greater, at least 90-fold greater, at least 100-fold greater, or at least 1000-fold greater than the affinity of the binding agent for unrelated amino acid sequences.
  • immunoreactive and
  • the term "affinity” refers to the equilibrium constant for the reversible binding of two agents and is expressed as Kd.
  • the antibodies, or antigen-binding fragments thereof exhibit desirable characteristics such as binding affinity as measured by K D (equilibrium dissociation constant) for hepcidin in the range of 1 x 10 "6 M or less, or ranging down to 10 "16 M or lower, (e.g., about 10 "7 , 10 “8 , 10 “9 , 10 "10 , 10 "11 , 10 ⁇ 12 , 10 "13 , 10 " 14 , 10 "15 , 10 "16 M or less).
  • the equilibrium dissociation constant can be determined in solution equilibrium assay using BIAcore and/or KinExA.
  • the term "avidity” refers to the resistance of a complex of two or more agents to dissociation after dilution. Apparent affinities can be determined by methods such as an enzyme linked immunosorbent assay (ELISA) or any other technique familiar to one of skill in the art. Avidities can be determined by methods such as a Scatchard analysis or any other technique familiar to one of skill in the art.
  • Epitope refers to that portion of an antigen or other macromolecule capable of forming a binding interaction with the variable region binding pocket of an antibody. Such binding interactions can be manifested as an intermolecular contact with one or more amino acid residues of one or more CDRs. Antigen binding can involve, for example, a CDR3 or a CDR3 pair or, in some cases, interactions of up to all six CDRs of the V H and V L chains.
  • An epitope can be a linear peptide sequence (i.e., "continuous") or can be composed of noncontiguous amino acid sequences (i.e., "conformational” or “discontinuous").
  • An antibody can recognize one or more amino acid sequences; therefore an epitope can define more than one distinct amino acid sequence.
  • Epitopes recognized by antibodies can be determined by peptide mapping and sequence analysis techniques well known to one of skill in the art. Binding interactions are manifested as intermolecular contacts with one or more amino acid residues of a CDR.
  • the term "specific” refers to a situation in which an antibody will not show any significant binding to molecules other than the antigen containing the epitope recognized by the antibody.
  • the term is also applicable where for example, an antigen binding domain is specific for a particular epitope which is carried by a number of antigens, in which case the antibody or antigen-binding fragment thereof carrying the antigen binding domain will be able to bind to the various antigens carrying the epitope.
  • preferentially binds or “specifically binds” mean that the antibodies or fragments thereof bind to an epitope with greater affinity than it binds unrelated amino acid sequences, and, if cross-reactive to other polypeptides containing the epitope, are not toxic at the levels at which they are formulated for administration to human use.
  • such affinity is at least 1-fold greater, at least 2-fold greater, at least 3-fold greater, at least 4-fold greater, at least 5-fold greater, at least 6-fold greater, at least 7-fold greater, at least 8-fold greater, at least 9-fold greater, 10-fold greater, at least 20-fold greater, at least 30- fold greater, at least 40-fold greater, at least 50-fold greater, at least 60-fold greater, at least 70- fold greater, at least 80-fold greater, at least 90-fold greater, at least 100-fold greater, or at least 1000-fold greater than the affinity of the antibody or fragment thereof for unrelated amino acid sequences.
  • immunoreactive binds
  • preferentially binds and “specifically binds” are used interchangeably herein.
  • binding refers to a direct association between two molecules, due to, for example, covalent, electrostatic, hydrophobic, and ionic and/or hydrogen-bond interactions under physiological conditions, and includes interactions such as salt bridges and water bridges, as well as any other conventional means of binding.
  • Antibodies may be screened for binding affinity by methods known in the art including, but not limited to, gel-shift assays, Western blots, radiolabeled competition assay, co- fractionation by chromatography, co-precipitation, cross linking, ELISA, and the like, which are described in, for example, Current Protocols in Molecular Biology (1999) John Wiley & Sons, NY, which is incorporated herein by reference in its entirety.
  • Antibodies which bind to the desired epitope on the target antigen may be screened in a routine cross-blocking assay such as described in Antibodies, A Laboratory Manual, Cold Spring Harbor Laboratory, Ed Harlow and David Lane (1988), can be performed. Routine competitive binding assays may also be used, in which an unknown antibody is characterized by its ability to inhibit binding of target to a target-specific antibody of the invention. Intact antigen, fragments thereof such as the extracellular domain, or linear epitopes can be used. Epitope mapping is described in Champe et ah, J. Biol. Chem. 270: 1388-1394 (1995).
  • Antibodies that inhibit or neutralize human hepcidin activity may be identified by contacting hepcidin with an antibody, comparing hepcidin activity in the presence and absence of the test antibody, and determining whether the presence of the antibody decreases activity of the hepcidin.
  • the biological activity of a particular antibody, or combination of antibodies, may be evaluated in vivo using a suitable animal model, including any of those described herein.
  • HTS assays to identify antibodies that interact with or inhibit biological activity of target hepcidin.
  • HTS assays permit screening of large numbers of compounds in an efficient manner.
  • Constant amino acid substitution refers to grouping of amino acids on the basis of certain common properties. A functional way to define common properties between individual amino acids is to analyze the normalized frequencies of amino acid changes between corresponding proteins of homologous organisms (Schulz, G. E. and R. H. Schirmer, Principles of Protein Structure, Springer- Ver lag).
  • groups of amino acids may be defined where amino acids within a group exchange preferentially with each other, and therefore resemble each other most in their impact on the overall protein structure (Schulz, G. E. and R. H. Schirmer, Principles of Protein Structure, Springer- Ver lag).
  • amino acid groups defined in this manner include:
  • a small-residue group consisting of Ser, Thr, Asp, Asn, Gly, Ala, Glu,
  • each amino acid residue may form its own group, and the group formed by an individual amino acid may be referred to simply by the one and/or three letter abbreviation for that amino acid commonly used in the art as described above.
  • a “conserved residue” is an amino acid that is relatively invariant across a range of similar proteins. Often conserved residues will vary only by being replaced with a similar amino acid, as described above for “conservative amino acid substitution.”
  • Homology or “identity” or “similarity” refers to sequence similarity between two peptides or between two nucleic acid molecules. Homology and identity can each be determined by comparing a position in each sequence which may be aligned for purposes of comparison. When an equivalent position in the compared sequences is occupied by the same base or amino acid, then the molecules are identical at that position; when the equivalent site occupied by the same or a similar amino acid residue (e.g., similar in steric and/or electronic nature), then the molecules can be referred to as homologous (similar) at that position.
  • Expression as a percentage of homology/similarity or identity refers to a function of the number of identical or similar amino acids at positions shared by the compared sequences.
  • a sequence which is "unrelated” or “non-homologous” shares less than 40% identity, though preferably less than 25% identity with a sequence of the present invention.
  • the absence of residues (amino acids or nucleic acids) or presence of extra residues also decreases the identity and homology/similarity.
  • the term "homology” describes a mathematically based comparison of sequence similarities which is used to identify genes or proteins with similar functions or motifs.
  • the nucleic acid (nucleotide, oligonucleotide) and amino acid (protein) sequences of the present invention may be used as a "query sequence" to perform a search against public databases to, for example, identify other family members, related sequences or homologs. Such searches can be performed using the NBLAST and XBLAST programs (version 2.0) of Altschul, et al. (1990) J. Mol. Biol. 215:403-10.
  • Gapped BLAST can be utilized as described in Altschul et al, (1997) Nucleic Acids Res. 25(17):3389- 3402.
  • the default parameters of the respective programs ⁇ e.g., XBLAST and BLAST) can be used (see, www.ncbi.nlm.nih.gov).
  • identity means the percentage of identical nucleotide or amino acid residues at corresponding positions in two or more sequences when the sequences are aligned to maximize sequence matching, i.e., taking into account gaps and insertions. Identity can be readily calculated by known methods, including but not limited to those described in (Computational Molecular Biology, Lesk, A. M., ed., Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome Projects, Smith, D. W., ed., Academic Press, New York, 1993; Computer Analysis of Sequence Data, Part I, Griffin, A. M., and Griffin, H.
  • Computer program methods to determine identity between two sequences include, but are not limited to, the GCG program package (Devereux, J., et al, Nucleic Acids Research 12(1): 387 (1984)), BLASTP, BLASTN, and FASTA (Altschul, S. F. et al, J. Molec. Biol. 215: 403-410 (1990) and Altschul et al. Nuc. Acids Res. 25: 3389-3402 (1997)).
  • the BLAST X program is publicly available from NCBI and other sources (BLAST Manual, Altschul, S., et al, NCBI NLM NIH Bethesda, Md. 20894; Altschul, S., et al, J. Mol. Biol. 215: 403-410 (1990).
  • the well known Smith Waterman algorithm may also be used to determine identity.
  • isolated when applied to polypeptides means a polypeptide or a portion thereof which, by virtue of its origin or manipulation: (i) is present in a host cell as the expression product of a portion of an expression vector; or (ii) is linked to a protein or other chemical moiety other than that to which it is linked in nature; or (iii) does not occur in nature, for example, a protein that is chemically manipulated by appending, or adding at least one hydrophobic moiety to the protein so that the protein is in a form not found in nature.
  • isolated it is further meant a protein that is: (i) synthesized chemically; or (ii) expressed in a host cell and purified away from associated and contaminating proteins.
  • the term generally means a polypeptide that has been separated from other proteins and nucleic acids with which it naturally occurs.
  • the polypeptide is also separated from substances such as antibodies or gel matrices (polyacrylamide) which are used to purify it.
  • Inducing a host immune response means that a subject experiences alleviation or reduction of signs or symptoms of illness, and specifically includes, without limitation, prolongation of survival.
  • Humanized immunoglobulins including humanized antibodies, have been constructed by means of genetic engineering. Most humanized immunoglobulins that have been previously described have comprised a framework that is identical to the framework of a particular human immunoglobulin chain (i.e., an acceptor or recipient), and three CDRs from a non- human (i.e., donor) immunoglobulin chain. As described herein, humanization can also include criteria by which a limited number of amino acids in the framework of a humanized immunoglobulin chain are identified and chosen to be the same as the amino acids at those positions in the donor rather than in the acceptor, in order to increase the affinity of an antibody comprising the humanized immunoglobulin chain.
  • CDRs of a converted antibody may be additionally substituted with other amino acids.
  • Humanized antibodies and antigen-binding fragments can be constructed and produced using conventional techniques known in the art.
  • recombinantly prepared antibodies can often be produced in large quantities, particularly when utilizing high level expression vectors.
  • Antibodies can be sequenced using conventional techniques known in the art.
  • the amino acid sequences of one or more of the CDRs is inserted into a synthetic sequence of, for example, a human antibody (or antigen-binding fragment thereof) framework to create a human antibody that could limit adverse side reactions of treating a human subject with a non-human antibody.
  • the amino acid sequences of one or more of the CDRs can also be inserted into a synthetic sequence of, for example, into a binding protein such as an AVIMERTM to create a construct for administration to a human subject.
  • a binding protein such as an AVIMERTM
  • Such techniques can be modified depending on the species of animal to be treated.
  • an antibody, antigen-binding fragment or binding protein can be synthesized for administration of a non- human (e.g., a primate, a cow, a horse, etc.).
  • nucleotides encoding amino acid sequences of one or more of the CDRs can inserted, for example, by recombinant techniques in restriction endonuclease sites of an existing polynucleotide that encodes an antibody, antigen-binding fragment or binding protein.
  • an expression system is one which utilizes the GS system (Lonza) using a glutamine synthetase gene as the selectable marker. Briefly, a transfection is performed in CHO cells by electroporation (250V) using the GS system (Lonza) using the glutamine synthetase gene as the selectable marker. Wild type CHO cells are grown in DMEM (Sigma) containing 10% dialyzed Fetal Calf Serum (FCS) with 2 mM glutamine. 6x10 7 CHO cells are transfected with 300 ⁇ g of linearized DNA by electroporation.
  • DMEM Sigma
  • FCS dialyzed Fetal Calf Serum
  • the cells are resuspended in DMEM with glutamine and plated out into 36x96-well plates (50 ⁇ /well), and incubated at 37° C. in 5% C0 2 . The following day, 150 ⁇ /well of selective medium (DMEM without glutamine) is added. After approximately 3 weeks the colonies are screened by ELISA (see below) using an irrelevant antibody as a negative control. All colonies producing >20 ⁇ g/ml are expanded into 24-well plates and then into duplicate T25 flasks.
  • dhfr- dehydrofolate reductase deficient Chinese hamster ovary cells.
  • the system is well known to the skilled artisan.
  • the system is based upon the dehydrofolate reductase "dhfr" gene, which encodes the DHFR enzyme, which catalyzes conversion of dehydrofolate to tetrahydro folate.
  • dhfr- CHO cells are transfected with an expression vector containing a functional DHFR gene, together with a gene that encodes a desired protein.
  • the desired protein is recombinant antibody heavy chain and/or light chain.
  • the recombinant cells develop resistance by amplifying the dhfr gene.
  • the amplification unit employed is much larger than the size of the dhfr gene, and as a result the antibody heavy chain is co-amplified.
  • the present application provides an isolated polynucleotide (nucleic acid) encoding an antibody or antigen-binding fragment as described herein, vectors containing such polynucleotides, and host cells and expression systems for transcribing and translating such polynucleotides into polypeptides.
  • the present application also provides constructs in the form of plasmids, vectors, transcription or expression cassettes which comprise at least one polynucleotide as above.
  • the present application also provides a recombinant host cell which comprises one or more constructs as above.
  • a nucleic acid encoding any antibody or antigen-binding fragments thereof described herein as provided itself forms an aspect of the present application, as does a method of production of the antibody or antigen-binding fragments thereof described herein which method comprises expression from encoding nucleic acid therefrom. Expression can conveniently be achieved by culturing under appropriate conditions recombinant host cells containing the nucleic acid. Following production by expression, an antibody or antigen-binding fragment can be isolated and/or purified using any suitable technique, then used as appropriate.
  • nucleic acid molecules and vectors described herein can be provided isolated and/or purified, e.g., from their natural environment, in substantially pure or homogeneous form.
  • nucleic acid free or substantially free of nucleic acid or genes origin other than the sequence encoding a polypeptide with the required function.
  • Nucleic acid can comprise DNA or RNA and can be wholly or partially synthetic. Methods of purification are well known in the art.
  • Systems for cloning and expression of a polypeptide in a variety of different host cells are well known. Suitable host cells include, but are not limited to, bacteria cells, mammalian cells, yeast cells and baculovirus systems.
  • Mammalian cell lines available in the art for expression of a heterologous polypeptide include Chinese hamster ovary cells, HeLa cells, baby hamster kidney cells, NS0 mouse myeloma cells and many others.
  • a common bacterial host is E. coli.
  • E. coli is well established in the art. For a review, see for example Pluckthun, A.
  • Suitable vectors can be chosen or constructed, containing appropriate regulatory sequences, including promoter sequences, terminator sequences, polyadenylation sequences, enhancer sequences, marker genes and other sequences as appropriate.
  • Vectors can be plasmids, viral e.g. 'phage, or phagemid, as appropriate.
  • plasmids viral e.g. 'phage, or phagemid, as appropriate.
  • a further aspect provides a host cell containing nucleic acid as disclosed herein.
  • a still further aspect provides a method comprising introducing such nucleic acid into a host cell.
  • the introduction can employ any available technique.
  • suitable techniques can include, for example, calcium phosphate transfection, DEAE Dextran, electroporation, liposome-mediated transfection and transduction using retrovirus or other virus, e.g., vaccinia or, for insect cells, baculovirus.
  • suitable techniques can include, for example, calcium chloride transformation, electroporation and transfection using retrovirus or other virus, e.g., vaccinia or, for insect cells, baculovirus.
  • suitable techniques can include, for example, calcium chloride transformation, electroporation and transfection using
  • the introduction can be followed by causing or allowing expression from the nucleic acid, e.g. by culturing host cells under conditions for expression of the gene.
  • the nucleic acid is integrated into the genome (e.g.
  • chromosome of the host cell. Integration can be promoted by inclusion of sequences which promote recombination with the genome, in accordance with standard techniques. Ig enhances can be initialized as needed to maximize expression.
  • the present application also provides a method which comprises using a construct as stated above in an expression system in order to express the antibodies or antigen- binding fragments thereof as above.
  • the present application also relates to isolated nucleic acids, such as recombinant
  • the present application provides a nucleic acid which codes for an antibody or antigen-binding fragment thereof as described herein.
  • the full DNA sequence of the recombinant DNA molecule or cloned gene of an antibody or antigen-binding fragment described herein can be operatively linked to an expression control sequence which can be introduced into an
  • the application accordingly extends to unicellular hosts transformed with the cloned gene or recombinant DNA molecule comprising a DNA sequence encoding the VH and/or VL, or portions thereof, of the antibody.
  • DNA sequences disclosed herein can be expressed by operatively linking them to an expression control sequence in an appropriate expression vector and employing that expression vector to transform an appropriate unicellular host.
  • Such operative linking of a DNA sequence to an expression control sequence includes, if not already part of the DNA sequence, the provision of an initiation codon, ATG, in the correct reading frame upstream of the DNA sequence.
  • Polynucleotides and vectors can be provided in an isolated and/or a purified form
  • substantially pure refers to a solution or suspension containing less than, for example, about 20% or less extraneous material, about 10% or less extraneous material, about 5% or less extraneous material, about 4% or less extraneous material, about 3% or less extraneous material, about 2% or less extraneous material, or about 1% or less extraneous material.
  • a wide variety of host/expression vector combinations can be employed in expressing the DNA sequences of this invention.
  • Useful expression vectors can consist of segments of chromosomal, non-chromosomal and synthetic DNA sequences.
  • Suitable vectors include, but are not limited to, derivatives of SV40 and known bacterial plasmids, e.g., E.
  • coli plasmids col El, Perl, Pbr322, Pmb9 and their derivatives, plasmids such as RP4; phage DNAs, e.g., the numerous derivatives of phage ⁇ , e.g., NM989, and other phage DNA, e.g., M13 and filamentous single stranded phage DNA; yeast plasmids such as the 2u plasmid or derivatives thereof; vectors useful in eukaryotic cells, such as vectors useful in insect or mammalian cells; vectors derived from combinations of plasmids and phage DNAs, such as plasmids that have been modified to employ phage DNA or other expression control sequences; and the like.
  • phage DNAs e.g., the numerous derivatives of phage ⁇ , e.g., NM989, and other phage DNA, e.g., M13 and filamentous single stranded phage DNA
  • a recombinant host cell which comprises one or more polynucleotide constructs.
  • a polynucleotide encoding an antibody or antigen-binding fragment as provided herein forms an aspect of the present application, as does a method of production of the antibody or antigen-binding fragment which method comprises expression from the polynucleotide. Expression can be achieved, for example, by culturing under appropriate conditions recombinant host cells containing the polynucleotide. An antibody or antigen-binding fragment can then be isolated and/or purified using any suitable technique, and used as appropriate.
  • any of a wide variety of expression control sequences - sequences that control the expression of a DNA sequence operative ly linked to it - can be used in these vectors to express the DNA sequences.
  • Such useful expression control sequences include, for example, the early or late promoters of SV40, CMV, vaccinia, polyoma or adenovirus, the lac system, the trp system, the TAC system, the TRC system, the LTR system, the major operator and promoter regions of phage ⁇ , the control regions of fd coat protein, the promoter for 3-phosphoglycerate kinase or other glycolytic enzymes, the promoters of acid phosphatase (e.g., Pho5), the promoters of the yeast alpha-mating factors, and other sequences known to control the expression of genes of prokaryotic or eukaryotic cells or their viruses, and various combinations thereof.
  • Suitable host cells include bacteria, mammalian cells, yeast and baculovirus systems.
  • Mammalian cell lines available in the art for expression of a heterologous polypeptide include Chinese hamster ovary (CHO) cells, HeLa cells, baby hamster kidney cells, NS0 mouse myeloma cells and many others.
  • a common, bacterial host can be, for example, E. coli.
  • a wide variety of unicellular host cells are also useful in expressing the DNA sequences.
  • These hosts include well-known eukaryotic and prokaryotic hosts, such as strains of E. coli, Pseudomonas, Bacillus, Streptomyces, fungi such as yeasts, and animal cells, such as CHO, YB/20, NS0, SP2/0, Rl.l, B-W and L-M cells, African Green Monkey kidney cells (e.g., COS 1, COS 7, BSC1, BSC40, and BMT10), insect cells (e.g., Sf9), and human cells and plant cells in tissue culture.
  • eukaryotic and prokaryotic hosts such as strains of E. coli, Pseudomonas, Bacillus, Streptomyces, fungi such as yeasts, and animal cells, such as CHO, YB/20, NS0, SP2/0, Rl.l, B-W and L-M cells, African Green Mon
  • the present application also provides constructs in the form of plasmids, vectors, transcription or expression cassettes as described elsewhere herein which comprise at least one polynucleotide as above.
  • Suitable vectors can be chosen or constructed, containing appropriate regulatory sequences, including promoter sequences, terminator sequences, polyadenylation sequences, enhancer sequences, selectable markers and other sequences as appropriate.
  • Vectors can be plasmids, viral e.g., phage, phagemid, etc., as appropriate.
  • Molecular Cloning a Laboratory Manual: 2nd edition, Sambrook et al., 1989, Cold Spring Harbor Laboratory Press.
  • a further aspect provides a host cell containing one or more polynucleotides as disclosed herein. Yet a further aspect provides a method of introducing such one or more polynucleotides into a host cell, any available technique.
  • suitable techniques can include, for example, calcium phosphate transfection, DEAEDextran, electroporation, liposome-mediated transfection and transduction using retrovirus or other virus (e.g. vaccinia) or, for insect cells, baculovirus.
  • suitable techniques can include, for example calcium chloride transformation, electroporation and transfection using bacteriophages.
  • the introduction can be followed by causing or allowing expression from the one or more polynucleotides, e.g. by culturing host cells under conditions for expression of one or more polypeptides from one or more polynucleotides.
  • Inducible systems can be used and expression induced by addition of an activator.
  • the polynucleotides can be integrated into the genome (e.g., chromosome) of the host cell. Integration can be promoted by inclusion of sequences which promote recombination with the genome, in accordance with standard techniques.
  • the nucleic acid is maintained on an episomal vector in the host cell.
  • Methods are provided herein which include using a construct as stated above in an expression system in order to express a specific polypeptide.
  • a polynucleotide encoding an antibody, antigen-binding fragment, or a binding protein can be prepared recombinant ly/synthetically in addition to, or rather than, cloned.
  • the polynucleotide can be designed with the appropriate codons for the antibody, antigen-binding fragment, or a binding protein. In general, one will select preferred codons for an intended host if the sequence will be used for expression.
  • the complete polynucleotide can be assembled from overlapping oligonucleotides prepared by standard methods and assembled into a complete coding sequence.
  • a DNA sequence encoding an antibody or antigen-binding fragment thereof can be prepared synthetically rather than cloned.
  • the DNA sequence can be designed with the appropriate codons for the antibody or antigen-binding fragment amino acid sequence. In general, one will select preferred codons for the intended host if the sequence will be used for expression.
  • the complete sequence is assembled from overlapping oligonucleotides prepared by standard methods and assembled into a complete coding sequence.
  • Antibodies, or antigen-binding fragments thereof can be modified using techniques known in the art for various purposes such as, for example, by addition of polyethylene glycol (PEG).
  • PEG modification PEGylation
  • PEGylation can lead to one or more of improved circulation time, improved solubility, improved resistance to proteolysis, reduced antigenicity and immunogenicity, improved bioavailability, reduced toxicity, improved stability, and easier formulation (for a review see, Francis et al., International Journal of Hematology 68: 1-18, 1998).
  • an Fc portion can be added to ⁇ e.g., recombinantly) the fragment, for example, to increase half- life of the antigen-binding fragment in circulation in blood when administered to a subject.
  • Choice of an appropriate Fc region and methods of to incorporate such fragments are known in the art.
  • Incorporating a Fc region of an IgG into a polypeptide of interest so as to increase its circulatory half-life, but so as not to lose its biological activity can be accomplished using conventional techniques known in the art such as, for example, described in U.S. Patent No. 6,096,871, which is hereby incorporated by reference in its entirety.
  • Fc portions of antibodies can be further modified to increase half-life of the antigen-binding fragment in circulation in blood when administered to a subject. Modifications can be determined using conventional means in the art such as, for example, described in U.S. Patent No. 7,217,798, which is hereby incorporated by reference in its entirety.
  • antibodies or antigen-binding fragments thereof that can bind an epitope can be attached at their C-terminal end to all or part of an immunoglobulin heavy chain derived from any antibody isotype, e.g., IgG, IgA, IgE, IgD and IgM and any of the isotype sub-classes, particularly IgGl, IgG2b, IgG2a, IgG3 and IgG4.
  • the antibodies or antigen-binding fragments described herein can also be modified so that they are able to cross the blood-brain barrier.
  • Such modification of the antibodies or antigen-binding fragments described herein allows for the treatment of brain diseases such as glioblastoma multiforme (GBM).
  • GBM glioblastoma multiforme
  • Exemplary modifications to allow proteins such as antibodies or antigen-binding fragments to cross the blood-brain barrier are described in US Patent Application Publication 2007/0082380 which is hereby incorporated by reference in its entirety.
  • ADCC antibody dependent cell- mediated cytotoxicity
  • CDC complement dependent cytotoxicity
  • “defucosylated” antibodies and antigen-binding fragments may be produced through a variety of systems utilizing molecular cloning techniques known in the art, including but not limited to, transgenic animals, transgenic plants, or cell-lines that have been genetically engineered so that they no longer contain the enzymes and biochemical pathways necessary for the inclusion of a fucose in the complex N-glycoside-linked sugar chains (also known as fucosyltransferase knockout animals, plants, or cells).
  • Non-limiting examples of cells that can be engineered to be fucosyltransferase knock-out cells include CHO cells, SP2/0 cells, NSO cells, and YB2/0 cells.
  • V variable
  • Sox and Hood reported that about 20% of human antibodies are glycosylated in the V region (Proc. Natl. Acad. Sci. USA 66:975 (1970)).
  • Glycosylation of the V domain is believed to arise from fortuitous occurrences of the N-linked glycosylation signal Asn-Xaa-Ser/Thr in the V region sequence and has not been recognized in the art as playing a role in immunoglobulin function.
  • Glycosylation at a variable domain framework residue can alter the binding interaction of the antibody with antigen.
  • the present invention includes criteria by which a limited number of amino acids in the framework or CDRs of a humanized immunoglobulin chain are chosen to be mutated (e.g., by substitution, deletion, or addition of residues) in order to increase the affinity of an antibody.
  • Cysteine residue(s) may be removed or introduced in the Fc region of an antibody or Fc-containing polypeptide, thereby eliminating or increasing interchain disulfide bond formation in this region.
  • a homodimeric specific binding agent or antibody generated using such methods may exhibit improved internalization capability and/or increased complement- mediated cell killing and antibody-dependent cellular cytotoxicity (ADCC). See Caron et al., J. Exp Med. 176: 1191-1195 (1992) and Shopes, B. J. Immunol. 148: 2918-2922 (1992).
  • sequences within the CDR can cause an antibody to bind to MHC Class II and trigger an unwanted helper T-cell response.
  • a conservative substitution may allow the antibody to retain binding activity, yet reduce its ability to trigger an unwanted T- cell response.
  • one or more of the N-terminal 20 amino acids of the heavy or light chain may be removed.
  • antibody molecules may be produced with altered carbohydrate structure resulting in altered effector activity, including antibody molecules with absent or reduced fucosylation that exhibit improved ADCC activity.
  • ADCC effector activity is mediated by binding of the antibody molecule to the FcyRIII receptor, which has been shown to be dependent on the carbohydrate structure of the N-linked glycosylation at the Asn-297 of the CH 2 domain.
  • Non-fucosylated antibodies bind this receptor with increased affinity and trigger FcyRIII- mediated effector functions more efficiently than native, fucosylated antibodies.
  • Lecl3 or rat hybridoma YB2/0 cell line naturally produce antibodies with lower fucosylation levels. Shields et al, J Biol Chem. Jul. 26, 2002;277(30):26733-40; Shinkawa et al, J Biol Chem. Jan. 31, 2003;278(5):3466-73.
  • An increase in the level of bisected carbohydrate e.g. through recombinantly producing antibody in cells that overexpress GnTIII enzyme, has also been determined to increase ADCC activity.
  • Umana et al., Nat Biotechnol. February 1999;17(2): 176-80 It has been predicted that the absence of only one of the two fucose residues may be sufficient to increase ADCC activity. (Ferrara et al., J Biol Chem. Dec. 5, 2005).
  • Covalent modifications of an antibody are also included herein. They may be made by chemical synthesis or by enzymatic or chemical cleavage of the antibody, if applicable. Other types of covalent modifications may be introduced by reacting targeted amino acid residues with an organic derivatizing agent that is capable of reacting with selected side chains or the N- or C-terminal residues.
  • Cysteinyl residues most commonly are reacted with alpha-haloacetates (and corresponding amines), such as chloroacetic acid or chloroacetamide, to give carboxymethyl or carboxyamidomethyl derivatives. Cysteinyl residues also are derivatized by reaction with bromotrifluoroacetone, alpha-bromo-beta-(5-imidozoyl)propionic acid, chloroacetyl phosphate, N-alkylmaleimides, 3-nitro-2-pyridyl disulfide, methyl 2-pyridyl disulfide, p- chloromercuribenzoate, 2-chloromercuri-4-nitrophenol, or chloro-7-nitrobenzo-2-oxa-l,3- diazole.
  • Histidyl residues may be derivatized by reaction with diethylpyro carbonate at pH
  • Lysinyl and amino -terminal residues may be reacted with succinic or other carboxylic acid anhydrides. Derivatization with these agents has the effect of reversing the charge of the lysinyl residues.
  • Other suitable reagents for derivatizing alpha-amino-containing residues include imidoesters such as methyl picolinimidate, pyridoxal phosphate, pyridoxal, chloroborohydride, trinitrobenzenesulfonic acid, O-methylisourea, 2,4-pentanedione, and transaminase-catalyzed reaction with glyoxylate.
  • Arginyl residues may be modified by reaction with one or several conventional reagents, such as phenylglyoxal, 2,3-butanedione, 1 ,2-cyclohexanedione, and ninhydrin.
  • arginine residues requires that the reaction be performed in alkaline conditions because of the high pKa of the guanidine functional group. Furthermore, these reagents may react with the groups of lysine as well as the arginine epsilon-amino group.
  • tyrosyl residues may be made, with particular interest in introducing spectral labels into tyrosyl residues by reaction with aromatic diazonium compounds or tetranitromethane.
  • aromatic diazonium compounds or tetranitromethane Most commonly, N-acetylimidizole and tetranitromethane may be used to form O-acetyl tyrosyl species and 3-nitro derivatives, respectively.
  • Tyrosyl residues are iodinated using 125 I or 1311 to prepare labeled proteins for use in radioimmunoassay.
  • R and R are different alkyl groups, such as 1- cyclohexyl-3-(2-morpholinyl-4-ethyl) carbodiimide or l-ethyl-3-(4-azonia-4,4- dimethylpentyl)carbodiimide.
  • aspartyl and glutamyl residues are converted to asparaginyl and glutaminyl residues by reaction with ammonium ions.
  • Glutaminyl and asparaginyl residues may be deamidated to the corresponding glutamyl and aspartyl residues, respectively. These residues are deamidated under neutral or basic conditions.
  • Another type of covalent modification involves chemically or enzymatically coupling glycosides to the specific binding agent or antibody. These procedures are
  • the sugar(s) may be attached to (a) arginine and histidine, (b) free carboxyl groups, (c) free sulfhydryl groups such as those of cysteine, (d) free hydroxyl groups such as those of serine, threonine, or hydroxyproline, (e) aromatic residues such as those of phenylalanine, tyrosine, or tryptophan, or (f) the amide group of glutamine.
  • Removal of any carbohydrate moieties present on the polypeptide or antibody may be accomplished chemically or enzymatically.
  • Chemical deglycosylation involves exposure of the antibody to the compound trifluoromethanesulfonic acid, or an equivalent compound. This treatment results in the cleavage of most or all sugars except the linking sugar (N- acetylglucosamine or N-acetylgalactosamine), while leaving the antibody intact.
  • Chemical deglycosylation is described by Hakimuddin, et al. Arch. Biochem. Biophys. 259: 52 (1987) and by Edge et al. Anal. Biochem., 118: 131 (1981).
  • Enzymatic cleavage of carbohydrate moieties on an antibody can be achieved by the use of a variety of endo- and exo-glycosidases as described by Thotakura et al. Meth. Enzymol. 138: 350 (1987).
  • Another type of covalent modification of hepcidin activity comprises linking an antibody to one of a variety of nonproteinaceous polymers, e.g., polyethylene glycol, polypropylene glycol, polyoxyethylated polyols, polyoxyethylated sorbitol, polyoxyethylated glucose, polyoxyethylated glycerol, polyoxyalkylenes, or polysaccharide polymers such as dextran.
  • nonproteinaceous polymers e.g., polyethylene glycol, polypropylene glycol, polyoxyethylated polyols, polyoxyethylated sorbitol, polyoxyethylated glucose, polyoxyethy
  • Affinity for binding a pre-determined polypeptide antigen can, generally, be modulated by introducing one or more mutations into the V region framework, typically in areas adjacent to one or more CDRs and/or in one or more framework regions.
  • mutations involve the introduction of conservative amino acid substitutions that either destroy or create the glycosylation site sequences but do not substantially affect the hydropathic structural properties of the polypeptide.
  • mutations that introduce a proline residue are avoided.
  • Glycosylation of antibodies and antigen-binding fragments thereof is further described in U.S. Patent No. 6,350,861, which is incorporated by reference herein with respect to glycosylation.
  • humanized antibodies and antigen-binding fragments thereof that bind hepcidin.
  • Hepcidin is involved in regulating iron homeostasis. Hepcidin binds to ferroportin and decreases its functional activity by causing it to be internalized from the cell surface and degraded.
  • Hepcidin may also be involved in iron sequestration during inflammation.
  • Hepcidin gene expression has been observed to be robustly up-regulated after inflammatory stimuli, such as infections, which induce the acute phase response of the innate immune systems of vertebrates. Hepcidin gene expression may be up-regulated by lipopolysaccharide (LPS), turpentine, Freund's complete adjuvant, incomplete adjuvant, adenoviral infections and the inflammatory cytokine inter leukin-6 (IL-6).
  • LPS lipopolysaccharide
  • turpentine Freund's complete adjuvant
  • incomplete adjuvant incomplete adjuvant
  • IL-6 inflammatory cytokine inter leukin-6
  • a strong correlation between hepcidin expression and anemia of inflammation was also found in patients with chronic inflammatory diseases, including bacterial, fungal, and viral infections.
  • Human hepcidin is a 25 amino acid peptide with anti-microbial and iron- regulating activity.
  • LEAP-1 liver-expressed antimicrobial peptide
  • MAbs Monoclonal antibodies
  • hepcidin which modulate hepcidin activity and thereby regulate iron homeostasis.
  • antibody and “antibodies” are to be considered inclusive of any of the antigen-binding fragments described herein and the terms are to be interchangeable where applicable.
  • Binding of an antibody or antigen-binding fragment to hepcidin can partially
  • an antibody or antigen-binding fragment can be determined using an in vitro assay and/or in vivo using art-recognized assays such as those described herein or otherwise known in the art.
  • the antigen-binding fragment of any one of the antibodies described above is a Fab, a Fab', a Fd, a F(ab') 2 , a Fv, a scFv, a single chain binding polypeptide (e.g., a scFv with Fc portion) or any other functional fragment thereof as described herein.
  • Antibodies, or antigen-binding fragments thereof, described herein can be further modified to alter the specific properties of the antibody while retaining the desired functionality, if needed.
  • the compound can be modified to alter a pharmacokinetic property of the compound, such as in vivo stability, solubility, bioavailability or half-life.
  • Antibodies, or antigen-binding fragments thereof can be formulated for any suitable route of administration to a subject including, but not limited to injection. Injection includes, for example, subcutaneous, peritoneal, or intravenous injection. Administration may be in one, two, three, four, five, six, seven, or more injection sites. In one embodiment, administration is via six injection sites. [00225] Antibodies, antigen-binding fragments, and binding proteins which bind hepcidin generated using such methods can be tested for one or more of their binding affinity, avidity, and modulating capabilities. Useful antibodies, and antigen-binding fragments, can be administered to a subject to prevent, inhibit, manage or treat a condition disease or disorder as described in more detail below.
  • Antibodies and antigen-binding fragments can be evaluated for one or more of binding affinity, association rates, disassociation rates and avidity.
  • antibodies can be evaluated for their ability to modulate the activity of hepcidin or a polypeptide in which the hepcidin binding sequence (epitope) is present.
  • Measurement binding affinity, association rates, disassociation rates and avidity can be accomplished using art- recognized assays including (Surface Plasmon Resonance), but not limited to, an enzyme- linked- immunosorbent assay (ELISA), Scatchard Analysis, BIACORE analysis, etc., as well as other assays commonly used and known to those of ordinary skill in the art.
  • ELISA enzyme- linked- immunosorbent assay
  • Scatchard Analysis BIACORE analysis
  • Measurement of binding of antibodies to hepcidin and/or the ability of the antibodies and antigen-binding fragments thereof may be determined using, for example, an enzyme-linked-immunosorbent assay (ELISA), a competitive binding assay, an ELISPOT assay, or any other useful assay known in the art. These assays are commonly used and well-known to those of ordinary skill in the art.
  • ELISA enzyme-linked-immunosorbent assay
  • ELISPOT assay an enzyme-linked-immunosorbent assay
  • an ELISA assay can be used to measure the binding capability of specific antibodies or antigen-binding fragments that bind to hepcidin.
  • Assays such as an ELISA, also can be used to identify antibodies or antigen- binding fragments thereof which exhibit increased specificity for hepcidin in comparison to other antibodies or antigen-binding fragments thereof. Assays, such as an ELISA, also can be used to identify antibodies or antigen-binding fragments thereof with bind to epitopes across one or more polypeptides and across one or more species of hepcidin.
  • the specificity assay can be conducted by running parallel ELISAs in which a test antibodies or antigen-binding fragments thereof is screened concurrently in separate assay chambers for the ability to bind one or more epitopes on different species of the polypeptide containing the hepcidin epitopes to identify antibodies or antigen-binding fragments thereof that bind to hepcidin.
  • Another technique for measuring apparent binding affinity familiar to those of skill in the art is a surface plasmon resonance technique (analyzed on a BIACORE 2000 system) (Liljeblad, et ah, Glyco. J. 2000, 17:323-329). Standard measurements and traditional binding assays are described by Heeley, R. P., Endocr. Res. 2002, 28:217-229.
  • Antibodies and antigen binding fragments thereof can be tested for a variety of functions using a variety of in vitro and in vivo methods including, but not limited to those known in the art and those described herein.
  • antibodies and antigen-binding fragments thereof that bind to hepcidin.
  • an antibody, or antigen-binding fragment thereof, that specifically binds to hepcidin, comprising a heavy chain variable region and a light chain variable region,
  • said heavy chain variable region comprises:
  • said light chain variable region comprises:
  • said heavy chain variable region comprises:
  • said light chain variable region comprises:
  • an antibody, or antigen-binding fragment thereof comprises a heavy chain variable region framework region; and a light chain variable region framework region as set forth in the Sequence Listing below where the CDRs identified in any one of SEQ ID NOS: 1-18 or 55-72 are inserted into the framework region utilizing Kabat numbering.
  • an antibody, or antigen-binding fragment thereof, that specifically binds to hepcidin prepared by injecting a rodent (i.e., mouse, rat or rabbit) with a peptide having an amino acid sequence of any one of SEQ ID NOS: 19-27.
  • the peptide is conjugated to a carrier (e.g., keyhole limpet hemocyanin (KLH)) or an adjuvant (complete Freund's adjuvant (CFA) or incomplete Freund's adjuvant (IFA)).
  • KLH keyhole limpet hemocyanin
  • CFA complete Freund's adjuvant
  • IFA incomplete Freund's adjuvant
  • the antibody, or antigen-binding fragment thereof, that specifically binds to amino acid residues 1-9 of hepcidin In another embodiment, provided herein is an antibody, or antigen-binding fragment thereof, that specifically binds to amino acid residues 1-7 of hepcidin.
  • a hepcidin peptide to which an antibody, or antigen-binding fragment thereof, binds may have an amino acid sequence of SEQ ID NO: 19.
  • an antibody, or antigen-binding fragment thereof that specifically binds to an epitope comprising amino acid sequence of any one of Hep-5, Hep-9, Hep-20, Hep 22 and Hep-25 where the sequences of the peptides are provided in the sequence listing.
  • the antibody, or antigen-binding fragment thereof specifically binds to an epitope comprising an amino acid sequence of Hep-20 (SEQ ID NO: 22), Hep-22 (SEQ ID NO: 23) and Hep-25 (SEQ ID NO: 19).
  • the antibody, or antigen-binding fragment thereof specifically binds to an epitope comprising Hep-5 (SEQ ID NO: 25) or Hep-9 (SEQ ID NO: 24).
  • an antibody, or antigen-binding fragment thereof that specifically binds to an epitope comprising amino acid residues 1-9 of hepcidin.
  • the antibody, or antigen-binding fragment thereof specifically binds to 2, 3, 4, 5, 6, 7, 8, or 9 amino acid residues of an epitope comprising amino acid residues 1-9 of hepcidin.
  • the antibody, or antigen-binding fragment thereof is monoclonal antibody comprising a heavy chain CDRl encoded by SEQ ID NO: 55, a heavy CDR2 encoded by SEQ ID NO: 58, a heavy chain CDR3 encoded by SEQ ID NO: 61, a light chain CDRl encoded by SEQ ID NO: 64, a light CDR2 encoded by SEQ ID NO: 67, and a light chain CDR3 encoded by SEQ ID NO: 70.
  • the antibody, or antigen-binding fragment thereof is monoclonal antibody comprising a heavy chain CDRl encoded by SEQ ID NO: 56, a heavy CDR2 encoded by SEQ ID NO: 59, a heavy chain CDR3 encoded by SEQ ID NO: 61, a light chain CDR1 encoded by SEQ ID NO: 65, a light CDR2 encoded by SEQ ID NO: 68, and a light chain CDR3 encoded by SEQ ID NO: 71.
  • the antibody, or antigen-binding fragment thereof is monoclonal antibody comprising a heavy chain CDR1 encoded by SEQ ID NO: 57, a heavy CDR2 encoded by SEQ ID NO: 60, a heavy chain CDR3 encoded by SEQ ID NO: 63, a light chain CDR1 encoded by SEQ ID NO: 66, a light CDR2 encoded by SEQ ID NO: 69, and a light chain CDR3 encoded by SEQ ID NO: 72.
  • the antibody may be, for example, a monoclonal antibody, a chimeric antibody, a human antibody, or a humanized antibody.
  • a humanized variable heavy chain comprises an amino acid sequence set forth as SEQ ID NO: 40.
  • a humanized variable light chain comprises an amino acid sequence set forth as SEQ ID NO: 38.
  • an antibody, or antigen-binding fragment thereof comprises a heavy chain variable region framework region; and a light chain variable region framework region as set forth in the Sequence Listing below where the CDRs identified in any one of SEQ ID NOS: 1-18 of 55-72 are inserted into the framework region utilizing Kabat numbering.
  • the antigen-binding fragment may be, for example, a Fab fragment, a Fab' fragment, a F(ab') 2 fragment, an Fv fragment, an scFv fragment, a single chain binding polypeptide, a Fd fragment, a variable heavy chain, a variable light chain, a dAb fragment or any other type of fragment described herein.
  • An antigen-binding fragment may be, for example, an AVIMER, a diabody, or a heavy chain dimer.
  • a heavy chain dimer may be, for example, a camelid or a shark heavy chain construct.
  • An antibody, or antigen-binding fragment thereof, described herein may have a dissociation constant (Kd) of about 1 to about 10 pM, from about 10 to about 20 pM, from about 1 to about 29 pM, from about 30 to about 40 pM, from about 10 to about 100 pM, or from about 20 to about 500 pM.
  • Kd dissociation constant
  • An antibody, or antigen-binding fragment thereof, described herein may have a dissociation constant (Kd) of less than about 500 pM, less than about 400 pM, less than about 300 pM, less than about 200 pM, less than about 100 pM, less than about 75 pM, less than about 50 pM, less than about 30 pM, less than about 25 pM, less than about 20 pM, less than about 18 pM, less than about 15 pM, less than about 10 pM, less than about 75.
  • Kd dissociation constant
  • An antibody, or antigen-binding fragment thereof, described herein may have an affinity for hepcidin or a hepcidin peptide of from about 10 "9 to about 10 "14 , from about 10 "10 to about 10 "14 , from about 10 "11 to about 10 "14 , from about 10 "12 to about 10 “14 , from about 10 "13 to about 10 ⁇ 14 , from about 10 ⁇ 10 to about 10 "11 , from about 10 "11 to about 10 ⁇ 12 , from about 10 "12 to about 10 "13 , or 10 ⁇ 13 to about 10 "14 .
  • compositions comprising an antibody, or antigen-binding fragment, and an acceptable carrier or excipient.
  • compositions are described in more detail below.
  • nucleic acid molecule comprising a nucleotide sequence that encodes an antibody, or antigen-binding fragment thereof, described herein.
  • an expression vector comprising the nucleic acid molecule, operably linked to a regulatory control sequence.
  • a host cell comprising a vector or a nucleic acid molecule provided herein.
  • a method of using the host cell to produce an antibody comprising culturing the host cell under suitable conditions such that the nucleic acid is expressed to produce the antibody.
  • compositions can be used as a composition when combined with an acceptable carrier or excipient. Such compositions are useful for in vitro or in vivo analysis or for administration to a subject in vivo or ex vivo for treating a subject with the disclosed compounds.
  • compositions can include, in addition to active ingredient, a pharmaceutically acceptable excipient, carrier, buffer, stabilizer or other materials well known to those skilled in the art. Such materials should be non-toxic and should not interfere with the efficacy of the active ingredient. The precise nature of the carrier or other material will depend on the route of administration.
  • compositions comprising a protein of interest, e.g., an antibody or antigen-binding fragment, identified by the methods described herein can be prepared for storage by mixing the protein having the desired degree of purity with optional physiologically acceptable carriers, excipients or stabilizers (Remington's Pharmaceutical Sciences 16th edition,
  • Acceptable carriers, excipients, or stabilizers are those that are non-toxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid and methionine; preservatives (such as
  • octadecyldimethylbenzyl ammonium chloride hexamethonium chloride; benzalkonium chloride, benzethonium chloride; phenol, butyl or benzyl alcohol; alkyl parabens such as methyl or propyl paraben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol); low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, histidine, arginine, or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugars such as sucrose, mannitol, trehalose or
  • Acceptable carriers are physiologically acceptable to the administered subject and retain the therapeutic properties of the compounds with/in which it is administered. Acceptable carriers and their formulations are and generally described in, for example, Remington' pharmaceutical Sciences (18th Edition, ed. A. Gennaro, Mack Publishing Co., Easton, PA 1990).
  • One exemplary carrier is physiological saline.
  • pharmaceutically acceptable carrier means a pharmaceutically acceptable material, composition or vehicle, such as a liquid or solid filler, diluent, excipient, solvent or encapsulating material, involved in carrying or transporting the subject compounds from the administration site of one organ, or portion of the body, to another organ, or portion of the body, or in an in vitro assay system. Each carrier is acceptable in the sense of being compatible with the other ingredients of the formulation and not injurious to a subject to whom it is administered. Nor should an acceptable carrier alter the specific activity of the subject compounds.
  • compositions including solvents (aqueous or non-aqueous), solutions, emulsions, dispersion media, coatings, isotonic and absorption promoting or delaying agents, compatible with pharmaceutical administration.
  • Pharmaceutical compositions or pharmaceutical formulations therefore refer to a composition suitable for pharmaceutical use in a subject.
  • the pharmaceutical compositions and formulations include an amount of a compound described herein and a pharmaceutically or physiologically acceptable carrier.
  • compositions can be formulated to be compatible with a particular route of administration (i.e., systemic or local).
  • routes of administration i.e., systemic or local.
  • compositions include carriers, diluents, or excipients suitable for administration by various routes.
  • compositions can further comprise, if needed, an acceptable additive in order to improve the stability of the compounds in composition and/or to control the release rate of the composition.
  • Acceptable additives do not alter the specific activity of the subject compounds.
  • Exemplary acceptable additives include, but are not limited to, a sugar such as mannitol, sorbitol, glucose, xylitol, trehalose, sorbose, sucrose, galactose, dextran, dextrose, fructose, lactose and mixtures thereof.
  • Acceptable additives can be combined with acceptable carriers and/or excipients such as dextrose.
  • exemplary acceptable additives include, but are not limited to, a surfactant such as polysorbate 20 or polysorbate 80 to increase stability of the peptide and decrease gelling of the solution.
  • the surfactant can be added to the composition in an amount of 0.01% to 5% of the solution. Addition of such acceptable additives increases the stability and half- life of the composition in storage.
  • a composition may contain an isotonic buffer such as a phosphate, acetate, or TRIS buffer in combination with a tonicity agent such as a polyol, Sorbitol, sucrose or sodium chloride, which tonicities and stabilizes.
  • a tonicity agent such as a polyol, Sorbitol, sucrose or sodium chloride, which tonicities and stabilizes.
  • a tonicity agent may be present in the composition in an amount of about 5%.
  • the composition may include a surfactant such as to prevent aggregation and for stabilization at 0.01 to 0.02% wt/vol.
  • the pH of the composition may range from 4.5-6.5 or
  • compositions for antibodies may be found in, for example, US 2003/0113316 and U.S. Pat. No. 6,171,586, each incorporated herein by reference in its entirety.
  • a composition herein may also contain more than one active compound as necessary for the particular indication being treated, such as those with complementary activities that do not adversely affect each other.
  • a method of treatment may further provide an immunosuppressive agent.
  • Such molecules are suitably present in combination in amounts that are effective for the purpose intended.
  • Active ingredients may be entrapped in microcapsule prepared, for example, by coacervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatin-microcapsule and poly-(methylmethacylate) microcapsule, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano- particles and nanocapsules) or in macroemulsions.
  • colloidal drug delivery systems for example, liposomes, albumin microspheres, microemulsions, nano- particles and nanocapsules
  • compositions to be used for in vivo administration must be sterile.
  • the compositions of the invention may be sterilized by conventional, well known sterilization techniques. For example, sterilization may be readily accomplished by filtration through sterile filtration membranes. The resulting solutions may be packaged for use or filtered under aseptic conditions and lyophilized, the lyophilized preparation being combined with a sterile solution prior to administration.
  • Freeze-drying may be employed to stabilize polypeptides for long-term storage, such as when a polypeptide is relatively unstable in liquid compositions.
  • a lyophilization cycle is usually composed of three steps: freezing, primary drying, and secondary drying; Williams and Polli, Journal of Parenteral Science and Technology, Volume 38, Number 2, pages 48-59 (1984).
  • the freezing step the solution is cooled until it is adequately frozen.
  • Bulk water in the solution forms ice at this stage.
  • the ice sublimes in the primary drying stage, which is conducted by reducing chamber pressure below the vapor pressure of the ice, using a vacuum.
  • sorbed or bound water is removed at the secondary drying stage under reduced chamber pressure and an elevated shelf temperature. The process produces a material known as a lyophilized cake.
  • Standard reconstitution practice for lyophilized material is to add back a volume of pure water (typically equivalent to the volume removed during lyophilization), although dilute solutions of antibacterial agents are sometimes used in the production of pharmaceuticals for parenteral administration; Chen, Drug
  • excipients such as, for example, polyols (including mannitol, sorbitol and glycerol); sugars (including glucose and sucrose); and amino acids (including alanine, glycine and glutamic acid), may act as stabilizers for freeze-dried products; see, e.g., Carpenter et al, Developments in Biological Standardization, Volume 74, pages 225-239 (1991).
  • Polyols and sugars may also be used to protect polypeptides from freezing and drying-induced damage and to enhance the stability during storage in the dried state.
  • Sugars may be effective in both the freeze-drying process and during storage.
  • Other classes of molecules, including mono- and disaccharides and polymers such as PVP have also been reported as stabilizers of lyophilized products.
  • a composition and/or medicament may be a powder suitable for reconstitution with an appropriate solution as described above.
  • these include, but are not limited to, freeze dried, rotary dried or spray dried powders, amorphous powders, granules, precipitates, or particulates.
  • the compositions may optionally contain stabilizers, pH modifiers, surfactants, bioavailability modifiers and combinations of these.
  • sustained-release preparations may be prepared.
  • suitable examples of sustained- release preparations include semipermeable matrices of solid hydrophobic polymers containing the antibody, which matrices are in the form of shaped articles, e.g., films, or microcapsule.
  • sustained-release matrices include polyesters, hydrogels (for example, poly(2- hydroxyethyl-methacrylate), or poly(vinylalcohol)), polylactides (see, e.g., U.S. Pat. No.
  • copolymers of L-glutamic acid and y ethyl-L-glutamate non-degradable ethylene- vinyl acetate
  • degradable lactic acid-glycolic acid copolymers such as the Lupron DepotTM (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate)
  • poly-D-(-)-3-hydroxybutyric acid While polymers such as ethylene-vinyl acetate and lactic acid-glycolic acid enable release of molecules for over 100 days, certain hydrogels release proteins for shorter time periods.
  • encapsulated antibodies While encapsulated antibodies remain in the body for a long time, they may denature or aggregate as a result of exposure to moisture at 37 °C, resulting in a loss of biological activity and possible changes in immunogenicity. Rational strategies can be devised for stabilization depending on the mechanism involved. For example, if the aggregation mechanism is discovered to be intermolecular S— S bond formation through thio- disulfide interchange, stabilization may be achieved by modifying sulfhydryl residues, lyophilizing from acidic solutions, controlling moisture content, using appropriate additives, and developing specific polymer matrix compositions.
  • a composition described herein may be designed to be short-acting, fast- releasing, long-acting, or sustained-releasing as described herein.
  • the composition may be formulated for controlled release or for slow release.
  • compositions for injection can be administered, for example, by injection, including, but not limited to, subcutaneous, intravitreal, intradermal, intravenous, intra-arterial, intraperitoneal, intracerebreospinal, or intramuscular injection.
  • Excipients and carriers for use in formulation of compositions for each type of injection are contemplated herein. The following descriptions are by example only and are not meant to limit the scope of the compositions.
  • Compositions for injection include, but are not limited to, aqueous solutions (where water soluble) or dispersions, as well as sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion.
  • suitable carriers include physiological saline, bacteriostatic water, Cremophor ELTM (BASF, Parsippany, N.J.) or phosphate buffered saline (PBS).
  • the carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyetheylene glycol, and the like), and suitable mixtures thereof. Fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants.
  • Antibacterial and antifungal agents include, for example, parabens, chlorobutanol, phenol, ascorbic acid and thimerosal.
  • Isotonic agents for example, sugars, polyalcohols such as manitol, sorbitol, and sodium chloride may be included in the composition.
  • the resulting solutions can be packaged for use as is, or lyophilized; the lyophilized preparation can later be combined with a sterile solution prior to administration.
  • the active ingredient will be in the form of a parenterally acceptable aqueous solution which is pyrogen- free and has suitable pH, isotonicity and stability.
  • Sterile injectable solutions can be prepared by incorporating an active ingredient in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization.
  • dispersions are prepared by incorporating the active ingredient into a sterile vehicle which contains a basic dispersion medium and the required other ingredients from those enumerated above.
  • the preferred methods of preparation are vacuum drying and freeze drying which yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile- filtered solution thereof.
  • compositions can be conventionally administered intravitreally, sub-cutaneous, or via intravitreal implant.
  • compositions can be conventionally administered intravenously, such as by injection of a unit dose, for example.
  • an active ingredient can be in the form of a parenterally acceptable aqueous solution which is substantially pyrogen- free and has suitable pH, isotonicity and stability.
  • suitable solutions using, for example, isotonic vehicles such as Sodium Chloride Injection, Ringer's Injection, Lactated Ringer's Injection. Preservatives, stabilizers, buffers, antioxidants and/or other additives may be included, as required.
  • compositions can be administered via aerosolization. (Lahn et al., Aerosolized Anti-T-cell-Receptor Antibodies Are Effective against Airway Inflammation and Hyperreactivity, Int. Arch. Allergy Immuno., 134: 49-55 (2004)).
  • the composition is lyophilized, for example, to increase shelf-life in storage.
  • the compositions can be substantially free of pyrogens such that the composition will not cause an inflammatory reaction or an unsafe allergic reaction when administered to a human subject.
  • Testing compositions for pyrogens and preparing compositions substantially free of pyrogens are well understood to one or ordinary skill of the art and can be accomplished using commercially available kits.
  • Acceptable carriers can contain a compound that stabilizes, increases or delays absorption or clearance.
  • Such compounds include, for example, carbohydrates, such as glucose, sucrose, or dextrans; low molecular weight proteins; compositions that reduce the clearance or hydrolysis of peptides; or excipients or other stabilizers and/or buffers.
  • Agents that delay absorption include, for example, aluminum monostearate and gelatin. Detergents can also be used to stabilize or to increase or decrease the absorption of the pharmaceutical composition, including liposomal carriers.
  • the compound can be complexed with a composition to render it resistant to acidic and enzymatic hydrolysis, or the compound can be complexed in an appropriately resistant carrier such as a liposome.
  • phrases “pharmaceutically acceptable” refers to molecular entities and compositions that are physiologically tolerable and do not typically produce an allergic or similar untoward reaction, such as gastric upset, dizziness and the like, when administered to a human.
  • unit dose when used in reference to a therapeutic composition refers to physically discrete units suitable as unitary dosage for humans, each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect in association with the required diluent; i.e., carrier, or vehicle.
  • compositions can be administered in a manner compatible with the dosage formulation, and in a therapeutically effective amount.
  • quantity to be administered depends on the subject to be treated, capacity of the subject's immune system to utilize the active ingredient, and degree of binding capacity desired. Precise amounts of active ingredient required to be administered depend on the judgment of the practitioner and are peculiar to each individual. Suitable regimes for initial administration and booster shots are also variable, but are typified by an initial administration followed by repeated doses at one or more hour intervals by a subsequent injection or other administration. Alternatively, continuous intravenous infusion that is sufficient to maintain concentrations in the blood are contemplated.
  • compositions described herein to make a medicament for treating a condition, disease or disorder described herein.
  • Medicaments can be formulated based on the physical characteristics of the subject needing treatment, and can be formulated in single or multiple formulations based on the stage of the condition, disease or disorder.
  • Medicaments can be packaged in a suitable package with appropriate labels for the distribution to hospitals and clinics wherein the label is for the indication of treating a subject having a disease described herein.
  • Medicaments can be packaged as a single or multiple units. Instructions for the dosage and administration of the compositions can be included with the packages as described below.
  • the invention is further directed to medicaments of an anti- hepcidin antibody or antigen binding fragment thereof described hereinabove and a
  • compositions of antibodies and antigen-binding fragments thereof that bind hepcidin include those such as described elsewhere herein.
  • Antibodies and antigen-binding fragments thereof that bind hepcidin as described herein can be used for the treatment of various diseases and conditions associated with iron homeostasis.
  • a composition (an antibody or an antigen-binding fragment described herein) can be administered alone or in combination with a second composition either simultaneously or sequentially dependent upon the condition to be treated.
  • a second therapeutic treatment is an erythropoiesis stimulator.
  • the compositions can be administered in combination (either sequentially or simultaneously).
  • a composition can be administered in a single dose or multiple doses.
  • compositions When formulated for administration to human subjects, the compositions may be formulated to be free of pyrogens. Testing compositions for pyrogens and preparing
  • compositions free of pyrogens are well understood to one of ordinary skill in the art.
  • compositions of the present invention to make a medicament for treating a disorder of the present invention.
  • Medicaments can be formulated based on the physical characteristics of the subject needing treatment, and can be formulated in single or multiple formulations based on the disorder.
  • Medicaments of the present invention can be packaged in a suitable pharmaceutical package with appropriate labels for the distribution to hospitals and clinics wherein the label is for the indication of treating a disorder as described herein in a subject.
  • Medicaments can be packaged as a single or multiple units. Instructions for the dosage and administration of the pharmaceutical compositions of the present invention can be included with the pharmaceutical packages.
  • a method of diagnosing a hepcidin-related disorder comprising: (a) contacting a biological sample from a subject suspected of having said disorder with an antibody, or antigen-binding fragment thereof, described herein under conditions that allow binding of the antibody or antigen-binding fragment thereof, to hepcidin; and (b) detecting and/or quantitating the hepcidin bound to the antibody, or antigen-binding fragment thereof, wherein the amount of hepcidin in the sample, as quantitated in (b), above a threshold level indicates the presence of hepcidin-related disorder and below the threshold level indicates the absence of hepcidin-related disorder.
  • a method of differentiating an inflammatory disease from a non-inflammatory disease comprising: (a) contacting a biological sample from a human suspected of having said disorder with an antibody or antigen-binding fragment thereof, described herein under conditions that allow binding of the antibody or antigen-binding fragment thereof, to hepcidin; and (b) detecting and/or quantitating the hepcidin bound to the antibody or antigen-binding fragment thereof, wherein the amount of hepcidin, as quantitated in (b), above a threshold level indicates the presence of inflammatory disease and below the threshold level indicates the absence of inflammatory disease.
  • the antibody or antigen-binding fragment further comprises a detectable moiety. Detection can occur in vitro, in vivo or ex vivo. In vitro assays for the detection and/or determination (quantification, qualification, etc.) of hepcidin with the antibodies or antigen-binding fragments thereof include but are not limited to, for example, ELISAs, RIAs and western blots. In vitro detection, diagnosis or monitoring of hepcidin can occur by obtaining a sample ⁇ e.g., a blood sample) from a subject and testing the sample in, for example, a standard ELISA assay.
  • a sample ⁇ e.g., a blood sample
  • a 96-well microtiter plate can be coated with an antibody or antigen-binding fragment thereof described herein, washed and coating with PBS- Tween/BSA to inhibit non-specific binding.
  • the blood sample can be serially diluted and placed in single or duplicate wells compared to a serially- diluted standard curve of hepcidin. After incubating and washing the wells, an anti-hepcidin antibody labeled with biotin can be added, followed by addition of streptavidin-alkaline phosphatase.
  • the wells can be washed and a substrate (horseradish peroxidase) added to develop the plate.
  • the plate can be read using a conventional plate reader and software.
  • contacting occurs via administration of the antibody or antigen binding fragment using any conventional means such as those described elsewhere herein.
  • detection of hepcidin in a sample or a subject can be used to diagnose a disease or disorder associated with, or correlated with the activity of such as those diseases and disorders described herein.
  • a subject In the in vivo detection, diagnosis or monitoring of hepcidin, a subject is administered an antibody or antigen-binding fragment that binds to hepcidin, which antibody or antigen-binding fragment is bound to a detectable moiety.
  • the detectable moiety can be visualized using art-recognized methods such as, but not limited to, magnetic resonance imaging (MRI), fluorescence, radioimaging, light sources supplied by endoscopes, laparoscopes, or intravascular catheter ⁇ i.e., via detection of photoactive agents), photoscanning, positron emission tomography (PET) scanning, whole body nuclear magnetic resonance (NMR), radio scintography, single photon emission computed tomography (SPECT), targeted near infrared region (NIR) scanning, X-ray, ultrasound, etc. such as described, for example, in U.S. Patent No. 6,096,289, U.S. Patent No. 7,115,716, U.S. Patent No. 7,112,412, U.S.
  • MRI magnetic resonance imaging
  • fluorescence fluorescence
  • radioimaging light sources supplied by endoscopes, laparoscopes, or intravascular catheter ⁇ i.e., via detection of photoactive agents
  • photoscanning positron emission tomography (
  • samples to be obtained from a subject include, but are not limited to, blood, tissue biopsy samples and fluid therefrom.
  • the present invention provides humanized antibodies and antigen-binding fragments thereof against hepcidin which are useful for detecting or diagnosing levels of hepcidin associated with a disease or disorder, potentially indicating need for therapeutic treatment.
  • the antibodies comprise a humanized anti-hepcidin antibody described herein.
  • the antibody further comprises a second agent.
  • Such an agent can be a molecule or moiety such as, for example, a reporter molecule or a detectable label. Detectable labels/moieties for such detection methods are known in the art and are described in more detail below. Reporter molecules are any moiety which can be detected using an assay.
  • Non-limiting examples of reporter molecules which have been conjugated to polypeptides include enzymes, radio labels, haptens, fluorescent labels, phosphorescent molecules, chemiluminescent molecules, chromophores, luminescent molecules, photoaffinity molecules, colored particles or ligands, such as biotin.
  • Detectable labels include compounds and/or elements that can be detected due to their specific functional properties, and/or chemical characteristics, the use of which allows the polypeptide to which they are attached to be detected, and/or further quantified if desired.
  • Many appropriate detectable (imaging) agents are known in the art, as are methods for their attachment to polypeptides (see, for e.g., U.S. Pat. Nos. 5,021,236; 4,938,948; and 4,472,509, each of which is hereby incorporated by reference).
  • Methods of joining polypeptides such as antibodies with detectable moieties include, for example, recombinant DNA technology to form fusion proteins and conjugation ⁇ e.g., chemical conjugation). Methods for preparing fusion proteins by chemical conjugation or recombinant engineering are well-known in the art. Methods of covalently and non-covalently linking components are also known in the art. See, e.g., Williams (1995) Biochemistry 34: 1787 1797; Dobeli (1998) Protein Expr. Purif. 12:404-414; and Kroll (1993) DNA Cell. Biol. 12: 441-453.
  • linker can facilitate enhanced flexibility, and/or reduce steric hindrance between any two fragments.
  • the linker can also facilitate the appropriate folding of each fragment to occur.
  • the linker can be of natural origin, such as a sequence determined to exist in random coil between two domains of a protein.
  • One linker sequence is the linker found between the C-terminal and N-terminal domains of the RNA polymerase a subunit.
  • Other examples of naturally occurring linkers include linkers found in the 1CI and LexA proteins.
  • an amino acid sequence can be varied based on the
  • linker can be designed such that residues in the linker contact deoxyribose nucleic acid (DNA), thereby influencing binding affinity or specificity, or to interact with other proteins.
  • DNA deoxyribose nucleic acid
  • the linker can, optionally, contain an additional folded domain.
  • the design of a linker can involve an arrangement of domains which requires the linker to span a relatively short distance, e.g., less than about 10 Angstroms (A). However, in certain embodiments, linkers span a distance of up to about 50 Angstroms.
  • the amino acid sequence can be varied based on the characteristics of the linker as determined empirically or as revealed by modeling.
  • linker Considerations in choosing a linker include flexibility of the linker, charge of the linker, and presence of some amino acids of the linker in the naturally-occurring subunits.
  • the linker can also be designed such that residues in the linker contact DNA, thereby influencing binding affinity or specificity, or to interact with other proteins.
  • the linker can optionally contain an additional folded domain.
  • microparticle surfaces that have been modified with functional groups or coated with various antibodies or ligands such as, for example, avidin, streptavidin or biotin.
  • microparticles The paramagnetic property of microparticles allows them to be separated from solution using a magnet.
  • the microparticles can be easily re-suspended when removed from the magnet.
  • Polypeptides can be coupled to paramagnetic polystyrene microparticles coated with a polyurethane layer in a tube.
  • the hydroxy groups on the microparticle surface are activated by reaction with p-toluensulphonyl chloride (Nilsson K and Mosbach K. "p-Toluenesulfonyl chloride as an activating agent of agarose for the preparation of immobilized affinity ligands and proteins.” Eur. J. Biochem. 1980: 112: 397-402).
  • paramagnetic polystyrene microparticles containing surface carboxylic acid can be activated with a carbodiimide followed by coupling to a polypeptide, resulting in a stable amide bond between a primary amino group of the polypeptide and the carboxylic acid groups on the surface of the microparticles (Nakajima N and Ikade Y, Mechanism of amide formation by carbodiimide for bio conjugation in aqueous media, Bioconjugate Chem. 1995, 6(1): 123-130; Gilles MA, Hudson AQ and Borders CL Jr, Stability of water-soluble carbodiimides in aqueous solution, Anal Biochem.
  • paramagnetic polystyrene microparticles whose surfaces have been covalently linked with a monolayer of streptavidin.
  • Argarana CE Kuntz ID, Birken S, Axel R, Cantor CR.
  • Molecular cloning and nucleotide sequence of the streptavidin gene Nucleic Acids Res. 1986; 14(4): 1871- 82; Pahler A, Hendrickson WA, Gawinowicz Kolks MA, Aragana CE, Cantor CR.
  • Polypeptides can be conjugated to a wide variety of fluorescent dyes, quenchers and haptens such as fluorescein, R-phycoerythrin, and bio tin. Conjugation can occur either during polypeptide synthesis or after the polypeptide has been synthesized and purified.
  • Biotin is a small (244 kilodaltons) vitamin that binds with high affinity to avidin and streptavidin proteins and can be conjugated to most peptides without altering their biological activities.
  • Biotin-labeled polypeptides are easily purified from unlabeled polypeptides using immobilized streptavidin and avidin affinity gels, and streptavidin or avidin-conjugated probes can be used to detect biotinylated polypeptides in, for example, ELISA, dot blot or Western blot applications.
  • N- hydroxysuccinimide esters of biotin are the most commonly used type of biotinylation agent.
  • N- hydroxysuccinimide-activated biotins react efficiently with primary amino groups in
  • Polypeptides have primary amines at the N- terminus and can also have several primary amines in the side chain of lysine residues that are available as targets for labeling with N-hydroxysuccinimide-activated biotin reagents.
  • N-hydroxysuccinimide esters of biotin are available, with varying properties and spacer arm length (Pierce, Rockford, IL).
  • the sulfo-N-hydroxysuccinimide ester reagents are water soluble, enabling reactions to be performed in the absence of organic solvents.
  • biotin-avidin bond formation is very rapid and stable in organic solvents, extreme pH and denaturing reagents.
  • a solution containing the biotinylated polypeptide is added to a mixture of 2-(4' -Hydro xyazobenzene-2-carboxylic acid) and avidin. Because biotin has a higher affinity for avidin, it displaces the 2-(4'- Hydroxyazobenzene-2-carboxylic acid) and the absorbance at 500 nanometers decreases proportionately.
  • the amount of biotin in a solution can be quantitated in a single cuvette by measuring the absorbance of the 2-(4' -Hydro xyazobenzene-2-carboxylic acid)-avidin solution before and after addition of the biotin-containing peptide.
  • the change in absorbance relates to the amount of biotin in the sample by the extinction coefficient of the 2-(4'- Hydroxyazobenzene-2-carboxylic acid)-avidin complex.
  • an antibody, antigen-binding fragment or binding protein can be conjugated with a fluorescent moiety
  • Conjugating polypeptides with fluorescent moieties ⁇ e.g., R-Phycoerythrin, fluorescein isothiocyanate (FITC), etc.
  • FITC fluorescein isothiocyanate
  • an antibody antigen-binding fragment can be associated with (conjugated to) a detectable label, such as a radionuclide, iron-related compound, a dye, an imaging agent or a fluorescent agent for immunodetection of hepcidin which can be used to visualize binding of the antibodies to hepcidin in vitro and/or in vivo.
  • a detectable label such as a radionuclide, iron-related compound, a dye, an imaging agent or a fluorescent agent for immunodetection of hepcidin which can be used to visualize binding of the antibodies to hepcidin in vitro and/or in vivo.
  • radiolabels include, for example, P, P, K, Fe,
  • Radiolabels can be attached to compounds using conventional chemistry known in the art of antibody imaging. Radiolabeled compounds are
  • the antibody or antigen-binding fragment thereof can be conjugated to both a therapeutic moiety and a detectable moiety.
  • An antibody or antigen-binding fragment thereof can be conjugated to, or recombinantly engineered with, an affinity tag ⁇ e.g., a purification tag).
  • affinity tag e.g., a purification tag.
  • Affinity tags such as, for example, His6 tags (SEQ ID NO: 28) are
  • Antibodies or antigen-binding fragments thereof provided herein are such that they can be conjugated or linked to a therapeutic moiety and/or an imaging or a detectable moiety and/or an affinity tag.
  • Methods for conjugating or linking polypeptides are well known in the art.
  • Associations (binding) between compounds and labels include any means known in the art including, but not limited to, covalent and non-covalent interactions, chemical conjugation as well as recombinant techniques.
  • an antibody, or antigen-binding fragment thereof that binds to hepcidin .
  • the binding site to which the antibody binds can be a continuous or conformation/dis-continuous epitope.
  • an antibody, or antigen-binding fragment thereof specifically binds to an epitope comprising amino acid residues 1-9 of hepcidin.
  • an antibody, or antigen-binding fragment thereof specifically binds to 2, 3, 4, 5, 6, 7, 8 or 9 amino acid residues of an epitope comprising amino acid residues 1-9 of hepcidin.
  • an antibody, or antigen- binding fragment thereof specifically binds to Hep-20, Hep-22, and Hep-25.
  • Hepcidin may have an amino acid sequence of, for example, SEQ ID NO: 19.
  • a hepcidin peptide may have an amino acid sequence of, for example, any one of SEQ ID NOS: 20-25.
  • an antibody, or antigen-binding fragment thereof binds to an amino acid sequence set forth in any one of the peptide SEQ ID NOS described herein including, for example, SEQ ID NOS: 19-27.
  • An effective response of the present invention is achieved when the subject experiences partial or total alleviation or reduction of signs or symptoms of illness, and specifically includes, without limitation, prolongation of survival.
  • the expected progression- free survival times may be measured in months to years, depending on prognostic factors including the number of relapses, stage of disease, and other factors.
  • Prolonging survival includes without limitation times of at least 1 month (mo), about at least 2 mos., about at least 3 mos., about at least 4 mos., about at least 6 mos., about at least 1 year, about at least 2 years, about at least 3 years, etc. Overall survival can be also measured in months to years.
  • an effective response may be that a subject's symptoms remain static. Further indications of treatment of indications are described in more detail below.
  • compositions of antibodies and antigen-binding fragments described herein can be used as non-therapeutic agents ⁇ e.g., as affinity purification agents).
  • a protein of interest is immobilized on a solid phase such a Sephadex resin or filter paper, using conventional methods known in the art.
  • the immobilized protein is contacted with a sample containing the target of interest (or fragment thereof) to be purified, and thereafter the support is washed with a suitable solvent that will remove substantially all the material in the sample except the target protein, which is bound to the immobilized antibody. Finally, the support is washed with another suitable solvent, such as glycine buffer, pH 5.0, which will release the target protein.
  • compositions can be used for detection, diagnosis and therapy of diseases and disorders described herein.
  • contacting refers to adding together a solution or composition of a compound with a liquid medium bathing the polypeptides, cells, tissue or organ from an organism.
  • contacting refers to mixing together a solution or composition of a compound, with a liquid such as blood, serum, or plasma derived from an organism.
  • a composition can also comprise another component, such as dimethyl sulfoxide (DMSO). DMSO facilitates the uptake of the compounds or solubility of the compounds.
  • DMSO dimethyl sulfoxide
  • the solution comprising the test compound may be added to the medium bathing the cells, tissues, or organs, or mixed with another liquid such as blood, by utilizing a delivery apparatus, such as a pipette-based device or syringe-based device.
  • a delivery apparatus such as a pipette-based device or syringe-based device.
  • contacting can occur, for example, via administration of a composition to a subject by any suitable means; compositions with pharmaceutically acceptable excipients and carriers have been described in more detail above.
  • a "subject" ⁇ e.g., a mammal such as a human or a non- human animal such as a primate, rodent, cow, horse, pig, sheep, etc.
  • a mammal such as a human or a non- human animal such as a primate, rodent, cow, horse, pig, sheep, etc.
  • a mammal who exhibits one or more clinical manifestations and/or symptoms of a disease or disorder described herein.
  • composition described herein may be administered to a subject in a
  • compositions which are effective for producing some desired therapeutic effect by inhibiting a disease or disorder such as described herein which can be associated with hepcidin, at a reasonable benefit/risk ratio applicable to any medical treatment.
  • a disease or disorder such as described herein which can be associated with hepcidin
  • the compositions can be formulated by methodology known by one of ordinary skill in the art.
  • a therapeutically effective amount is an amount that achieves at least partially a desired therapeutic or prophylactic effect in an organ or tissue.
  • the amount of an anti-hepcidin antibody or antigen binding fragment thereof necessary to bring about prevention and/or therapeutic treatment of a disease or disorder is not fixed per se.
  • the amount of anti- hepcidin antibody or antigen binding fragment thereof administered may vary with the type of disease, extensiveness of the disease, and size of the mammal suffering from the disease or disorder.
  • two or more anti- hepcidin antibodies described herein are administered to a subject in combination. Combination includes concomitant or subsequent administration of the antibodies.
  • administering is defined herein as a means providing the composition to the subject in a manner that results in the composition being inside the subject's body.
  • Such an administration can be by any route including, without limitation, locally, regionally or systemically by subcutaneous, intravitreal, intradermal, intravenous, intra-arterial,
  • intraperitoneal, intracerebreospinal, or intramuscular administration e.g., injection.
  • Constant administration means administration within a relatively short time period from each other; such time period can be less than 2 weeks, less than 7 days, less than 1 day and could even be administered simultaneously.
  • compositions can be varied so as to obtain an amount of the active ingredient that is effective to achieve the desired therapeutic response for a particular subject, composition, and mode of administration, without being toxic to the subject.
  • the selected dosage level will depend upon a variety of factors including the activity of the particular compound employed, the route of administration, the time of administration, the rate of excretion of the particular compound being employed, the duration of the treatment, other drugs, compounds and/or materials used in combination with the particular composition employed, the age, sex, weight, condition, general health and prior medical history of the subject being treated, and like factors well known in the medical arts.
  • the antibodies and antigen-binding fragments described herein may be administered to a subject in various dosing amounts and over various time frames.
  • Non-limiting doses include about 0.01 mg/kg, about 0.05 mg/kg, about 0.1 mg/kg, about 0.5 mg/kg, about 1 mg/kg, about 5 mg/kg, about 10 mg/kg, about 20 mg/kg, about 30 mg/kg, about 40 mg/kg, about 50 mg/kg, about 60 mg/kg, about 70 mg/kg, about 80 mg/kg, about 90 mg/kg, about 100 mg/kg, about 125 mg/kg, about 150 mg/kg, about 175 mg/kg, about 200 mg/kg, or any integer in between.
  • the dose(s) of an antibody or antigen-binding fragment can be administered twice a week, weekly, every two weeks, every three weeks, every 4 weeks, every 6 weeks, every 8 weeks, every 12 weeks, or any combination of weeks therein.
  • Dosing cycles are also contemplated such as, for example, administering antibodies or antigen-binding fragments thereof once or twice a week for 4 weeks, followed by two weeks without therapy. Additional dosing cycles including, for example, different combinations of the doses and weekly cycles described herein are also contemplated within the invention.
  • Therapeutically effective amounts of a composition may vary and depend on the severity of the disease and the weight and general state of the subject being treated, but generally range from about 1.0 ⁇ g/kg to about 100 mg/kg body weight, or about 10 ⁇ g/kg to about 30 mg/kg, or about 0.1 mg/kg to about 10 mg/kg or about 1 mg/kg to about 10 mg/kg per application.
  • Administration can be daily, on alternating days, weekly, twice a month, monthly or more or less frequently, as necessary depending on the response to the disorder or condition and the subject's tolerance of the therapy. Maintenance dosages over a longer period of time, such as 4, 5, 6, 7, 8, 10 or 12 weeks or longer may be needed until a desired suppression of disorder symptoms occurs, and dosages may be adjusted as necessary. The progress of this therapy is easily monitored by conventional techniques and assays.
  • Specific dosages may be adjusted depending on conditions of disease, the age, body weight, general health conditions, sex, and diet of the subject, dose intervals,
  • the specific binding agent or antibody of the invention is administered intravenously in a physiological solution at a dose ranging between 0.01 mg/kg to 100 mg/kg at a frequency ranging from daily to weekly to monthly (e.g. every day, every other day, every third day, or 2, 3, 4, 5, or 6 times per week), preferably a dose ranging from 0.1 to 45 mg/kg, 0.1 to 15 mg/kg or 0.1 to 10 mg/kg at a frequency of 2 or 3 times per week, or up to 45 mg/kg once a month.
  • Contacting is defined herein as a means of bringing a composition as provided herein in physical proximity with a cell, organ, tissue or fluid as described herein. Contacting encompasses systemic or local administration of any of the compositions provided herein and includes, without limitation, in vitro, in vivo and/or ex vivo procedures and methods.
  • An antibody described herein may be administered by any suitable means, either systemically or locally, including via parenteral, subcutaneous, intraperitoneal,
  • intracerebreospinal, intrapulmonary, and intranasal administration and, if desired for local treatment, intralesional administration.
  • Parenteral routes include intravenous, intraarterial, intraperitoneal, epidural, intrathecal administration.
  • the specific binding agent or antibody is suitably administered by pulse infusion, particularly with declining doses of the specific binding agent or antibody.
  • compositions may be administered given by injection depending in part on whether the administration is brief or chronic. Other modes of administration methods are contemplated, including topical, particularly transdermal, transmucosal, rectal, oral or local administration e.g. through a catheter placed close to the desired site.
  • a response is achieved when the subject experiences partial or total alleviation, or reduction of signs or symptoms of illness, and specifically includes, without limitation, prolongation of survival.
  • the expected progression-free survival times can be measured in months to years, depending on prognostic factors including the number of relapses, stage of disease, and other factors.
  • Prolonging survival includes without limitation times of at least 1 month (mo), about at least 2 months (mos.), about at least 3 mos., about at least 4 mos., about at least 6 mos., about at least 1 year, about at least 2 years, about at least 3 years, or more.
  • Overall survival can also be measured in months to years.
  • the subject's symptoms can remain static or can decrease.
  • a physician or veterinarian having ordinary skill in the art can readily determine and prescribe the effective amount (ED50) of the composition required.
  • the physician or veterinarian could start doses of the compounds employed in the composition at levels lower than that required in order to achieve the desired therapeutic effect and gradually increase the dosage until the desired effect is achieved.
  • a dose can remain constant.
  • compositions can be administered to a subject by any convenient route such as described above. Regardless of the route of administration selected, the compounds of the present invention, which can be used in a suitable hydrated form, and/or the compositions, are formulated into acceptable dosage forms such as described below or by other conventional methods known to those of skill in the art.
  • Antibodies and/or other agents may be combined in separate compositions for simultaneous or sequential administration.
  • simultaneous administration comprises one or more compositions that are administered at the same time, or within 30 minutes of each other. Administration may occur at the same or different sites.
  • Toxicity and therapeutic efficacy of such ingredient can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD 50 (the dose lethal to 50% of the population) and the ED 50 (the dose therapeutically effective in 50% of the population).
  • the dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD 50 /ED 50 . While compounds that exhibit toxic side effects may be used, care should be taken to design a delivery system that targets such compounds to the site of affected tissue in order to minimize potential damage to healthy cells and, thereby, reduce side effects.
  • therapeutically effective dose can be estimated initially from cell culture assays.
  • a dose can be formulated in animal models to achieve a circulating plasma concentration arrange that includes the IC 50 (i.e., the concentration of the test compound which achieves a half-maximal inhibition) as determined in cell culture.
  • IC 50 i.e., the concentration of the test compound which achieves a half-maximal inhibition
  • Levels in plasma can be measured, for example, by high performance liquid chromatography. Such information can be used to more accurately determine useful doses in humans.
  • an antibody, or antigen-binding fragment thereof may be a hepcidin activity antagonist, meaning a substance that inhibits hepcidin's iron-regulating activity.
  • the hepcidin activity antagonist can be a substance that inhibits the function of hepcidin, for example, by inhibiting binding between hepcidin and ferroportin, by inhibiting hepcidin-controlled cellular iron retention, or by facilitating ferroportin dependent iron transport.
  • Hepcidin activity antagonists include antibodies, or antigen-binding fragments thereof, that bind hepcidin and inhibit its activity. An antibody, or antigen-binding fragment thereof, may in some instances, bind to ferroportin but do not activate ferroportin iron transport.
  • an antibody, or antigen-binding fragment thereof, described herein may inhibit (or neutralize) hepcidin iron-regulating activity, in vitro and/or also in vivo.
  • Such hepcidin-neutralizing antibodies are therapeutically useful for hepcidin-related disorders or disorders of iron homeostasis.
  • Hepcidin neutralizing activity may be measured, for example, through a number of markers such as ferritin/iron levels, red blood cell count, red blood cell characteristics (hemoglobin content and/or cell volume), early red blood cell characteristics (reticulocyte numbers, hemoglobin content or cell volume), ferroportin internalization, or iron transport.
  • an antibody, or antigen- binding fragment thereof, described herein decreases intracellular iron concentration at an EC 50 of about 10 ⁇ 8 M or less and/or increases circulating iron concentration.
  • An antibody, or antigen-binding fragment thereof, described herein may antagonize the effect of human hepcidin or inhibit hepcidin iron-regulating activity.
  • an antibody, or antigen-binding fragment thereof, described herein exerts an effect at an EC50 of about l x lO "8 M or less, or about l x lO "7 M or less.
  • an antibody may decrease the intracellular iron level in a cell at an EC50 of about 1 x 10 ⁇ 8 M or less, or may reduce ferritin expression at an EC50 of about l x lO "8 M or less, as determined by a ferritin assay.
  • an antibody as described herein may reduce free serum hepcidin levels by at least about 20%, by at least about 30%, by at least about 40%>, by at least about 50%>, by at least about 60%>, by at least about 70%>, by at least about 80%>, or by at least about 90%> compared to a control antibody or compared to a placebo.
  • an antibody as described herein may increase red blood cell count (number), red blood cell mean cell volume or red blood cell hemoglobin content, increase hemoglobin, increase hematocrit, increase % Tsat, increase circulating (or serum) iron levels, and/or increase or normalize reticulocyte count, reticulocyte mean cell volume, reticulocyte hemoglobin content or reticulocyte numbers.
  • an antibody or antigen-binding fragment thereof described herein.
  • An antibody, or antigen-binding fragment thereof, described herein, may also be used for purification purposes.
  • Hepcidin-related disorders, inflammatory diseases, and diseases or disorders of iron homeostasis for which the methods may be applied include but are not limited to African iron overload, alpha thalassemia, Alzheimer's disease, anemia, anemia of cancer, anemia of chronic disease, anemia of inflammation, arteriosclerosis or atherosclerosis (including coronary artery disease, cerebrovascular disease or peripheral occlusive arterial disease), ataxias, ataxias related to iron, atransferrinemia, cancer, ceruloplasmin deficiency, chemotherapy-induced anemia, chronic renal/kidney disease (stage I, II, III, IV or V), including end stage renal disease or chronic renal/kidney failure, acute kidney injury (AKI), cirrhosis of liver, classic hemochromatosis, collagen-
  • AKI acute kidney injury
  • Hallervordan Spatz disease hemochromatosis, hemochromatosis resulting from mutations in transferrin receptor 2, hemoglobinopathies, hepatitis, hepatitis (Brock), hepatitis C, hepatocellular carcinoma, hepcidin deficiency, hereditary hemochromatosis, HIV or other viral illnesses, Huntington's disease, hyperferritinemia, hypochromic microcytic anemia,
  • hypoferremia insulin resistance, iron deficiency anemia, iron deficiency disorders, iron overload disorders, iron-deficiency conditions with hepcidin excess, juvenile hemochromatosis (HFE2), multiple sclerosis, mutation in transferrin receptor 2, HFE, hemojuvelin, ferroportin, TMPRSS6 (IRIDA), or other genes of iron metabolism, neonatal hemochromatosis, neurodegenerative diseases related to iron, osteopenia, osteoporosis pancreatitis, Pantothenate kinase-associated neuro degeneration, Parkinson's disease, pellagra, pica, porphyria, porphyria cutanea tarda, pseudoencephalitis, pulmonary hemosiderosis, red blood cell disorders, rheumatoid arthritis, sepsis, sideroblastic anemia, systemic lupus erythematosus, thalassemia, thalassemia intermedia, transfusional iron overload, tumors, vasculitis, vitamin
  • treatment refers to both prophylactic treatment of a subject at risk of, or having a predisposition toward, a disease or disorder, and to therapeutic treatment of a subject suffering from a disease or disorder.
  • Administration of a therapeutic agent in a prophylactic method can occur prior to the manifestation of symptoms of an undesired disease or disorder, such that the disease or disorder is prevented or, alternatively, delayed in its progression.
  • the term "therapeutically effective" means that, after treatment, a fewer number of subjects (on average) develop the undesired disease or disorder or progress in severity of symptoms.
  • terapéuticaally effective means that, after treatment, one or more signs or symptoms of the disease or disorder is ameliorated or eliminated.
  • hepcidin-related disorder refers to a condition caused by or associated with an abnormal level of hepcidin (e.g., hepcidin excess or hepcidin deficiency relative to the degree of anemia or iron stored) which disrupts iron homeostasis.
  • a disruption in iron homeostasis can in turn result in secondary diseases such as anemia.
  • Acute or chronic inflammatory conditions can result in up-regulation of hepcidin expression, which can result in decreased circulating iron levels, which can cause anemia or worsen existing anemia.
  • Exemplary hepcidin-related inflammatory diseases include anemia of cancer, anemia of chronic disease, anemia of inflammation, chemotherapy-induced anemia, chronic kidney disease (stage I, II, III, IV or V), end stage renal disease, chronic renal failure congestive heart failure, cancer, rheumatoid arthritis, systemic lupus erythematosus, Crohn's disease, H. pylori infection or other bacterial infections, hepatitis C, HIV, and other viral illnesses, arteriosclerosis, atherosclerosis, cirrhosis of the liver, pancreatitis, sepsis, vasculitis, iron-deficiency, hypochromic microcytic anemia and conditions with hepcidin excess.
  • the phrase "disease (or disorder) of iron homeostasis” refers to a condition in which a subject's iron levels require modulation. It includes hepcidin-related disorders; conditions not associated with elevated levels of hepcidin that nevertheless would benefit from inhibition of hepcidin activity, such as a disruption in iron homeostasis not caused by hepcidin; diseases where aberrant iron absorption, recycling, metabolism or excretion causes a disruption in normal iron blood levels or tissue distribution; diseases where iron dysregulation is a consequence of another disease or condition, such as inflammation, cancer or chemotherapy; diseases or disorders resulting from abnormal iron blood levels or tissue distribution; and diseases or disorders that can be treated by modulating iron levels or distribution.
  • Non-limiting examples of such diseases or disorders of iron homeostasis, hepcidin-related disorders and inflammatory conditions which can result in hepcidin excess include African iron overload, iron refractory iron deficiency anemia (IRIDA), alpha thalassemia, Alzheimer's disease, anemia, anemia of cancer, anemia of chronic disease, anemia of inflammation, arteriosclerosis or atherosclerosis (including coronary artery disease, cerebrovascular disease or peripheral occlusive arterial disease), ataxias, ataxias related to iron, atransferrinemia, cancer,
  • ceruloplasmin deficiency chemotherapy-induced anemia, chronic renal/kidney disease (stage I, II, III, IV or V), including end stage renal disease or chronic renal/kidney failure, acute kidney injury (AKI), cardiopulmonary bypass-associated AKI, drug or toxin-associated AKI, cirrhosis of liver, classic hemochromatosis, collagen- induced arthritis (CIA), conditions with hepcidin excess (elevated hepcidin), congenital dyserythropoietic anemia, congestive heart failure, Crohn's disease, Celiac disease, inflammatory bowel disease (IBD), diabetes, disorders of iron bio distribution, disorders of iron homeostasis, disorders of iron metabolism, ferroportin disease, ferroportin mutation hemochromatosis, folate deficiency, Friedrich's ataxia, funicular myelosis, Gracile syndrome, H.
  • AKI acute kidney injury
  • cardiopulmonary bypass-associated AKI drug or toxin-associated AKI
  • Hallervordan Spatz disease hereditary hemochromatosis, acquired hemochromatosis, hemochromatosis resulting from mutations in transferrin receptor 2, hemoglobinopathies, hepatitis, hepatitis (Brock), hepatitis C, hepatocellular carcinoma, HIV or other viral illnesses, Huntington's disease, hyperferritinemia, hypochromic microcytic anemia, hypoferremia, insulin resistance, iron deficiency anemia, iron deficiency disorders, iron overload disorders, iron-deficiency conditions with hepcidin excess, juvenile hemochromatosis (HFE2), multiple sclerosis, mutation in transferrin receptor 2, HFE, hemojuvelin, ferroportin or other genes of iron metabolism, neonatal hemochromatosis, neurodegenerative diseases related to iron, osteopenia, osteoporosis pancreatitis, Pantothenate kinase-associated neuro degeneration, Parkinson's disease, pell
  • Non-inflammatory conditions which are implicated in a disruption of iron regulation include, but are not limited to, vitamin B6 deficiency, vitamin B12 deficiency, folate deficiency, pellagra, funicular myelosis, pseudoencephalitis, Parkinson's disease (Fasano et al, J. Neurochem. 96:909 (2006) and Kaur et al, Ageing Res. Rev., 3:327 (2004)), Alzheimer's disease, coronary heart disease, osteopenia and osteoporosis (Guggenbuhl et al, Osteoporos. Int. 16: 1809 (2005)), hemoglobinopathies and disorders of red cell metabolism (Papanikolaou et al, Blood 105:4103 (2005)), and peripheral occlusive arterial disease.
  • provided herein is a method of treating a disorder of iron homeostasis in a subject in need thereof, comprising administering to said subject a composition described herein.
  • a method of modulating hepcidin activity in a subject in need thereof comprising administering to said subject a composition described herein.
  • a method for treating a disorder of iron homeostasis in a subject in need thereof comprising administering to said subject a composition described herein.
  • provided herein is a method of treating hemochromatosis in a subject in need thereof, comprising administering to said subject a composition described herein.
  • provided herein is a method of treating a subject with an elevated level of hepcidin, comprising administering to said subject a pharmaceutical composition described herein.
  • a method of treating anemia in a subject in need thereof comprising administering to said subject a composition described herein.
  • a method of treating an inflammatory disease in a subject in need thereof comprising administering to said subject a composition described herein.
  • a method of treating an infection in a subject in need thereof comprising administering to said subject a composition described herein.
  • An infection may be, for example, a bacterial, fungal, or viral infection.
  • any of such methods may, in some instances, further comprise administering to said subject an erythropoiesis stimulator, wherein said erythropoiesis stimulator is selected from the group consisting of erythropoietin, an erythropoietin variant and an antibody that binds erythropoietin.
  • the antibody, or antigen-binding fragment thereof, that specifically binds hepcidin and said erythropoiesis stimulator are administered concurrently or sequentially.
  • erythropoietic activity means activity to stimulate erythropoiesis as demonstrated in an in vivo assay, for example, the exhypoxic polycythemic mouse assay. See, e.g., Cotes and Bangham, Nature 191 : 1065 (1961).
  • an antibody, or antigen-binding fragment thereof, described herein and an erythropoiesis stimulator may be used to improve treatment of a patient with anemia.
  • patients who are hypo -responsive to, including unresponsive to, erythropoiesis stimulator therapy, such as erythropoietin or analogs thereof (Epoetin alfa, Epoetin beta, darbepoetin alfa), among others, may benefit from co-treatment with a hepcidin activity antagonist or hepcidin expression inhibitor.
  • an antibody, or antigen-binding fragment thereof, described herein and an erythropoiesis stimulator may be used to improve treatment of a patient an iron loading disorder secondary to transfusion-dependent iron overload, or have an iron maldistribution disorder such as Friedreich's ataxia.
  • erythropoiesis stimulator refers to a chemical compound that directly or indirectly causes activation of the erythropoietin receptor, for example, by binding to and causing dimerization of the receptor or by stimulating endogenous erythropoietin
  • Erythropoiesis stimulators include erythropoietin and variants, analogs, or derivatives thereof that bind to and activate erythropoietin receptor; antibodies that bind to erythropoietin receptor and activate the receptor; or peptides that bind to and activate
  • Erythropoiesis stimulators include, but are not limited to, epoetin alfa, epoetin beta, epoetin delta, epoetin omega, epoetin iota, epoetin zeta, and analogs thereof, pegylated erythropoietin, carbamylated erythropoietin, mimetic peptides (including EMPl/hematide), mimetic antibodies and HIF inhibitors (see U.S. Patent Publication No. 2005/0020487, the disclosure of which is
  • Exemplary erythropoiesis stimulators include erythropoietin, darbepoetin, erythropoietin agonist variants, and peptides or antibodies that bind and activate erythropoietin receptor (and include compounds reported in U.S. Patent Application Publication Nos. 2003/0215444 and 2006/0040858, the disclosures of each of which is incorporated herein by reference in its entirety) as well as erythropoietin molecules or variants or analogs thereof as disclosed in the following patents or patent applications, which are each herein incorporated by reference in its entirety: U.S. Pat. Nos.
  • an antibody, or antigen-binding fragment thereof, described herein and an iron chelator to redistribute iron stores in the body is also contemplated.
  • An iron chelator is an agent capable of binding iron and removing it from a tissue or from circulation. Examples include deferoxamine (Desferal®) and deferasirox (Exjade®), and deferiprone (1,2- dimethyl-3 -hydro xypyridin-4-one) .
  • Administration of a composition herein may be by any suitable means including, but not limited to, injection.
  • injection may be, for example, intravenous, subcutaneous, or intramuscular injection.
  • kits containing one or more compounds described above may comprise an antibody or antigen-binding fragment thereof that binds hepcidin in suitable container means.
  • the container means of the kits will generally include at least one vial, test tube, flask, bottle, ampoule, syringe an intravenous (IV) bag and/or other container means, into which the at least one polypeptide can be placed, and/or preferably, suitably aliquoted.
  • IV intravenous
  • a container means comprising a composition described herein.
  • kits may include a means for containing at least one fusion protein, detectable moiety, reporter molecule, and/or any other reagent containers in close confinement for commercial sale.
  • Such containers may include injection and/or blow-molded plastic containers into which the desired vials are retained.
  • Kits can also include printed material for use of the materials in the kit.
  • Packages and kits may additionally include a buffering agent, a preservative and/or a stabilizing agent in a pharmaceutical formulation.
  • a buffering agent e.g., a preservative and/or a stabilizing agent in a pharmaceutical formulation.
  • Each component of the kit can be enclosed within an individual container and all of the various containers can be within a single package.
  • Invention kits can be designed for cold storage or room temperature storage.
  • the preparations can contain stabilizers to increase the shelf-life of the kits and include, for example, bovine serum albumin (BSA).
  • BSA bovine serum albumin
  • the kit may contain further preparations of solutions to reconstitute the lyophilized preparations.
  • Acceptable reconstitution solutions are well known in the art and include, for example, pharmaceutically acceptable phosphate buffered saline (PBS).
  • Packages and kits can further include one or more components for an assay, such as, for example, an ELISA assay.
  • Samples to be tested in this application include, for example, blood, plasma, and tissue sections and secretions, urine, lymph, and products thereof.
  • Packages and kits can further include one or more components for collection of a sample (e.g., a syringe, a cup, a swab, etc.).
  • Packages and kits can further include a label specifying, for example, a product description, mode of administration and/or indication of treatment.
  • Packages provided herein can include any of the compositions as described herein, disease (e.g., IBD), rheumatoid arthritis, osteoarthritis, a forms of cancer and their metastases.
  • the term "packaging material” refers to a physical structure housing the components of the kit.
  • the packaging material can maintain the components sterilely and can be made of material commonly used for such purposes (e.g., paper, corrugated fiber, glass, plastic, foil, ampules, etc.).
  • the label or packaging insert can include appropriate written instructions. Kits, therefore, can additionally include labels or instructions for using the kit components in any method of the invention.
  • a kit can include a compound in a pack, or dispenser together with instructions for administering the compound in a method described herein.
  • kits may further comprise a container means for an erythropoiesis stimulator.
  • Instructions can include instructions for practicing any of the methods described herein including treatment methods. Instructions can additionally include indications of a satisfactory clinical endpoint or any adverse symptoms that may occur, or additional information required by regulatory agencies such as the Food and Drug Administration for use on a human subject.
  • the instructions may be on "printed matter,” e.g., on paper or cardboard within or affixed to the kit, or on a label affixed to the kit or packaging material, or attached to a vial or tube containing a component of the kit.
  • Instructions may additionally be included on a computer readable medium, such as a flash/cloud drive, disk (floppy diskette or hard disk), optical CD such as CD- or DVD-ROM/RAM, magnetic tape, electrical storage media such as RAM and ROM, IC tip and hybrids of these such as magnetic/optical storage media.
  • a computer readable medium such as a flash/cloud drive, disk (floppy diskette or hard disk), optical CD such as CD- or DVD-ROM/RAM, magnetic tape, electrical storage media such as RAM and ROM, IC tip and hybrids of these such as magnetic/optical storage media.
  • a container means comprising a composition described herein.
  • the container means may be any suitable container which may house a liquid or lyophilized composition including, but not limited to, a vial, syringe, bottle, an in intravenous (IV) bag or ampoule.
  • a syringe may be able to hold any volume of liquid suitable for injection into a subject including, but not limited to, 0.5 cc, 1 cc, 2 cc, 5 cc, 10 cc or more.
  • kits comprising a composition described herein.
  • a kit for treating a disorder associated with elevated hepcidin levels or a disorder of iron homeostasis comprising an antibody, or an antigen-binding fragment thereof, as described herein and an erythropoiesis stimulator.
  • kits for treating a disorder associated with elevated hepcidin levels or a disorder of iron homeostasis comprising an antibody, or an antigen-binding fragment thereof, as described herein, and a label attached to or packaged with the container, the label describing use of the antibody, or an antigen-binding fragment thereof, with an erythropoiesis stimulator.
  • kits for treating a disorder associated with elevated hepcidin levels comprising an erythropoiesis stimulator and a label attached to or packaged with the container, the label describing use of the erythropoiesis stimulator with an antibody, or an antigen-binding fragment thereof, as described herein.
  • Hepcidin is a 25 amino acid peptide hormone that regulates iron homeostasis.
  • hepcidin deficiency or excess is the main or contributing cause of major diseases of iron regulation.
  • blood hepcidin concentrations reflect the physiologic responses to the primary disturbance.
  • hepcidin-25 directed therapies in clinical medicine, only one humanized monoclonal antibody has entered into early Phase 1 clinical studies.
  • the amino acid sequence of mature hepcidins is highly conserved among mammals, particularly the N-terminus.
  • Mouse and rat hepcidins are 76% and 64% identical to human hepcidin respectively.
  • the distinctive structure of hepcidin is highly conserved evolutionarily, and the N-terminal 5 amino acids are absolutely required for bioactivity in vitro as the N-terminal amino acids are directly involved in binding Fpn and leading to internalization and degradation in lysozomes (Nemeth et al., 2006).
  • HEK 293 Human embryonic kidney (HEK 293) cells have been stably transfected with a ponesterone inducible promoter that promotes high levels of expression of a murine ferroportin- GFP fusion protein (designated Ec:R50-GFP) to study ferroportin biology in vitro cell based assay.
  • Ec:R50-GFP murine ferroportin- GFP fusion protein
  • a number of peptide antigens were tested in vivo in BALB/c mice for immunogenicity and to produce MAbs specific to hepcidin-25 using a number of synthetic methods to add haptens ⁇ e.g., DNP, PamCys) and immunogenic carrier proteins ⁇ e.g., KLH, mKLH, albumin, or Carrier Protein) and few proved to be suitable antigens (Figure 5 and 6).
  • haptens e.g., DNP, PamCys
  • immunogenic carrier proteins e.g., KLH, mKLH, albumin, or Carrier Protein
  • hybridomas are prepared using a commercially available fusion kit (Hy-Clone) or by the conventional methods described by Kohler and Milstein ⁇ Id.).
  • the purpose of this example is to describe the production of monoclonal antibodies by isolation of mouse lymphocytes from lymph nodes (LN) and/or spleen (S) after immunization, the production of hybridoma cells, and production and selection of positive clones which secrete the antigen-specific antibodies.
  • a Sp2/0 myeloma cell line is propagated in DEME medium, with 10% FCS, 8-Azaguanine and Pen-Strep.
  • the cells are cultured without 8-azaguanine and split the cells every other day.
  • Cell density for fusion is 2x 10 5 /ml and 100 ml of these cells are required. The cells were split the day before the fusion and cell viability determined; viability is expected to be greater than 95%.
  • the SP2/0 cells were harvested by centrifugation at 300xg for 10 minutes and washed 3 times by adding 30 ml of ClonaCell-HY-Fusion Medium B.
  • the cell pellets were resuspended in 25 ml of Medium B to contain 2 xlO 7 viable cells. After resuspension the cells were kept at room temperature (RT). This step may be performed simultaneously with, or after, the lymphocyte preparation.
  • PEG and media were prepared for fusion by pre-warming to
  • mice that responded to immunization as determined by standard serum titer analysis using hepcidin-25 as the antigen are selected for hybridoma fusion. Hybridoma fusion was performed 3 days after the last boost with the selected antigen.
  • Each mouse was sacrificed using asphyxiation and cervical dislocation and sprayed with 75% ethanol. The mouse was placed with its ventral surface facing up on a dissection board and all limbs secured to the dissection board. All dissection techniques were performed using aseptic techniques and different sets of sterile instruments (scissors, forceps) were used for each step of the dissection to remove the spleen and lymph nodes (LN).
  • the LN (and/or spleen) was placed into one well of 6 well plate containing 2 ml of Medium A and the fat and connective tissue trimmed off.
  • lymphocytes were gently pipetted and mixed by inversion and centrifuged at 400xg for 7 minutes. The supernatant was discared and the cells re-suspended in 10 ml Medium B. Appropriate dilutions of the cells were then counted using a hemocytometer.
  • lymphocytes and myeloma cells were mixed at a 4: 1 ratio (approximately 8 x
  • lymphocytes with 2x10 7 myeloma cells
  • Lymphocytes and myeloma cells ratio can be in the range from 10: 1 to 1 : 1.
  • the fused cells were centrifuged for 10 minutes at 400 x g once and the cell mixture re-suspended in 30 ml Medium B and centrifuged at 800g x 5 min to get good adherence and promote fusion of the cells.
  • the fused cell suspension was then transferred into a 50 ml conical tube and centrifuged for 10 minutes at 400 x g at RT and the supernatant removed and discarded.
  • the cells were re-suspended in Medium C to a total volume of 10 mL.
  • Medium D containing the hybridoma cells was dispensed in 60 - 80 volumes per well into 96-well plates. This typically yielded between 10-16 plates depending on the volume plated. The plates were incubated at 37°C in a humidified, 5% C0 2 incubator. Following 8 days of undisturbed incubation, the wells were examined for the presence of colonies and gently overlain with 150 of pre-warmed ClonaCell®-HY Medium E onto the semi-solid medium of each well, regardless of the presence of colonies and analysis performed on all wells.
  • the overlay incubation time may be increased further to ensure the detection of low expressing hybridomas.
  • the FBS/20% DMSO solution was slowly added at a ratio of 1 : 1 to the tube containing the cells with continuous mixing during the addition.
  • One mL of cells in freezing medium was transferred to each cryovial.
  • the final cell suspension was calculated be in 90% FBS containing 10% DMSO.
  • the plate was washed, 100 ⁇ of hybridoma tissue culture supernatant was combined with 50 ⁇ of 1%BSA/TBST in each well and the plate incubated on a rotary shaker (240 rpm) for 1.5 h. The plate was washed and a HRP-labeled goat anti-mouse IgG (H+L) chain detection antibody was added and incubation continued for another hour. The plate was washed, substrate applied, the reaction developed for 10 min before stopping with IN H 2 SO 4 and the absorbance read at 450 nM. An example of this first round screen yielded an 8x12 matrix of OD values as depicted in Figure 2. Hybridomas that produced an OD >2.0 were identified and further propagated prior to the second round screen.
  • the second round of screening involved testing the specificity of each hybridoma to hepcidin-25. Briefly, 96 well EIA plates are coated overnight with goat anti-mouse IgG Fc- specific antibody (1/2,500 dilution), and the following day the plate was washed, blocked and 100 ⁇ of tissue culture supernatant was placed in each well and incubated for 1 hour at room temperature. The ability of the murine antibodies present in the tissue culture supernatant that were captured by the Fc region was tested by addition of 1 ng of K18-Biotin Hepcidin-25 tracer to each well and incubating for 1.5 hours on a rotary plate shaker.
  • clones identified in the second round screen were subcloned, grown to approximately 70% confluency and screened as described for the second round screen. Briefly 96-well plates are coated with goat anti-mouse IgG Fc-specific antibody and the following day the plates were washed and blocked and tissue culture supernatant was placed in each well and incubated for 1 hour.
  • Hepcidin-25 tracer for MAb binding sites was tested by the addition of 100 ng of hepcidin-25 prepared as above to the tracer solution and 100 ⁇ of this was added to each well and incubated for 1.5 h. After washing, HRP labeled streptavidin was added, incubated for one hour, washed and the presence of bound tracer was detected by the addition of TMB substrate. The reaction was halted by the addition of acid and absorbance read at 450 nM.
  • An example of functional activity screening of hybridoma supernatants is shown in Figure 4.
  • Hybridomas that display functional activity were identified by a reduction in the OD in the Tracer + Hepcidin-25 wells, compared to the OD produced by the Tracer only (for example hybridoma 5 A3; 5 A3 designation was later changed to "MAb 583").
  • FIG. 5 An example of the difficulty of producing murine MAbs is shown in Figure 5.
  • a variety of typical antigens and immunization approaches can yield varying numbers of mice that respond to immunization (based on serum titers), and the tissues that yield successful fusions. Regardless of the antigen employed, the percentage of functional hepcidin-25 specific murine MAbs is consistently less than 0.06% ( Figure 5).
  • Figure 6 As an example of the effort required for discovery of 3 murine MAbs specific for hepcidin-25, we tested eight antigens and screened 11,845 hybridomas with a success rate of 0.025% (Figure 6).
  • MAb 583 and MAb 1B1 were produced by seeding individual commercially available CellMax hollow fiber bioreactors (10,000 cm 2 surface area (Spectrum Labs, Inc.) that were then incubated at 37°C in a 5% C0 2 atmosphere. Approximately 2-3 liters of total cell culture supernatant from each MAb was harvested in approximately 100 ml batches. Each batch was centrifuged and frozen at -20°C until purification.
  • MAb 583 demonstrates extremely and excellent specificity for hepcidin-25 in a solution based specificity assay. For example, hepcidin-25 was coated on a maleic anhydride plate and unoccupied binding sites were quenched using standard methods. In parallel, 20 ng of MAb 583 is mixed with increasing concentrations of hepcidin-25 (0 to 8 ng/well) in a low protein binding 96-well plate and allowed to react for one hour. This MAb mixture is then transferred to the maleic anhydride plate and allowed to react for 2 hours, after which it is washed and the presence of MAb 583 bound to hepcidin-25 covalently bound to the plate is determined using HRP-goat anti-mouse IgG secondary antibody. After additional incubation and washing the substrate is added, development halted using acid and the OD 450 nM is determined. Figure 8 demonstrates that hepcidin-25 can block the binding sites on MAb 583 in solution in a dose dependent manner.
  • This example describes the analysis of the binding affinity and dissociation constants of MAbs 583 and 1B1 interaction with hepcidin-25 using SPR.
  • CM5 sensor chip consists of a carboxymethylated dextran covalently attached to a gold surface. All measurements were performed at 25°C.
  • Neutravidin (Sigma, St. Louis, MO) was immobilized on a CM5 sensor chip
  • the amine coupling protocol includes activation of the dextran matrix on the sensor chip surface with a 1 : 1 mixture of 0.4 M l-ethyl-3-(3- dimethylaminopropyl carbodiimide (EDC) and 0.1 M N-hydroxysuccinimide (NHS), followed by injection of neutravidin in 10 mM sodium acetate buffer, pH 4.
  • EDC l-ethyl-3-(3- dimethylaminopropyl carbodiimide
  • NHS N-hydroxysuccinimide
  • EP buffer (10 mM HEPES, pH 7.4, 150 mM NaCl, 3 mM EDTA, and 0.005% surfactant P20).
  • Biotinylated hepcidin peptides (NT -bio tin- hepcidin-25, K18-biotin- hepcidin-25 and K24-biotin-hepcidin-25) were immobilized in flow cells 2-4 (one peptide species per flow cell) by injecting individual peptides at a concentration of 200 ⁇ g/ml at a flow rate of 5 ⁇ /min, for 20 min.
  • IB 1 was injected into flow cells 1-4 at the concentration of 24 ⁇ g/ml in HBS-EP buffer at the flow rate of 50 ⁇ /min, for 3 min. After 3 minutes, injection was stopped and dissociation was followed for 6 min. Regeneration was performed by injecting 10 mM glycine HC1, pH 1.5 at a flow rate of 10 ⁇ /min for 1 min.
  • Resonance signals were corrected for nonspecific binding by subtracting the signal of the control flow cell (cell 1) and analyzed using BIAevaluation 4.1 software (Biacore).
  • MAb 583 binds hepcidin-25 rapidly and with high affinity and dissociates from hepcidin-25 slowly with low pM dissociation constants.
  • the epitope for MAb 583 is the N-terminal 9 amino acids of which the first 5 N- terminal amino acids (SEQ 25) are essential for hepcidin-25 binding to the iron transporter and receptor, ferroportin, and its ability to internalize and degrade ferroportin.
  • SEQ 25 first 5 N- terminal amino acids
  • the excellent specificity, affinity, avidity, and pM Kd of MAb 583 for the N-terminus of hepcidin-25 indicates that it will be a neutralizing antibody in vitro and in vivo, and suitable for humanization for therapeutic applications.
  • 1B1 has extraordinary affinity for hepcidin-25 peptides and may have an affinity constant (K D ) of ⁇ 10 "12 -10 "13 M) and with these characteristics may be suitable for humanization and preclinical evaluation as a hepcidin-25 specific MAb.
  • MAb 583 was diluted 1 :4000 in Tris buffered saline (TBS) containing 40 mM
  • Tris-HCl pH 7.3
  • 100 mM NaCl was pipetted into the microtiter plates.
  • TBST TBS with 0.05% TWEEN® 20
  • 100 ml standard samples containing various amounts of synthetic peptides and biotin hepcidin-25 analogs were added to each well and incubated for 1 hour at RT.
  • MAbs 583 and 1B1 against a C-terminal, oxidized peptide to assess the binding epitopes on hepcidin for each MAb.
  • the carboxy terminal peptides such as hepcidin (10-25) are described in US Patent Nos. 7,320,894 and 7,411,048, each of which patents are incorporated herein by reference with respect to the peptides.
  • the cationic antimicrobial peptide, protegrin, and mouse hepcidin-25, (murine hepcidin- 1) are structurally similar, with murine hepcidin- 1 sharing 76% amino acid identity to human hepcidin-25.
  • Example 8 Analysis of MAb 583 for neutralizing activity against hepcidin-25 in vitro in cell based assays by ferroportin-GFP fluorescence analysis
  • Hepcidin-25 was used at 100 ng/ml concentration (37 nM).
  • MAb 583 was added at 10-times, 2-times or l/3rd relative molar concentration of hepcidin concentration (370 nM, 74 nM and 10 nM).
  • control MAb was a failed anti-hepcidin monoclonal antibody when screened in vitro by ELISA and was used at the highest concentration (370 nM).
  • 10 nM MAb 583 completely neutralized 37 nM hepcidin-25 and suppressed hepcidin-25 degradation of FPN-GFP.
  • Figures 24-26 show the results of these assays designed to assess the ability of
  • MAb 583 to neutralize the biological activity of hepcidin-25 against ferroportin.
  • mice were housed in a commercial vivarium within our building and fed a low iron diet (20 ppm total iron, Teklad Custom Research Diet, Harlan Laboratories) for 17 days.
  • a low iron diet (20 ppm total iron, Teklad Custom Research Diet, Harlan Laboratories) for 17 days.
  • forty mice were randomized into five experimental groups of 8 and each group was treated as described below.
  • Group one received PBS only
  • groups 2 and 3 received 1.0 mg and 0.5 mg of MAb 583 respectively
  • group 4 received the control Mab (anti-hepcidin MAb unsuitable for ELISA)
  • group 5 received PBS.
  • groups 1 through 4 received 50 ⁇ g hepcidin-25 in PBS and mice in group 5 (control group) received their second dose of PBS (Figure 27)
  • mice were bled via cardiac puncture 2 hours after treatment, blood was allowed to clot for 30 min and their serum iron levels assessed using a commercial spectrophotometric method (Iron-SL Assay, Genzyme Diagnostics).
  • Statistical analysis of the data show the data was normally distributed by the
  • the light and heavy chain variable domains of murine anti-hepcidin MAB 583 were synthesized and cloned into a proprietary mammalian expression vector without any modifications.
  • the light chain variable domain was cloned in- frame with a secretion signal and a human kappa light chain constant domain.
  • the heavy chain variable domain was cloned in frame with a secretion signal and a human IgGl constant domain.
  • VYACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO: 38)
  • Murine mAb 583 Heavy Chain Variable Region Sequence [00480]
  • CHO cells were seeded in 6 well plates, transfected with B AP070-01
  • OD 450 nm values are as follows: 600 2.8799 1.5871
  • This initial binding assay was a semi-quantitative assessment of the BAP070-01 chimera since the comparison involves a cell culture supernatant of a human-mouse chimeric MAb 583 with a purified murine MAb 583. Quantitation of chimeric antibody concentration in cell culture supematants was performed using a proprietary immunological method and purified MAb 583 using BCA. The different assay can potentially lead to comparison of unequal amounts of antibody, and thus signal, in an ELISA comparison. . Despite these caveats, both MAb 583 and the BAP070-01 chimera show increasing signal with increasing antibody as is predicted for this comparison.
  • BAP070 was determined by ELISA. Briefly, human hepcidin-25 (100 ng/well) was covalently bound to maleic anhydride activated microwell plates overnight and the remaining unbound activated sites were blocked as per manufacturer's instructions. Serially diluted culture supematants containing the MAb 583 chimera, BAP070-01, or for the empty vector, BAP070, were added to the microwell plate and incubated at room temperature (RT) for 2 hours. Bound chimeric MAb 583 antibody was detected using anti- human IgG-HRP with TMB as substrate. The results are shown in Figure 30.
  • BAP070-01 MAb 583 chimera (150 ng/well) was added and allowed to bind to the Protein G at RT for 1 hour.
  • the plate was washed with TBST and one (1) ng/well of NT-biotin hepcidin-25 was mixed with different amounts (0-lOOng) of synthetic hepcidin-25 standard in TBST, 0.25% BLOTTO and added onto the plate to bind competitively.
  • the plate was washed with TBST and SA-HRP (1 :2500) added and allowed to bind for 1 hour.
  • BAP070-01 chimeric MAb 583 was performed by coating microwell plates with neutravidin (150 ng/well) overnight in carbonate coating buffer. The plate was washed with TBST. The NT-biotin hepcidin-25 tracer was added at 1 ng/well with different concentrations of hepcidin-25 (0-100 ng/well) and allowed to bind at RT for 1 hour. Anti- human IgG (H+L)-HRP was used to detect bound BAP070-01 MAb 583 chimera in this C- ELISA analysis
  • Figure 32 provides graphic data illustrating the results presented in the table above for competitive binding of the BAP070-01 chimera to NT-biotin hepcidin-25. As expected in any competitive assay, lower signal is observed with increasing unlabeled antigen (e.g. hepcidin-25) concentration. Figure 32 shows the two duplicate OD 450 and the mean OD 450 value for each increasing concentration of hepcidin-25.
  • BAP070-01 chimeric Mab 583 retains the high affinity and specificity characteristics as the parent murine MAb 583 antibody and that complete humanization of the native murine MAb 583 antibody will yield a candidate therapeutic antibody suitable for pre-clinical and clinical testing in humans.
  • SEQ ID NO: 14 583 ATCTATCGTGCATCCAACCTA
  • SEQ ID NO: 15 1B1 ATTTATCTCACATCCAACCTG
  • Rat hepcidin peptide (rhepcidin, rhep, rHep, rHepcidin): SEQ ID NO: 21 : (25aa)
  • Human hepcidin-9 peptide (hepcidin-9, hep-9, Hep-9, hHepcidin-9): SEQ ID NO: 24(9aa) DTHFPICIF
  • Human hepcidin 10-25 peptide (hepcidin 10-25, hep 10-25, Hep 10-25, hHepcidin 10-25): SEQ ID NO: 26 (16aa) CCGCCHRSKCGMCCKT
  • DNP-human hepcidin -9 KLH peptide DNP-hepcidin -9-KLH, DNP-hep-9-KLH
  • DNP-Hep-9-KLH, DNP-hHepcidin-9-KLH SEQ ID NO: 27
  • IgGl heavy chain variable region [Homo sapiens] GenBank: AAK62671.1
  • IgGl heavy chain variable region [Homo sapiens] GenBank: AAK19936.1
  • Immunoglobulin IgGl light chain variable region [Homo sapiens] GenBank:
  • SEQ ID NO: 55 H32 GGCTACACATTCACTGATTATGCT
  • SEQ ID NO: 60 1B1 ATAAGCTACAGTAGTATCACT
  • SEQ ID NO: 72 1B1 CAGCAGTGGAGTAGTGACCCTTTCACG References
PCT/US2014/026804 2013-03-15 2014-03-13 Anti-hepcidin antibodies and uses thereof WO2014152006A2 (en)

Priority Applications (20)

Application Number Priority Date Filing Date Title
CN201480027805.3A CN105263514B (zh) 2013-03-15 2014-03-13 抗铁调素抗体及其用途
EP14771150.1A EP2968503B1 (en) 2013-03-15 2014-03-13 Anti-hepcidin antibodies and uses thereof
DK14771150.1T DK2968503T3 (en) 2013-03-15 2014-03-13 ANTI-HEPCIDIN ANTIBODIES AND APPLICATIONS THEREOF
RU2015144105A RU2668391C2 (ru) 2013-03-15 2014-03-13 Антитела к гепсидину и их применения
US14/771,135 US9657098B2 (en) 2013-03-15 2014-03-13 Anti-hepcidin antibodies and uses thereof
ES14771150T ES2695166T3 (es) 2013-03-15 2014-03-13 Anticuerpos antihepcidina y usos de los mismos
CN201910169118.XA CN110041427B (zh) 2013-03-15 2014-03-13 抗铁调素抗体及其用途
BR112015022123-8A BR112015022123B1 (pt) 2013-03-15 2014-03-13 Anticorpos, fragmentos de ligação ao antígeno dos mesmos que se ligam especificamente à hepcidina ou um peptídeo de hepcidina, uso, meio contentor e kit
CA2904357A CA2904357C (en) 2013-03-15 2014-03-13 Anti-hepcidin antibodies and uses thereof
NZ631098A NZ631098A (en) 2013-03-15 2014-03-13 Anti-hepcidin antibodies and uses thereof
MX2015011772A MX359794B (es) 2013-03-15 2014-03-13 Anticuerpos anti-hepcidina y usos de los mismos.
AU2014236677A AU2014236677B2 (en) 2013-03-15 2014-03-13 Anti-hepcidin antibodies and uses thereof
JP2016502250A JP6463331B2 (ja) 2013-03-15 2014-03-13 抗ヘプシジン抗体およびその使用
KR1020157029178A KR102218494B1 (ko) 2013-03-15 2014-03-13 항-헵시딘 항체 및 그의 용도
IL241079A IL241079A0 (en) 2013-03-15 2015-09-02 Antibodies against pesidine and their uses
HK16108494.6A HK1220379A1 (zh) 2013-03-15 2016-07-18 抗鐵調素抗體及其用途
US15/485,141 US9803011B2 (en) 2013-03-15 2017-04-11 Anti-hepcidin antibodies and uses thereof
US15/693,164 US10239941B2 (en) 2013-03-15 2017-08-31 Anti-hepcidin antibodies and uses thereof
AU2018214008A AU2018214008B2 (en) 2013-03-15 2018-08-07 Anti-hepcidin antibodies and uses thereof
IL261547A IL261547B (en) 2013-03-15 2018-09-03 Antibodies against pesidine and their uses

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361791953P 2013-03-15 2013-03-15
US61/791,953 2013-03-15

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/771,135 A-371-Of-International US9657098B2 (en) 2013-03-15 2014-03-13 Anti-hepcidin antibodies and uses thereof
US15/485,141 Division US9803011B2 (en) 2013-03-15 2017-04-11 Anti-hepcidin antibodies and uses thereof

Publications (2)

Publication Number Publication Date
WO2014152006A2 true WO2014152006A2 (en) 2014-09-25
WO2014152006A3 WO2014152006A3 (en) 2014-12-18

Family

ID=51581668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2014/026804 WO2014152006A2 (en) 2013-03-15 2014-03-13 Anti-hepcidin antibodies and uses thereof

Country Status (16)

Country Link
US (3) US9657098B2 (ru)
EP (1) EP2968503B1 (ru)
JP (2) JP6463331B2 (ru)
KR (1) KR102218494B1 (ru)
CN (2) CN105263514B (ru)
AU (2) AU2014236677B2 (ru)
BR (1) BR112015022123B1 (ru)
CA (1) CA2904357C (ru)
DK (1) DK2968503T3 (ru)
ES (1) ES2695166T3 (ru)
HK (1) HK1220379A1 (ru)
IL (2) IL241079A0 (ru)
MX (1) MX359794B (ru)
NZ (1) NZ631098A (ru)
RU (1) RU2668391C2 (ru)
WO (1) WO2014152006A2 (ru)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016112381A1 (en) 2015-01-09 2016-07-14 The Board Of Trustees Of The University Of Illinois Restoring physiology in iron-deficient organisms using small molecules
WO2016146587A1 (en) 2015-03-13 2016-09-22 INSERM (Institut National de la Santé et de la Recherche Médicale) Hepcidin antagonists for use in the treatment of inflammation
US9657098B2 (en) 2013-03-15 2017-05-23 Intrinsic Lifesciences, Llc Anti-hepcidin antibodies and uses thereof
WO2017091487A1 (en) * 2015-11-25 2017-06-01 Intrinsic Lifesciences Llc Kits for detection of hepcidin
EP3197915A4 (en) * 2014-09-22 2018-12-19 Intrinsic Lifesciences LLC Humanized anti-hepcidin antibodies and uses thereof
WO2018234538A1 (en) 2017-06-23 2018-12-27 INSERM (Institut National de la Santé et de la Recherche Médicale) ANTAGONIST OR AGONIST OF HEPCIDINE FOR USE IN THE TREATMENT OF DYSREGULATION OF MO AND / OR MN METABOLISM
WO2019234680A1 (en) * 2018-06-08 2019-12-12 Pfizer Inc. Methods of treating iron metabolic disease with a neutralizing antibody binding erhythroferrone

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA201890185A1 (ru) 2015-07-31 2018-07-31 Медиммун Лимитед Способы лечения опосредованных гепсидином нарушений
CN109414468B (zh) 2016-04-27 2021-09-10 弗拉基米尔·巴德玛耶夫 利用姜烯酚维持体内铁质平衡的方法
US11203636B2 (en) 2017-02-01 2021-12-21 Yale University Treatment of existing left ventricular heart failure
WO2018165186A1 (en) * 2017-03-07 2018-09-13 Intrinsic Lifesciences Llc Assessment of chronic iron deficiency
CA3087699A1 (en) 2018-01-05 2019-07-11 Corvidia Therapeutics, Inc. Methods for treating il-6 mediated inflammation without immunosuppression
CN110818796B (zh) * 2018-08-09 2022-11-08 东莞市朋志生物科技有限公司 一种抗人ca153蛋白的重组抗体
WO2022060832A1 (en) * 2020-09-15 2022-03-24 University Of Florida Research Foundation, Incorporated Cd33 antibodies
CN112345772A (zh) * 2020-10-29 2021-02-09 江苏沃兴生物科技有限公司 一种基于单克隆抗体制备的铁调素的胶乳增强比浊法检测试剂盒
WO2022098812A1 (en) * 2020-11-04 2022-05-12 Keros Therapeutics, Inc. Methods of treating iron overload
WO2022178416A1 (en) * 2021-02-22 2022-08-25 Northwestern University Anti-cd73 monoclonal antibodies

Family Cites Families (159)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3773919A (en) 1969-10-23 1973-11-20 Du Pont Polylactide-drug mixtures
US4179337A (en) 1973-07-20 1979-12-18 Davis Frank F Non-immunogenic polypeptides
JPS6023084B2 (ja) 1979-07-11 1985-06-05 味の素株式会社 代用血液
US4957939A (en) 1981-07-24 1990-09-18 Schering Aktiengesellschaft Sterile pharmaceutical compositions of gadolinium chelates useful enhancing NMR imaging
US4640835A (en) 1981-10-30 1987-02-03 Nippon Chemiphar Company, Ltd. Plasminogen activator derivatives
JPS5896026A (ja) 1981-10-30 1983-06-07 Nippon Chemiphar Co Ltd 新規ウロキナ−ゼ誘導体およびその製造法ならびにそれを含有する血栓溶解剤
US4472509A (en) 1982-06-07 1984-09-18 Gansow Otto A Metal chelate conjugated monoclonal antibodies
DE3380726D1 (en) 1982-06-24 1989-11-23 Japan Chem Res Long-acting composition
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
KR850004274A (ko) 1983-12-13 1985-07-11 원본미기재 에리트로포이에틴의 제조방법
NZ210501A (en) 1983-12-13 1991-08-27 Kirin Amgen Inc Erythropoietin produced by procaryotic or eucaryotic expression of an exogenous dna sequence
US4703008A (en) 1983-12-13 1987-10-27 Kiren-Amgen, Inc. DNA sequences encoding erythropoietin
US4496689A (en) 1983-12-27 1985-01-29 Miles Laboratories, Inc. Covalently attached complex of alpha-1-proteinase inhibitor with a water soluble polymer
EP0206448B1 (en) 1985-06-19 1990-11-14 Ajinomoto Co., Inc. Hemoglobin combined with a poly(alkylene oxide)
US4766106A (en) 1985-06-26 1988-08-23 Cetus Corporation Solubilization of proteins for pharmaceutical compositions using polymer conjugation
US4676980A (en) 1985-09-23 1987-06-30 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Target specific cross-linked heteroantibodies
US4938948A (en) 1985-10-07 1990-07-03 Cetus Corporation Method for imaging breast tumors using labeled monoclonal anti-human breast cancer antibodies
EP0272253A4 (en) 1986-03-07 1990-02-05 Massachusetts Inst Technology METHOD FOR IMPROVING GLYCOPROTE INSTABILITY.
US4791192A (en) 1986-06-26 1988-12-13 Takeda Chemical Industries, Ltd. Chemically modified protein with polyethyleneglycol
DE3889853D1 (de) 1987-11-05 1994-07-07 Hybritech Inc Polysaccharidmodifizierte Immunglobuline mit reduziertem immunogenem Potential oder verbesserter Pharmakokinetik.
DE3920358A1 (de) 1989-06-22 1991-01-17 Behringwerke Ag Bispezifische und oligospezifische, mono- und oligovalente antikoerperkonstrukte, ihre herstellung und verwendung
US7217689B1 (en) 1989-10-13 2007-05-15 Amgen Inc. Glycosylation analogs of erythropoietin
KR100263845B1 (ko) 1989-10-13 2000-08-16 스튜어트 엘.왓트 에리트로포이에틴 동형체와 그의 제조방법 및 그를 포함하는제약학적 조성물
US5856298A (en) 1989-10-13 1999-01-05 Amgen Inc. Erythropoietin isoforms
GB9022788D0 (en) 1990-10-19 1990-12-05 Cortecs Ltd Pharmaceutical formulations
ES2241710T3 (es) 1991-11-25 2005-11-01 Enzon, Inc. Procedimiento para producir proteinas multivalentes de union a antigeno.
US5714350A (en) 1992-03-09 1998-02-03 Protein Design Labs, Inc. Increasing antibody affinity by altering glycosylation in the immunoglobulin variable region
US6096289A (en) 1992-05-06 2000-08-01 Immunomedics, Inc. Intraoperative, intravascular, and endoscopic tumor and lesion detection, biopsy and therapy
IL110669A (en) 1993-08-17 2008-11-26 Kirin Amgen Inc Erythropoietin analogs
US5830851A (en) 1993-11-19 1998-11-03 Affymax Technologies N.V. Methods of administering peptides that bind to the erythropoietin receptor
US5773569A (en) 1993-11-19 1998-06-30 Affymax Technologies N.V. Compounds and peptides that bind to the erythropoietin receptor
US5622701A (en) 1994-06-14 1997-04-22 Protein Design Labs, Inc. Cross-reacting monoclonal antibodies specific for E- and P-selectin
US5885574A (en) 1994-07-26 1999-03-23 Amgen Inc. Antibodies which activate an erythropoietin receptor
US5731168A (en) 1995-03-01 1998-03-24 Genentech, Inc. Method for making heteromultimeric polypeptides
US6096871A (en) 1995-04-14 2000-08-01 Genentech, Inc. Polypeptides altered to contain an epitope from the Fc region of an IgG molecule for increased half-life
US5767078A (en) 1995-06-07 1998-06-16 Johnson; Dana L. Agonist peptide dimers
US6107090A (en) 1996-05-06 2000-08-22 Cornell Research Foundation, Inc. Treatment and diagnosis of prostate cancer with antibodies to extracellur PSMA domains
US6171586B1 (en) 1997-06-13 2001-01-09 Genentech, Inc. Antibody formulation
DE69838552T2 (de) 1997-07-14 2008-05-21 Bolder Biotechnology, Inc., Louisville Derivate des wachstumshormons und verwandte proteine
US6753165B1 (en) 1999-01-14 2004-06-22 Bolder Biotechnology, Inc. Methods for making proteins containing free cysteine residues
PT986644E (pt) 1997-07-23 2007-01-31 Roche Diagnostics Gmbh Preparação de eritropoietina por activação genética endógena com promotores virais
US6030086A (en) 1998-03-02 2000-02-29 Becton, Dickinson And Company Flash tube reflector with arc guide
US6310078B1 (en) 1998-04-20 2001-10-30 Ortho-Mcneil Pharmaceutical, Inc. Substituted amino acids as erythropoietin mimetics
AU775422B2 (en) 1998-06-15 2004-07-29 Gtc Biotherapeutics, Inc. Erythropoietin analog-human serum albumin fusion
US20050181482A1 (en) 2004-02-12 2005-08-18 Meade Harry M. Method for the production of an erythropoietin analog-human IgG fusion proteins in transgenic mammal milk
SI1813624T1 (sl) 1998-10-23 2010-12-31 Amgen Inc Postopki in sestavki za prepeäśevanje in zdravljenje anemije
US6737056B1 (en) 1999-01-15 2004-05-18 Genentech, Inc. Polypeptide variants with altered effector function
DK1169062T3 (da) 1999-04-09 2010-01-25 Amag Pharmaceuticals Inc Varmestabile overtrukne kolloide jernoxider
WO2000061637A1 (en) 1999-04-14 2000-10-19 Smithkline Beecham Corporation Erythropoietin receptor antibodies
US7297680B2 (en) 1999-04-15 2007-11-20 Crucell Holland B.V. Compositions of erythropoietin isoforms comprising Lewis-X structures and high sialic acid content
CZ299516B6 (cs) 1999-07-02 2008-08-20 F. Hoffmann-La Roche Ag Konjugát erythropoetinového glykoproteinu, zpusobjeho výroby a použití a farmaceutická kompozice sjeho obsahem
US6475220B1 (en) 1999-10-15 2002-11-05 Whiteside Biomechanics, Inc. Spinal cable system
US20050202538A1 (en) 1999-11-12 2005-09-15 Merck Patent Gmbh Fc-erythropoietin fusion protein with improved pharmacokinetics
EP1228214A2 (en) 1999-11-12 2002-08-07 MERCK PATENT GmbH Erythropoietin forms with improved properties
DE60122286T2 (de) 2000-02-11 2007-08-02 Merck Patent Gmbh Steigerung der zirkulierenden halbwertzeit von auf antikörpern basierenden fusionsproteinen
US6586398B1 (en) 2000-04-07 2003-07-01 Amgen, Inc. Chemically modified novel erythropoietin stimulating protein compositions and methods
EP1268856A2 (de) * 2000-04-07 2003-01-02 Epigenomics AG Detektion von snp's und cytosin-methylierungen
DK1274728T3 (da) 2000-04-21 2008-09-01 Amgen Inc Fremgangsmåder og sammensætninger til forebyggelse og behandling af anæmi
US7078376B1 (en) 2000-08-11 2006-07-18 Baxter Healthcare S.A. Therapeutic methods for treating subjects with a recombinant erythropoietin having high activity and reduced side effects
SK2772003A3 (en) 2000-09-08 2003-10-07 Gryphon Therapeutics Inc Synthetic erythropoiesis stimulating proteins
DE60144439D1 (de) 2000-12-20 2011-05-26 Hoffmann La Roche Konjugate von erythropoietin (epo) mit polyethylenglykol (peg)
US20030133939A1 (en) 2001-01-17 2003-07-17 Genecraft, Inc. Binding domain-immunoglobulin fusion proteins
US7754208B2 (en) 2001-01-17 2010-07-13 Trubion Pharmaceuticals, Inc. Binding domain-immunoglobulin fusion proteins
EP1383927B1 (en) 2001-04-04 2009-07-08 GenOdyssee New polynucleotides and polypeptides of the erythropoietin gene
EP1610751A4 (en) 2001-04-26 2006-05-24 Univ Texas AGENTE / LIGAND CONJUGATED THERAPEUTIC COMPOSITIONS, METHODS OF SYNTHESIS AND USE THEREOF
US20050053973A1 (en) 2001-04-26 2005-03-10 Avidia Research Institute Novel proteins with targeted binding
US20050089932A1 (en) 2001-04-26 2005-04-28 Avidia Research Institute Novel proteins with targeted binding
US20040175756A1 (en) 2001-04-26 2004-09-09 Avidia Research Institute Methods for using combinatorial libraries of monomer domains
US20050048512A1 (en) 2001-04-26 2005-03-03 Avidia Research Institute Combinatorial libraries of monomer domains
JP4369662B2 (ja) 2001-04-26 2009-11-25 アビディア インコーポレイテッド 単量体ドメインのコンビナトリアルライブラリー
CA2448382C (en) 2001-05-25 2013-02-19 Institut National De La Sante Et De La Recherche Medicale (Inserm) Use of hepcidin as a regulator of iron homeostasis
US20030113316A1 (en) 2001-07-25 2003-06-19 Kaisheva Elizabet A. Stable lyophilized pharmaceutical formulation of IgG antibodies
US6900292B2 (en) 2001-08-17 2005-05-31 Lee-Hwei K. Sun Fc fusion proteins of human erythropoietin with increased biological activities
WO2003025020A1 (fr) 2001-09-13 2003-03-27 Institute For Antibodies Co., Ltd. Procede pour creer une banque d'anticorps de chameaux
US6930086B2 (en) 2001-09-25 2005-08-16 Hoffmann-La Roche Inc. Diglycosylated erythropoietin
US7214660B2 (en) 2001-10-10 2007-05-08 Neose Technologies, Inc. Erythropoietin: remodeling and glycoconjugation of erythropoietin
US7115716B2 (en) 2001-11-19 2006-10-03 Eli Lilly And Company Tumor specific monoclonal antibodies
WO2003055526A2 (en) 2001-12-21 2003-07-10 Maxygen Aps Erythropoietin conjugates
EP1470232A1 (en) 2002-01-31 2004-10-27 Oxford Biomedica (UK) Limited Physiologically regulated erythropoietin-expressing vector for the treatment of anaemia
GB0202252D0 (en) 2002-01-31 2002-03-20 Oxford Biomedica Ltd Anemia
MXPA04008216A (es) 2002-02-26 2004-11-26 Sigma Tau Ind Farmaceuti Anticuerpo monoclonal tenascina anti-humano.
US20060134116A1 (en) * 2002-03-11 2006-06-22 Universite De Sherbrooke Ca 125 tumor antigen function and uses thereof
ATE363541T1 (de) 2002-03-26 2007-06-15 Lek Tovarna Farmacevtskih Verfahren für die herstellung eines gewünschten profils von erythropoietin glyko-isoformen
EP1572079A4 (en) 2002-03-29 2006-09-06 Centocor Inc MAMMAL-CDR MIMETIC BODIES, COMPOSITIONS, PROCESSES AND APPLICATION PURPOSES
GB2403476A (en) 2002-05-13 2005-01-05 Modigenetech Ltd CTP-extended erythropoietin
WO2004002417A2 (en) 2002-06-28 2004-01-08 Centocor, Inc. Mammalian ch1 deleted mimetibodies, compositions, methods and uses
BR0312276A (pt) 2002-06-28 2005-04-26 Centocor Inc Mimeticorpos ch1-removidos miméticos de epo de mamìfero, composições, métodos e usos
AU2003246486A1 (en) 2002-07-19 2004-02-09 Cangene Corporation Pegylated erythropoietic compounds
US7699767B2 (en) 2002-07-31 2010-04-20 Arryx, Inc. Multiple laminar flow-based particle and cellular separation with laser steering
JP4406607B2 (ja) 2002-08-26 2010-02-03 オンコセラピー・サイエンス株式会社 ペプチド及びこれを含む医薬
US7754884B2 (en) 2005-01-03 2010-07-13 Vanderbilt University Targeted, NIR imaging agents for therapy efficacy monitoring, deep tissue disease demarcation and deep tissue imaging
PL217085B1 (pl) 2002-09-11 2014-06-30 Fresenius Kabi Gmbh Koniugat hydroksyalkiloskrobi i polipeptydu, sposób wytwarzania koniugatu hydroksyalkiloskrobi i polipeptydu, zastosowanie koniugatu hydroksyalkiloskrobi i polipeptydu oraz kompozycja farmaceutyczna koniugatu hydroksyalkiloskrobi i polipeptydu
US7396913B2 (en) 2002-10-14 2008-07-08 Abbott Laboratories Erythropoietin receptor binding antibodies
TWI320716B (en) 2002-10-14 2010-02-21 Abbott Lab Erythropoietin receptor binding antibodies
US20040071694A1 (en) 2002-10-14 2004-04-15 Devries Peter J. Erythropoietin receptor binding antibodies
US20040091961A1 (en) 2002-11-08 2004-05-13 Evans Glen A. Enhanced variants of erythropoietin and methods of use
US8017737B2 (en) * 2002-11-19 2011-09-13 Hasan Kulaksiz Diagnostic methods for diseases by screening for hepcidin in human or animal tissues, blood or body fluids; monoclonal antibodies specific to human hepcidin and associated uses therefor
US7411048B2 (en) 2002-11-19 2008-08-12 Drg International, Inc. Diagnostic method for diseases by screening for hepcidin in human or animal tissues, blood or body fluids
AU2003295644A1 (en) 2002-11-19 2004-07-22 Drg International, Inc. Diagnostic method for diseases by screening for hepcidin in human or animal tissues, blood or body fluids and therapeutic uses therefor
EP1581171B1 (en) 2002-12-20 2012-06-27 Abbott Biotherapeutics Corp. Antibodies against gpr64 and uses thereof
JP5356648B2 (ja) * 2003-02-20 2013-12-04 シアトル ジェネティックス, インコーポレイテッド 抗cd70抗体−医薬結合体、ならびに癌および免疫障害の処置のためのそれらの使用
US6960571B2 (en) 2003-03-14 2005-11-01 Luitpold Pharmaceuticals, Inc. Methods and compositions for administration of iron for the treatment of restless leg syndrome
TWI353991B (en) 2003-05-06 2011-12-11 Syntonix Pharmaceuticals Inc Immunoglobulin chimeric monomer-dimer hybrids
MXPA05012315A (es) 2003-05-12 2006-04-18 Affymax Inc Compuestos poli(etilenglicol) modificados novedosos y usos de los mismos.
DE602004020610D1 (de) 2003-05-12 2009-05-28 Affymax Inc Neue, an den erythropoietinrezeptor bindende peptide
CN1823088B (zh) 2003-05-12 2011-04-13 阿费麦克斯公司 结合红细胞生成素受体的新肽
US7074755B2 (en) 2003-05-17 2006-07-11 Centocor, Inc. Erythropoietin conjugate compounds with extended half-lives
JP2007537986A (ja) 2003-05-30 2007-12-27 セントカー・インコーポレーテツド トランスグルタミナーゼを用いる新規なエリトロポエチン複合体の形成
US20050037390A1 (en) 2003-06-04 2005-02-17 Irm Llc, A Delaware Limited Liability Company Methods and compositions for modulating erythropoietin expression
US8614204B2 (en) 2003-06-06 2013-12-24 Fibrogen, Inc. Enhanced erythropoiesis and iron metabolism
US20050019914A1 (en) 2003-07-24 2005-01-27 Aventis Pharma Deutschland Gmbh Perfusion process for producing erythropoietin
EP1663278A4 (en) 2003-08-28 2009-07-29 Biorexis Pharmaceutical Corp EPO MIMETIC PEPTIDES AND FUSION PROTEINS
BRPI0409650A (pt) 2003-09-09 2006-04-25 Warren Pharmaceuticals Inc métodos para regular o nìvel hematócrito e humanos, produtos de eritropoietina artificial, métodos para preparar um produto de eritropoietina e pra tratar anemia em pacientes em risco de dano no tecido, e, composição farmacêutica
UA89481C2 (ru) 2003-09-30 2010-02-10 Центокор, Инк. Эритропоэтиновые миметические шарнирно-сердцевинные миметитела человека, композиции, способы и применение
CN1890383A (zh) 2003-09-30 2007-01-03 森托科尔公司 人铰链核心模拟体、组合物、方法和用途
JP2007531707A (ja) 2003-10-15 2007-11-08 ピーディーエル バイオファーマ, インコーポレイテッド IGの重鎖定常領域の位置250、314および/または428の変異誘発によるFc融合タンパク質血清半減期の改変
WO2005040229A2 (en) 2003-10-24 2005-05-06 Avidia, Inc. Ldl receptor class a and egf domain monomers and multimers
US8633157B2 (en) 2003-11-24 2014-01-21 Novo Nordisk A/S Glycopegylated erythropoietin
US7405198B2 (en) 2003-11-24 2008-07-29 Neose Technologies, Inc. Glycopegylated erythropoietin
EP1548031A1 (en) 2003-12-22 2005-06-29 Dubai Genetics FZ-LLC Nature-identical erythropoietin
CA2551131A1 (en) 2003-12-31 2005-07-21 Centocor, Inc. Novel recombinant proteins with n-terminal free thiol
EP1699821B1 (en) 2003-12-31 2012-06-20 Merck Patent GmbH Fc-ERYTHROPOIETIN FUSION PROTEIN WITH IMPROVED PHARMACOKINETICS
US7423139B2 (en) 2004-01-20 2008-09-09 Insight Biopharmaceuticals Ltd. High level expression of recombinant human erythropoietin having a modified 5′-UTR
US20050187158A1 (en) 2004-01-22 2005-08-25 Ranby Mats G. Pharmaceutical composition
WO2005084711A1 (fr) 2004-03-02 2005-09-15 Chengdu Institute Of Biological Products Erythropoietine recombinante pegylee a activite in vivo
WO2005092369A2 (en) 2004-03-11 2005-10-06 Fresenius Kabi Deutschland Gmbh Conjugates of hydroxyethyl starch and erythropoietin
US20050267027A1 (en) * 2004-04-05 2005-12-01 Lounsbury Karen M Use of erythropoietin for treatment of cancer
US20050227289A1 (en) 2004-04-09 2005-10-13 Reilly Edward B Antibodies to erythropoietin receptor and uses thereof
CA2563874A1 (en) 2004-04-23 2005-11-03 Cambridge Antibody Technology Limited Erythropoietin protein variants
US7723063B2 (en) 2004-04-28 2010-05-25 Intrinsic Lifesciences Methods for measuring levels of bioactive human hepcidin
ES2325034T3 (es) 2004-07-07 2009-08-24 H. Lundbeck A/S Nueva epo carbamilada y metodo para su produccion.
US20060073563A1 (en) 2004-09-02 2006-04-06 Xencor, Inc. Erythropoietin derivatives with altered immunogenicity
JP2008519589A (ja) 2004-11-10 2008-06-12 アプラゲン ゲーエムベーハー 造血を促進する分子
EP1869462B1 (en) * 2005-03-11 2013-05-08 Ciphergen Biosystems, Inc. Biomarkers for ovarian cancer and endometrial cancer: hepcidin
US8142781B2 (en) 2005-10-07 2012-03-27 Armagen Technologies, Inc. Fusion proteins for blood-brain barrier delivery
AU2007205167B2 (en) 2006-01-06 2013-06-13 Vifor (International) Ag Methods and compositions for administration of iron
FR2906533B1 (fr) 2006-09-28 2013-02-22 Pf Medicament Procede de generation d'anticorps actifs contre un antigene de resistance,anticorps obtenus par ledit procede et leurs utilisations
MX2009003738A (es) * 2006-10-12 2009-07-17 Forerunner Pharma Res Co Ltd Diagnóstico y tratamiento de cáncer usando anticuerpo anti-ereg.
WO2008072723A1 (ja) * 2006-12-14 2008-06-19 Forerunner Pharma Research Co., Ltd. 抗Claudin3モノクローナル抗体およびそれを用いる癌の治療および診断
TW201307390A (zh) * 2007-02-02 2013-02-16 Amgen Inc 海帕西啶(hepcidin)、海帕西啶拮抗劑及使用方法
CA2701694A1 (en) * 2007-10-02 2009-04-09 Sophie Vaulont Antigen-binding proteins having specificity for human hepcidin
CL2008003190A1 (es) * 2007-11-02 2009-09-04 Lilly Co Eli Anticuerpo que se enlaza selectivamente a hepcidina-25 humana madura; polinucleotido codificante, vector y celula huesped que lo comprende; uso medico para tratar la anemia, incrementar nivel de hierro, conteo de rediculocito, celulas rojas, hemoglobina, o hematocritos; proceso de produccion; composicion farmaceutica.
US9315577B2 (en) * 2008-05-01 2016-04-19 Amgen Inc. Anti-hepcidin antibodies and methods of use
PT2328931E (pt) * 2008-08-06 2013-11-07 Lilly Co Eli Anticorpos selectivos anti-hepcidina-25 e utilizações dos mesmos
CA2742871C (en) 2008-11-13 2018-10-23 Herb Lin Methods and compositions for regulating iron homeostasis by modulation of bmp-6
EP2373679B1 (en) 2008-12-05 2017-03-08 The Regents of The University of California Mini-hepcidin peptides and methods of using thereof
EA030182B1 (ru) * 2009-04-20 2018-07-31 Оксфорд Байотерепьютикс Лтд. Антитела, специфические для кадгерина-17
FR2945538B1 (fr) * 2009-05-12 2014-12-26 Sanofi Aventis Anticorps humanises specifiques de la forme protofibrillaire du peptide beta-amyloide.
JP2013503919A (ja) 2009-09-08 2013-02-04 ヤンセン バイオテツク,インコーポレーテツド 癌患者においてヘプシジンを減少させるための抗il−6抗体の使用
WO2011057744A1 (en) 2009-11-13 2011-05-19 Roche Diagnostics Gmbh Differential diagnosis of iron deficiencies based on hepcidin and mean hemoglobin content per reticulocyte
US8444982B2 (en) * 2009-12-04 2013-05-21 The University Of Hong Kong Anti-IGF-IR antibodies and uses thereof
EP2569631A4 (en) 2010-05-10 2013-12-04 Austin Health MARKER FOR ACUTE KIDNEY INJURY
JO3340B1 (ar) 2010-05-26 2019-03-13 Regeneron Pharma مضادات حيوية لـعامل تمايز النمو 8 البشري
MX2013002960A (es) 2010-09-29 2013-05-09 Genentech Inc Composiciones de anticuerpo y metodos de uso.
BR112013027867A2 (pt) 2011-04-29 2016-09-06 Bristol Myers Squibb Co "método de detectar o nível de um anticorpo anti-ip10 em amostra, anticorpo monoclonal isolado ou porção de ligação de antígeno do mesmo, linhagem de célula de hibridoma e kit"
AU2013330387B2 (en) 2012-07-27 2017-01-19 Intrinsic Lifesciences Llc Method of treating iron deficiency anemia
CN105263514B (zh) 2013-03-15 2019-04-26 本质生命科学有限公司 抗铁调素抗体及其用途
NZ730186A (en) 2014-09-22 2020-04-24 Intrinsic Lifesciences Llc Humanized anti-hepcidin antibodies and uses thereof
WO2018165186A1 (en) 2017-03-07 2018-09-13 Intrinsic Lifesciences Llc Assessment of chronic iron deficiency

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2968503A4

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9657098B2 (en) 2013-03-15 2017-05-23 Intrinsic Lifesciences, Llc Anti-hepcidin antibodies and uses thereof
US9803011B2 (en) 2013-03-15 2017-10-31 Intrinsic Lifesciences Llc Anti-hepcidin antibodies and uses thereof
US10239941B2 (en) 2013-03-15 2019-03-26 Intrinsic Lifesciences Llc Anti-hepcidin antibodies and uses thereof
EP3197915A4 (en) * 2014-09-22 2018-12-19 Intrinsic Lifesciences LLC Humanized anti-hepcidin antibodies and uses thereof
US10323088B2 (en) 2014-09-22 2019-06-18 Intrinsic Lifesciences Llc Humanized anti-hepcidin antibodies and uses thereof
WO2016112381A1 (en) 2015-01-09 2016-07-14 The Board Of Trustees Of The University Of Illinois Restoring physiology in iron-deficient organisms using small molecules
US11517540B2 (en) 2015-01-09 2022-12-06 The Board Of Trustees Of The University Of Illinois Restoring physiology in iron-deficient organisms using small molecules
AU2016205030B2 (en) * 2015-01-09 2021-04-01 The Board Of Trustees Of The University Of Illinois Restoring physiology in iron-deficient organisms using small molecules
US11203753B2 (en) 2015-03-13 2021-12-21 INSERM (Institut National de la Santé et de la Recherche Médicale) Hepcidin antagonists for use in the treatment of inflammation
WO2016146587A1 (en) 2015-03-13 2016-09-22 INSERM (Institut National de la Santé et de la Recherche Médicale) Hepcidin antagonists for use in the treatment of inflammation
WO2017091487A1 (en) * 2015-11-25 2017-06-01 Intrinsic Lifesciences Llc Kits for detection of hepcidin
WO2018234538A1 (en) 2017-06-23 2018-12-27 INSERM (Institut National de la Santé et de la Recherche Médicale) ANTAGONIST OR AGONIST OF HEPCIDINE FOR USE IN THE TREATMENT OF DYSREGULATION OF MO AND / OR MN METABOLISM
WO2019234680A1 (en) * 2018-06-08 2019-12-12 Pfizer Inc. Methods of treating iron metabolic disease with a neutralizing antibody binding erhythroferrone

Also Published As

Publication number Publication date
CN110041427B (zh) 2023-05-23
CN105263514B (zh) 2019-04-26
CA2904357C (en) 2020-09-22
JP6598958B2 (ja) 2019-10-30
EP2968503A4 (en) 2017-02-15
AU2014236677B2 (en) 2018-07-05
DK2968503T3 (en) 2018-12-03
IL261547A (en) 2018-10-31
KR20150143484A (ko) 2015-12-23
BR112015022123A2 (ru) 2017-08-29
AU2014236677A1 (en) 2015-11-05
EP2968503B1 (en) 2018-08-15
BR112015022123A8 (pt) 2018-05-22
HK1220379A1 (zh) 2017-05-05
IL261547B (en) 2019-12-31
MX359794B (es) 2018-10-10
US10239941B2 (en) 2019-03-26
EP2968503A2 (en) 2016-01-20
ES2695166T3 (es) 2019-01-02
AU2018214008B2 (en) 2019-12-12
MX2015011772A (es) 2016-07-08
US20180057586A1 (en) 2018-03-01
KR102218494B1 (ko) 2021-02-19
US20170283495A1 (en) 2017-10-05
JP6463331B2 (ja) 2019-01-30
CA2904357A1 (en) 2014-09-25
US9803011B2 (en) 2017-10-31
WO2014152006A3 (en) 2014-12-18
CN105263514A (zh) 2016-01-20
NZ631098A (en) 2016-09-30
IL241079A0 (en) 2015-11-30
AU2018214008A1 (en) 2018-08-23
US20160017032A1 (en) 2016-01-21
JP2019037236A (ja) 2019-03-14
BR112015022123B1 (pt) 2022-08-09
RU2015144105A (ru) 2017-04-24
RU2668391C2 (ru) 2018-09-28
US9657098B2 (en) 2017-05-23
CN110041427A (zh) 2019-07-23
JP2016513664A (ja) 2016-05-16

Similar Documents

Publication Publication Date Title
AU2018214008B2 (en) Anti-hepcidin antibodies and uses thereof
AU2009246946B2 (en) Anti-hepcidin antibodies and methods of use
US10323088B2 (en) Humanized anti-hepcidin antibodies and uses thereof
JP5701064B2 (ja) フェロポーチン抗体およびその使用方法
US10336831B2 (en) Use of anti-endoglin antibodies for treating ocular fibrosis

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480027805.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14771150

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 14771135

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014771150

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 241079

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 2904357

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/011772

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2016502250

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14771150

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 20157029178

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015144105

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014236677

Country of ref document: AU

Date of ref document: 20140313

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015022123

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015022123

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150909