WO2014148350A1 - 収着剤塗工液、該収着剤塗工液を塗布してなる収着剤担持金属板および該収着剤担持金属板を有する熱交換器 - Google Patents

収着剤塗工液、該収着剤塗工液を塗布してなる収着剤担持金属板および該収着剤担持金属板を有する熱交換器 Download PDF

Info

Publication number
WO2014148350A1
WO2014148350A1 PCT/JP2014/056670 JP2014056670W WO2014148350A1 WO 2014148350 A1 WO2014148350 A1 WO 2014148350A1 JP 2014056670 W JP2014056670 W JP 2014056670W WO 2014148350 A1 WO2014148350 A1 WO 2014148350A1
Authority
WO
WIPO (PCT)
Prior art keywords
sorbent
metal plate
water
organic polymer
weight
Prior art date
Application number
PCT/JP2014/056670
Other languages
English (en)
French (fr)
Inventor
竹下悠史
Original Assignee
日本エクスラン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本エクスラン工業株式会社 filed Critical 日本エクスラン工業株式会社
Priority to KR1020157015255A priority Critical patent/KR102190238B1/ko
Priority to CN201480008481.9A priority patent/CN105073246B/zh
Publication of WO2014148350A1 publication Critical patent/WO2014148350A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/28Selection of materials for use as drying agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28026Particles within, immobilised, dispersed, entrapped in or on a matrix, e.g. a resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2803Sorbents comprising a binder, e.g. for forming aggregated, agglomerated or granulated products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • B01J20/3272Polymers obtained by reactions otherwise than involving only carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • B01J20/328Polymers on the carrier being further modified
    • B01J20/3282Crosslinked polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3287Layers in the form of a liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3289Coatings involving more than one layer of same or different nature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3291Characterised by the shape of the carrier, the coating or the obtained coated product
    • B01J20/3297Coatings in the shape of a sheet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing

Definitions

  • the present invention relates to a sorbent coating liquid, a sorbent-carrying metal plate formed by applying the sorbent coating liquid, and a heat exchanger having the sorbent-carrying metal plate.
  • an adsorption heat exchanger such as an adsorption refrigerator or an adsorption air conditioner is known as an application of a metal plate carrying an adsorbent.
  • This type of adsorption heat exchanger is disclosed in, for example, Patent Documents 1, 2, and 3.
  • an inorganic adsorbent such as silica gel or zeolite is used in Patent Document 1
  • a polymer sorbent is used in Patent Documents 2 and 3. Yes.
  • the organic polymer sorbents disclosed in Patent Documents 2 and 3 have the property of swelling and shrinking by absorbing and releasing moisture. Due to this flexible structure, the moisture absorption performance is not reduced due to the structural destruction due to repeated moisture absorption and release seen in inorganic materials. Moreover, a large amount of water can be absorbed as compared with the inorganic adsorbent.
  • Patent Document 3 discloses a method in which an alcoholic solvent is used as a main solvent and an organic polymer sorbent is supported on a heat exchanger in a contracted state.
  • the amount of water in the slurry must be strictly controlled.
  • the problem regarding the adhesion to the substrate to be carried is not discussed.
  • the sorbent-supporting metal plate using the organic polymer sorbent has a problem of cracking or peeling of the sorbent layer.
  • the present invention was devised in view of the current state of the prior art, and the purpose thereof is a sorbent coating liquid that does not cause cracking and peeling problems, and a metal plate formed by applying the coating liquid,
  • a further object is to provide a heat exchanger.
  • the present inventors have found that the above object can be achieved by the presence of a cationic polymer having a charge opposite to that of the organic polymer sorbent in a solvent system containing a large amount of water.
  • the headline, the present invention has been reached.
  • Organic polymer sorbent particles composed of an organic polymer having a carboxyl group and a crosslinked structure, a sorption containing a cationic polymer, a binder resin, alcohol and water adhering to the surface of the sorbent Agent coating solution.
  • the sorbent coating solution according to (1) which contains 100 to 500 parts by weight of water with respect to 100 parts by weight of the organic polymer sorbent.
  • a heat exchanger having the sorbent-carrying metal plate according to (6).
  • the amount of binder used to suppress cracking of the sorbent layer to be formed can be reduced. It is possible to suppress a decrease in the moisture absorption amount and moisture absorption rate of the adhesive particles. For this reason, it is effective for a batch type dehumidification system that absorbs a large amount of moisture for a long time, a desiccant rotor that repeatedly absorbs and releases moisture in a short time, and the like. Furthermore, by reducing the hydration of the organic polymer sorbent particle surface, the adhesion to the binder and the adhesion to the substrate are improved, and a more uniform sorbent layer can be formed. .
  • the organic polymer sorbent particles employed in the present invention have a carboxyl group in the molecule and have a crosslinked structure.
  • the carboxyl group present in the organic polymer sorbent particles has a characteristic of chemically adsorbing moisture in the air.
  • the carboxyl group is preferably in a salt form, and the cations forming a pair are not particularly limited, and examples thereof include alkali metals such as Li, Na, K, Rb, and Cs, Be, Mg, Ca, Sr, Ba, and the like.
  • Alkaline earth metals, other metals such as Cu, Zn, Al, Mn, Ag, Fe, Co, and Ni, organic cations such as NH 4 and amine, and the like can be mentioned. Of these, alkali metal and alkaline earth metal cations are preferred from the viewpoint of moisture absorption / release rate.
  • the amount of carboxyl groups is preferably 1 to 10 mmol / g, more preferably 3 to 10 mmol / g.
  • carboxyl group amount is less than 1 mmol / g, sufficient moisture absorption / release performance may not be obtained.
  • carboxyl group amount exceeds 10 mmol / g, the organic polymer sorbent particles absorb water and swell greatly. Furthermore, since the volume change due to swelling and shrinkage becomes very large in the obtained sorbent layer, the durability of the sorbent layer becomes insufficient.
  • the carboxyl group amount represents the mol amount of the carboxyl group relative to the polymer weight when all the carboxyl groups of the polymer are acid-type. Is.
  • the crosslinked structure of the organic polymer sorbent particles reduces moisture swelling or particle swelling that occurs when water is absorbed.
  • a crosslinked structure is not particularly limited as long as it is not physically or chemically modified in accordance with moisture absorption or desorption, and any of such as crosslinking by covalent bond, ionic crosslinking, interaction between polymer molecules, or crosslinking by crystal structure, etc. The thing of the structure of may be sufficient.
  • a crosslinked structure by a covalent bond is most preferable from the viewpoint of strength and stability.
  • the degree of crosslinking of the organic polymer sorbent particles there is no limitation on the degree of crosslinking of the organic polymer sorbent particles, but the organic polymer sorbent particles absorb water or absorb moisture, as described in the production method described later,
  • the degree of crosslinking calculated by the following formula is preferably 8 or more.
  • Crosslinking degree crosslinking monomer (mol) / total monomer (mol) ⁇ 100
  • the particle diameter of the organic polymer sorbent particles employed in the present invention is preferably 1 to 60 ⁇ m. Of these, particles having a particle diameter of 5 to 50 ⁇ m are preferred.
  • the particle diameter is too small, the amount of the binder resin for binding the respective particles increases, so that the coating of the binder resin covers the particles, resulting in a decrease in the moisture absorption rate.
  • the particle size is too large, the dispersibility of the particles in the solvent in the coating solution will be reduced, making uniform coating difficult, and reducing the hygroscopic performance by reducing the surface area of the organic polymer sorbent particles. Will occur.
  • Examples of the method for producing organic polymer sorbent particles having a crosslinked structure as described above include the following methods. (1) Method of copolymerizing monomer having carboxyl group and crosslinking monomer (2) Method of hydrolyzing copolymer of monomer capable of deriving carboxyl group and crosslinking monomer (3) Reactive crosslinking agent for polymer having carboxyl group (4) A method in which a polymer having a functional group capable of deriving a carboxyl group is crosslinked with a reactive crosslinking agent and hydrolyzed.
  • examples of the monomer having a carboxyl group include monomers having a carboxylic acid group such as acrylic acid, methacrylic acid, maleic acid, itaconic acid, vinylpropionic acid, and carboxylates of these monomers. Etc.
  • examples of monomers capable of deriving a carboxyl group include monomers having a nitrile group such as acrylonitrile and methacrylonitrile; carboxylic acids such as acrylic acid, methacrylic acid, maleic acid, itaconic acid, and vinyl propionic acid. Examples thereof include anhydrides, ester derivatives and amide derivatives of monomers having a group. The functional group of these monomers is converted into a carboxyl group by undergoing hydrolysis.
  • the crosslinking monomer is not particularly limited as long as it has two or more double bonds in the molecule.
  • glycidyl methacrylate, N-methylolacrylamide, triallyl isocyanurate, triallyl cyanurate, divinylbenzene examples thereof include crosslinkable vinyl compounds such as hydroxyethyl methacrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, and methylenebisacrylamide.
  • the cross-linked structure by triallyl isocyanurate, triallyl cyanurate, divinylbenzene, and methylene bisacrylamide is also used for hydrolysis to introduce carboxyl groups to be applied to cross-linked copolymers containing them. It is desirable for use in the case of obtaining a carboxyl group through a hydrolysis step.
  • hydrolysis a method of heat-treating a cross-linked copolymer obtained by copolymerization in a basic aqueous solution such as an alkali metal hydroxide such as sodium hydroxide, potassium hydroxide or sodium carbonate or ammonia.
  • a basic aqueous solution such as an alkali metal hydroxide such as sodium hydroxide, potassium hydroxide or sodium carbonate or ammonia.
  • generated by hydrolysis forms a cation and a salt corresponding to the chemical
  • the polymer having a functional group capable of deriving a carboxyl group is obtained by, for example, copolymerizing a monomer capable of deriving a carboxyl group and a monomer having a functional group capable of reacting with a reactive crosslinking agent. Obtainable.
  • the monomer having a functional group capable of reacting with the reactive crosslinking agent is selected according to the type of the reactive crosslinking agent used.
  • Cationic polymers have at least one or more primary to tertiary amino groups or quaternary ammonium groups in the molecule and are charged positively when the polymer chain is ionized in an aqueous solution. It can be a polymer. This positively charged polymer is ionically bonded to the surface of the organic polymer sorbent particles that are anionic polymers, and as a result, the hydration of the organic polymer sorbent particles is reduced, and the binder It is considered that the adhesion with the resin component can also be improved.
  • the cationic polymer covers the surface of the organic polymer sorbent particles, thereby reducing the hydration of the particles and improving the adhesion between the binder resin and the particles. Those having a quaternary ammonium group that is easily charged as a functional group are preferred. Further, when the cationic polymer is water-soluble or redispersible, there is a concern about the water resistance of the sorbent layer. Therefore, an aqueous emulsion that does not redisperse in water after drying is preferable. Among these, a cationic urethane resin excellent in adhesion to the binder resin, moisture permeability, and the like is preferable.
  • the addition amount of the cationic polymer is 1 to 30 parts by weight, particularly preferably 5 to 20 parts by weight, based on 100 parts by weight of the sorbent.
  • the addition amount is decreased, the adhesion is lowered, and conversely, when the addition amount is increased, the ratio of the organic polymer sorbent particles is decreased, and thus the moisture absorption rate of the formed sorbent layer is lowered.
  • the binder resin preferably has adhesion between the organic polymer sorbent particles and the cationic polymer and also has adhesion with the primer layer applied on the metal plate. Further, the binder resin is preferably one that can follow the volume change with respect to the shrinkage during drying and the swelling during wetness of the organic polymer sorbent particles in the formed sorbent layer. What is 50 degrees C or less is preferable.
  • Examples of such a resin that can be a binder resin include urethane resins, acrylic resins, and epoxy resins. From the viewpoint that it is difficult to form an aggregate with a cationic polymer in the coating solution, the resin is neutral or weakly anionic. Resins are preferred. Among these, a water-based urethane resin that is excellent in adhesion and moisture permeability and has good dispersibility in the coating liquid is particularly preferable.
  • the ratio of the binder resin is 20 to 100 parts by weight, particularly preferably 30 to 50 parts by weight, based on 100 parts by weight of the organic polymer sorbent particles. If the ratio of the binder resin is too large, the binder resin portion that covers the organic polymer sorbent particles may increase, resulting in a decrease in the moisture absorption rate. If the ratio is too small, the sorbent layer may be cracked or the adhesiveness may be decreased. May cause.
  • the coating amount of the sorbent coating solution is reduced, it becomes difficult to form a homogeneous sorbent layer.
  • a polymer with good adhesion and film-forming properties such as polyvinyl alcohol
  • the film forming property of the agent coating solution can be improved.
  • the amount added is 1 to 10 parts by weight, preferably 2 to 8 parts by weight, based on 100 parts by weight of the organic polymer sorbent particles. If the amount added is too large, the viscosity of the sorbent coating solution may become too high, making it difficult to apply or reducing the moisture absorption rate. It may not be obtained.
  • the alcohol solvent is added mainly for the purpose of diluting the sorbent coating liquid, defoaming and improving the drying speed.
  • the type of alcohol used in preparing the sorbent coating liquid is not particularly limited, but the higher the alcohol, the more easily the water-dispersed resin is dissolved, and the viscosity of the coating liquid increases and the coating property increases. Therefore, it is preferable that ethanol and methanol, which are lower alcohols, are used as the main components. In consideration of wettability with the base material, ethanol is preferable.
  • the alcohol content in the sorbent coating solution is 20 to 500 parts by weight, particularly 100 to 300 parts by weight, based on 100 parts by weight of the organic polymer sorbent particles.
  • the water contained in the sorbent coating liquid is the total amount of water derived from the cationic polymer and the binder resin component and the water added when adjusting the sorbent coating liquid is 100 wt.
  • the amount is 100 to 500 parts by weight, preferably 100 to 300 parts by weight. If there is too much water in the sorbent coating solution, the adhesiveness with the substrate will be lowered, the drying speed will be lowered, and the sorbent layer that has been previously carried in the case of two or more coatings. This causes a problem that it becomes difficult to run out of liquid due to water absorption and swelling.
  • the sorbent coating solution of the present invention comprises the organic polymer sorbent particles, the cationic polymer, the binder resin, water, and alcohol as essential components.
  • antibacterial agents, preservatives, and the like may be added as long as the moisture absorption performance is not impaired.
  • organic polymer sorbent particles are dispersed in a dispersion medium composed of water and alcohol, and then a cationic polymer is added and stirred sufficiently, and then a binder resin is added. The method of compounding is mentioned. When other additives are used, they can be added after the above-mentioned preparation.
  • the material of the metal plate is not particularly limited, and examples include an aluminum plate, an iron plate, a stainless steel plate, and a copper plate.
  • a metal plate carrying a sorbent layer for a heat exchanger or the like it is particularly preferable to use an aluminum plate because of its high thermal conductivity, light weight and low cost.
  • the application method of the sorbent coating liquid described above there are a method of impregnating the sorbent coating liquid and centrifuging, a method of applying using a bar coder, a blade, or a method of spraying. Can be mentioned.
  • the coating amount is not particularly limited, but if the coating amount is too large, cracking of the sorbent layer is likely to occur, or conversely, if the coating amount is too small, it becomes difficult to form a uniform sorbent layer. That is, the supported amount after drying is preferably 20 to 200 g / m 2 and more preferably 50 to 150 g / m 2 .
  • An anionic primer layer improves the adhesiveness of the sorbent layer to a metal plate. That is, when the anionic primer layer is not provided on the metal plate, the wettability with respect to the sorbent coating liquid is poor and uniform application is difficult. Furthermore, the adhesion between the formed sorbent layer and the metal plate is also lowered.
  • the method for forming the anionic primer layer on the metal plate is not particularly limited, and a method such as coating can be employed.
  • the anionic primer to be applied to the metal plate is desirably applied so as to cover the entire surface of the metal plate, and the application amount is preferably 1 to 15 g / m 2 , more preferably 2 to 10 g / m 2 . a m 2.
  • the anionic primer forming such an anionic primer layer preferably has both adhesion to the metal plate and adhesion to the sorbent layer, and has both water resistance and corrosion resistance.
  • Specific examples include urethane resins, acrylic resins, and epoxy resins.
  • heat exchanger of the present invention for example, a heat exchanger in which a sorbent-supporting metal plate produced by the above method is processed into fins and assembled together with other members, or a shape And a heat exchanger in which a sorbent layer is supported by the above-described method.
  • the shape of the heat exchanger is not particularly limited. For example, a rotor type obtained by winding a corrugated metal plate, a block type obtained by stacking, or an interval of 0.5 to 5.0 mm. A structure in which a heat transfer tube is penetrated through a large number of arranged fins is exemplified.
  • Average particle size Using a laser diffraction particle size distribution analyzer “SALD-200V” manufactured by Shimadzu Corporation, water was measured as a dispersion medium, and the average particle size was determined from the particle size distribution expressed on a volume basis.
  • the saturated moisture absorption rate of the sorbent layer refers to a value obtained by the following method.
  • a sorbent layer is formed on an aluminum plate (including primer treatment) (Wp [g]) whose weight has been measured in advance by the same method as in the example, and the sorbent-carrying aluminum plate is used as a measurement sample.
  • the sorbent-carrying aluminum plate is dried with a hot air dryer at 120 ° C. for 1 hour and weighed (Wds [g]), and then the sample is adjusted to a relative humidity of 65% RH at a temperature of 20 ° C.
  • the sample is left in the vessel for 16 hours and the weight of the absorbed sample is measured (Wws [g]). Based on the above results, the saturated moisture absorption rate is calculated by the following equation.
  • Saturated moisture absorption (wt%) ⁇ (Wws ⁇ Wds) / (Wds ⁇ Wp) ⁇ ⁇ 100
  • the moisture absorption rate was measured as follows. A sorbent layer was applied to a 5 ⁇ 8 cm aluminum plate so as to have an application amount of 50 g / m 2 to obtain a sample for moisture absorption rate. The obtained sample is dried at 120 ° C. for 1 hour, and then moisture-absorbed for 1 minute in a constant temperature and humidity chamber at 20 ° C. and 65% RH. After drying at this time, the amount of moisture absorption was measured from the difference in sample weight after moisture absorption for 1 minute.
  • the residual ratio in submersion as an index representing the adhesion of the sorbent layer to the substrate is measured as follows.
  • the sorbent layer is supported on a 5 ⁇ 8 cm size aluminum plate (including primer treatment) (Wp [g]) so that the coating amount is 50 g / m 2 , dried at 120 ° C. for 1 hour, and then dried weight Is measured (Wds1 [g]).
  • the obtained sorbent-carrying aluminum plate was immersed in a 50 ° C. water bath for 1 hour and then dried at 120 ° C. for 1 hour five times, and then the dry weight was measured ( Wds2 [g]).
  • Residual rate (%) ⁇ (Wds2-Wp) / (Wds1-Wp) ⁇ ⁇ 100
  • This value is a numerical value representing the water resistance of the sorbent-carrying aluminum plate, and it can be determined that the higher the value, the higher the water resistance.
  • the surface state of the sorbent layer before and after the test was evaluated visually according to the following criteria, and the water resistance was comprehensively evaluated including the shape maintenance of the sorbent layer.
  • Example 1 To 100 parts by weight of the organic polymer sorbent particles dried at 120 ° C. for 16 hours or more, 130 parts by weight of water and 127 parts by weight of ethanol are added and stirred. 33 parts by weight of a water-dispersed urethane resin “Superflex 620” (solid content: 30%, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) as a cationic polymer was added to this mixed solution and stirred for 1 hour. To this was added 77 parts by weight of water-dispersed neutral urethane resin “Superflex E-2000” (solid content 50%, glass transition point ⁇ 38 ° C., manufactured by Daiichi Kogyo Seiyaku) diluted to 40% solids. The mixture was stirred to obtain a coating solution. The ratio of water in the coating solution was 200 parts by weight with respect to 100 parts by weight of the organic polymer sorbent particles.
  • the aluminum plate was coated with Superflex 170 (Daiichi Kogyo Seiyaku Co., Ltd.), which is an anionic urethane resin, as an anionic primer so that the supported amount was 5 g / m 2 .
  • the sorbent coating solution was applied onto the aluminum plate so as to have the coating amount shown in Table 1 using a bar coder. After coating, preliminary drying was performed at room temperature, followed by drying at 120 ° C. for 1 hour to obtain a sorbent-carrying aluminum plate.
  • the evaluation results of the obtained sorbent-carrying aluminum plate are shown in Table 1. As can be seen from Table 1, the obtained sorbent-carrying aluminum plate had few cracks in the sorbent layer and had a good surface state even after the submergence test.
  • Example 2 To 100 parts by weight of the organic polymer sorbent particles dried at 120 ° C. for 16 hours or more, 105 parts by weight of water and 168 parts by weight of ethanol are added and stirred. 34 parts by weight of a water-dispersed urethane resin “Superflex 620” (solid content 30%, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) as a cationic polymer was added to this mixed liquid and stirred for 1 hour.
  • a water-dispersed urethane resin “Superflex 620” solid content 30%, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.
  • Example 1 a water-dispersed neutral urethane resin “Superflex E-2000” (50% solids, manufactured by Daiichi Kogyo Seiyaku) diluted to 40% solids, and then 30% 10% polyvinyl alcohol aqueous solution was added. A part by weight was added and sufficiently stirred to obtain a coating solution.
  • a sorbent-carrying aluminum plate was produced in the same manner as in Example 1.
  • the sorbent-carrying aluminum plate obtained as shown in Table 1 showed high adhesion as in Example 1, and had a good surface state even after the submergence test. Further, in Example 2, the surface state was better than that in Example 1 even in the low adhesion amount region with an application amount of 25 / m 2 , and the film forming property was high.
  • Example 3 99 parts by weight of water and 160 parts by weight of ethanol are added to 100 parts by weight of organic polymer sorbent particles dried at 120 ° C. for 16 hours or more and stirred. To this mixed solution, 67 parts by weight of a 15% polyallylamine aqueous solution was added and stirred for 1 hour. To this was added 75 parts by weight of water-dispersed neutral urethane resin “Superflex E-2000” (solid content 50%, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) diluted to 40% solid content. Obtained. Using the obtained coating solution, a sorbent-carrying aluminum plate was produced in the same manner as in Example 1.
  • the obtained sorbent-carrying aluminum plate is almost free from cracks in the sorbent layer after coating and drying as in Examples 1 and 2, and even when the submergence test is repeated. The layer did not peel off.
  • cracking was likely to occur in the sorbent layer compared to Examples 1 and 2, but this was because the polyallylamine, which is a water-soluble polymer, was subjected to an organic polymer system by submergence test. This is thought to be due to desorption from the surface of the sorbent particles.
  • Example 1 A sorbent-carrying aluminum plate was produced in the same manner as in Example 1 except that the aluminum plate was not subjected to primer treatment. As shown in Table 1, the obtained sorbent-supporting aluminum plate had a surface state almost equivalent to that of Example 1, but in the submergence test, the sorbent layer was completely peeled off and an anionic primer treatment was performed. In the absence, it was confirmed that the sorbent layer and the aluminum plate had no adhesion.
  • the sorbent-carrying aluminum plate obtained in Comparative Example 3 had a good surface condition of the sorbent layer at the time of coating and drying as in Example 1, but the submergence test By repeating the above, it was observed that organic polymer sorbent particles dropped out from the sorbent layer. This is presumably because the binder polymer is not added and the cationic polymer alone is weak in bonding organic polymer sorbent particles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Paints Or Removers (AREA)
  • Drying Of Gases (AREA)
  • Laminated Bodies (AREA)

Abstract

【課題】有機高分子系収着剤を用いた収着剤担持金属板においては、収着剤が水を含むことで膨潤する特性を持っているため、水を多く含む溶媒を用いて塗工液を調合して金属板上に収着剤塗膜を作製した場合、乾燥時の収着剤収縮によって形成した収着剤塗膜にひび割れが生じる問題がある。また、金属板との密着性も悪く、水没などの条件下で収着剤塗膜が剥離してしまうといった問題がある。本発明は、かかる従来技術の現状に鑑みて創案されたものであり、その目的はひび割れや剥離の問題の発生しない収着剤塗工液及び、該塗工液を塗布してなる金属板、更には熱交換器を提供することにある。 【解決手段】カルボキシル基および架橋構造を有する有機高分子よりなる有機高分子系収着剤粒子、該収着剤の表面に付着しているカチオン性ポリマー、バインダー樹脂、アルコールおよび水を含有する収着剤塗工液。

Description

収着剤塗工液、該収着剤塗工液を塗布してなる収着剤担持金属板および該収着剤担持金属板を有する熱交換器
本発明は、収着剤塗工液、該収着剤塗工液を塗布してなる収着剤担持金属板および該収着剤担持金属板を有する熱交換器に関する。
従来、吸着剤を担持させた金属板の用途としては、吸着式冷凍機や吸着式空調機などの吸着式熱交換器が知られている。この種の吸着熱交換器は、例えば、特許文献1及び2、3に開示されている。
上記吸着式熱交換器の金属基材に担持されている吸着剤として、特許文献1ではシリカゲルやゼオライト等の無機系吸着剤を用い、特許文献2、3では高分子収着剤が用いられている。
特許文献2、3で開示されている有機高分子系収着剤は、吸放湿することで、膨潤、収縮する特性を持っている。この柔軟な構造のため、無機系材料にみられる吸放湿を繰り返すことでの構造破壊による吸湿性能の低下が引き起こされることがない。また、無機系吸着剤に比べ多量の水を吸収することができる。
しかし、有機高分子系収着剤は水を含むことで膨潤する特性を持っているため、水を多く含む溶媒を用いて塗工液を調合し、収着剤塗膜を作製しようとすると、乾燥時に有機高分子系収着剤の膨潤から収縮状態への体積変化によって形成した収着剤塗膜にひび割れが生じる問題がある。また、基材との密着性も悪く、水没などの条件下では、収着剤塗膜が剥離してしまうといった問題があった。前者の問題に対し、特許文献3では、アルコール溶媒を主溶媒に用い有機高分子系収着剤を収縮状態で熱交換器に担持する方法が開示されている。しかしながら、スラリー中の水分量を厳密にコントロールしなければならないといったことがある。また、この例では担持する基材への密着性に関する問題について議論されていない。
特開平5-322364号公報 特開2006-200850号公報 特開2010-270972号公報
以上のように、有機高分子系収着剤を用いた収着剤担持金属板においては、収着剤層のひび割れや剥離といった問題があった。本発明は、かかる従来技術の現状に鑑みて創案されたものであり、その目的はひび割れや剥離の問題の発生しない収着剤塗工液及び、該塗工液を塗布してなる金属板、更には熱交換器を提供することにある。
本発明者らは、鋭意検討を進めた結果、水を多く含む溶媒系で、有機高分子系収着剤と反対の電荷を持つカチオン性ポリマーを存在させることにより上記目的が達成されることを見出し、本発明に到達した。
即ち、本発明は以下の手段により達成される。
(1) カルボキシル基および架橋構造を有する有機高分子よりなる有機高分子系収着剤粒子、該収着剤の表面に付着しているカチオン性ポリマー、バインダー樹脂、アルコールおよび水を含有する収着剤塗工液。
(2) 100重量部の有機高分子系収着剤に対して、100~500重量部の水を含有することを特徴とする(1)に記載の収着剤塗工液。
(3) カチオン性ポリマーがカチオン性ウレタン樹脂であることを特徴とする(1)または(2)に記載の収着剤塗工液。
(4) バインダー樹脂が中性ウレタン樹脂または弱アニオン性ウレタン樹脂であることを特徴とする(1)~(3)のいずれかに記載の収着剤塗工液。
(5) ポリビニルアルコールを含有することを特徴とする(1)~(4)のいずれかに記載の収着剤塗工液。
(6) (1)~(5)のいずれかに記載の収着剤塗工液を塗布してなる収着剤層を金属板上に有する収着剤担持金属板であり、かつ、収着剤層と金属板の間にアニオン性プライマー層を有することを特徴とする収着剤担持金属板。
(7) (6)に記載の収着剤担持金属板を有する熱交換器。
本発明を使用することで、水を多く含む溶媒系でも、形成する収着剤層の割れを抑えるために使用するバインダーの量を少なくすることができ、結果としてバインダー成分による有機高分子系収着剤粒子の吸湿量や吸湿速度の低下を抑制することができる。このため、長時間多量に吸湿させるバッチ式の除湿システムや短時間で吸放湿を繰り返すデシカントローターなどに有効である。さらには、有機高分子系収着剤粒子表面の水和を低減することで、バインダーとの密着性や基材との密着性が向上し、より均質な収着剤層を形成することが出来る。
●収着剤について
本発明に採用する有機高分子系収着剤粒子は、分子中にカルボキシル基を含み、かつ架橋構造を有するものである。有機高分子系収着剤粒子中に存在するカルボキシル基は、空気中の水分を化学的に吸着する特性を持っている。カルボキシル基は塩型であることが好ましく、また、対をなすカチオンには特に限定はなく、例えばLi、Na、K、Rb、Cs等のアルカリ金属、Be、Mg、Ca、Sr、Ba等のアルカリ土類金属、Cu、Zn、Al、Mn、Ag、Fe、Co、Ni等のその他の金属、NH、アミン等の有機の陽イオン等を挙げることか出来る。なかでも吸放湿速度の観点からアルカリ金属やアルカリ土類金属の陽イオンであることが好ましい。
カルボキシル基量としては、好ましくは1~10mmol/g、より好ましくは3~10mmol/gである。カルボキシル基量が1mmol/g未満の場合には十分な吸放湿性能が得られないことがあり、10mmol/gを超える場合には有機高分子系収着剤粒子が吸水し大きく膨潤したゲル状態になり、さらには得られる収着剤層において膨潤収縮による体積変化が非常に大きくなることで、収着剤層の耐久性が不十分となる。ここで、カルボキシル基量は、架橋構造を有する収着剤が塩型のカルボキシル基を含む場合には、該ポリマーのカルボキシル基を全て酸型としたときのポリマー重量に対するカルボキシル基のmol量を表すものである。
また、有機高分子系収着剤粒子が有する架橋構造は、吸湿、あるいは吸水した際におこる粒子の膨潤を低減するものである。かかる架橋構造としては、吸湿、放湿に伴い物理的、化学的に変性をうけない限りにおいては特に限定はなく、共有結合による架橋、イオン架橋、ポリマー分子間相互作用または結晶構造による架橋等いずれの構造のものでもよい。中でも、強固で安定という観点から共有結合による架橋構造がもっとも好ましい。
有機高分子系収着剤粒子の架橋度については限定するものではないが、有機高分子系収着剤粒子が吸水、あるいは吸湿する際の膨潤を抑えるために後述する製造方法にあるように、架橋構造を架橋モノマーの共重合により導入する場合、下記式で算出される架橋度が8以上であることが好ましい。
架橋度 = 架橋モノマー(mol)/全モノマー(mol) × 100
また、本発明に採用する有機高分子系収着剤粒子の粒子径としては1~60μmであることが好ましい。なかでも、粒子径が5~50μmものが好ましい。粒子径が小さすぎると、それぞれの粒子を結合させるためのバインダー樹脂の量が増加してしまうことで、粒子をバインダー樹脂の被膜が覆ってしまうこととなり、結果として吸湿速度の低下を引き起こす。一方、粒子径が大きすぎると、塗工液中での溶媒に対する粒子の分散性が低下し、均質な塗工が困難となり、また、有機高分子系収着剤粒子の表面積低下による吸湿性能低下が生じてしまう。
以上に述べてきた架橋構造を有する有機高分子系収着剤粒子の製造方法としては、以下のような方法を例示することができる。
(1)カルボキシル基を有するモノマーと架橋モノマーの共重合する方法
(2)カルボキシル基を誘導できるモノマーと架橋モノマーの共重合体を加水分解する方法
(3)カルボキシル基を有するポリマーを反応性架橋剤によって架橋する方法
(4)カルボキシル基を誘導できる官能基を持ったポリマーを反応性架橋剤によって架橋し、加水分解する方法
(1)の方法において、カルボキシル基を有するモノマーとしては、アクリル酸、メタクリル酸、マレイン酸、イタコン酸、ビニルプロピオン酸等のカルボン酸基を有する単量体や、これら単量体のカルボン酸塩等が挙げられる。
(2)の方法において、カルボキシル基を誘導できるモノマーとしては、アクリロニトリル、メタクリロニトリル等のニトリル基を有する単量体;アクリル酸、メタクリル酸、マレイン酸、イタコン酸、ビニルプロピオン酸等のカルボン酸基を有する単量体の無水物やエステル誘導体、アミド誘導体等を挙げることができる。これらのモノマーの有する官能基は加水分解を受けることによりカルボキシル基に変換される。
また、架橋モノマーについては、分子中に2重結合を2つ以上もったモノマーであれば特に限定はなく、例えばグリシジルメタクリレート、N-メチロールアクリルアミド、トリアリルイソシアヌレート、トリアリルシアヌレート、ジビニルベンゼン、ヒドロキシエチルメタクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、メチレンビスアクリルアミド等の架橋性ビニル化合物を挙げることができる。なかでもトリアリルイソシアヌレート、トリアリルシアヌレート、ジビニルベンゼン、メチレンビスアクリルアミドによる架橋構造は、それらを含有してなる架橋共重合体に施すカルボキシル基を導入するための加水分解等の際にも化学的に安定であるため、加水分解工程を経てカルボキシル基を得る場合の使用では望ましい。
また、加水分解については、共重合により得られた架橋共重合体を水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム等のアルカリ金属水酸化物やアンモニア等の塩基性水溶液中で加熱処理する方法などを採用することができる。ここで、加水分解により生成されるカルボキシル基は、加水分解に用いる薬剤に対応する陽イオンと塩を形成するので、所望の塩型も考慮して加水分解に用いる薬剤を選定することが望ましい。なお、加水分解後に酸による処理や金属塩水溶液による処理を行うことによって、カルボキシル基の塩型を変えることも可能である。
また、(4)の方法において、カルボキシル基を誘導できる官能基を持ったポリマーは、例えば上述したカルボキシル基を誘導できるモノマーと反応性架橋剤と反応できる官能基を有するモノマーを共重合することによって得ることができる。反応性架橋剤と反応できる官能基を有するモノマーは、用いる反応性架橋剤の種類に応じて選択することになる。具体的な方法としては、例えば、ニトリル基を有するビニルモノマーの含有量が50重量%以上よりなるニトリル系重合体において、ニトリル基と、ヒドラジン系化合物、ポリアミンあるいはホルムアルデヒドなどを反応させて架橋し、架橋に関与しなかったニトリル基などを上記(2)の方法と同様に加水分解する方法などを挙げることができる。
●カチオン性ポリマーについて
カチオン性ポリマーは、分子中に少なくとも一つ以上の1~3級アミノ基、もしくは4級アンモニウム基を有し、水溶液中においてポリマー鎖がイオン化することでプラスに帯電することのできるポリマーである。このプラスに帯電したポリマーが、アニオン性ポリマーである有機高分子系収着剤粒子の表面にイオン的に結合し、その結果として有機高分子系収着剤粒子表面の水和を低減し、バインダー樹脂成分との密着性も向上することができると考えられる。
カチオン性ポリマーは有機高分子系収着剤粒子表面を覆うことで、該粒子の水和を低減し、かつバインダー樹脂と該粒子の密着性を向上させる役割を担うことから、水溶液中でプラスに帯電しやすい4級アンモニウム基を官能基に持っているものが好ましい。また、カチオン性ポリマーが水溶性もしくは再分散性を有するものである場合は、収着剤層の耐水性が懸念されるため、乾燥した後に水に再分散しない水系エマルジョンであることが好ましい。なかでも、バインダー樹脂との密着性、透湿性などに優れるカチオン性ウレタン樹脂が好ましい。
カチオン性ポリマーの添加量は収着剤100重量部に対して、1~30重量部であり、5~20重量部であることが特に好ましい。添加量が少なくなると密着性の低下が引き起こされ、逆に添加量が多くなると有機高分子系収着剤粒子の割合が減少するため、形成した収着剤層の吸湿速度の低下が引き起こされる。
●バインダーについて
カチオン性ポリマーのみでは、有機高分子系収着剤粒子同士を結合する力が弱く、形成される収着剤層が脆くなり、水没などの条件下で収着剤層の維持が困難な場合がある。このため、バインダー樹脂は、有機高分子系収着剤粒子とカチオン性ポリマーとの密着性を持ち、また、金属板上に塗布されたプライマー層との密着性を有するものであることが好ましい。更にこのバインダー樹脂は、形成された収着剤層中における有機高分子系収着剤粒子の乾燥時の収縮と湿潤時の膨潤に対する体積変化に追随できるものが好ましく、かかる観点からガラス転移点が50℃以下であるものが好ましい。このようなバインダー樹脂となりうる樹脂として、ウレタン樹脂、アクリル樹脂、エポキシ樹脂などが挙げられ、塗工液中でカチオン性ポリマーと凝集体を形成しにくいといった観点から、中性、あるいは弱アニオン性の樹脂が好ましい。中でも密着性、透湿性に優れ、塗工液中での分散性が良い水系ウレタン樹脂が特に好ましい。
バインダー樹脂の割合は有機高分子系収着剤粒子100重量部に対し、20~100重量部あり、30~50重量部であることが特に好ましい。バインダー樹脂の割合が多すぎると有機高分子系収着剤粒子を覆うバインダー樹脂部分が多くなってしまい吸湿速度の低下を引き起こす場合があり、少なすぎると収着剤層の割れや密着性の低下を引き起こす場合がある。
収着剤塗工液の塗布量を少なくすると均質な収着剤層形成が困難になるが、バインダー樹脂にポリビニルアルコールのような接着性、造膜性の良いポリマーを添加することで、収着剤塗工液の造膜性を向上させることができる。ポリビニルアルコールを用いる場合であれば、その添加量は有機高分子系収着剤粒子100重量部に対し1~10重量部であり、好ましくは2~8重量部である。添加量が多すぎると収着剤塗工液の粘度が高くなりすぎ塗布が困難となったり、吸湿速度が低下したりすることがあり、逆に少なすぎると造膜性向上の効果が十分に得られない場合がある。
●アルコールおよび水について
アルコール溶媒は、収着剤塗工液の希釈、脱泡、乾燥速度の向上を主な目的として添加されるものである。収着剤塗工液を調合する際に用いられるアルコールの種類については特に限定しないが、高級アルコールになるほど水分散している樹脂が溶解されやすく、塗工液の粘度が増加して塗工性が悪くなる可能性があるため、低級アルコールであるエタノール、メタノールを主成分とした構成にするのが好ましく、さらに基材との濡れ性を考慮するとエタノールを主成分にすることが好ましい。
また、収着剤塗工液中におけるアルコールの含有率は有機高分子系収着剤粒子100重量部に対し、20~500重量部であり、特に100~300重量部あることが好ましい。一方、収着剤塗工液中に含まれる水は、カチオン性ポリマーおよびバインダー樹脂成分に由来する水と、収着剤塗工液を調整する際に添加する水の合計が収着剤100重量部に対し100~500重量部であり、好ましくは100~300重量部である。収着剤塗工液中に含まれる水が多すぎると、基材との密着性の低下、乾燥速度の低下、2度塗り以上の塗布の際には先に担持されている収着剤層が吸水し、膨潤することで液切れが困難になってくるといった問題が生じる。
●塗工液について
本発明の収着剤塗工液は上述してきた有機高分子系収着剤粒子、カチオン性ポリマー、バインダー樹脂、水、アルコールを必須成分としてなるものである。また、前記必須成分のほかに吸湿性能を阻害しない限りは、抗菌剤、防腐剤などが添加されていてもよい。収着剤塗工液の調合方法としては、水とアルコールからなる分散媒に有機高分子系収着剤粒子を分散させ、次いでカチオン性ポリマーを添加し十分撹拌した後、バインダー樹脂を添加して調合する方法が挙げられる。その他添加剤を用いる場合は、前述の調合後などにこれらを添加することができる。
●金属板について
金属板の材質は特に限定するものではなく、アルミニウム板、鉄板、ステンレス板、銅板などが挙げられる。収着剤層を担持した金属板を熱交換器などに使用する場合においては、熱伝導率の高さや軽量で安価であることなどからアルミニウム板を用いることが特に好ましい。上述した収着剤塗工液の塗布方法に関しては、収着剤塗工液を含浸して遠心分離する方法、バーコーダー、ブレードなどを使用しての塗布する方法、あるいは、噴霧する方法などが挙げられる。塗布量については特に限定しないが、塗布量が多すぎると収着剤層の割れが発生しやすくなることや、逆に少なすぎると均質な収着剤層形成が困難になるため、塗布量、すなわち乾燥後の担持量としては20~200g/mが好ましく、50~150g/mがより好ましい。
●アニオン性プライマー層について
アニオン性プライマー層は、金属板への収着剤層の密着性を向上させるものである。すなわち、金属板上にアニオン性プライマー層を有していない場合では、収着剤塗工液に対する濡れ性が乏しく、均一な塗布が困難である。さらに、形成された収着剤層と金属板との密着性も低くなる。
また、アニオン性プライマー層を有する金属板であっても、収着剤塗工液にカチオン性ポリマーの添加が行われていない場合、金属板と収着剤層の密着性は大幅に低下することから、収着剤層とアニオン性プライマー層は電気的引力によって密着性を発現しているものと想定される。
金属板上にアニオン性プライマー層を形成させる方法としては、特に限定はなく、塗布などの方法を採用することができる。ここで、金属板に塗布するアニオン性プライマーは金属板表面全体を覆うように塗布されていることが望ましく、その塗布量としては、好ましくは1~15g/m、より好ましくは2~10g/mである。
かかるアニオン性プライマー層を形成するアニオン性プライマーとしては、金属板への密着性と収着剤層との密着性を兼ね備え、さらに、耐水性、耐食性を持ち合わせていることが好ましい。具体的にはウレタン樹脂、アクリル樹脂、エポキシ樹脂などを挙げることができる。
●熱交換器について
本発明の熱交換器としては、例えば、上記方法にて作製された収着剤担持金属板をフィンに加工し、これを他の部材とともに組み立てた熱交換器、あるいは、形状が完成された熱交換器に上記方法で収着剤層を担持させた熱交換器などを挙げることができる。かかる熱交換器の形状としては、特に限定がなく、例えば、コルゲート加工された金属板を巻き取って得られるロータ型や積層して得られるブロック型、あるいは0.5~5.0mmの間隔で配列された多数のフィンに伝熱管を貫通させた構造などが挙げられる。
以下実施例により本発明を具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、実施例中の部及び百分率は、断りのない限り重量基準で示す。まず、各特性の評価方法および評価結果の表記方法について説明する。
[平均粒子径]
島津製作所製レーザー回折式粒度分布測定装置「SALD-200V」を使用して水を分散媒として測定し、体積基準で表した粒子径分布から、平均粒子径を求めた。
[カルボキシル基量]
十分乾燥した試料1gを精秤し(X[g])、これに200mlの水を加えた後、50℃に加温しながら1N塩酸水溶液を添加してpH2とすることで、試料に含まれるカルボキシル基を全てH型カルボキシル基とし、次いで0.1NNaOH水溶液で常法に従って滴定曲線を求めた。該滴定曲線からH型カルボキシル基に消費されたNaOH水溶液消費量(Y[ml])を求め、次式によって試料中に含まれるカルボキシル基量を算出した。
カルボキシル基量[mmol/g]=0.1Y/X
[飽和吸湿率]
まず、収着剤層の飽和吸湿率とは、次の方法により得られた値をいう。あらかじめ重量を測定したアルミニウム板(プライマー処理を含む)(Wp[g])に、実施例と同様の方法で収着剤層を形成し、該収着剤担持アルミニウム板を測定試料とする。該収着剤担持アルミニウム板を熱風乾燥機で120℃、1時間乾燥し重量を測定する(Wds[g])、次に試料を温度20℃で相対湿度65%RHに調整された恒温恒湿器に16時間放置し、吸湿した試料の重量を測定する(Wws[g])。以上の結果をもとに、飽和吸湿率を次式により算出する。
飽和吸湿率(重量%)={(Wws-Wds)/(Wds―Wp)}×100
[吸湿速度]
吸湿速度の測定は次の通りに行った。5×8cmのアルミニウム板へ収着剤層を塗布量50g/mになるように塗布し、吸湿速度用サンプルとした。得られたサンプルを120℃で1時間乾燥した後、20℃、65%RHの恒温恒湿器内で1分間吸湿させる。このときの乾燥後、1分間吸湿後のサンプル重量の差から吸湿量を測定した。
[水没による収着剤層の残存率(収着剤層の密着性)]
収着剤層の基材に対する密着性を表す指標としての水没における残存率は、次の通り測定する。5×8cmサイズのアルミニウム板(プライマー処理を含む)(Wp[g])へ収着剤層を塗布量50g/mになるように担持し、120℃、1時間乾燥させた後、乾燥重量を測定する(Wds1[g])。得られた収着剤担持アルミニウム板に対して、50℃水浴に1時間浸漬し、次いで120℃、1時間の条件で乾燥を行う操作を5回繰り返して行った後、乾燥重量を測定する(Wds2[g])。以上の結果をもとに、残存率を次式により算出する。
残存率(%)= {(Wds2-Wp)/(Wds1-Wp)}×100
この値は、収着剤担持アルミニウム板の耐水性を表わす数値であり、この値が大きいほうが、耐水性が高いと判断できる。また、併せて試験前および試験後の収着剤層の表面状態を下記の基準に従って目視で評価し、収着剤層の形状維持性も含め、総合的に耐水性を評価した。
◎:割れがない
○:割れがほとんどない
△:割れが少し存在する
×:割れが多い
[有機高分子系収着剤粒子の製造]
アクリロニトリル55部、アクリル酸メチル10部、ジビニルベンゼン35部からなるモノマー混合物を、0.5部の過硫酸アンモニウムを含む水溶液300部に添加し、次いでピロ亜硫酸ナトリウム0.6部を加え、攪拌機つきの重合槽で65℃、2時間重合した。得られた粒子15部を水85部中に分散し、これに水酸化ナトリウム10部を添加し、90℃で2時間加水分解反応を行った後、洗浄、脱水、乾燥を行い、有機高分子系収着剤粒子を得た。該粒子の架橋度は19、平均粒子径は30μm、カルボキシル基量は6.3mmol/gであった。
[実施例1]
120℃で16時間以上乾燥させた有機高分子系収着剤粒子100重量部に対し、水を130重量部、エタノールを127重量部加え撹拌する。この混合液にカチオン性ポリマーとして水分散型ウレタン樹脂「スーパーフレックス620」(固形分30%、第一工業製薬製)を33重量部加えて一時間撹拌を行った。これに40%固形分に希釈した水分散型中性ウレタン樹脂「スーパーフレックスE-2000」(固形分50%、ガラス転移点-38℃、第一工業製薬製)を77重量部添加し、十分に撹拌を行い、塗工液を得た。塗工液中の水の割合は、有機高分子系収着剤粒子100重量部に対し、200重量部であった。
次に、アルミニウム板にアニオン性プライマーとしてアニオン性ウレタン樹脂であるスーパーフレックス170(第一工業製薬製)を担持量5g/mになるよう塗布を行った。
該アルミニウム板上にバーコーダーを用いて上記収着剤塗工液を表1の塗布量になるように塗布を行った。塗布後、室温で予備乾燥を行った後、120℃で1時間乾燥を行い、収着剤担持アルミニウム板を得た。得られた収着剤担持アルミニウム板の評価結果を表1に示す。表1からわかるように、得られた収着剤担持アルミニウム板においては、収着剤層の割れが少なく、水没試験後でも良好な表面状態を有するものであった。
[実施例2]
120℃で16時間以上乾燥させた有機高分子系収着剤粒子100重量部に対し、水を105重量部、エタノールを168重量部加え撹拌する。この混合液にカチオン性ポリマーとして水分散型ウレタン樹脂「スーパーフレックス620」(固形分30%、第一工業製薬製)を34重量部加えて1時間撹拌を行った。これに40%固形分に希釈した水分散型中性ウレタン樹脂「スーパーフレックスE-2000」(固形分50%、第一工業製薬製)を75重量部添加した後、10%ポリビニルアルコール水溶液を30重量部加え、十分に撹拌を行い、塗工液を得た。得られた塗工液を用い、実施例1と同様の方法で収着剤担持アルミニウム板を作製した。表1に示すように得られた収着剤担持アルミニウム板は、実施例1と同様に高い密着性を示し、さらに水没試験後においても良好な表面状態を有するものであった。また、実施例2では、塗布量25/mの低付着量領域においても、実施例1よりも表面状態が良好であり、高い造膜性を有するものであった。
[実施例3]
120℃で16時間以上乾燥させた有機高分子系収着剤粒子100重量部に対し、水を99重量部、エタノールを160重量部加え撹拌する。この混合液に15%ポリアリルアミン水溶液を67重量部加えて一時間撹拌を行った。これに40%固形分に希釈した水分散型中性ウレタン樹脂「スーパーフレックスE-2000」(固形分50%、第一工業製薬製)を75重量部添加し十分撹拌を行い、塗工液を得た。得られた塗工液を用い、実施例1と同様の方法で収着剤担持アルミニウム板を作製した。表1に示すように、得られた収着剤担持アルミニウム板は、実施例1、2と同様に塗布乾燥後の収着剤層の割れはほとんどなく、水没試験を繰り返した場合でも収着剤層の剥離を起こさないものであった。なお、水没試験を繰り返すと、実施例1、2に比べて収着剤層に割れが生じやすくなる傾向となったが、これは、水溶性ポリマーであるポリアリルアミンが水没試験によって有機高分子系収着剤粒子表面から脱離したためと考えられる。
[比較例1]
アルミニウム板をプライマー処理しない以外は、実施例1と同様にして収着剤担持アルミニウム板を作製した。表1に示すように、得られた収着剤担持アルミニウム板は実施例1とほぼ同等の表面状態であったが、水没試験では収着剤層が完全に剥離し、アニオン性プライマー処理を行わない場合では収着剤層とアルミニウム板とは密着性がないことが確認された。
[比較例2]
120℃で16時間以上乾燥させた有機高分子系収着剤粒子100重量部に対し、水を155重量部、エタノールを135重量部加え撹拌する。この混合液に40%固形分に希釈した水分散型中性ウレタン樹脂「スーパーフレックスE-2000」(固形分50%、第一工業製薬製)を75重量部添加し、塗工液を得た。実施例1と同様に塗工液中の水の割合は、有機高分子系収着剤粒子100重量部に対し、200重量部とした。得られた塗工液を用い、実施例1に従って収着剤担持アルミニウム板を作製した。表1に示すように、比較例2で得られた収着剤担持アルミニウム板は、カチオン性ポリマーを用いていないため、乾燥時工程において収着剤層の割れが多数観測された。また、水没試験を繰り返すことにより、さらに収着剤層が脆くなり、基材からの脱落が観測された。
[比較例3]
120℃で16時間以上乾燥させた有機高分子系収着剤粒子100重量部に対し、水を130重量部、エタノールを103重量部加え撹拌する。これにカチオン性ポリマーとして水分散型ウレタン樹脂「スーパーフレックス620」(固形分30%、第一工業製薬製)を100重量部加えて一時間撹拌を行い、塗工液を得た。得られた塗工液を用い、実施例1に従って収着剤担持アルミニウム板を作製した。表1に示すように、比較例3で得られた収着剤担持アルミニウム板は、実施例1と同様に、塗布乾燥時点での収着剤層の表面状態は良好であったが、水没試験を繰り返すことにより、収着剤層から有機高分子系収着剤粒子の脱落が観測された。これは、バインダー樹脂を加えず、カチオン性ポリマーのみでは有機高分子系収着剤粒子同士を結合する力が弱いためであると思われる。
Figure JPOXMLDOC01-appb-T000001

Claims (7)

  1. カルボキシル基および架橋構造を有する有機高分子よりなる有機高分子系収着剤粒子、該収着剤の表面に付着しているカチオン性ポリマー、バインダー樹脂、アルコールおよび水を含有する収着剤塗工液。
  2. 100重量部の有機高分子系収着剤に対して、100~500重量部の水を含有することを特徴とする請求項1に記載の収着剤塗工液。
  3. カチオン性ポリマーがカチオン性ウレタン樹脂であることを特徴とする請求項1または2に記載の収着剤塗工液。
  4. バインダー樹脂が中性ウレタン樹脂または弱アニオン性ウレタン樹脂であることを特徴とする請求項1~3のいずれかに記載の収着剤塗工液。
  5. ポリビニルアルコールを含有することを特徴とする請求項1~4のいずれかに記載の収着剤塗工液。
  6. 請求項1~5のいずれかに記載の収着剤塗工液を塗布してなる収着剤層を金属板上に有する収着剤担持金属板であり、かつ、収着剤層と金属板の間にアニオン性プライマー層を有することを特徴とする収着剤担持金属板。
  7. 請求項6に記載の収着剤担持金属板を有する熱交換器。
     
PCT/JP2014/056670 2013-03-21 2014-03-13 収着剤塗工液、該収着剤塗工液を塗布してなる収着剤担持金属板および該収着剤担持金属板を有する熱交換器 WO2014148350A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020157015255A KR102190238B1 (ko) 2013-03-21 2014-03-13 수착제 도공액, 이 수착제 도공액을 도포하여 이루어지는 수착제 담지 금속판 및 이 수착제 담지 금속판을 가지는 열교환기
CN201480008481.9A CN105073246B (zh) 2013-03-21 2014-03-13 吸附剂涂布液、将该吸附剂涂布液涂布而成的负载有吸附剂的金属板以及具有该负载有吸附剂的金属板的热交换器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-057598 2013-03-21
JP2013057598A JP6094745B2 (ja) 2013-03-21 2013-03-21 収着剤塗工液、該収着剤塗工液を塗布してなる収着剤担持金属板および該収着剤担持金属板を有する熱交換器

Publications (1)

Publication Number Publication Date
WO2014148350A1 true WO2014148350A1 (ja) 2014-09-25

Family

ID=51580036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056670 WO2014148350A1 (ja) 2013-03-21 2014-03-13 収着剤塗工液、該収着剤塗工液を塗布してなる収着剤担持金属板および該収着剤担持金属板を有する熱交換器

Country Status (4)

Country Link
JP (1) JP6094745B2 (ja)
KR (1) KR102190238B1 (ja)
CN (1) CN105073246B (ja)
WO (1) WO2014148350A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019118899A (ja) * 2018-01-10 2019-07-22 帝人フロンティア株式会社 吸湿性繊維構造体
WO2024143408A1 (ja) * 2022-12-28 2024-07-04 日本エクスラン工業株式会社 収着剤粒子が担持された伝熱フィン、該伝熱フィンを有する収着式熱交換モジュールおよびそれらの製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0994916A (ja) * 1995-10-03 1997-04-08 Kawasaki Steel Corp 有機複合被覆鋼板
JP3017584B2 (ja) * 1990-12-21 2000-03-13 株式会社日本触媒 吸水体およびその製造方法、ならびに、吸水剤およびその製造方法
JP2001342438A (ja) * 2000-03-28 2001-12-14 Kansai Paint Co Ltd 水性着色ベース熱硬化型塗料とそれを使用した塗膜形成方法
JP2002263566A (ja) * 2001-03-06 2002-09-17 Nisshin Steel Co Ltd 吸・放湿性に優れた塗装金属板
JP2006200850A (ja) * 2005-01-21 2006-08-03 Japan Exlan Co Ltd 収着式熱交換モジュールおよびその製法
JP2009256495A (ja) * 2008-04-18 2009-11-05 Oji Paper Co Ltd ガスバリア性フィルム及びその製造方法
JP2010270972A (ja) * 2009-05-21 2010-12-02 Daikin Ind Ltd 熱交換器及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69133620D1 (de) * 1990-12-21 2009-09-10 Nippon Catalytic Chem Ind Wasserabsorbierendes Material und Verfahren zu seiner Herstellung sowie wasserabsorbierender Artikel und Verfahren zu seiner Herstellung
JP2660253B2 (ja) 1992-05-21 1997-10-08 鹿島建設株式会社 吸着式ヒートポンプ
JP5860583B2 (ja) * 2010-01-29 2016-02-16 日本パーカライジング株式会社 金属表面処理剤及び金属表面処理方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3017584B2 (ja) * 1990-12-21 2000-03-13 株式会社日本触媒 吸水体およびその製造方法、ならびに、吸水剤およびその製造方法
JPH0994916A (ja) * 1995-10-03 1997-04-08 Kawasaki Steel Corp 有機複合被覆鋼板
JP2001342438A (ja) * 2000-03-28 2001-12-14 Kansai Paint Co Ltd 水性着色ベース熱硬化型塗料とそれを使用した塗膜形成方法
JP2002263566A (ja) * 2001-03-06 2002-09-17 Nisshin Steel Co Ltd 吸・放湿性に優れた塗装金属板
JP2006200850A (ja) * 2005-01-21 2006-08-03 Japan Exlan Co Ltd 収着式熱交換モジュールおよびその製法
JP2009256495A (ja) * 2008-04-18 2009-11-05 Oji Paper Co Ltd ガスバリア性フィルム及びその製造方法
JP2010270972A (ja) * 2009-05-21 2010-12-02 Daikin Ind Ltd 熱交換器及びその製造方法

Also Published As

Publication number Publication date
KR102190238B1 (ko) 2020-12-11
JP2014180637A (ja) 2014-09-29
CN105073246B (zh) 2017-06-23
KR20150133689A (ko) 2015-11-30
JP6094745B2 (ja) 2017-03-15
CN105073246A (zh) 2015-11-18

Similar Documents

Publication Publication Date Title
JP6528687B2 (ja) 吸湿性ポリマー粒子、ならびに、該粒子を有するシート、素子および全熱交換器
WO2006077672A1 (ja) 収着式熱交換モジュールおよびその製法
TWI381001B (zh) 吸放濕性超微粒子及使用該超微粒子之製品
JP2008281281A (ja) 収着モジュールおよびその製造方法
JP6578840B2 (ja) 吸湿性ミリビーズ並びに吸湿性ミリビーズを用いた除湿ユニットおよび除湿装置
US9579629B2 (en) Production process of film and column for cation chromatography
JP6094745B2 (ja) 収着剤塗工液、該収着剤塗工液を塗布してなる収着剤担持金属板および該収着剤担持金属板を有する熱交換器
JP5030771B2 (ja) 親水性フッ化ビニリデン樹脂組成物およびその製造方法
JP2009189900A (ja) 抗菌、防黴性に優れた全熱交換素子
JP6041717B2 (ja) 親水化処理剤、及び該親水化処理剤で表面処理されたアルミニウム材
JP2009101353A5 (ja)
CN106866882B (zh) 一种多硼交联剂及扩散渗析专用阳离子膜的制备方法
JP7545108B2 (ja) 収着剤担持部材の製造方法および収着剤担持部材
WO2024143408A1 (ja) 収着剤粒子が担持された伝熱フィン、該伝熱フィンを有する収着式熱交換モジュールおよびそれらの製造方法
JP2024095604A (ja) 収着剤粒子が担持された伝熱フィンおよびその製造方法並びに該伝熱フィンを有する熱交換器
WO2015178335A1 (ja) 吸湿性粒子
JP6348005B2 (ja) 結合剤
JP2022161246A (ja) 耐水性吸放湿シート、耐水性吸放湿シートの製造方法および該耐水性吸放湿シートを構成材料とする吸放湿用または潜熱交換用の素子
JP4964470B2 (ja) 高分子被膜の形成方法及びこの方法を用いたイオン交換体
CN118256129A (zh) 一种水利工程施工用防水涂料及其制备方法
JP5299611B2 (ja) 複合粒子および該粒子を担持したインクジェット印刷用材料
JP2011202950A (ja) 収着式熱交換モジュールおよびその製法
JP2012111805A (ja) オルガノゲルの接着方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480008481.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14768941

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157015255

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14768941

Country of ref document: EP

Kind code of ref document: A1