WO2014147792A1 - 液晶組成物及びそれを使用した液晶表示素子 - Google Patents

液晶組成物及びそれを使用した液晶表示素子 Download PDF

Info

Publication number
WO2014147792A1
WO2014147792A1 PCT/JP2013/058099 JP2013058099W WO2014147792A1 WO 2014147792 A1 WO2014147792 A1 WO 2014147792A1 JP 2013058099 W JP2013058099 W JP 2013058099W WO 2014147792 A1 WO2014147792 A1 WO 2014147792A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
carbon atoms
formula
mass
Prior art date
Application number
PCT/JP2013/058099
Other languages
English (en)
French (fr)
Inventor
芳典 岩下
雅裕 丹羽
小川 真治
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51579523&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014147792(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to PCT/JP2013/058099 priority Critical patent/WO2014147792A1/ja
Priority to US14/778,447 priority patent/US20160068752A1/en
Priority to EP13878769.2A priority patent/EP2977427B1/en
Priority to JP2013539030A priority patent/JP5630587B1/ja
Priority to KR1020157008379A priority patent/KR101595519B1/ko
Priority to CN201380060557.8A priority patent/CN104797687B/zh
Publication of WO2014147792A1 publication Critical patent/WO2014147792A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/42Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40
    • C09K19/44Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40 containing compounds with benzene rings directly linked
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • C09K2019/121Compounds containing phenylene-1,4-diyl (-Ph-)
    • C09K2019/122Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3004Cy-Cy
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3009Cy-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/301Cy-Cy-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3016Cy-Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3027Compounds comprising 1,4-cyclohexylene and 2,3-difluoro-1,4-phenylene

Definitions

  • the present invention relates to a liquid crystal composition and a liquid crystal display element that are useful as components for liquid crystal display devices and the like.
  • Liquid crystal display elements are used in various measuring instruments, automobile panels, word processors, electronic notebooks, printers, computers, televisions, watches, advertisement display boards, etc., including clocks and calculators.
  • Typical liquid crystal display methods include TN (twisted nematic) type, STN (super twisted nematic) type, VA (vertical alignment) type using TFT (thin film transistor), and IPS (in-plane Switching) type.
  • the liquid crystal composition used in these liquid crystal display elements is stable against external factors such as moisture, air, heat, light, etc., and exhibits a liquid crystal phase in the widest possible temperature range centering on room temperature, and has low viscosity. And a low driving voltage is required.
  • the liquid crystal composition has several to several tens of kinds of compounds in order to optimize the dielectric anisotropy ( ⁇ ) and the refractive index anisotropy ( ⁇ n) for each display element. It is composed of
  • a liquid crystal composition having a negative ⁇ is used, which is widely used for a liquid crystal TV or the like.
  • low voltage driving, high-speed response, and a wide operating temperature range are required in all driving systems. That is, ⁇ is positive, the absolute value is large, the viscosity ( ⁇ ) is small, and a high nematic phase-isotropic liquid phase transition temperature (T ni ) is required.
  • T ni nematic phase-isotropic liquid phase transition temperature
  • liquid crystal display elements has expanded, and there has been a great change in the method of use and manufacturing, and in order to respond to these, characteristics other than the basic physical property values as conventionally known are required. It has become necessary to optimize.
  • VA vertical alignment
  • IPS in-plane switching
  • the size thereof is an ultra-large size display element of 50 type or more. Came to be used until practical use.
  • ODF Drop Fill
  • PS liquid crystal display elements polymer stabilized, polymer stabilized
  • PSA liquid crystal display elements polymer sustained alignment, polymer sustaining alignment
  • this problem is a larger problem. That is, these display elements are characterized by adding a monomer to the liquid crystal composition and curing the monomer in the composition.
  • usable compounds are specified because of the necessity of maintaining a high voltage holding ratio, and use of compounds having an ester bond in the compound is limited.
  • Monomers used for PSA liquid crystal display elements are mainly acrylate-based, and compounds having an ester bond are generally used, and such compounds are not normally used as liquid crystal compounds for active matrix (patents). Reference 3). Such foreign matter induces the generation of dripping marks, and the deterioration of the yield of the liquid crystal display element due to display failure is a problem. In addition, when adding additives such as antioxidants and light absorbers to the liquid crystal composition, deterioration of yield becomes a problem.
  • the dripping mark is defined as a phenomenon in which the mark of dropping the liquid crystal composition appears white when displaying black.
  • Patent Document 4 a method for suppressing dripping marks generated in relation to the alignment control film by forming a polymer layer in the liquid crystal phase by polymerization of a polymerizable compound mixed in the liquid crystal composition is disclosed.
  • Patent Document 4 there is a problem of display burn-in caused by the polymerizable compound added to the liquid crystal, and the effect is not sufficient for suppressing dripping marks, and the basic characteristics as a liquid crystal display element are maintained.
  • An object of the present invention is to provide a deterioration dielectric anisotropy, viscosity, nematic phase upper limit temperature, the nematic phase stability at low temperatures, the burn characteristics of the various properties and display device as a liquid crystal display element such as gamma 1 Accordingly, it is an object of the present invention to provide a liquid crystal composition suitable for a liquid crystal display element that realizes a stable discharge amount of a liquid crystal material in an ODF process, and a liquid crystal display element using the liquid crystal composition.
  • the present inventors have studied the structures of various liquid crystal compositions that are optimal for the production of liquid crystal display elements by a dropping method, and used a specific liquid crystal compound at a specific mixing ratio to produce a liquid crystal. The inventors have found that the occurrence of dripping marks in the display element can be suppressed, and have completed the present invention.
  • the present invention contains a compound represented by the formula (I) and contains two or more compounds represented by the general formula (II), but n 1 in the compound represented by the general formula (II) is 0.
  • R 1 and R 2 are each independently an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or 2 to 8 carbon atoms.
  • one or more hydrogen atoms in the alkyl group, alkenyl group, alkoxy group and / or alkenyloxy group may be substituted with a fluorine atom
  • the alkyl group, alkenyl group, alkoxy group And / or the methylene group in the alkenyloxy group may be substituted with an oxygen atom as long as the oxygen atoms are not continuously bonded, and may be substituted with a carbonyl group unless the carbonyl group is bonded continuously; 1 represents 0 or 1.
  • the liquid crystal display element of the present invention has characteristics of excellent high-speed response, low occurrence of burn-in, and low occurrence of dripping marks due to its manufacture, so it is useful for display elements such as liquid crystal TVs and monitors. is there.
  • the process of generating drop marks is not clear at present, but there is a high possibility that the interaction between the impurities in the liquid crystal compound and the alignment film, the chromatographic phenomenon, and the like are related. Impurities in the liquid crystal compound are greatly affected by the production process of the compound, but the production method of the compound is not necessarily the same even if the number of carbon atoms in the side chain is different. That is, since the liquid crystal compound is manufactured by a precise manufacturing process, its cost is high among chemical products, and improvement in manufacturing efficiency is strongly demanded. Therefore, in order to use a raw material that is as low as possible, it may be more efficient to manufacture from a completely different type of raw material even if the number of carbon atoms in the side chain is different by one.
  • the liquid crystal active substance manufacturing process may be different for each active ingredient, and even if the process is the same, most of the raw materials are different. Many impurities are mixed in. However, dripping marks may be generated by a very small amount of impurities, and there is a limit to suppressing the generation of dripping marks only by refining the drug substance.
  • the liquid crystal composition in the present invention contains the compound represented by the formula (I) as the first component, but the lower limit of the content of the compound represented by the formula (I) in the liquid crystal composition is 3 % By weight is preferred, 5% by weight is more preferred, 7% by weight is further preferred, 10% by weight is particularly preferred, 15% by weight is most preferred, and the upper limit is preferably 35% by weight, preferably 30% by weight, More preferably, it is preferably 20% by mass, more preferably 20% by mass, more specifically 15 to 35% by mass, more preferably 15 to 30% by mass when the response speed is important. When the driving voltage is more important, the content is preferably 10% by mass to 15% by mass.
  • the compound represented by the general formula (II) as the second component contains at least one compound represented by n 1 of 0 and 1, but the liquid crystal composition of the compound represented by the general formula (II)
  • the lower limit is preferably 27% by mass, more preferably 25% by mass, even more preferably 30% by mass, and the upper limit is preferably 40% by mass, more preferably 35% by mass, and 32% by mass. Is more preferable.
  • R 1 is an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or an alkenyloxy group having 2 to 8 carbon atoms.
  • R 2 is an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or an alkenyloxy group having 2 to 8 carbon atoms.
  • it represents an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms, preferably an alkyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 4 carbon atoms.
  • alkenyl group is preferable when importance is placed on improving the response speed of the display element, and an alkyl group is preferred when reliability such as voltage holding ratio is important.
  • alkenyl group the following formulas (i) to (iv)
  • a compound represented by formula (II-1a) or (II-1b) is preferred.
  • the compounds represented by the formula (II-1a) and the formula (II-1b) are used. It is preferable to use in combination, and the content of the compound represented by the formula (II-1a) and the formula (II-1b) is represented by n 1 in the compound represented by the general formula (II).
  • the content is preferably 50% by mass or more, more preferably 70% by mass or more, still more preferably 80% by mass or more, and particularly preferably 90% by mass or more.
  • a content rate of the compound represented by general formula (II-1) As a content rate of the compound represented by general formula (II-1), as a lower limit, 3 mass% is preferable, 5 mass% is more preferable, 10 mass% is still more preferable, 15 mass% is still more preferable. As an upper limit, 30 mass% is preferable, 25 mass% is more preferable, and 20 mass% is still more preferable.
  • R 1 represents the same meaning as R 1 in formula (I)
  • R 2a represents an alkyl group having 3 carbon atoms or an alkoxy group having 2 carbon atoms
  • a compound represented by formula (II-2a) or (II-2b) is preferred.
  • a content rate of the compound represented by general formula (II-2) As a content rate of the compound represented by general formula (II-2), as a lower limit, 3 mass% is preferable, 5 mass% is more preferable, 6 mass% is still more preferable, 8 mass% is especially preferable. As an upper limit, 25 mass% is preferable, 20 mass% is more preferable, and 15 mass% is still more preferable.
  • the liquid crystal composition of the present invention preferably contains a compound represented by the general formula (III) as the third component.
  • R 3 and R 4 are each independently an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or 2 to 8 carbon atoms.
  • one or more hydrogen atoms in the alkyl group, alkenyl group, alkoxy group and / or alkenyloxy group may be substituted with a fluorine atom
  • the alkyl group, alkenyl group, alkoxy group And / or the methylene group in the alkenyloxy group may be substituted with an oxygen atom unless the oxygen atom is continuously bonded, and may be substituted with a carbonyl group unless the carbonyl group is bonded continuously
  • 1 represents a 1,4-cyclohexylene group or a tetrahydropyran-2,5-diyl group.
  • the content is preferably 3 to 30% by mass, more preferably 3 to 25% by
  • R 3 is an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or an alkenyloxy group having 2 to 8 carbon atoms.
  • R 4 is an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or an alkenyloxy group having 2 to 8 carbon atoms. And preferably represents an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms, and an alkyl group having 3 to 5 carbon atoms or an alkoxy group having 2 to 4 carbon atoms. More preferably, an alkyl group having 3 or 5 carbon atoms or an alkoxy group having 2 or 4 carbon atoms, more preferably an alkoxy group having 2 or 4 carbon atoms, further preferably A chain is preferred.
  • alkenyl group is preferable when importance is placed on improving the response speed of the display element, and an alkyl group is preferred when reliability such as voltage holding ratio is important.
  • alkenyl group the following formulas (i) to (iv)
  • R 3 represents an alkyl group having 3 to 5 carbon atoms
  • R 4 represents an alkoxy group having 2 to 4 carbon atoms. It is preferable to use a combination of the compounds of general formula (III), and when used in combination with other compounds of general formula (III), R 3 represents an alkyl group having 3 to 5 carbon atoms.
  • the content of the compound of the general formula (III) in which R 4 represents an alkoxy group having 2 to 4 carbon atoms is preferably 50% by mass or more in the compound represented by the general formula (III), More preferably, it is 70 mass% or more, More preferably, it is 80 mass% or more, It is especially preferable that it is 90 mass% or more.
  • the compounds represented by the general formula (III) are specifically the following formulas (III-1) to (III-8)
  • the compounds represented by formulas (III-1) to (III-4) are more preferred, and the compounds represented by formulas (III-1) and (III-3) are preferred. Further preferred.
  • the liquid crystal composition of the present invention preferably contains a compound represented by the general formula (IV) as the fourth component.
  • R 5 and R 6 are each independently an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or 2 to 8 represents an alkenyloxy group, and one or more hydrogen atoms in the alkyl group, alkenyl group, alkoxy group and / or alkenyloxy group may be substituted with a fluorine atom, the alkyl group, alkenyl group, alkoxy group
  • the methylene group in the group and / or alkenyloxy group may be substituted with an oxygen atom unless the oxygen atom is continuously bonded, or may be substituted with a carbonyl group unless the carbonyl group is bonded continuously.
  • the compound represented by the general formula (IV) is contained, it is preferably contained in an amount of 2 to 30% by mass, more preferably 2 to 20% by mass, further preferably 7 to 15% by mass. preferable.
  • R 5 represents an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or an alkenyloxy group having 2 to 8 carbon atoms.
  • R 5 represents an alkyl group having 1 to 8 carbon atoms or an alkenyl group having 2 to 8 carbon atoms, more preferably represents an alkyl group having 1 to 8 carbon atoms, It is more preferable to represent an alkyl group having 2 to 5, particularly preferably an alkyl group having 3 to 5 carbon atoms, and a straight chain is preferable.
  • R 6 is an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or an alkenyloxy group having 2 to 8 carbon atoms.
  • it represents an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms, preferably an alkyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 4 carbon atoms. It is more preferably a group, more preferably an alkoxy group having 1 to 4 carbon atoms, still more preferably an alkoxy group having 2 or 3 carbon atoms, and particularly preferably a straight chain.
  • alkenyl group is preferable when importance is placed on improving the response speed of the display element, and an alkyl group is preferred when reliability such as voltage holding ratio is important.
  • alkenyl group the following formulas (i) to (iv)
  • the compounds represented by the general formula (IV) are specifically the following formulas (IV-1) to (IV-6)
  • the compounds represented by formula (IV-1) to formula (IV-4) are more preferred, and the compounds represented by formula (IV-1) to formula (IV-3) are preferred. More preferred are compounds represented by formula (IV-1) and formula (IV-3).
  • -1) to the content of the compound represented by the formula (IV-4) is preferably 50% by mass or more in the compound represented by the general formula (IV), and preferably 70% by mass or more. More preferably, it is more preferably 80% by mass or more, and particularly preferably 90% by mass or more.
  • the content of the compound represented by the formula (IV-3) from 1) is preferably 50% by mass or more in the compound represented by the general formula (IV), more preferably 70% by mass or more. Preferably, it is more preferably 80% by mass or more, and particularly preferably 90% by mass or more.
  • the content of the compound represented by 1) and the formula (IV-3) is preferably 50% by mass or more in the compound represented by the general formula (IV), more preferably 70% by mass or more. Preferably, it is more preferably 80% by mass or more, and particularly preferably 90% by mass or more.
  • the liquid crystal composition of the present invention preferably contains a compound represented by the general formula (V) as the fifth component.
  • R 7 and R 8 are each independently an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or 2 to 8 carbon atoms.
  • one or more hydrogen atoms in the alkyl group, alkenyl group, alkoxy group and / or alkenyloxy group may be substituted with a fluorine atom
  • the alkyl group, alkenyl group, alkoxy group And / or the methylene group in the alkenyloxy group may be substituted with an oxygen atom unless the oxygen atom is continuously bonded, or may be substituted with a carbonyl group unless the carbonyl group is bonded continuously
  • A represents a 1,4-cyclohexylene group, a 1,4-phenylene group or a tetrahydropyran-2,5-diyl group, and when A represents a 1,4-phenylene group,
  • R 7 and R 8 are each independently an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or the number of carbon atoms It preferably represents an alkenyloxy group having 2 to 8 carbon atoms, but preferably represents an alkyl group having 1 to 8 carbon atoms or an alkenyl group having 2 to 8 carbon atoms, and represents an alkyl group having 1 to 8 carbon atoms. More preferably, it represents an alkyl group having 2 to 5 carbon atoms, more preferably represents an alkyl group having 3 to 5 carbon atoms, and R 1 and R 2 have different carbon atoms. Is most preferred, and is preferably linear.
  • alkenyl group is preferable when importance is placed on improving the response speed of the display element, and an alkyl group is preferred when reliability such as voltage holding ratio is important.
  • alkenyl group the following formulas (i) to (iv)
  • X 1 to X 6 preferably each independently represent a hydrogen atom or a fluorine atom, but preferably 1 to 5 represent a fluorine atom, and preferably 1 to 4 represent a fluorine atom. More preferably, one to three represents a fluorine atom, more preferably one to two represents a fluorine atom, and most preferably two represent a fluorine atom.
  • any one of X 3 to X 6 preferably represents a fluorine atom, and more preferably X 3 or X 4 represents a fluorine atom.
  • any two of X 3 to X 6 preferably represent a fluorine atom, and X 3 and X 4 represent a fluorine atom or X 5 and X 6 represent a fluorine atom. More preferably, X 3 and X 4 more preferably represent a fluorine atom.
  • At least X 3 and X 4 preferably represent a fluorine atom, or at least X 5 and X 6 preferably represent a fluorine atom, and at least X 3 and X 4 represent a fluorine atom. Is more preferable.
  • a 2 preferably represents a 1,4-cyclohexylene group, a 1,4-phenylene group or a tetrahydropyran-2,5-diyl group, but is prepared using the liquid crystal composition.
  • the driving voltage when the driving voltage is considered important, it preferably represents a 1,4-phenylene group or a tetrahydropyran-2,5-diyl group, and more preferably represents a tetrahydropyran-2,5-diyl group.
  • the operating temperature range is important, that is, when a high operating temperature range is required, it preferably represents a 1,4-cyclohexylene group or a tetrahydropyran-2,5-diyl group, and the 1,4-cyclohexylene group More preferably it represents.
  • one or more hydrogen atoms in the benzene ring may be substituted with fluorine atoms, but are preferably unsubstituted, mono- or di-substituted, and in the case of di-substitution Preferably represents 2,3-difluorobenzene.
  • Z 1 is a single bond, -OCH 2 -, - OCF 2 -, - CH 2 O-, or represents a -CF 2 O-, a single bond, -OCF 2 - or -CF 2 O— is preferably represented, more preferably a single bond.
  • n 0 or 1, but preferably 0 when the response speed is important, and 1 when the operating temperature range is important, that is, when a high operating temperature range is required. It is preferable to represent.
  • the compounds represented by general formula (V) are specifically the following general formulas (V-1) to (V-15)
  • R 7 has the same meaning as R 7 in the general formula (V)
  • R 8 represents the same meaning as R 8 in the general formula (V).
  • the compounds represented by formula (V-1), formula (V-3) to formula (V-9) and formula (V-12) to formula (V-15) are more preferred, -1), formula (V-3), formula (V-5), formula (V-6), formula (V-9), formula (V-12) and formula (V-15) are more preferred, (V-1), Formula (V-5), and Formula (V-6) are particularly preferable, and Formula (V-5) is most preferable.
  • the content of the compound represented by the formula (V-5) Is preferably 50% by weight or more in the compound represented by the general formula (V), more preferably 70% by weight or more, still more preferably 80% by weight or more, and 90% by weight or more. It is particularly preferred that
  • R 7 and R 8 in formula (V) are each independently an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or the number of carbon atoms Represents an alkenyloxy group having 2 to 8 carbon atoms, preferably an alkyl group having 1 to 8 carbon atoms or an alkenyl group having 2 to 8 carbon atoms, preferably an alkyl group having 2 to 5 carbon atoms or 2 carbon atoms.
  • the number of carbon atoms is preferably different.
  • compound R 8 represents a compound or R 7 butyl R 7 represents R 8 is an ethyl group represents a propyl group represents an ethyl group are preferred.
  • the liquid crystal composition of the present invention can be used in a wide range of nematic phase-isotropic liquid phase transition temperature (T NI ), preferably 60 to 120 ° C., preferably 70 to 100 ° C. More preferred is 70 to 90 ° C.
  • T NI nematic phase-isotropic liquid phase transition temperature
  • the liquid crystal composition of the present invention essentially comprises the compounds of the formula (I) and the general formula (II).
  • the compounds represented by the general formulas (III) to (V) Can be contained. In this case, the content described below is preferable.
  • the total content of these compounds is preferably 35% by mass to 80% by mass, and 40-70% by mass. % Is more preferable, 45 to 70% by mass is further preferable, and 50% to 65% by mass is particularly preferable.
  • the total content of these compounds is preferably 40 to 80% by mass, and 45 to 75% by mass. More preferred is 50% by mass to 70% by mass, and particularly preferred is 55 to 65% by mass.
  • the total content of these compounds is preferably 55 to 95% by mass, and 60 to 90% by mass. More preferably, 65% by mass to 85% by mass is further preferable, and 70% by mass to 80% by mass is particularly preferable.
  • the total content of these compounds is preferably 50 to 95% by mass, It is more preferably 55 to 90% by mass, still more preferably 60 to 80% by mass, and particularly preferably 65 to 75% by mass.
  • the total content of these compounds is preferably 70 to 99% by mass, It is more preferably 75 to 97% by mass, still more preferably 80 to 96% by mass, and particularly preferably 85 to 95% by mass.
  • the total content of these compounds is 85 to 100 mass% is preferable, 90 to 100 mass% is more preferable, and 95 to 100 mass% is still more preferable.
  • the total content of these compounds is preferably 90 to 100% by mass, and 95 to 100% by mass. % Is more preferable, 97 to 100% by mass is further preferable, and 98 to 100% by mass is particularly preferable.
  • the proportion of the compound represented by formula (V) having one or more fluorine atoms is preferably 40 to 70% by mass, more preferably 45 to 65% by mass, and further 50 to 60% by mass in the liquid crystal composition. More preferably, more specifically, 50% by mass to 60% by mass is preferable when the response speed is important, and 40 to 50% by mass is preferable when the driving voltage is important.
  • the liquid crystal composition of the present invention can further contain a compound selected from the group of compounds represented by formulas (VI-a) to (VI-e).
  • R 91 to R 9a each independently represents an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms or an alkenyl group having 2 to 10 carbon atoms, In VI-a), compounds wherein R 91 represents an alkyl group having 3 carbon atoms and R 92 represents an alkyl group having 2 carbon atoms are excluded.
  • a compound selected from the group of compounds represented by general formula (VI-a) to general formula (VI-e) is contained, it is preferably contained in 1 to 10 types, and preferably in 1 to 8 types. Particularly preferably, 1 to 5 types are contained, particularly preferably 2 or more types of compounds are contained. In this case, the content is preferably 5 to 40% by mass, and 5 to 35% by mass. More preferably, it is particularly preferably 7 to 30% by mass.
  • R 91 to R 9a each independently preferably represents an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or an alkoxy group having 2 to 10 carbon atoms. More preferably an alkyl group having 2 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkoxy group having 2 to 5 carbon atoms.
  • an alkenyl group the following formulas (i) to (iv) )
  • R 91 and R 92 may be the same or different, but preferably represent different substituents.
  • the compounds represented by the formulas (VI-a) to (VI-e) are more preferably the compounds described below.
  • Formula (VI-a1), Formula (VI-a2), Formula (VI-a3), Formula (VI-a-4), Formula (VI-a5), Formula (VI-a-6), Formula (VI-b2), Formula (VI-b6), Formula (VI-c2), Formula (II-c4), Formula (VI-c5), Formula (VI-d1) to Formula (VI-d4) and Formula A compound represented by (VI-e2) is preferred.
  • the compound represented by the general formula (VI) is common to the compound represented by the formula (I) in that the dielectric anisotropy is almost 0, but the compound represented by the formula (I)
  • the ratio of the compound represented by the general formula (VI) is the total content of the compound represented by the formula (I) and the compound represented by the general formula (VI) in the liquid crystal composition. Is preferably 30 to 75% by mass, more preferably 35 to 70% by mass, and particularly preferably 30 to 65% by mass.
  • the total content of the formula (I) and the general formula (VI) is preferably 10 to 70% by mass, more preferably 15 to 65% by mass, of the total content of the composition.
  • the content is more preferably 20 to 60% by mass, further preferably 25 to 55% by mass, and particularly preferably 30 to 50% by mass.
  • the 1,4-cyclohexyl group in the present application is preferably a trans-1,4-cyclohexyl group.
  • the liquid crystal composition according to the present invention comprises the compounds represented by the formula (I) and the general formula (II) as essential components, and further includes those represented by the general formulas (III) to (V) and the general formula ( The compounds represented by VI-a) to general formula (VI-e) can be contained.
  • the total content of the compounds represented by formula (I), general formula (II) to general formula (V) and general formula (VI-a) to general formula (VI-d) contained in the liquid crystal composition is:
  • the lower limit is preferably 60% by weight, preferably 65% by weight, preferably 70% by weight, preferably 75% by weight, preferably 80% by weight, 85% by weight, preferably 90% by weight, and preferably 92% by weight.
  • 95 mass%, 98 mass% is preferable, 99 mass% is preferable, and 100 mass% is preferable as an upper limit, and 99.5 mass% is preferable.
  • the content of a compound in which all the ring structures in the molecule are 6-membered rings is 80 It is preferably at least mass%, more preferably at least 90 mass%, even more preferably at least 95 mass%, and the liquid crystal is composed only of a compound having substantially all 6-membered ring structures in the molecule. Most preferably it constitutes a composition.
  • the content of the compound having a cyclohexenylene group is determined based on the total mass of the composition.
  • the content is preferably 10% by mass or less, more preferably 5% by mass or less, and still more preferably substantially not contained.
  • the content of a compound having a 2-methylbenzene-1,4-diyl group in the molecule, in which a hydrogen atom may be substituted with a halogen may be reduced.
  • the content of the compound having a 2-methylbenzene-1,4-diyl group in the molecule is preferably 10% by mass or less, and preferably 5% by mass or less based on the total mass of the composition. Is more preferable, and it is still more preferable not to contain substantially.
  • the content of the compound having a carbonyl group is preferably 5% by mass or less with respect to the total mass of the composition, and 3% by mass or less. More preferably, it is more preferable to set it as 1 mass% or less, and it is most preferable not to contain substantially.
  • the value of the dielectric anisotropy ⁇ of the liquid crystal composition in the present invention is preferably ⁇ 2.0 to ⁇ 6.0, more preferably ⁇ 2.5 to ⁇ 5.0 at 25 ° C.
  • it is preferably from ⁇ 2.5 to ⁇ 4.0, but more specifically, it is preferably from ⁇ 2.5 to ⁇ 3.4 when the response speed is important, and the drive voltage is When importance is attached, it is preferably -3.4 to -4.0.
  • the value of the refractive index anisotropy ⁇ n of the liquid crystal composition in the present invention is preferably 0.08 to 0.13 at 25 ° C., more preferably 0.09 to 0.12. More specifically, it is preferably 0.10 to 0.12 when corresponding to a thin cell gap, and preferably 0.08 to 0.10 when corresponding to a thick cell gap.
  • the rotational viscosity ( ⁇ 1 ) of the liquid crystal composition in the invention is preferably 150 or less, more preferably 130 or less, and particularly preferably 120 or less.
  • Z as a function of rotational viscosity and refractive index anisotropy shows a specific value.
  • ⁇ 1 represents rotational viscosity
  • ⁇ n represents refractive index anisotropy.
  • Z is preferably 13000 or less, more preferably 12000 or less, and particularly preferably 11000 or less.
  • the liquid crystal composition of the present invention in the case of using the active matrix display device, it is necessary to have a 10 12 ( ⁇ ⁇ m) or more in specific resistance, 10 13 ( ⁇ ⁇ m) is preferable, 10 14 ( ⁇ ⁇ m) or more is more preferable.
  • the liquid crystal composition of the present invention may contain a normal nematic liquid crystal, a smectic liquid crystal, a cholesteric liquid crystal, an antioxidant, an ultraviolet absorber, a polymerizable monomer, etc., in addition to the above-described compounds,
  • a normal nematic liquid crystal a smectic liquid crystal, a cholesteric liquid crystal, an antioxidant, an ultraviolet absorber, a polymerizable monomer, etc.
  • a naphthalene ring may be included. It is desirable that the molecule does not have a condensed ring having a long conjugated length and an absorption peak in the ultraviolet region.
  • X 7 and X 8 each independently represent a hydrogen atom or a methyl group
  • Sp 1 and Sp 2 are each independently a single bond, an alkylene group having 1 to 8 carbon atoms, or —O— (CH 2 ) s — (wherein s represents an integer of 2 to 7, Represents an aromatic ring).
  • Z 2 represents —OCH 2 —, —CH 2 O—, —COO—, —OCO—, —CF 2 O—, —OCF 2 —, —CH 2 CH 2 —, —CF 2 CF 2 —, —CH ⁇ CH—COO—, —CH ⁇ CH—OCO—, —COO—CH ⁇ CH—, —OCO—CH ⁇ CH—, —COO—CH 2 CH 2 —, —OCO—CH 2 CH 2 —, —CH 2 CH 2 —COO—, —CH 2 CH 2 —OCO—, —COO—CH 2 —, —OCO—CH 2 —, —CH 2 —COO—, —CH 2 —OCO—, —CY 1 ⁇ CY 2 — (Wherein Y 1 and Y 2 each independently represents a fluorine atom or a hydrogen atom), —C ⁇ C— or a single bond; B represents a 1,4-phenylene group,
  • X 7 and X 8 are both diacrylate derivatives each representing a hydrogen atom, and both are dimethacrylate derivatives having a methyl group, and compounds in which one represents a hydrogen atom and the other represents a methyl group are also preferred.
  • diacrylate derivatives are the fastest, dimethacrylate derivatives are slow, asymmetric compounds are in the middle, and a preferred embodiment can be used depending on the application.
  • a dimethacrylate derivative is particularly preferable.
  • Sp 1 and Sp 2 each independently represent a single bond, an alkylene group having 1 to 8 carbon atoms or —O— (CH 2 ) s —, but at least one of them is a single bond in a PSA display element.
  • a compound in which both represent a single bond or one in which one represents a single bond and the other represents an alkylene group having 1 to 8 carbon atoms or —O— (CH 2 ) s — is preferable.
  • 1 to 4 alkyl groups are preferable, and s is preferably 1 to 4.
  • Z 1 is —OCH 2 —, —CH 2 O—, —COO—, —OCO—, —CF 2 O—, —OCF 2 —, —CH 2 CH 2 —, —CF 2 CF 2 — or a single bond
  • —COO—, —OCO— or a single bond is more preferred, and a single bond is particularly preferred.
  • B represents a 1,4-phenylene group, a trans-1,4-cyclohexylene group or a single bond in which any hydrogen atom may be substituted with a fluorine atom, and a 1,4-phenylene group or a single bond is preferred.
  • Z 2 is preferably a linking group other than a single bond
  • Z 1 is preferably a single bond.
  • the ring structure between Sp 1 and Sp 2 is specifically preferably the structure described below.
  • Polymerizable compounds containing these skeletons are optimal for PSA-type liquid crystal display elements because of their ability to regulate alignment after polymerization, and display alignment is suppressed, or display unevenness is suppressed or does not occur at all.
  • general formula (VII-1) to general formula (VII-4) are particularly preferable, and among these, general formula (VII-2) is most preferable.
  • the polymerization proceeds even when no polymerization initiator is present, but may contain a polymerization initiator in order to accelerate the polymerization.
  • the polymerization initiator include benzoin ethers, benzophenones, acetophenones, benzyl ketals, acylphosphine oxides, and the like.
  • a stabilizer may be added in order to improve storage stability.
  • Examples of the stabilizer that can be used include hydroquinones, hydroquinone monoalkyl ethers, tert-butylcatechols, pyrogallols, thiophenols, nitro compounds, ⁇ -naphthylamines, ⁇ -naphthols, nitroso compounds, and the like. It is done.
  • the polymerizable compound-containing liquid crystal composition of the present invention is useful for a liquid crystal display device, particularly useful for a liquid crystal display device for active matrix driving, and a liquid crystal display for PSA mode, PSVA mode, VA mode, IPS mode or ECB mode. It can be used for an element.
  • the polymerizable compound-containing liquid crystal composition of the present invention is provided with liquid crystal alignment ability by polymerizing the polymerizable compound contained therein by ultraviolet irradiation, and controls the amount of light transmitted using the birefringence of the liquid crystal composition.
  • liquid crystal display elements used for liquid crystal display elements.
  • AM-LCD active matrix liquid crystal display element
  • TN nematic liquid crystal display element
  • STN-LCD super twisted nematic liquid crystal display element
  • OCB-LCD and IPS-LCD in-plane switching liquid crystal display element
  • the two substrates of the liquid crystal cell used in the liquid crystal display element can be made of a transparent material having flexibility such as glass or plastic, and one of them can be an opaque material such as silicon.
  • a transparent substrate having a transparent electrode layer can be obtained, for example, by sputtering indium tin oxide (ITO) on a transparent substrate such as a glass plate.
  • the substrate is opposed so that the transparent electrode layer is on the inside.
  • the thickness of the obtained light control layer is 1 to 100 ⁇ m. More preferably, the thickness is 1.5 to 10 ⁇ m.
  • the polarizing plate it is preferable to adjust the product of the refractive index anisotropy ⁇ n of the liquid crystal and the cell thickness d so that the contrast is maximized.
  • the polarizing axis of each polarizing plate can be adjusted so that the viewing angle and contrast are good.
  • a retardation film for widening the viewing angle can also be used.
  • the spacer examples include glass particles, plastic particles, alumina particles, and a photoresist material.
  • a sealant such as an epoxy thermosetting composition is screen-printed on the substrates with a liquid crystal inlet provided, the substrates are bonded together, and heated to thermally cure the sealant.
  • a normal vacuum injection method or an ODF method can be used as a method of sandwiching the polymerizable compound-containing liquid crystal composition between two substrates. Although it has the subject which remains after, in this invention, it can use suitably by the display element manufactured using ODF method.
  • an appropriate polymerization rate is desirable in order to obtain good alignment performance of liquid crystals. Therefore, active energy rays such as ultraviolet rays or electron beams are irradiated singly or in combination or sequentially.
  • the method of polymerizing by is preferred.
  • ultraviolet rays When ultraviolet rays are used, a polarized light source or a non-polarized light source may be used.
  • the polymerization is performed in a state where the polymerizable compound-containing liquid crystal composition is sandwiched between two substrates, at least the substrate on the irradiation surface side must be given appropriate transparency to the active energy rays. I must.
  • the orientation state of the unpolymerized part is changed by changing conditions such as an electric field, a magnetic field, or temperature, and further irradiation with active energy rays is performed. Then, it is possible to use a means for polymerization.
  • a means for polymerization In particular, when ultraviolet exposure is performed, it is preferable to perform ultraviolet exposure while applying an alternating electric field to the polymerizable compound-containing liquid crystal composition.
  • the alternating electric field to be applied is preferably an alternating current having a frequency of 10 Hz to 10 kHz, more preferably a frequency of 60 Hz to 10 kHz, and the voltage is selected depending on a desired pretilt angle of the liquid crystal display element. That is, the pretilt angle of the liquid crystal display element can be controlled by the applied voltage. In the MVA mode liquid crystal display element, the pretilt angle is preferably controlled from 80 degrees to 89.9 degrees from the viewpoint of alignment stability and contrast.
  • the temperature during irradiation is preferably within a temperature range in which the liquid crystal state of the liquid crystal composition of the present invention is maintained. Polymerization is preferably performed at a temperature close to room temperature, that is, typically at a temperature of 15 to 35 ° C.
  • a lamp for generating ultraviolet rays a metal halide lamp, a high-pressure mercury lamp, an ultra-high pressure mercury lamp, or the like can be used.
  • a wavelength of the ultraviolet-rays to irradiate it is preferable to irradiate the ultraviolet-ray of the wavelength range which is not the absorption wavelength range of a liquid crystal composition, and it is preferable to cut and use an ultraviolet-ray as needed.
  • Intensity of ultraviolet irradiation is preferably from 0.1mW / cm 2 ⁇ 100W / cm 2, 2mW / cm 2 ⁇ 50W / cm 2 is more preferable.
  • the amount of energy of ultraviolet rays to be irradiated can be adjusted as appropriate, but is preferably 10 mJ / cm 2 to 500 J / cm 2, and more preferably 100 mJ / cm 2 to 200 J / cm 2 .
  • the intensity may be changed.
  • the time for irradiating with ultraviolet rays is appropriately selected depending on the intensity of the irradiated ultraviolet rays, but is preferably from 10 seconds to 3600 seconds, and more preferably from 10 seconds to 600 seconds.
  • the liquid crystal display element of the present invention includes a first substrate having a common electrode made of a transparent conductive material, a pixel electrode made of a transparent conductive material, and a pixel electrode provided in each pixel. And a liquid crystal composition sandwiched between the first substrate and the second substrate, the liquid crystal molecules in the liquid crystal composition when no voltage is applied.
  • a liquid crystal display element whose orientation is substantially perpendicular to the substrate, wherein the liquid crystal composition of the present invention is used as the liquid crystal composition.
  • dripping marks is greatly affected by the injected liquid crystal material, but the influence is unavoidable depending on the configuration of the display element.
  • color filters, thin film transistors, and the like formed in a liquid crystal display element affect the generation of drop marks depending on the combination because only a thin alignment film, a transparent electrode, and the like have members that separate the liquid crystal composition.
  • the drain electrode is formed so as to cover the gate electrode.
  • the drain electrode is formed of a metal material such as copper, aluminum, chromium, titanium, molybdenum, and tantalum, and is generally subjected to passivation treatment.
  • the protective film is generally thin, the alignment film is also thin, and there is a high possibility that the ionic substance is not blocked, generation of a drop mark due to the interaction between the metal material and the liquid crystal composition cannot be avoided.
  • the thin film transistor can be suitably used for a liquid crystal display element of an inverted staggered type, and is preferable when an aluminum wiring is used.
  • the liquid crystal display device using the liquid crystal composition of the present invention is useful for achieving both high-speed response and suppression of display failure, and is particularly useful for a liquid crystal display device for active matrix driving, including VA mode, PSVA mode, Applicable for PSA mode, IPS mode or ECB mode.
  • the measured characteristics are as follows.
  • T ni Nematic phase-isotropic liquid phase transition temperature (° C.) ⁇ n: refractive index anisotropy at 25 ° C. ⁇ : dielectric anisotropy at 25 ° C. ⁇ : viscosity at 20 ° C. (mPa ⁇ s) ⁇ 1 : rotational viscosity at 25 ° C. (mPa ⁇ s) VHR: Voltage holding ratio (%) at 60 ° C. under conditions of frequency 60 Hz and applied voltage 1 V Burn-in: The burn-in evaluation of the liquid crystal display element is based on the following four-level evaluation of the afterimage level of the fixed pattern when the predetermined fixed pattern is displayed in the display area for 1000 hours and then the entire screen is uniformly displayed. went.
  • the process suitability is that the liquid crystal is dropped by 50 pL at a time using a constant volume metering pump 100000 times in the ODF process, and the following “0 to 100 times, 101 to 200 times, 201 to 300 times, ..., 99901 to 100,000 times ”, the change in the amount of liquid crystal dropped 100 times each was evaluated in the following four stages.
  • Example 1 A liquid crystal composition having the following composition was prepared and measured for physical properties. The results are shown in the following table.
  • the VA liquid crystal display element shown in FIG. 1 was produced.
  • This liquid crystal display element has an inverted staggered thin film transistor as an active element.
  • the liquid crystal composition was injected by a dropping method, and image sticking, dropping marks, process suitability, and solubility at low temperatures were evaluated.
  • the liquid crystal composition of Example 1 has a liquid crystal phase temperature range of 75.2 ° C. that is practical as a liquid crystal composition for TV, has an absolute value of large dielectric anisotropy, low viscosity, and an optimal ⁇ n. It can be seen that Using the liquid crystal composition described in Example 1, the VA liquid crystal display element shown in FIG. 1 was prepared, and the image sticking, dripping marks, process suitability, and solubility at low temperatures were evaluated by the methods described above. The evaluation results are shown. (Comparative Example 1) Does not contain the compound represented by the formula (I), and has a liquid crystal phase temperature range equivalent to the composition of Example 1, an equivalent value of refractive index anisotropy, and an equivalent value of dielectric anisotropy. The liquid crystal composition shown below was prepared, and the physical properties thereof were measured. The results are shown in the following table.
  • the liquid crystal composition not containing the compound represented by the formula (I) (Comparative Example 1) is equivalent to the liquid crystal composition containing the compound represented by the formula (I) (Example 1). Although it has a temperature range, an equivalent value of refractive index anisotropy, and an equivalent value of dielectric anisotropy, it has been shown that the viscosity ⁇ increases. As for ⁇ 1, 134 mPa ⁇ s, which is the value of Comparative Example 1, is higher than 121 mPa ⁇ s, which is the value of Example 1, and is a parameter representing an effective response speed in the liquid crystal display element and the display. It resulted inferior compared with the value of .gamma.1 / [Delta] n 2 is.
  • the liquid crystal composition (Comparative Example 2) and the compound represented by the general formula (II-2) designed to have the same liquid crystal phase temperature range and the same refractive index as the composition of Example 1
  • a liquid crystal composition shown below (Comparative Example 3) designed to have an anisotropy value and an equivalent dielectric anisotropy value was prepared, and its physical property value was measured. The results are shown in the following table.
  • a liquid crystal composition containing no compound represented by general formula (II-1) (Comparative Example 2) was a liquid crystal composition containing 14% by mass of a compound represented by general formula (II-1) (Example 1). ), The viscosity ⁇ and the rotational viscosity ⁇ 1 are increased, although they have the same liquid crystal phase temperature range, the same value of refractive index anisotropy, and the same value of dielectric anisotropy. While the initial VHR of Comparative Example 2 was 99.1%, the VHR after standing at high temperature for 1 hour at 150 ° C. was 97.2%, which was inferior to that of Example 1. It was. When the process suitability was evaluated, the change was unacceptable as compared with Example 1. When the solubility at a low temperature was evaluated, precipitation was observed earlier than in Example 1.
  • the liquid crystal composition not containing the compound represented by the general formula (II-2) was a liquid crystal composition containing 7.5% by mass of the compound represented by the general formula (II-2) (practical example 3).
  • Example 1 Compared with Example 1), it has an equivalent liquid crystal phase temperature range, an equivalent value of refractive index anisotropy, and an equivalent value of dielectric anisotropy, but increases viscosity ⁇ and rotational viscosity ⁇ 1. It was.
  • the initial VHR of Comparative Example 2 was 99.0%, whereas the VHR after standing at high temperature for 1 hour at 150 ° C. was 97.3%, which was inferior to that of Example 1. It was. When the process suitability was evaluated, the change was unacceptable as compared with Example 1.
  • Example 2 When the solubility at a low temperature was evaluated, precipitation was observed earlier than in Example 1.
  • Example 3 A liquid crystal composition having the following composition designed to have the same liquid crystal phase temperature range, equivalent refractive index anisotropy value and equivalent dielectric anisotropy value as the composition of Example 1 was prepared. The physical property values were measured. The results are shown in the following table.
  • Example 2 Using the liquid crystal compositions of Examples 2 and 3, a VA liquid crystal display device was produced in the same manner as in Example 1, and the results of evaluation of image sticking, dripping marks, process suitability, and solubility at low temperatures were the same. Shown in
  • the liquid crystal compositions of Examples 2 and 3 have a practical liquid crystal phase temperature range as a liquid crystal composition for TV, a large absolute value of dielectric anisotropy, a low viscosity and an optimal ⁇ n.
  • the VA liquid crystal display element shown in FIG. 1 was prepared and evaluated for image sticking, dripping marks, process suitability, and solubility at low temperatures by the methods described above. The evaluation results were shown.
  • Examples 4 and 5 A liquid crystal composition having the following composition designed to have the same liquid crystal phase temperature range, equivalent refractive index anisotropy value and equivalent dielectric anisotropy value as the composition of Example 1 was prepared. The physical property values were measured. The results are shown in the following table.
  • a VA liquid crystal display device was prepared in the same manner as in Example 1, and the results of evaluation of image sticking, dripping marks, process suitability, and solubility at low temperatures were the same. Shown in
  • the liquid crystal compositions of Examples 4 and 5 have a practical liquid crystal phase temperature range as a liquid crystal composition for TV, a large absolute value of dielectric anisotropy, a low viscosity and an optimal ⁇ n.
  • the VA liquid crystal display element shown in FIG. 1 was prepared and evaluated for image sticking, dripping marks, process suitability, and solubility at low temperatures by the methods described above. The evaluation results were shown.
  • Example 6 It has a liquid crystal phase temperature range equivalent to the composition of Example 1 and a value of refractive index anisotropy, and has a larger absolute value of dielectric anisotropy than the composition of Example 1, that is, a low voltage.
  • a liquid crystal composition having the following composition designed to be compatible with driving was prepared, and its physical property values were measured. The results are shown in the following table.
  • Example 6 Using the liquid crystal composition of Example 6, a VA liquid crystal display device was prepared in the same manner as in Example 1, and the results of evaluation of image sticking, dripping marks, process suitability, and solubility at low temperatures are shown in the same table. .
  • the liquid crystal composition of Example 6 has a practical liquid crystal phase temperature range as a liquid crystal composition for TV, a large absolute value of dielectric anisotropy for low voltage driving, low viscosity, and an optimal ⁇ n. It can be seen that Using the liquid crystal composition described in Example 6, the VA liquid crystal display element illustrated in FIG. 1 was prepared and evaluated for image sticking, dripping marks, process suitability, and solubility at low temperatures by the above-described methods. Results are shown. (Comparative Examples 4 and 5) Does not contain the compound represented by the formula (I), and has the same liquid crystal phase temperature range, equivalent refractive index anisotropy value and equivalent dielectric anisotropy value as the composition of Example 6.
  • the liquid crystal composition designed in (Comparative Example 4) and the compound represented by the general formula (II-1) were not contained, but the liquid crystal phase temperature range equivalent to the composition of Example 6 and the equivalent refractive index anisotropy were obtained.
  • a liquid crystal composition (Comparative Example 5) designed so as to have the same value of dielectric anisotropy and a physical property value thereof were measured. The results are shown in the following table.
  • the liquid crystal composition not containing the compound represented by the general formula (I) (Comparative Example 4) is compared with the liquid crystal composition containing 20% of the compound represented by the general formula (I) (Example 6). It has been shown that the viscosity ⁇ and the rotational viscosity ⁇ 1 are increased although they have the same liquid crystal phase temperature range, the same value of refractive index anisotropy, and the same value of dielectric anisotropy.
  • the initial VHR of Comparative Example 3 was 98.9%, while the VHR after high temperature standing at 150 ° C. for 1 hour was 97.3%, which was inferior to Example 6. . When the process suitability was evaluated, the change was unacceptable compared to Example 6. When the solubility at low temperature was evaluated, precipitation was observed earlier than in Example 6.
  • the liquid crystal composition not containing the compound represented by the general formula (II) (Comparative Example 5) was compared with the liquid crystal composition containing 19% of the compound represented by the general formula (II) (Example 6). It has been shown that the viscosity ⁇ and the rotational viscosity ⁇ 1 are increased although they have the same liquid crystal phase temperature range, the same value of refractive index anisotropy, and the same value of dielectric anisotropy.
  • the initial VHR of Comparative Example 3 was 99.0%, whereas the VHR after high temperature standing at 150 ° C. for 1 hour was 97.4%, which was inferior to that of Example 6. . When the process suitability was evaluated, the change was unacceptable compared to Example 6.
  • Example 6 Does not contain the compound represented by the general formula (II-2) and has the same liquid crystal phase temperature range, equivalent refractive index anisotropy value and equivalent dielectric anisotropy value as the composition of Example 6.
  • a liquid crystal composition (Comparative Example 6) designed to have the above was prepared, and its physical property values were measured. The results are shown in the following table.
  • a liquid crystal composition containing no compound represented by general formula (II-2) (Comparative Example 6) was a liquid crystal composition containing 13% of a compound represented by general formula (II-2) (Example 6).
  • the initial VHR of Comparative Example 3 was 98.7%, whereas the VHR after high temperature standing at 150 ° C. for 1 hour was 97.1%, which was inferior to Example 6. .
  • the change was unacceptable compared to Example 6.
  • Example 7 A liquid crystal composition having the following composition designed to have the same liquid crystal phase temperature range, equivalent refractive index anisotropy value and equivalent dielectric anisotropy value as the composition of Example 6 was prepared. The physical property values were measured. The results are shown in the following table.
  • Example 7 Using the liquid crystal compositions of Examples 7 and 8, a VA liquid crystal display device was produced in the same manner as in Example 1, and the results of evaluation of image sticking, dripping marks, process suitability, and solubility at low temperatures were the same. Shown in
  • the liquid crystal compositions of Examples 7 and 8 have a practical liquid crystal phase temperature range as a liquid crystal composition for TV, a large absolute value of dielectric anisotropy, a low viscosity and an optimal ⁇ n.
  • the VA liquid crystal display element shown in FIG. 1 was prepared and evaluated for image sticking, dripping marks, process suitability, and solubility at low temperatures by the methods described above. The evaluation results were shown.
  • Examples 9 and 10 A liquid crystal composition having the following composition designed to have a liquid crystal phase temperature range equivalent to the compositions of Examples 6 to 8, an equivalent value of refractive index anisotropy, and an equivalent value of dielectric anisotropy was prepared and the physical properties thereof were measured. The results are shown in the following table.
  • Example 10 Using the liquid crystal compositions of Examples 9 and 10, a VA liquid crystal display device was produced in the same manner as in Example 1, and the results of evaluation of image sticking, dripping marks, process suitability, and solubility at low temperatures were the same. Shown in
  • the liquid crystal compositions of Examples 9 and 10 have a practical liquid crystal phase temperature range as a liquid crystal composition for TV, a large absolute value of dielectric anisotropy, a low viscosity, and an optimal ⁇ n.
  • the VA liquid crystal display element illustrated in FIG. 1 was prepared and evaluated for image sticking, dripping marks, process suitability, and solubility at low temperatures by the above-described methods. The evaluation results were shown.
  • Example 11 Liquid crystal composition having the following composition designed to have a liquid crystal phase temperature range equivalent to the compositions of Examples 6 to 10, equivalent refractive index anisotropy value, and equivalent dielectric anisotropy value was prepared and the physical properties thereof were measured. The results are shown in the following table.
  • Example 11 Using the liquid crystal composition of Example 11, a VA liquid crystal display device was produced in the same manner as in Example 1, and the results of evaluation of image sticking, dripping marks, process suitability, and solubility at low temperatures are shown in the same table. .
  • the liquid crystal composition of Example 11 has a practical liquid crystal phase temperature range as a liquid crystal composition for TV, has a large absolute value of dielectric anisotropy, has a low viscosity, and an optimal ⁇ n. I understand that.
  • the VA liquid crystal display element illustrated in FIG. 1 was prepared and evaluated for image sticking, dripping marks, process suitability, and solubility at low temperatures by the above-described methods. Results are shown. (Comparative Examples 7 and 8) It does not contain the compound represented by the formula (I), and has a liquid crystal phase temperature range equivalent to the composition of Example 11, an equivalent value of refractive index anisotropy, and an equivalent value of dielectric anisotropy.
  • the liquid crystal composition designed in (Comparative Example 7) and the compound represented by the general formula (II-1) were not contained, the liquid crystal phase temperature range equivalent to the composition of Example 11, and the equivalent refractive index anisotropy And a liquid crystal composition (Comparative Example 8) designed so as to have the same value of dielectric anisotropy and a physical property value thereof were measured.
  • the results are shown in the following table.
  • the liquid crystal composition not containing the compound represented by the general formula (I) (Comparative Example 7) is compared with the liquid crystal composition containing 23% of the compound represented by the general formula (I) (Example 11). It has been shown that the viscosity ⁇ and the rotational viscosity ⁇ 1 are increased although they have the same liquid crystal phase temperature range, the same value of refractive index anisotropy, and the same value of dielectric anisotropy.
  • the initial VHR of Comparative Example 3 was 98.7%, whereas the VHR after standing at high temperature for 1 hour at 150 ° C. was 97.1%, which was inferior to that of Example 11. . When the process suitability was evaluated, the change was unacceptable as compared with Example 11. When the solubility at a low temperature was evaluated, precipitation was observed earlier than in Example 11.
  • a liquid crystal composition containing no compound represented by the general formula (II-1) (Comparative Example 8) was a liquid crystal composition containing 18% of the compound represented by the general formula (II-1) (Example 11).
  • the initial VHR of Comparative Example 6 was 99.1%, whereas the VHR after being left at a high temperature of 150 ° C. for 1 hour was 97.6%, which was inferior to Example 11. .
  • the change was unacceptable as compared with Example 11.
  • Example 9 Does not contain the compound represented by the general formula (II-2) and has the same liquid crystal phase temperature range, equivalent refractive index anisotropy value and equivalent dielectric anisotropy value as the composition of Example 11.
  • a liquid crystal composition (Comparative Example 9) designed to have the above was prepared, and the physical properties thereof were measured. The results are shown in the following table.
  • the liquid crystal composition not containing the compound represented by the general formula (II-2) was a liquid crystal composition containing 15% by mass of the compound represented by the general formula (II-2) (Example 11). ),
  • the viscosity ⁇ and the rotational viscosity ⁇ 1 are increased, although they have the same liquid crystal phase temperature range, the same value of refractive index anisotropy, and the same value of dielectric anisotropy.
  • the initial VHR of Comparative Example 3 was 99.2%, whereas the VHR after standing at high temperature for 1 hour at 150 ° C. was 97.4%, which was inferior to Example 11. . When the process suitability was evaluated, the change was unacceptable as compared with Example 11.
  • Example 12 When the solubility at a low temperature was evaluated, precipitation was observed earlier than in Example 11.
  • Example 12 and 13 A liquid crystal composition having the following composition designed to have the same liquid crystal phase temperature range, equivalent refractive index anisotropy value and equivalent dielectric anisotropy value as the composition of Example 11 was prepared. The physical property values were measured. The results are shown in the following table.
  • a VA liquid crystal display device was prepared in the same manner as in Example 1, and the results of evaluation of image sticking, dripping marks, process suitability, and solubility at low temperatures were the same. Shown in
  • the liquid crystal compositions of Examples 12 and 13 have a practical liquid crystal phase temperature range as a liquid crystal composition for TV, a large absolute value of dielectric anisotropy, a low viscosity and an optimal ⁇ n.
  • the VA liquid crystal display element shown in FIG. 1 was prepared and evaluated for image sticking, dripping marks, process suitability, and solubility at low temperatures by the methods described above. The evaluation results were shown.
  • Example 14 Liquid crystal composition having the following composition designed to have a liquid crystal phase temperature range equivalent to the compositions of Examples 6 to 13, an equivalent value of refractive index anisotropy, and an equivalent value of dielectric anisotropy was prepared and the physical properties thereof were measured. The results are shown in the following table.
  • Example 14 Using the liquid crystal compositions of Examples 14 and 15, a VA liquid crystal display device was produced in the same manner as in Example 1, and the results of evaluation of image sticking, dripping marks, process suitability, and solubility at low temperatures were the same. Shown in
  • the liquid crystal compositions of Examples 14 and 15 have a practical liquid crystal phase temperature range as a liquid crystal composition for TV, a large absolute value of dielectric anisotropy, a low viscosity and an optimal ⁇ n.
  • the VA liquid crystal display element illustrated in FIG. 1 was prepared and evaluated for image sticking, dripping marks, process suitability, and solubility at low temperatures by the method described above. The evaluation results were shown.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

 本発明は液晶表示素子に使用する液晶組成物に関するものである。 本発明が解決しようとする課題は、誘電率異方性、バルク粘度、ネマチック相上限温度、回転粘度γ、電圧保持率等の液晶表示素子としての諸特性及び表示素子の焼き付き特性を悪化させること無く、製造時の滴下痕が発生し難く、ODF工程における安定した液晶材料の吐出量を実現し、低温での良好な溶解性を有する液晶表示素子に適する液晶組成物を提供し、併せてその液晶組成物を用いた液晶表示素子を提供をすることである。 本発明は式(I)で表される化合物を含有し、一般式(II-1)で表される化合物を1種又は2種以上含有し、一般式(II-2)で表される化合物を1種又は2種以上含有する誘電率異方性が負の液晶組成物及び当該液晶組成物を用いた液晶表示素子に関するものである。

Description

液晶組成物及びそれを使用した液晶表示素子
 本願発明は液晶表示装置等の構成部材として有用な液晶組成物及び液晶表示素子に関する。
 液晶表示素子は、時計、電卓をはじめとして、各種測定機器、自動車用パネル、ワードプロセッサー、電子手帳、プリンター、コンピューター、テレビ、時計、広告表示板等に用いられるようになっている。液晶表示方式としては、その代表的なものにTN(ツイステッド・ネマチック)型、STN(スーパー・ツイステッド・ネマチック)型、TFT(薄膜トランジスタ)を用いたVA(垂直配向)型やIPS(イン・プレーン・スイッチング)型等がある。これらの液晶表示素子に用いられる液晶組成物は水分、空気、熱、光などの外的要因に対して安定であること、また、室温を中心としてできるだけ広い温度範囲で液晶相を示し、低粘性であり、かつ駆動電圧が低いことが求められる。さらに液晶組成物は個々の表示素子に対してあわせ最適な誘電率異方性(Δε)又は及び屈折率異方性(Δn)等を最適な値とするために、数種類から数十種類の化合物から構成されている。
 垂直配向型ディスプレイではΔεが負の液晶組成物が用いられており、液晶TV等に広く用いられている。一方、全ての駆動方式において低電圧駆動、高速応答、広い動作温度範囲が求められている。すなわち、Δεが正で絶対値が大きく、粘度(η)が小さく、高いネマチック相-等方性液体相転移温度(Tni)が要求されている。また、Δnとセルギャップ(d)との積であるΔn×dの設定から、液晶組成物のΔnをセルギャップに合わせて適当な範囲に調節する必要がある。加えて液晶表示素子をテレビ等へ応用する場合においては高速応答性が重視されるため、γの小さい液晶組成物が要求される。
従来、γの小さい液晶組成物を構成するためには、ジアルキルビシクロヘキサン骨格を有する化合物を用いることが一般的であった(特許文献1参照)。しかしながら、ビシクロヘキサン系化合物はγの低減には効果が高いものの、一般に蒸気圧が高くアルキル鎖長の短い化合物は特にその傾向が顕著である。又、Tniも低い傾向があることからそのため、アルキルビシクロヘキサン系化合物は側鎖長の合計が炭素原子数7以上の化合物を用いることが多く、側鎖長の短い化合物については十分な検討がなされていないのが実情であった。
 一方、液晶表示素子の用途が拡大するに至り、その使用方法、製造方法にも大きな変化が見られこれらに対応するためには、従来知られているような基本的な物性値以外の特性を最適化することが求められるようになった。すなわち、液晶組成物を使用する液晶表示素子はVA(垂直配向)型やIPS(イン・プレーン・スイッチング)型等が広く使用されるに至り、その大きさも50型以上の超大型サイズの表示素子が実用化されるに至り使用されるようになった。基板サイズの大型化に伴い、液晶組成物の基板への注入方法も従来の真空注入法から滴下注入(ODF:One Drop Fill)法が注入方法の主流となり(特許文献2参照)、液晶組成物を基板に滴下した際の滴下痕が表示品位の低下を招く問題が表面化するに至った。さらに、液晶表示素子中の液晶材料のプレチルト角の生成を高速応答性を目的に、PS液晶表示素子(polymer stabilized、ポリマー安定化)、PSA液晶表示素子(polymer sustained alignment、ポリマー維持配向)が開発され(特許文献3参照)、この問題はより大きな問題となっている。すなわち、これらの表示素子は液晶組成物中にモノマーを添加し、組成物中のモノマーを硬化させることに特徴を有する。アクティブマトリクス用液晶組成物は、高い電圧保持率を維持する必要性から、使用可能な化合物が特定され、化合物中にエステル結合を有する化合物は使用が制限されている。PSA液晶表示素子に使用するモノマーはアクリレート系が主であり、化合物中にエステル結合を有するものが一般的であり、このような化合物はアクティブマトリクス用液晶化合物としては通常使用されないものである(特許文献3参照)。このような異物は、滴下痕の発生を誘発し、表示不良による液晶表示素子の歩留まりの悪化が問題となっている。また、液晶組成物中に酸化防止剤、光吸収剤等の添加物を添加する際にも歩留まりの悪化が問題となる。
 ここで、滴下痕とは、黒表示した場合に液晶組成物を滴下した痕が白く浮かび上がる現象と定義する。
 滴下痕の抑制には、液晶組成物中に混合した重合性化合物の重合により、液晶相中にポリマー層を形成することにより配向制御膜との関係で発生する滴下痕を抑制する方法が開示されている(特許文献4)。しかしながら、この方法においては液晶中に添加した重合性化合物に起因する表示の焼き付きの問題があり、滴下痕の抑制についてもその効果は不十分であり、液晶表示素子としての基本的な特性を維持しつつ、焼き付きや滴下痕の発生し難い液晶表示素子の開発が求められていた。
特表2008-505235号公報 特開平6-235925号公報 特開2002-357830号公報 特開2006-58755号公報
 本発明が解決しようとする課題は、誘電率異方性、粘度、ネマチック相上限温度、低温でのネマチック相安定性、γ等の液晶表示素子としての諸特性及び表示素子の焼き付き特性を悪化させること無く、製造時の滴下痕が発生し難く、ODF工程における安定した液晶材料の吐出量を実現する液晶表示素子に適する液晶組成物及びそれを用いた液晶表示素子を提供することにある。
 本発明者らは上記課題を解決するために、滴下法による液晶表示素子の作製に最適な種々の液晶組成物の構成を検討し、特定の液晶化合物を特定の混合割合で使用することにより液晶表示素子における滴下痕の発生を抑制することができることを見出し本願発明の完成に至った。
 本願発明は、式(I)で表される化合物を含有し、一般式(II)で表される化合物を2種以上含有するが、一般式(II)で表される化合物中n1が0である化合物を1種又は2種以上含有し、一般式(II)で表される化合物中n1が1である化合物を1種又は2種以上含有する誘電率異方性が負の液晶組成物及び当該液晶組成物を用いた液晶表示素子を提供する。
Figure JPOXMLDOC01-appb-C000007
(式中R1及びR2はそれぞれ独立して、炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表し、該アルキル基、アルケニル基、アルコキシ基及び/又はアルケニルオキシ基中の1つ以上の水素原子はフッ素原子で置換されていてもよく、該アルキル基、アルケニル基、アルコキシ基及び/又はアルケニルオキシ基中のメチレン基は酸素原子が連続して結合しない限り酸素原子で置換されていてもよく、カルボニル基が連続して結合しない限りカルボニル基で置換されていてもよく、n1は0又は1を表す。)
 本発明の液晶表示素子は高速応答性優れ、焼き付きの発生が少ない特徴を有し、その製造に起因する滴下痕の発生が少ない特徴を有することから、液晶TV、モニター等の表示素子に有用である。
本発明の液晶表示素子の構造の一例 逆スタガード型薄膜トランジスターの構成例
1 偏光板
2 基板
3 透明電極もしくはアクティブ素子を伴う透明電極
4 配向膜
5 液晶
11 ゲート電極
12 陽極酸化皮膜
13 ゲート絶縁層
14 透明電極
15 ドレイン電極
16 オーミック接触層
17 半導体層
18 保護膜
19a ソース電極1
19b ソース電極2
100 基板
101 保護層
 前述の通り、滴下痕の発生のプロセスは現時点では明らかで無い、しかし、液晶化合物中の不純物と配向膜の相互作用、クロマト現象等が関係している可能性が高い。液晶化合物中の不純物は化合物の製造プロセスに大きな影響を受けるものであるが、化合物の製造方法は、たとえ側鎖の炭素原子数が異なるのみであっても同一とは限らない。すなわち、液晶化合物は精密な製造プロセスによって製造されることから、そのコストは化成品の中では高く、製造効率の向上が強く求められている。そのため、少しでも安い原料を使用するためには、たとえ側鎖の炭素原子数が一つ異なっただけでも全く別種の原料から製造を行った方が効率がよい場合もある。従って、液晶原体の製造プロセスは、各原体ごとに異なっていることがあり、たとえプロセスが同一であっても、原料が異なることは大部分であり、その結果、各原体毎に異なった不純物が混入していることが多い。しかし、滴下痕はきわめて微量の不純物によっても発生する可能性があり、原体の精製のみにより滴下痕の発生を抑制することには限界がある。
 その一方で、汎用されている液晶原体の製造方法は製造プロセス確立後は、各原体毎に一定に定まる傾向がある。分析技術の発展した現在においても、どのような不純物が混入しているかを完全に明らかにすることは容易ではないが、各原体毎に定まった不純物が混入している前提で組成物の設計を行うことが必要となる。本願発明者らは、液晶原体の不純物と滴下痕の関係について検討を行った結果、組成物中に含まれていても滴下痕が発生し難い不純物と、発生し易い不純物があることを経験的に明らかにした。従って、滴下痕の発生を抑えるためには、特定の化合物を特定の混合割合で使用すること重要であり、特に滴下痕の発生がし難い組成物の存在を明らかにしたものである。以下に記載する好ましい実施の態様は、前記の観点から見いだされたものである。
 本発明おける液晶組成物において、第一成分として式(I)で表される化合物を含有するが、式(I)で表される化合物の液晶組成物中の含有率として、下限値としては3質量%が好ましく、5質量%がより好ましく、7質量%が更に好ましく、10質量%が特に好ましく、15質量%が最も好ましく、上限値としては35質量%が好ましく、30質量%が好ましく、25質量%がより好ましく、20質量%が更に好ましく、より具体的には、応答速度を重視する場合には15~35質量%含有することが好ましく、15~30質量%含有することがより好ましく、より駆動電圧を重視する場合には10質量%~15質量%含有することが好ましい。
 第二成分として一般式(II)で表される化合物中、n1が0および1で表される化合物それぞれ1種以上を含有するが、一般式(II)で表される化合物の液晶組成物中の含有率として、下限値としては27質量%が好ましく、25質量%がより好ましく、30質量%が更に好ましく、上限値としては40質量%が好ましく、35質量%がより好ましく、32質量%が更に好ましい。
 一般式(II)において、R1は炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表すことが好ましいが、炭素原子数1~8のアルキル基又は炭素原子数2~8のアルケニル基を表すことが好ましく、炭素原子数1~8のアルキル基を表すことがより好ましく、炭素原子数2~5のアルキル基を表すことが更に好ましく、炭素原子数2又は3のアルキル基を表すことが特に好ましく、直鎖であることが好ましい。
 一般式(II)において、R2は炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表すことが好ましいが、炭素原子数1~8のアルキル基又は炭素原子数1~8のアルコキシ基を表すことが好ましく、炭素原子数1~5のアルキル基又は炭素原子数1~4のアルコキシ基を表すことがより好ましく、炭素原子数1~4のアルコキシ基を表すことが更に好ましく、直鎖であることが好ましく、炭素原子数2又は3のアルコキシ基を表すことが特に好ましく、炭素原子数2のアルコキシ基を表すことが最も好ましい。
 表示素子の応答速度の改善を重視する場合はアルケニル基が好ましく、電圧保持率等の信頼性を重視する場合にはアルキル基が好ましい。アルケニル基としては次に記載する式(i) ~式(iv)
Figure JPOXMLDOC01-appb-C000008
(式中、環構造へは右端で結合するものとする。)
で表される構造が好ましいが、本願発明の液晶組成物が反応性モノマーを含有する場合は、式(ii)及び式(iv)で表される構造が好ましく、式(ii)で表される構造がより好ましい。
 一般式(II)で表される化合物中、n1が1で表される化合物は一般式(II-1)
Figure JPOXMLDOC01-appb-C000009
(式中R1は一般式(I)におけるR1と同じ意味を表す。)で表される化合物が好ましく、具体的には次に記載する式(II-1a)から(II-1d)
Figure JPOXMLDOC01-appb-C000010
で表される化合物が好ましいが、式(II-1a)又は式(II-1b)で表される化合物が好ましい。
 一般式(II)で表される化合物中、n1が1で表される化合物を2種以上使用する場合には、式(II-1a)及び式(II-1b)で表される化合物を組み合わせて使用することが好ましく、式(II-1a)及び式(II-1b)で表される化合物の含有量が、一般式(II)で表される化合物中、n1が1で表される化合物の含有量中の50質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることが更に好ましく、90質量%以上であることが特に好ましい。
 一般式(II-1)で表される化合物の含有率として、下限値としては3質量%が好ましく、5質量%がより好ましく、10質量%が更に好ましく、15質量%が更に好ましい。上限値としては30質量%が好ましく、25質量%がより好ましく、20質量%が更に好ましい。
 一般式(II)で表される化合物中、n1が0で表される化合物は一般式(II-2)
Figure JPOXMLDOC01-appb-C000011
(式中R1は一般式(I)におけるR1と同じ意味を表し、R2aは炭素原子数3のアルキル基又は炭素原子数2のアルコキシ基を表す。)で表される化合物が好ましく、具体的には次に記載する式(II-2a)から(II-2d)
Figure JPOXMLDOC01-appb-C000012
で表される化合物が好ましいが、式(II-2a)又は式(II-2b)で表される化合物が好ましい。
 一般式(II-2)で表される化合物の含有率として、下限値としては3質量%が好ましく、5質量%がより好ましく、6質量%が更に好ましく、8質量%が特に好ましい。上限値としては25質量%が好ましく、20質量%がより好ましく、15質量%が更に好ましい。
 本願発明の液晶組成物は、第三成分として、一般式(III)で表される化合物を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000013
(式中R3及びR4はそれぞれ独立して、炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表し、該アルキル基、アルケニル基、アルコキシ基及び/又はアルケニルオキシ基中の1つ以上の水素原子はフッ素原子で置換されていてもよく、該アルキル基、アルケニル基、アルコキシ基及び/又はアルケニルオキシ基中のメチレン基は酸素原子が連続して結合しない限り酸素原子で置換されていてもよく、カルボニル基が連続して結合しない限りカルボニル基で置換されていてもよく、A1は1,4-シクロヘキシレン基又はテトラヒドロピラン-2,5-ジイル基を表す。)
 一般式(III)で表される化合物を含有する場合には、3~30質量%含有することが好ましく、3~25質量%含有することがより好ましく、5~20質量%含有することが更に好ましく、8~15質量%含有することが特に好ましい。
 一般式(III)において、R3は炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表すが、炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基を表すことが好ましく、炭素原子数1~8のアルキル基を表すことがより好ましく、炭素原子数3~5のアルキル基を表すことがより好ましく、炭素原子数3又は5のアルキル基を表すことが更に好ましく、直鎖であることが好ましい。
 一般式(III)において、R4は炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表すことが好ましく、炭素原子数1~8のアルキル基又は炭素原子数1~8のアルコキシ基を表すことが好ましく、炭素原子数3~5のアルキル基又は炭素原子数2~4のアルコキシ基を表すことがより好ましく、炭素原子数3又は5のアルキル基又は炭素原子数2又は4のアルコキシ基を表すことがより好ましく、炭素原子数2又は4のアルコキシ基を表すことが更に好ましく、直鎖であることが好ましい。
 表示素子の応答速度の改善を重視する場合はアルケニル基が好ましく、電圧保持率等の信頼性を重視する場合にはアルキル基が好ましい。アルケニル基としては次に記載する式(i) ~式(iv)
Figure JPOXMLDOC01-appb-C000014
(式中、環構造へは右端で結合するものとする。)
で表される構造が好ましいが、本願発明の液晶組成物が反応性モノマーを含有する場合は、式(ii)及び式(iv)で表される構造が好ましく、式(ii)で表される構造がより好ましい。
 一般式(III)で表される化合物は1種のみを使用してもよいが、2種以上を使用することが好ましく、3種以上を使用することが好ましい。一般式(III)で表される化合物を2種以上使用する場合にはR3が炭素原子数が3~5のアルキル基を表し、R4が炭素原子数が2~4のアルコキシ基を表す一般式(III)の化合物を組み合わせて使用することが好ましく、他の一般式(III)で表される化合物と組み合わせて使用する場合、R3が炭素原子数が3~5のアルキル基を表し、R4が炭素原子数が2~4のアルコキシ基を表す一般式(III)の化合物の含有量が、一般式(III)で表される化合物中の50質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることが更に好ましく、90質量%以上であることが特に好ましい。
 一般式(III)で表される化合物は具体的には次に記載する式(III-1)~式(III-8)
Figure JPOXMLDOC01-appb-C000015
で表される化合物が好ましいが、式(III-1)~式(III-4)で表される化合物がより好ましく、式(III-1)及び式(III-3)で表される化合物が更に好ましい。
 本願発明の液晶組成物は、第四成分として、一般式(IV)で表される化合物を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000016
(式中、R5及びR6はそれぞれ独立して、炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表し、該アルキル基、アルケニル基、アルコキシ基及び/又はアルケニルオキシ基中の1つ以上の水素原子はフッ素原子で置換されていてもよく、該アルキル基、アルケニル基、アルコキシ基及び/又はアルケニルオキシ基中のメチレン基は酸素原子が連続して結合しない限り酸素原子で置換されているか、カルボニル基が連続して結合しない限りカルボニル基で置換されていてもよい。)
 一般式(IV)で表される化合物を含有する場合には、2~30質量%含有することが好ましく、2~20質量%含有することがより好ましく、7~15質量%含有することが更に好ましい。
 一般式(IV)において、R5は炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表すことが好ましく、炭素原子数1~8のアルキル基又は炭素原子数2~8のアルケニル基を表すことが好ましく、炭素原子数1~8のアルキル基を表すことがより好ましく、炭素原子数2~5のアルキル基を表すことが更に好ましく、炭素原子数3~5のアルキル基を表すことが特に好ましく、直鎖であることが好ましい。 一般式(III)において、R6は炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表すことが好ましいが、炭素原子数1~8のアルキル基又は炭素原子数1~8のアルコキシ基を表すことが好ましく、炭素原子数1~5のアルキル基又は炭素原子数1~4のアルコキシ基を表すことがより好ましく、炭素原子数1~4のアルコキシ基を表すことが更に好ましく、炭素原子数2又は3のアルコキシ基を表すことが特に好ましく直鎖であることが好ましい。
 表示素子の応答速度の改善を重視する場合はアルケニル基が好ましく、電圧保持率等の信頼性を重視する場合にはアルキル基が好ましい。アルケニル基としては次に記載する式(i) ~式(iv)
Figure JPOXMLDOC01-appb-C000017
(式中、環構造へは右端で結合するものとする。)
で表される構造が好ましいが、本願発明の液晶組成物が反応性モノマーを含有する場合は、式(ii)及び式(iv)で表される構造が好ましく、式(ii)で表される構造がより好ましい。
 一般式(IV)で表される化合物は具体的には次に記載する式(IV-1)~(IV-6)
Figure JPOXMLDOC01-appb-C000018
で表される化合物が好ましいが、式(IV-1)~式(IV-4)で表される化合物がより好ましく、式(IV-1)~式(IV-3)で表される化合物が更に好ましく、式(IV-1)及び式(IV-3)で表される化合物が特に好ましい。
 一般式(IV)で表される化合物を4種以上使用する場合には、式(IV-1)から式(IV-4)で表される化合物を組み合わせて使用することが好ましく、式(IV-1)から式(IV-4)で表される化合物の含有量が、一般式(IV)で表される化合物中の50質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることが更に好ましく、90質量%以上であることが特に好ましい。
 一般式(IV)で表される化合物を3種使用する場合には、式(IV-1)から式(IV-3)で表される化合物を組み合わせて使用することが好ましく、式(IV-1)から式(IV-3)で表される化合物の含有量が、一般式(IV)で表される化合物中の50質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることが更に好ましく、90質量%以上であることが特に好ましい。
 一般式(IV)で表される化合物を2種使用する場合には、式(IV-1)及び式(IV-3)で表される化合物を組み合わせて使用することが好ましく、式(IV-1)及び式(IV-3)で表される化合物の含有量が、一般式(IV)で表される化合物中の50質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることが更に好ましく、90質量%以上であることが特に好ましい。
 本願発明の液晶組成物は、第五成分として一般式(V)で表される化合物を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000019
(式中R7及びR8はそれぞれ独立して、炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表し、該アルキル基、アルケニル基、アルコキシ基及び/又はアルケニルオキシ基中の1つ以上の水素原子はフッ素原子で置換されていてもよく、該アルキル基、アルケニル基、アルコキシ基及び/又はアルケニルオキシ基中のメチレン基は酸素原子が連続して結合しない限り酸素原子で置換されているか、カルボニル基が連続して結合しない限りカルボニル基で置換されていてもよく、
Aは1,4-シクロヘキシレン基、1,4-フェニレン基又はテトラヒドロピラン-2,5-ジイル基を表すが、Aが1,4-フェニレン基を表す場合、該1,4-フェニレン基中の1つ以上の水素原子はフッ素に置換されていてもよく、
Z1は単結合、-OCH-、-OCF-、-CHO-、又はCFO-を表し、
nは0又は1であり、
X1~X6はそれぞれ独立して水素原子、又はフッ素原子を表すが、X1~X6の少なくとも2つはフッ素原子を表す。)
 一般式(V)で表される化合物を含有する場合には、2~25質量%含有することが好ましく、3~20質量%含有することがより好ましく、4~15質量%含有することが更に好ましい。
 一般式(V)において、R7及びR8はそれぞれ独立して炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表すことが好ましいが、炭素原子数1~8のアルキル基又は炭素原子数2~8のアルケニル基を表すことが好ましく、炭素原子数1~8のアルキル基を表すことがより好ましく、炭素原子数2~5のアルキル基を表すことが更に好ましく、炭素原子数3~5のアルキル基を表すことが特に好ましく、R1及びR2の炭素原子数はそれぞれ異なることが最も好ましく、直鎖であることが好ましい。
 表示素子の応答速度の改善を重視する場合はアルケニル基が好ましく、電圧保持率等の信頼性を重視する場合にはアルキル基が好ましい。アルケニル基としては次に記載する式(i) ~式(iv)
Figure JPOXMLDOC01-appb-C000020
(式中、環構造へは右端で結合するものとする。)
で表される構造が好ましいが、本願発明の液晶組成物が反応性モノマーを含有する場合は、式(ii)及び式(iv)で表される構造が好ましく、式(ii)で表される構造がより好ましい。
 一般式(V)においてX1~X6はそれぞれ独立して水素原子又はフッ素原子を表すことが好ましいが、1つ~5つがフッ素原子を表すことが好ましく、1つ~4つがフッ素原子を表すことがより好ましく、1つ~3つがフッ素原子を表すことがより好ましく、1つ~2つがフッ素原子を表すことが更に好ましく、2つがフッ素原子を表すことが最も好ましい。
 この場合において、フッ素原子が1つの場合は、X3~X6のいずれか1つがフッ素原子を表すことが好ましく、X3又はX4がフッ素原子を表すことがより好ましい。フッ素原子が2つの場合は、X3~X6のいずれか2つがフッ素原子を表すことが好ましく、X3及びX4がフッ素原子を表すか又はX5及びX6がフッ素原子を表すことがより好ましく、X3及びX4がフッ素原子を表すことが更に好ましい。フッ素原子が3つ以上の場合は、少なくともX3及びX4がフッ素原子を表すか又は少なくともX5及びX6がフッ素原子を表すことが好ましく、少なくともX3及びX4がフッ素原子を表すことがより好ましい。
 一般式(V)において、A2は1,4-シクロヘキシレン基、1,4-フェニレン基又はテトラヒドロピラン-2,5-ジイル基を表すことが好ましいが、当該液晶組成物を用いて作製される表示素子及び液晶ディスプレイにおいて応答速度を重視する場合には、1,4-フェニレン基又はテトラヒドロピラン-2,5-ジイル基を表すことが好ましく、1,4-フェニレン基を表すことがより好ましい。駆動電圧を重視する場合には1,4-フェニレン基又はテトラヒドロピラン-2,5-ジイル基を表すことが好ましく、テトラヒドロピラン-2,5-ジイル基を表すことがより好ましい。動作温度範囲を重視する場合、すなわち高い動作温度範囲を必要とする場合、1,4-シクロヘキシレン基又はテトラヒドロピラン-2,5-ジイル基を表すことが好ましく、1,4-シクロヘキシレン基を表すことがより好ましい。1,4-フェニレン基を表す場合には、ベンゼン環中の1つ以上の水素原子はフッ素原子に置換されていても良いが、無置換、1置換又は2置換が好ましく、2置換の場合には2,3-ジフルオロベンゼンを表すことが好ましい。
 一般式(V)において、Z1は単結合、-OCH-、-OCF-、-CHO-、又は-CFO-を表すが、単結合、-OCF-又は-CFO-を表すことが好ましく、単結合を表すことがより好ましい。
 一般式(V)において、nは0又は1を表すが、応答速度を重視する場合0を表すことが好ましく、動作温度範囲を重視する場合、すなわち高い動作温度範囲を必要とする場合、1を表すことが好ましい。
 一般式(V)で表される化合物は具体的には次に記載する一般式(V-1)~(V-15)
Figure JPOXMLDOC01-appb-C000021
(式中、R7は一般式(V)におけるR7と同じ意味を表し、R8は一般式(V)におけるR8と同じ意味を表す。)
で表される化合物が好ましいが、式(V-1)、式(V-3)~式(V-9)及び式(V-12)~式(V-15)がより好ましく、式(V-1)、式(V-3)、式(V-5)、式(V-6)、式(V-9)、式(V-12)及び式(V-15)が更に好ましく、式(V-1)、式(V-5)、式(V-6)が特に好ましく、式(V-5)が最も好ましい。
 一般式(V)で表される化合物を使用する場合には、式(V-5)で表される化合物を使用することが好ましいが、式(V-5)で表される化合物の含有量が、一般式(V)で表される化合物中の50質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることが更に好ましく、90質量%以上であることが特に好ましい。
 一般式(V)におけるR7及びR8はそれぞれ独立して、炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表すが、炭素原子数1~8のアルキル基又は炭素原子数2~8のアルケニル基を表すことが好ましく、炭素原子数2~5のアルキル基又は炭素原子数2~5のアルケニル基を表すことがより好ましく、炭素原子数2~5のアルキル基を表すことが更に好ましく、直鎖であることが好ましく、R7及びR8が共にアルキル基である場合には、それぞれの炭素原子数は異なっている方が好ましい。
 更に詳述すると、R7がプロピル基を表しR8がエチル基を表す化合物又はR7がブチル基を表しR8がエチル基を表す化合物が好ましい。
 本発明の液晶組成物はネマチック相-等方性液体相転移温度(TNI)を幅広い範囲で使用することができるものであるが、60~120℃であることが好ましく、70~100℃がより好ましく、70~90℃が特に好ましい。
 本発明における液晶組成物は、式(I)及び一般式(II)の化合物を必須とするものであるが、より好ましい態様として、一般式(III) ~一般式(V)で表される化合物を含有することができる。この場合に含有量は次に記載する含有量が好ましい。
 式(I)、一般式(II)及び一般式(III)で表される化合物を含有する場合には、これらの化合物の合計含有量が35質量%~80質量%が好ましく、40~70質量%がより好ましく、45~70質量%が更に好ましく、50質量%~65質量%が特に好ましい。
 式(I)、一般式(II) 及び一般式(IV)で表される化合物を含有する場合には、これらの化合物の合計含有量が40~80質量%が好ましく、45~75質量%がより好ましく、50質量%~70質量%が更に好ましく、55~65質量%が特に好ましい。
式(I)、一般式(II) 及び一般式(VI)で表される化合物を含有する場合には、これらの化合物の合計含有量が55~95質量%が好ましく、60~90質量%がより好ましく、65質量%~85質量%が更に好ましく、70~80質量%が特に好ましい。
 式(I)、一般式(II)、一般式(III)及び一般式(IV)で表される化合物を含有する場合には、これらの化合物の合計含有量が50~95質量%が好ましく、55~90質量%がより好ましく、60~80質量%が更に好ましく、65~75質量%が特に好ましい。
 式(I)、一般式(II)、一般式(IV)及び一般式(VI)で表される化合物を含有する場合には、これらの化合物の合計含有量が70~99質量%が好ましく、75~97質量%がより好ましく、80~96質量%が更に好ましく、85~95質量%が特に好ましい。
 式(I)、一般式(II)、一般式(III)、一般式(IV)及び一般式(VI)で表される化合物を含有する場合には、これらの化合物の合計含有量が85~100質量%が好ましく、90~100質量%がより好ましく、95~100質量%が更に好ましい。
 式(I)及び一般式(II)~一般式(VI)で表される化合物の全てを含有する場合には、これらの化合物の合計含有量が90~100質量%が好ましく、95~100質量%がより好ましく、97~100質量%が更に好ましく、98~100質量%が特に好ましい。
 本発明における液晶組成物を構成する各化合物中、1分子内にフッ素原子数を2個以上有する化合物、具体的には一般式(II)、一般式(III)、一般式(VI)及び2つ以上のフッ素原子を有する一般式(V)で表される化合物の占める割合は液晶組成物中の40~70質量%が好ましく、45~65質量%がより好ましく、50~60質量%が更に好ましいが、更に詳述すると、応答速度を重視する場合には50質量%~60質量%が好ましく、駆動電圧を重視する場合には40~50質量%が好ましい。
 本願発明の液晶組成物は、また更に、一般式(VI-a)から一般式(VI-e)で表される化合物群から選ばれる化合物を含有することができる。
Figure JPOXMLDOC01-appb-C000022
(式中、R91からR9aはそれぞれ独立して炭素原子数1から10のアルキル基、炭素原子数1から10のアルコキシ基又は炭素原子数2から10のアルケニル基を表すが、一般式(VI-a)において、R91が炭素原子数3のアルキル基を表し、R92が炭素原子数2のアルキル基を表す化合物は除かれる。)
 一般式(VI-a)から一般式(VI-e)で表される化合物群から選ばれる化合物を含有する場合、1種~10種含有することが好ましく、1種~8種含有することが特に好ましく、1種~5種含有することが特に好ましく、2種以上の化合物を含有することも好ましい、この場合の含有量は5~40質量%であることが好ましく、5~35質量%であることが更に好ましく、7~30質量%であることが特に好ましい。
 R91からR9aはそれぞれ独立しては炭素原子数1から10のアルキル基、炭素原子数2から10のアルケニル基又は炭素原子数2から10のアルコキシ基を表すことが好ましく、炭素原子数1から5のアルキル基、炭素原子数2から5のアルケニル基又は炭素原子数2から5のアルコキシ基を表すことがより好ましく、アルケニル基を表す場合は次に記載する式(i) ~式(iv)
Figure JPOXMLDOC01-appb-C000023
(式中、環構造へは右端で結合するものとする。)
で表される構造が好ましいが、本願発明の液晶組成物が反応性モノマーを含有する場合は、式(ii)及び式(iv)で表される構造が好ましく、式(ii)で表される構造がより好ましい。
 又、R91及びR92は同一でも異なっていても良いが、異なった置換基を表すことが好ましい。
 これらの点から、式(VI-a)から式(VI-e)で表される化合物は、より具体的には次に記載する化合物が好ましい。
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
 これらの中でも、式(VI-a1)、式(VI-a2)、式(VI-a3)、式(VI-a-4)、式(VI-a5)、式(VI-a-6)、式(VI-b2)、式(VI-b6)、式(VI-c2)、式(II-c4)、式(VI-c5)、式(VI-d1)~式(VI-d4)及び式(VI-e2)で表される化合物が好ましい。
 一般式(VI)で表される化合物は式(I)で表される化合物と誘電率異方性がほぼ0である点で共通するものであるが、式(I)で表される化合物と、一般式(VI)で表される化合物の割合は、液晶組成物における式(I)で表される化合物と一般式(VI)で表される化合物の合計含有量の内、式(I)で表される化合物の含有量が30~75質量%であることが好ましく、35~70質量%がより好ましく、30~65質量%が特に好ましい。又、式(I)と一般式(VI)の合計含有量は、組成物全体の含有量の内、10~70質量%含有することが好ましく、15~65質量%含有することがより好ましく、20~60質量%含有することがより好ましく、25~55質量%含有することがさらに好ましく、30~50質量%含有することが特に好ましい。
 本願における1,4-シクロヘキシル基はトランス-1,4-シクロヘキシル基であることが好ましい。
 本発明における液晶組成物は、式(I)及び一般式(II)で表される化合物を必須の成分とするものであるが、更に一般式(III) ~一般式(V)及び一般式(VI-a)~一般式(VI-e)で表される化合物を含有することができる。液晶組成物中に含有する式(I)、一般式(II) ~一般式(V)及び一般式(VI-a)~一般式(VI-d)で表される化合物の合計含有量は、下限値として60質量%が好ましく、65質量%が好ましく、70質量%が好ましく、75質量%が好ましく、80質量%が好ましく、85質量%が好ましく、90質量%が好ましく、92質量%が好ましく、95質量%が好ましく、98質量%が好ましく、99質量%が好ましく、上限値としては100質量%が好ましく、99.5質量%が好ましい。
 分子内の環構造がすべて6員環である化合物の含有量を多くすることが好ましく、分子内の環構造がすべて6員環である化合物の含有量を前記組成物の総質量に対して80質量%以上とすることが好ましく、90質量%以上とすることがより好ましく、95質量%以上とすることが更に好ましく、実質的に分子内の環構造がすべて6員環である化合物のみで液晶組成物を構成することが最も好ましい。液晶組成物の酸化による劣化を抑えるためには、環構造としてシクロヘキセニレン基を有する化合物の含有量を少なくすることが好ましく、シクロヘキセニレン基を有する化合物の含有量を前記組成物の総質量に対して10質量%以下とすることが好ましく、5質量%以下とすることがより好ましく、実質的に含有しないことが更に好ましい。粘度の改善及びTniの改善を重視する場合には、水素原子がハロゲンに置換されていてもよい2-メチルベンゼン-1,4-ジイル基を分子内に持つ化合物の含有量を少なくすることが好ましく、前記2-メチルベンゼン-1,4-ジイル基を分子内に持つ化合物の含有量を前記組成物の総質量に対して10質量%以下とすることが好ましく、5質量%以下とすることがより好ましく、実質的に含有しないことが更に好ましい。液晶組成物の信頼性及び長期安定性を重視する場合にはカルボニル基を有する化合物の含有量を前記組成物の総質量に対して5質量%以下とすることが好ましく、3質量%以下とすることがより好ましく、1質量%以下とすることが更に好ましく、実質的に含有しないことが最も好ましい。 本発明における液晶組成物の誘電率異方性Δεの値は、25℃において、-2.0から-6.0であることが好ましく、-2.5から-5.0であることがより好ましく、-2.5から-4.0であることが特に好ましいが、更に詳述すると、応答速度を重視する場合には-2.5~-3.4であることが好ましく、駆動電圧を重視する場合には-3.4~-4.0であることが好ましい。
 本発明における液晶組成物の屈折率異方性Δnの値は、25℃において、0.08から0.13であることが好ましいが、0.09から0.12であることがより好ましい。更に詳述すると、薄いセルギャップに対応する場合は0.10から0.12であることが好ましく、厚いセルギャップに対応する場合は0.08から0.10であることが好ましい。
 本発明における液晶組成物の回転粘度(γ1)は150以下が好ましく、130以下がより好ましく、120以下が特に好ましい。
 本発明における液晶組成物では、回転粘度と屈折率異方性の関数であるZが特定の値を示すことが好ましい。
Figure JPOXMLDOC01-appb-M000031
(式中、γ1は回転粘度を表し、Δnは屈折率異方性を表す。)
Zは、13000以下が好ましく、12000以下がより好ましく、11000以下が特に好ましい。
 本発明の液晶組成物は、アクティブマトリクス表示素子に使用する場合においては、1012(Ω・m)以上の比抵抗を有することが必要であり、1013(Ω・m)が好ましく、1014(Ω・m)以上がより好ましい。
 本発明の液晶組成物は、上述の化合物以外に、用途に応じて、通常のネマチック液晶、スメクチック液晶、コレステリック液晶、酸化防止剤、紫外線吸収剤、重合性モノマーなどを含有しても良いが、液晶組成物の化学的な安定性が求められる場合には塩素原子をその分子内に有さないことが好ましく、液晶組成物の紫外線などの光に対する安定性が求められる場合にはナフタレン環などに代表される共役長が長く紫外領域に吸収ピークが存在する縮合環等をその分子内に有さないことが望ましい。
 重合性モノマーとしては、一般式(VII)
Figure JPOXMLDOC01-appb-C000032
(式中、X7及びX8はそれぞれ独立して、水素原子又はメチル基を表し、
Sp及びSpはそれぞれ独立して、単結合、炭素原子数1~8のアルキレン基又は-O-(CH-(式中、sは2から7の整数を表し、酸素原子は芳香環に結合するものとする。)を表し、
は-OCH-、-CHO-、-COO-、-OCO-、-CFO-、-OCF-、-CHCH-、-CFCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CY=CY-(式中、Y及びYはそれぞれ独立して、フッ素原子又は水素原子を表す。)、-C≡C-又は単結合を表し、
Bは1,4-フェニレン基、トランスー1,4-シクロヘキシレン基又は単結合を表し、式中の全ての1,4-フェニレン基は、任意の水素原子がフッ素原子により置換されていても良い。)で表されるニ官能モノマーが好ましい。
 X7及びX8は、何れも水素原子を表すジアクリレート誘導体、何れもメチル基を有するジメタクリレート誘導体の何れも好ましく、一方が水素原子を表しもう一方がメチル基を表す化合物も好ましい。これらの化合物の重合速度は、ジアクリレート誘導体が最も早く、ジメタクリレート誘導体が遅く、非対称化合物がその中間であり、その用途により好ましい態様を用いることができる。PSA表示素子においては、ジメタクリレート誘導体が特に好ましい。
 Sp及びSpはそれぞれ独立して、単結合、炭素原子数1~8のアルキレン基又は-O-(CH-を表すが、PSA表示素子においては少なくとも一方が単結合であることが好ましく、共に単結合を表す化合物又は一方が単結合でもう一方が炭素原子数1~8のアルキレン基又は-O-(CH-を表す態様が好ましい。この場合1~4のアルキル基が好ましく、sは1~4が好ましい。
 Zは、-OCH-、-CHO-、-COO-、-OCO-、-CFO-、-OCF-、-CHCH-、-CFCF-又は単結合が好ましく、-COO-、-OCO-又は単結合がより好ましく、単結合が特に好ましい。
 Bは任意の水素原子がフッ素原子により置換されていても良い1,4-フェニレン基、トランスー1,4-シクロヘキシレン基又は単結合を表すが、1,4-フェニレン基又は単結合が好ましい。Cが単結合以外の環構造を表す場合、Z2は単結合以外の連結基も好ましく、Cが単結合の場合、Zは単結合が好ましい。
 これらの点から、一般式(VII)において、Sp及びSpの間の環構造は、具体的には次に記載する構造が好ましい。
 一般式(VII)において、Cが単結合を表し、環構造が二つの環で形成される場合において、次の式(VIIa-1)から式(VIIa-5)
Figure JPOXMLDOC01-appb-C000033
(式中、両端はSp又はSpに結合するものとする。)
を表すことが好ましく、式(VIIa-1)から式(VIIa-3)を表すことがより好ましく、式(VIIa-1)を表すことが特に好ましい。
 これらの骨格を含む重合性化合物は重合後の配向規制力がPSA型液晶表示素子に最適であり、良好な配向状態が得られることから、表示ムラが抑制されるか、又は、全く発生しない。
 以上のことから、重合性モノマーとしては、一般式(VII-1)~一般式(VII-4)が特に好ましく、中でも一般式(VII-2)が最も好ましい。
Figure JPOXMLDOC01-appb-C000034
(式中、Spは炭素原子数2から5のアルキレン基を表す。)
 本発明の液晶組成物にモノマーを添加する場合において、重合開始剤が存在しない場合でも重合は進行するが、重合を促進するために重合開始剤を含有していてもよい。重合開始剤としては、ベンゾインエーテル類、ベンゾフェノン類、アセトフェノン類、ベンジルケタール類、アシルフォスフィンオキサイド類等が挙げられる。また、保存安定性を向上させるために、安定剤を添加しても良い。使用できる安定剤としては、例えば、ヒドロキノン類、ヒドロキノンモノアルキルエーテル類、第三ブチルカテコール類、ピロガロール類、チオフェノール類、ニトロ化合物類、β-ナフチルアミン類、β-ナフトール類、ニトロソ化合物等が挙げられる。
 本発明の重合性化合物含有液晶組成物は、液晶表示素子に有用であり、特にアクティブマトリクス駆動用液晶表示素子に有用であり、PSAモード、PSVAモード、VAモード、IPSモード又はECBモード用液晶表示素子に用いることができる。
 本発明の重合性化合物含有液晶組成物は、これに含まれる重合性化合物が紫外線照射により重合することで液晶配向能が付与され、液晶組成物の複屈折を利用して光の透過光量を制御する液晶表示素子に使用される。液晶表示素子として、AM-LCD(アクティブマトリックス液晶表示素子)、TN(ネマチック液晶表示素子)、STN-LCD(超ねじれネマチック液晶表示素子)、OCB-LCD及びIPS-LCD(インプレーンスイッチング液晶表示素子)に有用であるが、AM-LCDに特に有用であり、透過型あるいは反射型の液晶表示素子に用いることができる。
 液晶表示素子に使用される液晶セルの2枚の基板はガラス又はプラスチックの如き柔軟性をもつ透明な材料を用いることができ、一方はシリコン等の不透明な材料でも良い。透明電極層を有する透明基板は、例えば、ガラス板等の透明基板上にインジウムスズオキシド(ITO)をスパッタリングすることにより得ることができる。
 前記基板を、透明電極層が内側となるように対向させる。その際、スペーサーを介して、基板の間隔を調整してもよい。このときは、得られる調光層の厚さが1~100μmとなるように調整するのが好ましい。1.5から10μmが更に好ましく、偏光板を使用する場合は、コントラストが最大になるように液晶の屈折率異方性Δnとセル厚dとの積を調整することが好ましい。又、二枚の偏光板がある場合は、各偏光板の偏光軸を調整して視野角やコントラトが良好になるように調整することもできる。更に、視野角を広げるための位相差フィルムも使用することもできる。スペーサーとしては、例えば、ガラス粒子、プラスチック粒子、アルミナ粒子、フォトレジスト材料等が挙げられる。その後、エポキシ系熱硬化性組成物等のシール剤を、液晶注入口を設けた形で該基板にスクリーン印刷し、該基板同士を貼り合わせ、加熱しシール剤を熱硬化させる。
 2枚の基板間に重合性化合物含有液晶組成物を狭持させる方法は、通常の真空注入法又はODF法などを用いることができるが、真空注入法においては滴下痕は発生しないものの、注入の後が残る課題を有しているものであるが、本願発明においては、ODF法を用いて製造する表示素子により好適に使用することができる。
 重合性化合物を重合させる方法としては、液晶の良好な配向性能を得るためには、適度な重合速度が望ましいので、紫外線又は電子線等の活性エネルギー線を単一又は併用又は順番に照射することによって重合させる方法が好ましい。紫外線を使用する場合、偏光光源を用いても良いし、非偏光光源を用いても良い。また、重合性化合物含有液晶組成物を2枚の基板間に挟持させて状態で重合を行う場合には、少なくとも照射面側の基板は活性エネルギー線に対して適当な透明性が与えられていなければならない。また、光照射時にマスクを用いて特定の部分のみを重合させた後、電場や磁場又は温度等の条件を変化させることにより、未重合部分の配向状態を変化させて、更に活性エネルギー線を照射して重合させるという手段を用いても良い。特に紫外線露光する際には、重合性化合物含有液晶組成物に交流電界を印加しながら紫外線露光することが好ましい。印加する交流電界は、周波数10Hzから10kHzの交流が好ましく、周波数60Hzから10kHzがより好ましく、電圧は液晶表示素子の所望のプレチルト角に依存して選ばれる。つまり、印加する電圧により液晶表示素子のプレチルト角を制御することができる。MVAモードの液晶表示素子においては、配向安定性及びコントラストの観点からプレチルト角を80度から89.9度に制御することが好ましい。
 照射時の温度は、本発明の液晶組成物の液晶状態が保持される温度範囲内であることが好ましい。室温に近い温度、即ち、典型的には15~35℃での温度で重合させることが好ましい。紫外線を発生させるランプとしては、メタルハライドランプ、高圧水銀ランプ、超高圧水銀ランプ等を用いることができる。また、照射する紫外線の波長としては、液晶組成物の吸収波長域でない波長領域の紫外線を照射することが好ましく、必要に応じて、紫外線をカットして使用することが好ましい。照射する紫外線の強度は、0.1mW/cm~100W/cmが好ましく、2mW/cm~50W/cmがより好ましい。照射する紫外線のエネルギー量は、適宜調整することができるが、10mJ/cmから500J/cmが好ましく、100mJ/cmから200J/cmがより好ましい。紫外線を照射する際に、強度を変化させても良い。紫外線を照射する時間は照射する紫外線強度により適宜選択されるが、10秒から3600秒が好ましく、10秒から600秒がより好ましい。
 本発明の液晶表示素子の構成は、図1に記載するように透明導電性材料からなる共通電極を具備した第一の基板と、透明導電性材料からなる画素電極と各画素に具備した画素電極を制御する薄膜トランジスターを具備した第二の基板と、前記第一の基板と第二の基板間に挟持された液晶組成物を有し、該液晶組成物中の液晶分子の電圧無印加時の配向が前記基板に対して略垂直である液晶表示素子であって、該液晶組成物として前記本発明の液晶組成物を用いたことに特徴を有するものである。
 滴下痕の発生は注入される液晶材料に大きな影響を受けるものであるが、表示素子の構成によってもその影響は避けられない。特に、液晶表示素子中に形成されるカラーフィルター、薄膜トランジスター等は薄い配向膜、透明電極等しか液晶組成物とを隔てる部材が無いことから組合せにより滴下痕の発生に影響を与える。
 特に該薄膜トランジスターが逆スタガード型である場合には、ドレイン電極がゲート電極を覆うように形成されるためその面積が増大する傾向にある。ドレイン電極は、銅、アルミニウム、クロム、チタン、モリブデン、タンタル等の金属材料で形成され、一般的には、パッシベーション処理が施されるのが通常の形態である。しかし、保護膜は一般に薄く、配向膜も薄く、イオン性物質を遮断しない可能性が高いことから、金属材料と液晶組成物の相互作用による滴下痕の発生を避けることができなかった。
 本件発明においては、図2に記載するように薄膜トランジスターが逆スタガード型である液晶表示素子に好適に使用でき、アルミニウム配線を用いる場合に好ましい。
 本発明の液晶組成物を用いた液晶表示素子は高速応答と表示不良の抑制を両立させた有用なものであり、特に、アクティブマトリックス駆動用液晶表示素子に有用であり、VAモード、PSVAモード、PSAモード、IPSモード又はECBモード用に適用できる。
 以下に実施例を挙げて本発明を更に詳述するが、本発明はこれらの実施例に限定されるものではない。また、以下の実施例及び比較例の組成物における「%」は『質量%』を意味する。
 実施例中、測定した特性は以下の通りである。
 Tni :ネマチック相-等方性液体相転移温度(℃)
 Δn :25℃における屈折率異方性
 Δε :25℃における誘電率異方性
 η  :20℃における粘度(mPa・s)
 γ :25℃における回転粘度(mPa・s)
VHR:周波数60Hz,印加電圧1Vの条件下で60℃における電圧保持率(%)
 焼き付き :
 液晶表示素子の焼き付き評価は、表示エリア内に所定の固定パターンを1000時間表示させた後に、全画面均一な表示を行ったときの固定パターンの残像のレベルを目視にて以下の4段階評価で行った。
 ◎残像無し
 ○残像ごく僅かに有るも許容できるレベル
 △残像有り許容できないレベル
 ×残像有りかなり劣悪
 滴下痕 :
 液晶表示装置の滴下痕の評価は、全面黒表示した場合における白く浮かび上がる滴下痕を目視にて以下の4段階評価で行った。
 ◎残像無し
 ○残像ごく僅かに有るも許容できるレベル
 △残像有り許容できないレベル
 ×残像有りかなり劣悪
プロセス適合性 :
 プロセス適合性は、ODFプロセスにおいて、定積計量ポンプを用いて1回に50pLずつ液晶を滴下することを100000回行い、次の「0~100回、101~200回、201~300回、・・・・99901~100000回」の各100回ずつ滴下された液晶量の変化を以下の4段階で評価した。
 ◎変化が極めて小さい(安定的に液晶表示素子を製造できる)
 ○変化が僅かに有るも許容できるレベル
 △変化が有り許容できないレベル(斑発生により歩留まりが悪化)
 ×変化が有りかなり劣悪(液晶漏れや真空気泡が発生)
 低温での溶解性:
 低温での溶解性評価は、液晶組成物を調製後、2mLのサンプル瓶に液晶組成物を1g秤量し、これに温度制御式試験槽の中で、次を1サイクル「-20℃(1時間保持)→昇温(0.1℃/毎分)→0℃(1時間保持)→昇温(0.1℃/毎分)→20℃(1時間保持)→降温(-0.1℃/毎分)→0℃(1時間保持)→降温(-0.1℃/毎分)→-20℃」として温度変化を与え続け、目視にて液晶組成物からの析出物の発生を観察し、以下の4段階評価を行った。
 ◎600時間以上析出物が観察されなかった。
 ○300時間以上析出物が観察されなかった。
 △150時間以内に析出物が観察された。
 ×75時間以内に析出物が観察された。
尚、実施例において化合物の記載について以下の略号を用いる。
(側鎖)
 -n    -CnH2n+1 炭素原子数nの直鎖状アルキル基
 -On   -OCnH2n+1 炭素原子数nの直鎖状アルコキシ基
 -V    -C=CH2 ビニル基
(環構造)
Figure JPOXMLDOC01-appb-C000035
(実施例1)
 次に示す組成を有する液晶組成物を調製し、その物性値を測定した。この結果を次の表に示す。
 実施例1の液晶組成物を用いて、図1に示すVA液晶表示素子を作製した。この液晶表示素子は、アクティブ素子として逆スタガード型の薄膜トランジスターを有している。液晶組成物の注入は、滴下法にて行い、焼き付き、滴下痕、プロセス適合性及び低温での溶解性の評価を行った。
 尚、含有量の左側の記号は、上記化合物の略号の記載である。
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-T000037
実施例1の液晶組成物は、TV用液晶組成物として実用的な75.2℃の液晶相温度範囲を有し、大きい誘電率異方性の絶対値を有し、低い粘性及び最適なΔnを有していることが解る。実施例1記載の液晶組成物を用いて、図1記載のVA液晶表示素子を作製し前述の方法により、焼き付き、滴下痕、プロセス適合性及び低温での溶解性を評価したところ、極めて優れた評価結果を示した。
(比較例1)
  式(I)で表される化合物を含有せず、実施例1の組成物と同等の液晶相温度範囲、同等の屈折率異方性の値及び同等の誘電率異方性の値を有するように設計した以下に示される液晶組成物を調製し、その物性値を測定した。この結果を次の表に示す。
 尚、含有量の左側の記号は、実施例1と同様に、前記化合物略号の記載である。
Figure JPOXMLDOC01-appb-T000039
 式(I)で表される化合物を含有しない液晶組成物(比較例1)は、式(I)で表される化合物を含有する液晶組成物(実施例1)と比べて、同等の液晶相温度範囲、同等の屈折率異方性の値及び同等の誘電率異方性の値を有するものの、粘度ηが上昇することが示された。γ1については、比較例1の値である134mPa・sは実施例1の値である121mPa・sと比較して高い値を示しており、液晶表示素子及びディスプレイにおける実効的な応答速度を表すパラメータであるγ1/Δn2の値で比較しても劣る結果となった。比較例1の初期のVHRは98.5%であったのに対し、150℃で1時間の高温放置後のVHRは、97.0%であり、実施例1と比較して劣る結果となった。プロセス適合性について評価したところ、実施例1と比べて変化が許容できないレベルとなった。低温での溶解性を評価したところ、実施例1と比べて早期に析出が観察された。
(比較例2及び3)
 一般式(II-1)で表される化合物を含有せず、実施例1の組成物と同等の液晶相温度範囲、同等の屈折率異方性の値及び同等の誘電率異方性の値を有するように設計した液晶組成物(比較例2)及び一般式(II-2)で表される化合物を含有せず、実施例1の組成物と同等の液晶相温度範囲、同等の屈折率異方性の値及び同等の誘電率異方性の値を有するように設計した以下に示される液晶組成物(比較例3)を調製し、その物性値を測定した。この結果を次の表に示す。
Figure JPOXMLDOC01-appb-T000040
 一般式(II-1)で表される化合物を含有しない液晶組成物(比較例2)は、一般式(II-1)で表される化合物を14質量%含有する液晶組成物(実施例1)と比べて、同等の液晶相温度範囲、同等の屈折率異方性の値及び同等の誘電率異方性の値を有するものの、粘度η及び回転粘度γ1が上昇することが示された。比較例2の初期のVHRは99.1%であったのに対し、150℃で1時間の高温放置後のVHRは、97.2%であり、実施例1と比較して劣る結果となった。プロセス適合性について評価したところ、実施例1と比べて変化が許容できないレベルとなった。低温での溶解性を評価したところ、実施例1と比べて早期に析出が観察された。
 一般式(II-2)で表される化合物を含有しない液晶組成物(比較例3)は、一般式(II-2)で表される化合物を7.5質量%含有する液晶組成物(実施例1)と比べて、同等の液晶相温度範囲、同等の屈折率異方性の値及び同等の誘電率異方性の値を有するものの、粘度η及び回転粘度γ1が上昇することが示された。比較例2の初期のVHRは99.0%であったのに対し、150℃で1時間の高温放置後のVHRは、97.3%であり、実施例1と比較して劣る結果となった。プロセス適合性について評価したところ、実施例1と比べて変化が許容できないレベルとなった。低温での溶解性を評価したところ、実施例1と比べて早期に析出が観察された。
(実施例2及び3)
 実施例1の組成物と同等の液晶相温度範囲、同等の屈折率異方性の値及び同等の誘電率異方性の値を有するように設計した次に示す組成を有する液晶組成物を調製し、その物性値を測定した。この結果を次の表に示す。
 実施例2及び3の液晶組成物を用いて、実施例1と同様にVA液晶表示素子を作製し、焼き付き、滴下痕、プロセス適合性及び低温での溶解性の評価を行った結果を同じ表に示す。
Figure JPOXMLDOC01-appb-T000041
実施例2及び3の液晶組成物は、TV用液晶組成物として実用的な液晶相温度範囲を有し、大きい誘電率異方性の絶対値を有し、低い粘性及び最適なΔnを有していることが解る。実施例2及び3記載の液晶組成物を用いて、図1記載のVA液晶表示素子を作製し前述の方法により、焼き付き、滴下痕、プロセス適合性及び低温での溶解性を評価したところ、優れた評価結果を示した。
(実施例4及び5)
 実施例1の組成物と同等の液晶相温度範囲、同等の屈折率異方性の値及び同等の誘電率異方性の値を有するように設計した次に示す組成を有する液晶組成物を調製し、その物性値を測定した。この結果を次の表に示す。
 実施例4及び5の液晶組成物を用いて、実施例1と同様にVA液晶表示素子を作製し、焼き付き、滴下痕、プロセス適合性及び低温での溶解性の評価を行った結果を同じ表に示す。
Figure JPOXMLDOC01-appb-T000042
 実施例4及び5の液晶組成物は、TV用液晶組成物として実用的な液晶相温度範囲を有し、大きい誘電率異方性の絶対値を有し、低い粘性及び最適なΔnを有していることが解る。実施例4及び5記載の液晶組成物を用いて、図1記載のVA液晶表示素子を作製し前述の方法により、焼き付き、滴下痕、プロセス適合性及び低温での溶解性を評価したところ、優れた評価結果を示した。
(実施例6)
 実施例1の組成物と同等の液晶相温度範囲及び同等の屈折率異方性の値を有し、実施例1の組成物よりも大きい誘電率異方性の絶対値を有する、すなわち低電圧駆動に対応できるように設計した次に示す組成を有する液晶組成物を調製し、その物性値を測定した。この結果を次の表に示す。
 実施例6の液晶組成物を用いて、実施例1と同様にVA液晶表示素子を作製し、焼き付き、滴下痕、プロセス適合性及び低温での溶解性の評価を行った結果を同じ表に示す。
Figure JPOXMLDOC01-appb-T000043
 実施例6の液晶組成物は、TV用液晶組成物として実用的な液晶相温度範囲を有し、低電圧駆動対応として大きい誘電率異方性の絶対値を有し、低い粘性及び最適なΔnを有していることが解る。実施例6記載の液晶組成物を用いて、図1記載のVA液晶表示素子を作製し前述の方法により、焼き付き、滴下痕、プロセス適合性及び低温での溶解性を評価したところ、優れた評価結果を示した。
(比較例4及び5)
 式(I)で表される化合物を含有せず、実施例6の組成物と同等の液晶相温度範囲、同等の屈折率異方性の値及び同等の誘電率異方性の値を有するように設計した液晶組成物(比較例4)及び一般式(II-1)で表される化合物を含有せず、実施例6の組成物と同等の液晶相温度範囲、同等の屈折率異方性の値及び同等の誘電率異方性の値を有するように設計した液晶組成物(比較例5)を調製し、その物性値を測定した。この結果を次の表に示す。
Figure JPOXMLDOC01-appb-T000044
 一般式(I)で表される化合物を含有しない液晶組成物(比較例4)は、一般式(I)で表される化合物を20%含有する液晶組成物(実施例6)と比べて、同等の液晶相温度範囲、同等の屈折率異方性の値及び同等の誘電率異方性の値を有するものの、粘度η及び回転粘度γ1が上昇することが示された。比較例3の初期のVHRは98.9%であったのに対し、150℃で1時間の高温放置後のVHRは、97.3%であり、実施例6と比べて劣る結果となった。プロセス適合性について評価したところ、実施例6と比べて変化が許容できないレベルとなった。低温での溶解性を評価したところ、実施例6と比べて早期に析出が観察された。
 一般式(II)で表される化合物を含有しない液晶組成物(比較例5)は、一般式(II)で表される化合物を19%含有する液晶組成物(実施例6)と比べて、同等の液晶相温度範囲、同等の屈折率異方性の値及び同等の誘電率異方性の値を有するものの、粘度η及び回転粘度γ1が上昇することが示された。比較例3の初期のVHRは99.0%であったのに対し、150℃で1時間の高温放置後のVHRは、97.4%であり、実施例6と比べて劣る結果となった。プロセス適合性について評価したところ、実施例6と比べて変化が許容できないレベルとなった。低温での溶解性を評価したところ、実施例6と比べて早期に析出が観察された。
(比較例6)
 一般式(II-2)で表される化合物を含有せず、実施例6の組成物と同等の液晶相温度範囲、同等の屈折率異方性の値及び同等の誘電率異方性の値を有するように設計した液晶組成物(比較例6)を調製し、その物性値を測定した。この結果を次の表に示す。
Figure JPOXMLDOC01-appb-T000045
 一般式(II-2)で表される化合物を含有しない液晶組成物(比較例6)は、一般式(II-2)で表される化合物を13%含有する液晶組成物(実施例6)と比べて、同等の液晶相温度範囲、同等の屈折率異方性の値及び同等の誘電率異方性の値を有するものの、粘度η及び回転粘度γ1が上昇することが示された。比較例3の初期のVHRは98.7%であったのに対し、150℃で1時間の高温放置後のVHRは、97.1%であり、実施例6と比べて劣る結果となった。プロセス適合性について評価したところ、実施例6と比べて変化が許容できないレベルとなった。低温での溶解性を評価したところ、実施例6と比べて早期に析出が観察された。
(実施例7及び8)
 実施例6の組成物と同等の液晶相温度範囲、同等の屈折率異方性の値及び同等の誘電率異方性の値を有するように設計した次に示す組成を有する液晶組成物を調製し、その物性値を測定した。この結果を次の表に示す。
 実施例7及び8の液晶組成物を用いて、実施例1と同様にVA液晶表示素子を作製し、焼き付き、滴下痕、プロセス適合性及び低温での溶解性の評価を行った結果を同じ表に示す。
Figure JPOXMLDOC01-appb-T000046
実施例7及び8の液晶組成物は、TV用液晶組成物として実用的な液晶相温度範囲を有し、大きい誘電率異方性の絶対値を有し、低い粘性及び最適なΔnを有していることが解る。実施例7及び8記載の液晶組成物を用いて、図1記載のVA液晶表示素子を作製し前述の方法により、焼き付き、滴下痕、プロセス適合性及び低温での溶解性を評価したところ、優れた評価結果を示した。
(実施例9及び10)
 実施例6~8の組成物と同等の液晶相温度範囲、同等の屈折率異方性の値及び同等の誘電率異方性の値を有するように設計した次に示す組成を有する液晶組成物を調製し、その物性値を測定した。この結果を次の表に示す。
 実施例9及び10の液晶組成物を用いて、実施例1と同様にVA液晶表示素子を作製し、焼き付き、滴下痕、プロセス適合性及び低温での溶解性の評価を行った結果を同じ表に示す。
Figure JPOXMLDOC01-appb-T000047
 実施例9及び10の液晶組成物は、TV用液晶組成物として実用的な液晶相温度範囲を有し、大きい誘電率異方性の絶対値を有し、低い粘性及び最適なΔnを有していることが解る。実施例9及び10記載の液晶組成物を用いて、図1記載のVA液晶表示素子を作製し前述の方法により、焼き付き、滴下痕、プロセス適合性及び低温での溶解性を評価したところ、優れた評価結果を示した。
(実施例11)
 実施例6~10の組成物と同等の液晶相温度範囲、同等の屈折率異方性の値及び同等の誘電率異方性の値を有するように設計した次に示す組成を有する液晶組成物を調製し、その物性値を測定した。この結果を次の表に示す。
 実施例11の液晶組成物を用いて、実施例1と同様にVA液晶表示素子を作製し、焼き付き、滴下痕、プロセス適合性及び低温での溶解性の評価を行った結果を同じ表に示す。
Figure JPOXMLDOC01-appb-T000048
 実施例11の液晶組成物は、TV用液晶組成物として実用的な液晶相温度範囲を有し、大きい誘電率異方性の絶対値を有し、低い粘性及び最適なΔnを有していることが解る。実施例11記載の液晶組成物を用いて、図1記載のVA液晶表示素子を作製し前述の方法により、焼き付き、滴下痕、プロセス適合性及び低温での溶解性を評価したところ、優れた評価結果を示した。
(比較例7及び8)
 式(I)で表される化合物を含有せず、実施例11の組成物と同等の液晶相温度範囲、同等の屈折率異方性の値及び同等の誘電率異方性の値を有するように設計した液晶組成物(比較例7)及び一般式(II-1)で表される化合物を含有せず、実施例11の組成物と同等の液晶相温度範囲、同等の屈折率異方性の値及び同等の誘電率異方性の値を有するように設計した液晶組成物(比較例8)を調製し、その物性値を測定した。この結果を次の表に示す。
Figure JPOXMLDOC01-appb-T000049
 一般式(I)で表される化合物を含有しない液晶組成物(比較例7)は、一般式(I)で表される化合物を23%含有する液晶組成物(実施例11)と比べて、同等の液晶相温度範囲、同等の屈折率異方性の値及び同等の誘電率異方性の値を有するものの、粘度η及び回転粘度γ1が上昇することが示された。比較例3の初期のVHRは98.7%であったのに対し、150℃で1時間の高温放置後のVHRは、97.1%であり、実施例11と比べて劣る結果となった。プロセス適合性について評価したところ、実施例11と比べて変化が許容できないレベルとなった。低温での溶解性を評価したところ、実施例11と比べて早期に析出が観察された。
 一般式(II-1)で表される化合物を含有しない液晶組成物(比較例8)は、一般式(II-1)で表される化合物を18%含有する液晶組成物(実施例11)と比べて、同等の液晶相温度範囲、同等の屈折率異方性の値及び同等の誘電率異方性の値を有するものの、粘度η及び回転粘度γ1が上昇することが示された。比較例6の初期のVHRは99.1%であったのに対し、150℃で1時間の高温放置後のVHRは、97.6%であり、実施例11と比べて劣る結果となった。プロセス適合性について評価したところ、実施例11と比べて変化が許容できないレベルとなった。低温での溶解性を評価したところ、実施例11と比べて早期に析出が観察された。
(比較例9)
 一般式(II-2)で表される化合物を含有せず、実施例11の組成物と同等の液晶相温度範囲、同等の屈折率異方性の値及び同等の誘電率異方性の値を有するように設計した液晶組成物(比較例9)を調製し、その物性値を測定した。この結果を次の表に示す。
Figure JPOXMLDOC01-appb-T000050
 一般式(II-2)で表される化合物を含有しない液晶組成物(比較例9)は、一般式(II-2)で表される化合物を15質量%含有する液晶組成物(実施例11)と比べて、同等の液晶相温度範囲、同等の屈折率異方性の値及び同等の誘電率異方性の値を有するものの、粘度η及び回転粘度γ1が上昇することが示された。比較例3の初期のVHRは99.2%であったのに対し、150℃で1時間の高温放置後のVHRは、97.4%であり、実施例11と比べて劣る結果となった。プロセス適合性について評価したところ、実施例11と比べて変化が許容できないレベルとなった。低温での溶解性を評価したところ、実施例11と比べて早期に析出が観察された。(実施例12及び13)
 実施例11の組成物と同等の液晶相温度範囲、同等の屈折率異方性の値及び同等の誘電率異方性の値を有するように設計した次に示す組成を有する液晶組成物を調製し、その物性値を測定した。この結果を次の表に示す。
 実施例12及び13の液晶組成物を用いて、実施例1と同様にVA液晶表示素子を作製し、焼き付き、滴下痕、プロセス適合性及び低温での溶解性の評価を行った結果を同じ表に示す。
Figure JPOXMLDOC01-appb-T000051
実施例12及び13の液晶組成物は、TV用液晶組成物として実用的な液晶相温度範囲を有し、大きい誘電率異方性の絶対値を有し、低い粘性及び最適なΔnを有していることが解る。実施例12及び13記載の液晶組成物を用いて、図1記載のVA液晶表示素子を作製し前述の方法により、焼き付き、滴下痕、プロセス適合性及び低温での溶解性を評価したところ、優れた評価結果を示した。
(実施例14及び15)
 実施例6~13の組成物と同等の液晶相温度範囲、同等の屈折率異方性の値及び同等の誘電率異方性の値を有するように設計した次に示す組成を有する液晶組成物を調製し、その物性値を測定した。この結果を次の表に示す。
 実施例14及び15の液晶組成物を用いて、実施例1と同様にVA液晶表示素子を作製し、焼き付き、滴下痕、プロセス適合性及び低温での溶解性の評価を行った結果を同じ表に示す。
Figure JPOXMLDOC01-appb-T000052
 実施例14及び15の液晶組成物は、TV用液晶組成物として実用的な液晶相温度範囲を有し、大きい誘電率異方性の絶対値を有し、低い粘性及び最適なΔnを有していることが解る。実施例14及び15記載の液晶組成物を用いて、図1記載のVA液晶表示素子を作製し前述の方法により、焼き付き、滴下痕、プロセス適合性及び低温での溶解性を評価したところ、優れた評価結果を示した。

Claims (13)

  1. 式(I)で表される化合物を含有し、一般式(II)で表される化合物を2種以上含有するが、一般式(II)で表される化合物中n1が0である化合物を1種又は2種以上含有し、一般式(II)で表される化合物中n1が1である化合物を1種又は2種以上含有する誘電率異方性が負の液晶組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中R1及びR2はそれぞれ独立して、炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表し、該アルキル基、アルケニル基、アルコキシ基及び/又はアルケニルオキシ基中の1つ以上の水素原子はフッ素原子で置換されていてもよく、該アルキル基、アルケニル基、アルコキシ基及び/又はアルケニルオキシ基中のメチレン基は酸素原子が連続して結合しない限り酸素原子で置換されていてもよく、カルボニル基が連続して結合しない限りカルボニル基で置換されていてもよく、n1は0又は1を表す。)
  2. 式(I)で表される化合物を3~35質量%含有する請求項1に記載の液晶組成物。
  3. 一般式(II)で表される化合物を20~40質量%含有する請求項1に記載の液晶組成物。
  4. 一般式(II-1)
    Figure JPOXMLDOC01-appb-C000002
    (式中R1は一般式(I)におけるR1と同じ意味を表す。)で表される化合物を1種以上含有し、
    一般式(II-2)
    Figure JPOXMLDOC01-appb-C000003
    (式中R1は一般式(I)におけるR1と同じ意味を表す。)で表される化合物を1種以上含有する請求項1に記載の組成物。
  5. 一般式(III)
    Figure JPOXMLDOC01-appb-C000004
    (式中R3及びR4はそれぞれ独立して、炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表し、該アルキル基、アルケニル基、アルコキシ基及び/又はアルケニルオキシ基中の1つ以上の水素原子はフッ素原子で置換されていてもよく、該アルキル基、アルケニル基、アルコキシ基及び/又はアルケニルオキシ基中のメチレン基は酸素原子が連続して結合しない限り酸素原子で置換されていてもよく、カルボニル基が連続して結合しない限りカルボニル基で置換されていてもよく、A1は1,4-シクロヘキシレン基又はテトラヒドロピラン-2,5-ジイル基を表す。)で表される化合物を含有する請求項1に記載の液晶組成物。
  6. 一般式(IV)
    Figure JPOXMLDOC01-appb-C000005
    (式中R5及びR6はそれぞれ独立して、炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表し、該アルキル基、アルケニル基、アルコキシ基及び/又はアルケニルオキシ基中の1つ以上の水素原子はフッ素原子で置換されていてもよく、該アルキル基、アルケニル基、アルコキシ基及び/又はアルケニルオキシ基中のメチレン基は酸素原子が連続して結合しない限り酸素原子で置換されていてもよく、カルボニル基が連続して結合しない限りカルボニル基で置換されていてもよい。)で表される化合物を含有する請求項1に記載の液晶組成物。
  7. 請求項1記載の式(I)で表される化合物を5~35質量%含有し、請求項4記載の一般式(II-1)で表される化合物を3~30質量%含有し、請求項4記載の一般式(II-2)で表される化合物を5~25質量%含有し、請求項5記載の一般式(III)で表される化合物を3~25質量%含有し、請求項6記載の一般式(IV)で表される化合物を2~30質量%含有する液晶組成物。
  8. 式(V)
    Figure JPOXMLDOC01-appb-C000006
    (式中R7及びR8はそれぞれ独立して、炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表し、該アルキル基、アルケニル基、アルコキシ基及び/又はアルケニルオキシ基中の1つ以上の水素原子はフッ素原子で置換されていてもよく、該アルキル基、アルケニル基、アルコキシ基及び/又はアルケニルオキシ基中のメチレン基は酸素原子が連続して結合しない限り酸素原子で置換されていてもよく、カルボニル基が連続して結合しない限りカルボニル基で置換されていてもよく、
    A2は1,4-シクロヘキシレン基、1,4-フェニレン基又はテトラヒドロピラン-2,5-ジイル基を表すが、A2が1,4-フェニレン基を表す場合、該1,4-フェニレン基中の1つ以上の水素原子はフッ素原子に置換されていてもよく、
    Z1は単結合、-OCH2-、-OCF2-、-CH2O-、又は-CF2O-を表し、
    nは0又は1を表し、
    X1~X6はそれぞれ独立して水素原子、又はフッ素原子を表すが、X1~X6の少なくとも1つはフッ素原子を表す。)で表される化合物を含有する請求項1に記載の液晶組成物。
  9. 請求項1記載の式(I)で表される化合物を5~35質量%含有し、請求項4記載の一般式(II-1)で表される化合物を3~30質量%含有し、、請求項4記載の一般式(II-2)で表される化合物を5~25質量%含有し、請求項5記載の一般式(III)で表される化合物を3~25質量%含有し、請求項6記載の一般式(IV)で表される化合物を2~30質量%含有し、請求項8記載の一般式(V)で表される化合物を2~30質量%含有する液晶組成物。
  10. 反応性モノマーを含有する請求項1に記載の液晶組成物。
  11. 請求項1に記載の液晶組成物を用いた液晶表示素子。
  12. 請求項10に記載の液晶組成物を用いた液晶表示素子。
  13. 請求項11又は12に記載の液晶表示素子を用いた液晶ディスプレイ。
PCT/JP2013/058099 2013-03-21 2013-03-21 液晶組成物及びそれを使用した液晶表示素子 WO2014147792A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2013/058099 WO2014147792A1 (ja) 2013-03-21 2013-03-21 液晶組成物及びそれを使用した液晶表示素子
US14/778,447 US20160068752A1 (en) 2013-03-21 2013-03-21 Liquid crystal composition and liquid crystal display element using the same
EP13878769.2A EP2977427B1 (en) 2013-03-21 2013-03-21 Liquid crystal composition and liquid crystal display device using same
JP2013539030A JP5630587B1 (ja) 2013-03-21 2013-03-21 液晶組成物及びそれを使用した液晶表示素子
KR1020157008379A KR101595519B1 (ko) 2013-03-21 2013-03-21 액정 조성물 및 그것을 사용한 액정 표시 소자
CN201380060557.8A CN104797687B (zh) 2013-03-21 2013-03-21 液晶组合物和使用其的液晶显示元件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/058099 WO2014147792A1 (ja) 2013-03-21 2013-03-21 液晶組成物及びそれを使用した液晶表示素子

Publications (1)

Publication Number Publication Date
WO2014147792A1 true WO2014147792A1 (ja) 2014-09-25

Family

ID=51579523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058099 WO2014147792A1 (ja) 2013-03-21 2013-03-21 液晶組成物及びそれを使用した液晶表示素子

Country Status (6)

Country Link
US (1) US20160068752A1 (ja)
EP (1) EP2977427B1 (ja)
JP (1) JP5630587B1 (ja)
KR (1) KR101595519B1 (ja)
CN (1) CN104797687B (ja)
WO (1) WO2014147792A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019102859A1 (ja) * 2017-11-21 2019-05-31 Dic株式会社 液晶組成物及び液晶表示素子
CN111234844A (zh) * 2016-11-22 2020-06-05 Dic株式会社 液晶组合物和液晶显示元件
CN113088295A (zh) * 2021-04-07 2021-07-09 浙江汽车仪表有限公司 一种用于汽车全液晶仪表盘的显示材料
US11466211B2 (en) 2013-03-26 2022-10-11 Dic Corporation Liquid crystal composition and liquid crystal display element including the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108239545B (zh) * 2016-12-23 2022-02-25 江苏和成显示科技有限公司 具有负介电各向异性的液晶组合物及其显示器件
CN110467928B (zh) * 2018-05-11 2023-03-10 石家庄诚志永华显示材料有限公司 一种液晶组合物及液晶显示元件、液晶显示器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06235925A (ja) 1993-02-10 1994-08-23 Matsushita Electric Ind Co Ltd 液晶表示素子の製造方法
JP2002357830A (ja) 2001-03-30 2002-12-13 Fujitsu Ltd 液晶表示装置
JP2006058755A (ja) 2004-08-23 2006-03-02 Fujitsu Display Technologies Corp 液晶表示装置およびその製造方法
JP2008505235A (ja) 2004-07-02 2008-02-21 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング 液晶媒体
JP2009084362A (ja) * 2007-09-28 2009-04-23 Dic Corp ネマチック液晶組成物
WO2011148928A1 (ja) * 2010-05-28 2011-12-01 Jnc株式会社 液晶組成物および液晶表示素子
JP2013047327A (ja) * 2011-07-27 2013-03-07 Jnc Corp 液晶組成物および液晶表示素子

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008064171A1 (de) * 2008-12-22 2010-07-01 Merck Patent Gmbh Flüssigkristallines Medium
EP2889358B1 (en) * 2009-01-22 2017-10-11 JNC Corporation Liquid crystal composition and liquid crystal display device
EP2239310B1 (de) 2009-04-06 2012-06-27 Merck Patent GmbH Flüssigkristallines Medium und Flüssigkristallanzeige
US9074132B2 (en) * 2011-11-28 2015-07-07 Jnc Corporation Liquid crystal composition and liquid crystal display device
EP2607451B8 (de) * 2011-12-20 2019-03-27 Merck Patent GmbH Flüssigkristallines Medium
KR102113052B1 (ko) * 2012-06-02 2020-05-20 메르크 파텐트 게엠베하 액정 매질
DE112013002962B4 (de) * 2012-06-15 2016-06-09 Dic Corporation Nematische Flüssigkristallzusammensetzung und Flüssigkristall-Anzeigevorrichtung unter Verwendung derselben
US9150787B2 (en) * 2012-07-06 2015-10-06 Jnc Corporation Liquid crystal composition and liquid crystal display device
CN103874743B (zh) * 2012-10-12 2015-06-10 Dic株式会社 液晶组合物和使用了该液晶组合物的液晶显示元件
EP2931836B1 (en) * 2012-12-12 2020-03-18 Merck Patent GmbH Liquid-crystalline medium

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06235925A (ja) 1993-02-10 1994-08-23 Matsushita Electric Ind Co Ltd 液晶表示素子の製造方法
JP2002357830A (ja) 2001-03-30 2002-12-13 Fujitsu Ltd 液晶表示装置
JP2008505235A (ja) 2004-07-02 2008-02-21 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング 液晶媒体
JP2006058755A (ja) 2004-08-23 2006-03-02 Fujitsu Display Technologies Corp 液晶表示装置およびその製造方法
JP2009084362A (ja) * 2007-09-28 2009-04-23 Dic Corp ネマチック液晶組成物
WO2011148928A1 (ja) * 2010-05-28 2011-12-01 Jnc株式会社 液晶組成物および液晶表示素子
JP2013047327A (ja) * 2011-07-27 2013-03-07 Jnc Corp 液晶組成物および液晶表示素子

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11466211B2 (en) 2013-03-26 2022-10-11 Dic Corporation Liquid crystal composition and liquid crystal display element including the same
CN111234844A (zh) * 2016-11-22 2020-06-05 Dic株式会社 液晶组合物和液晶显示元件
CN111234844B (zh) * 2016-11-22 2023-03-14 Dic株式会社 液晶组合物和液晶显示元件
WO2019102859A1 (ja) * 2017-11-21 2019-05-31 Dic株式会社 液晶組成物及び液晶表示素子
JP6525227B1 (ja) * 2017-11-21 2019-06-05 Dic株式会社 液晶組成物及び液晶表示素子
CN113088295A (zh) * 2021-04-07 2021-07-09 浙江汽车仪表有限公司 一种用于汽车全液晶仪表盘的显示材料
CN113088295B (zh) * 2021-04-07 2023-02-17 浙江汽车仪表有限公司 一种用于汽车全液晶仪表盘的显示材料

Also Published As

Publication number Publication date
EP2977427A4 (en) 2017-01-04
EP2977427A1 (en) 2016-01-27
JPWO2014147792A1 (ja) 2017-02-16
KR101595519B1 (ko) 2016-02-18
CN104797687A (zh) 2015-07-22
EP2977427B1 (en) 2018-06-20
JP5630587B1 (ja) 2014-11-26
CN104797687B (zh) 2016-07-13
KR20150047618A (ko) 2015-05-04
US20160068752A1 (en) 2016-03-10

Similar Documents

Publication Publication Date Title
JP5288224B1 (ja) 液晶組成物
JP5327414B1 (ja) 液晶組成物及びそれを使用した液晶表示素子
JP5630587B1 (ja) 液晶組成物及びそれを使用した液晶表示素子
JP5459451B1 (ja) 液晶組成物及びそれを使用した液晶表示素子
JP6094909B2 (ja) 液晶組成物及びそれを使用した液晶表示素子
JP5574055B1 (ja) 液晶組成物及びそれを使用した液晶表示素子
WO2014123057A1 (ja) 液晶組成物及びそれを使用した液晶表示素子
WO2014064765A1 (ja) 液晶組成物、液晶表示素子および液晶ディスプレイ
JP5459450B1 (ja) 液晶組成物及びそれを使用した液晶表示素子
JP5598742B1 (ja) 液晶組成物及びそれを使用した液晶表示素子
WO2014125564A1 (ja) 液晶組成物及びそれを使用した液晶表示素子
JP2014208852A (ja) 液晶組成物及びそれを使用した液晶表示素子
JP2017214589A (ja) 液晶組成物、液晶表示素子および液晶ディスプレイ
JP2015199961A (ja) 液晶組成物及びそれを使用した液晶表示素子
JP6128394B2 (ja) 液晶組成物及びそれを使用した液晶表示素子
JP6255622B2 (ja) 液晶組成物及びそれを使用した液晶表示素子
JP6361105B2 (ja) 液晶組成物及びそれを使用した液晶表示素子
TWI553102B (zh) 液晶組成物及使用其之液晶顯示元件
WO2014125616A1 (ja) 液晶組成物及びそれを使用した液晶表示素子
JP2015180730A (ja) 液晶組成物及びそれを使用した液晶表示素子
JP2015180732A (ja) 液晶組成物及びそれを使用した液晶表示素子
JP2015180731A (ja) 液晶組成物及びそれを使用した液晶表示素子
JP2015044998A (ja) 液晶組成物、液晶表示素子および液晶ディスプレイ
JP2015025129A (ja) 液晶組成物及びそれを使用した液晶表示素子

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013539030

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13878769

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157008379

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013878769

Country of ref document: EP