WO2014146242A1 - 一种氧化型辅酶 ii 的酶催化制备方法 - Google Patents

一种氧化型辅酶 ii 的酶催化制备方法 Download PDF

Info

Publication number
WO2014146242A1
WO2014146242A1 PCT/CN2013/072845 CN2013072845W WO2014146242A1 WO 2014146242 A1 WO2014146242 A1 WO 2014146242A1 CN 2013072845 W CN2013072845 W CN 2013072845W WO 2014146242 A1 WO2014146242 A1 WO 2014146242A1
Authority
WO
WIPO (PCT)
Prior art keywords
buffer solution
oxidized coenzyme
reaction
kinase
enzyme
Prior art date
Application number
PCT/CN2013/072845
Other languages
English (en)
French (fr)
Inventor
陶军华
李斌
谢磊
庄季昌
周永达
张超
刘根
Original Assignee
苏州汉酶生物技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州汉酶生物技术有限公司 filed Critical 苏州汉酶生物技术有限公司
Priority to PCT/CN2013/072845 priority Critical patent/WO2014146242A1/zh
Publication of WO2014146242A1 publication Critical patent/WO2014146242A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/30Nucleotides
    • C12P19/36Dinucleotides, e.g. nicotineamide-adenine dinucleotide phosphate

Definitions

  • the invention relates to an enzyme catalytic preparation method of oxidized coenzyme II.
  • Nicotinamide adenine dinucleotide phosphate (Nicotinamide adenine dinucleotide phosphate, abbreviated as NADP+) is an extremely important nucleotide coenzyme, which is Nicotinamide adenine dinucleotide (nicotinamide gland).
  • NADPH is required as a reducing agent and a hydrogen negative donor in these reactions, and NADPH is a reduced form of NADP+.
  • NADP+ is produced by NAD+ catalyzed phosphorylation by NAD kinase.
  • NAD+ and DPNA+ are various coenzymes that do not require aerobic dehydrogenase and can be reduced to NADH and PNADH by accepting the hydride (H - ) provided on the substrate molecule.
  • the last step of photosynthesis photoreactive electron chains is to use NAD+ as a raw material to produce NADPH by catalysis of ferredoxin-NADP+ reductase. The resulting NADPH is then used in the assimilation of carbon dioxide.
  • the oxidized phase of the pentose phosphate pathway is the main source of NADPH in cells, which produces 60% of the desired NADPH.
  • human methods for synthesizing NADP+ can be divided into chemical methods and biological methods.
  • the chemical method uses nicotinamide as a raw material to synthesize NADP+ through multi-step reaction.
  • the chemical method has a long reaction route, harsh reaction conditions, poor selectivity, and easy formation of by-products.
  • the product has low purity, low yield, expensive reagents, high cost and the like; in addition, the use of a large amount of organic solvent also causes environmental pollution.
  • NADP+ is obtained by separation and extraction of yeast or other microorganisms. .
  • the raw materials are expensive, labor intensity, energy consumption, limited production, high production cost, high product price, and limited application of oxidized coenzyme II (NADP+).
  • NADP+ oxidized coenzyme II
  • Enzyme-catalyzed conversion is a highly selective reaction. Different kinds of enzymes can act on specific substrates of different configurations and different kinds to achieve the purpose of directed transformation.
  • the enzymatic method has mild reaction conditions and stereospecificity. Strong characteristics and high conversion rate have been widely studied and applied.
  • Whitesides and colleagues constructed a polyacrylamide gel-immobilized NAD pyrophosphorylase and NAD kinase and ATP regenease catalytic reaction system to catalyze the synthesis of nicotinamide nucleoside phosphate (NMN).
  • NAD nicotinamide nucleoside phosphate
  • the technical problem to be solved by the present invention is to overcome the deficiencies of the prior art and provide an oxidized coenzyme II which is easy to be industrially amplified and produced. Enzymatic preparation method.
  • an enzyme-catalyzed preparation method of oxidized coenzyme II which comprises nicotinamide nucleoside (NR), sodium hexametaphosphate and adenosine triphosphate disodium salt (ATP-Na 2 )
  • NR nicotinamide nucleoside
  • ATP-Na 2 adenosine triphosphate disodium salt
  • NRK nicotinamide nucleoside kinase
  • NAD kinase NAD kinase
  • polyphosphoric acid kinase inorganic pyrophosphatase
  • the oxidized coenzyme II was obtained by a one-pot boiling reaction at °C.
  • the use of sodium hexametaphosphate instead of ATP in the second step can reduce the amount of ATP and improve the economics of the reaction.
  • the buffer solution may be a phosphate buffer solution, a Tri-HCl buffer solution or a TEA.
  • the buffer solution, the pH of the buffer solution can be adjusted with a mineral acid or a base.
  • the buffer solution is generally present at a concentration of from 100 to 500 mM, preferably from 100 to 200 mM.
  • the concentrations of nicotinamide nucleoside, sodium hexametaphosphate and adenosine triphosphate disodium salt are respectively 10 ⁇ 100 mg/ml, 20 ⁇ 200 mg/ml and 20 ⁇ 200 mg/ml.
  • Nicotinamide nucleoside kinase, inorganic pyrophosphatase, NAD The amount of kinase and polyphosphoric acid kinase added were 5-50 mg enzyme powder / ml buffer solution, 10-100 mg enzyme powder / ml buffer solution, 5-50 mg enzyme powder / ml, respectively. Buffer solution and 10-100mg enzyme powder / ml buffer solution.
  • the one-pot reaction is carried out in the presence of an inorganic salt which may be one or more of sulfuric acid, hydrochloric acid or phosphate selected from the group consisting of sodium, potassium, magnesium, zinc, manganese, cobalt and iron. mixture.
  • an inorganic salt which may be one or more of sulfuric acid, hydrochloric acid or phosphate selected from the group consisting of sodium, potassium, magnesium, zinc, manganese, cobalt and iron. mixture.
  • the amount of inorganic salt added is 1 ⁇ 50mg/ml buffer solution.
  • Specific examples of the inorganic salt are, for example, magnesium chloride, magnesium sulfate, sodium chloride, manganese chloride, zinc chloride, zinc sulfate, and the like.
  • the preparation process is carried out as follows: a buffer solution is added to the reaction vessel, followed by the addition of nicotinamide nucleoside, adenosine triphosphate disodium salt, sodium hexametaphosphate, nicotinamide nucleoside kinase Inorganic pyrophosphatase, NAD kinase, polyphosphoric acid kinase and inorganic salts are controlled at a temperature of 10 °C to 40 °C, and the reaction is stirred. The conversion rate of the reaction is monitored by liquid chromatography-mass spectrometry. When the consumption of adenosine phosphate is detected, the reaction is stopped.
  • control reaction is carried out at a temperature of from 20 ° C to 40 ° C.
  • reaction was stopped, it was sequentially filtered, macroporous resin adsorbed, lyophilized, and recrystallized from a mixed solvent of ethanol and water to obtain an oxidized coenzyme II.
  • the present invention has the following advantages compared with the prior art:
  • the invention is a method for efficiently preparing oxidized coenzyme II under mild conditions by using microbial enzyme Methods.
  • the method avoids the disadvantages of high energy consumption, high material consumption and high product price of the conventional method, and has mild reaction conditions and strong stereospecificity specific to the enzyme catalytic process. , high catalytic efficiency and so on.
  • the raw material is easy to obtain in large quantities, and is converted by a multi-enzyme coupling one-pot method, which is simple and effective, has a short reaction cycle, and has large productivity, and further combines isoelectric point crystallization and macroporous resin phase.
  • the product is separated and purified in a combined manner, which makes the whole process cost lower, and is advantageous for industrial production of oxidized coenzyme in large quantities. II.
  • the invention adopts cheap and readily available nicotinamide nucleoside and ATP
  • the disodium salt is the starting material.
  • the nicotinamide nucleoside kinase and the inorganic pyrophosphatase are used as catalysts, and metal ions are added as an enzyme activity enhancer to catalyze the coupling of the nicotinamide nucleoside and the ATP disodium salt into NAD+; NAD kinase and NAD+ synthesize NADP+ in the reaction by adding sodium hexametaphosphate instead of expensive ATP as NAD to NADP
  • the phosphate donor of the reaction is the phosphate donor of the reaction.
  • the invention also features a buffer solution having no effect on nicotinamide nucleoside and ATP, such as a phosphate buffer solution, a Tri-HCl buffer solution, or In the TEA buffer solution, a phosphate buffer solution is preferred, and the enzyme reaction is suitably carried out in the range of 4.0 to 8.5, more preferably 5.0 to 7.5, and can be adjusted with a mineral acid or a base such as potassium hydroxide. pH value; suitable reaction temperature is 10 to 60 ° C, preferably 10 to 40 ° C, more preferably 20 to 40 ° C, particularly preferably 30 to 40 ° C.
  • the holding time can be changed according to the reaction conditions, but usually the reaction time is 30 minutes ⁇ 24
  • the oxidized coenzyme II can be prepared at a conversion rate of 85 to 100% in an hour, more preferably from 1 to 18 hours.
  • the raw material and the bio-enzyme catalyst are simultaneously added to the aqueous phase reaction system to start the enzymatic catalytic reaction, and the intermediate does not need to be separated and purified.
  • the reaction After the reaction is stopped, it can be easily recovered by the following method.
  • the protein in the reaction mixture is denatured by heating, acid, alkali or organic solvent and removed by centrifugation.
  • a supernatant for extracting certain products and for oxidizing coenzymes.
  • the oxidized coenzyme II in the supernatant is purified by macroporous resin, and the isoelectric point characteristic is further used to recrystallize the oxidized coenzyme II from a mixture of a mixed solvent of ethanol and water. .
  • phosphate buffer solution 100 mM, pH 5.8
  • nicotinamide nucleoside J. Med. Chem. 2007, 50, 6458-6461
  • adenosine triphosphate disodium salt 10 mL of phosphate buffer solution (100 mM, pH 5.8) was added to a 20 mL three-necked flask, followed by the addition of nicotinamide nucleoside ( J. Med. Chem. 2007, 50, 6458-6461 ) 50 mg, adenosine triphosphate disodium salt.
  • HZ-818 macroporous resin is adsorbed, lyophilized, and recrystallized from a mixed solvent of ethanol and water (15:1) to obtain an oxidized coenzyme II product in a yield of 60%.
  • Tris-HCl buffer solution 200 mM, pH 7.5
  • nicotinamide nucleoside J. Med. Chem. 2007, 50, 6458-6461
  • adenosine triphosphate disodium 10 mL Tris-HCl buffer solution (200 mM, pH 7.5) was added to a 20 mL three-necked flask, followed by the addition of nicotinamide nucleoside ( J. Med. Chem. 2007, 50, 6458-6461 ) 50 mg, adenosine triphosphate disodium.
  • D-101 macroporous resin is adsorbed, lyophilized, and recrystallized from a mixed solvent of ethanol and water (20:1) to obtain an oxidized coenzyme II product in a yield of 75%.

Abstract

本发明涉及一种一锅法氧化型辅酶 II 的酶催化制备方法,其以烟酰胺核苷(NR)、三磷酸腺苷二钠盐(ATP-Na2)和六偏磷酸钠三种底物为原料,使它们在烟酰胺核苷激酶(NRK)、无机焦磷酸酶、 NAD 激酶及多聚焦磷酸激酶四种酶存在下,在pH为4.0~8.5的缓冲溶液中,以及温度10 ℃ ~40℃下进行反应得到氧化型辅酶II 。本发明解决了目前酶催化制备方法中烟酰胺核苷磷酸成本高且不易得到,反应时间长,工艺成本较高,工艺条件也不适合工业放大的技术难题,能够高效,低成本,且易于工业化放大生产的获得氧化型辅酶II。

Description

一种氧化型辅酶 II 的酶催化制备方法
技术领域
本发明涉及一种氧化型辅酶 II 的酶催化制备方法。
背景技术
氧化型辅酶 II(Nicotinamide adenine dinucleotide phosphate, 烟酰胺腺嘌呤二核苷酸磷酸,简称: NADP+) 是一种极为重要的 核苷酸 类 辅酶 ,它是氧化型辅酶 I(Nicotinamide adenine dinucleotide, 烟酰胺腺嘌呤二核苷酸, 简称: NAD+) 中与腺嘌呤相连的核糖环系 2'- 位的 磷酸化 衍生物,是 生物 氧化过程中不可缺少的氢传递体,参与多种合成代谢反应,如脂类、脂肪酸和核苷酸的合成。这些反应中需要 NADPH 作为还原剂、氢负供体, NADPH 是 NADP+ 的还原形式。 NADP+ 是 NAD+ 通过 NAD激酶 催化 磷酸化 所产生。 NAD+ 和 DPNA+ 是各种不需氧脱氢酶的辅酶,可以接受底物分子上提供的氢负离子 (H-) 而还原为 NADH 和 PNADH 。植物叶绿体中,光合作用 光反应 电子链的最后一步以 NADP+ 为原料,经 铁氧还蛋白-NADP+还原酶 的催化而产生 NADPH 。产生的 NADPH 接下来在 ) 中被用于二氧化碳的同化。对于动物来说, 磷酸戊糖途径 的氧化相是细胞中 NADPH 的主要来源,由它可以产生 60 %的所需 NADPH 。
目前人类合成 NADP+ 的方法可以分为化学法和生物法。化学法以烟酰胺为原料,经多步反应合成出 NADP+ ,化学法存在反应路线长,反应条件苛刻, 选择性差,易生成副产物, 产物纯度低,收率低,需用到昂贵的试剂,成本较高等不足;此外,大量有机溶剂的使用还会造成环境污染。因此, 该工艺路线不适合于工业化大生产 [James Dowden et al, Chemical Synthesis of the Second Messenger Nicotinic Acid Adenine Dinucleotide Phosphate by Total Synthesis of Nicotinamide Adenine Dinucleotide Phosphate, [Angew. Chem. Int. Ed. 2004, 43, 4637-4640] 。
传统的生物法是采用发酵或其它微生物培养技术 , 并通过对酵母或其它微生物的分离提取得到 NADP+ 。该工艺过程虽然已很成熟,但是原料耗费巨大,劳动强度大,能源消耗大,产量有限,生产成本高,产品价格高,限制了氧化型辅酶 II (NADP+) 的广泛应用 [Sakai, T., Biotech. Bioeng. 1980, 22, Suppl. 1, 143-162; Uchida , T. et al, Agric. Biol. Chem. 1971, 37, 1049-1056; Sakai, T. and Uchida , T. et al, Agric. Biol. Chem. 1973, 37, 1041-1048] 。
酶催化转化是一种高选择性反应 , 不同种类的酶可作用于不同构型和不同种类的特定底物 , 从而达到定向转化的目的 , 酶法以其所具有的反应条件温和、立体专一性强、转化率高等特点,被广泛地研究和应用。生物酶法合成 NADP+ 的研究中, Whitesides 和其同事构建了聚丙烯酰胺凝胶固定化的 NAD 焦磷酸化酶和 NAD 激酶及 ATP 再生酶催化反应体系 , 催化烟酰胺核苷磷酸 ( 简称 NMN) 合成 NADP+ 的方法 [An Efficient Chemical and Enzymatic Synthesis of Nicotinamide Adenine Dinucleotide (NAD+) . J. Am. Chem. SOC., 1984, 106, 234-239] 。然而,该工艺难于放大,原因在于:一是原料合成烟酰胺核苷磷酸合成收率低,且不易放大,原料来源受到限制;二是酶催化合成 NAD+ 和 NADP+ 只能在克级范围得到高的转化率,但反应时间长达 16 天,产能低;三是由于采用固定化的 NAD 焦磷酸化酶和 NAD 激酶,烟酰胺核苷磷酸和 NAD+ 与固定化 NAD 焦磷酸化酶和 NAD 激酶之间的传质受到阻碍,影响了固定化 NAD 焦磷酸化酶和 NAD 激酶的催化效率,而且该文作者指出该方法未能放大,因此该工艺路线难于适应放大的要求。有必要进一步开发适应于放大生产需要的新工艺。
发明内容
本发明所要解决的技术问题是克服现有技术的不足,提供一种易于工业化放大生产的氧化型辅酶 II 的酶催化制备方法。
为解决以上技术问题,本发明采取如下技术方案:一种氧化型辅酶 II 的酶催化制备方法,其以烟酰胺核苷 (NR) 、六偏磷酸钠和三磷酸腺苷二钠盐 (ATP-Na2) 为原料,使它们在烟酰胺核苷激酶 (NRK) 、无机焦磷酸酶、 NAD 激酶及多聚磷酸激酶四种酶存在下,在 pH 为 4.0~8.5 的缓冲溶液中,以及温度 10 ℃ ~40℃下进行一锅煮反应得到氧化型辅酶II 。与其它反应不同的是,利用六偏磷酸钠代替 ATP 在第二步中进行反应,可以降低 ATP 的用量,提高反应的经济性。
根据本发明的一具体实施例中,缓冲溶液可以为磷酸盐缓冲溶液、 Tri-HCl 缓冲溶液或 TEA 缓冲溶液,缓冲溶液的 pH 可用无机酸或碱来调节。缓冲溶液的一般浓度为 100~500 mM ,优选为 100~200 mM 。
根据本发明的一个优选实施例,在上述一锅煮反应开始时,烟酰胺核苷、六偏磷酸钠和三磷酸腺苷二钠盐的浓度分别为 10~100 mg/ml 、 20~200 mg/ml 和 20~200 mg/ml 。烟酰胺核苷激酶、无机焦磷酸酶、 NAD 激酶及多聚磷酸激酶的加入量分别为分别为 5-50mg 酶粉 /ml 缓冲溶液、 10-100mg 酶粉 /ml 缓冲溶液、 5-50mg 酶粉 /ml 缓冲溶液和 10-100mg 酶粉 / ml 缓冲溶液。
进一步优选地,一锅煮反应在无机盐存在下进行,该无机盐可以为选自钠、钾、镁、锌、锰、钴及铁的金属的硫酸、盐酸或磷酸盐中的一种或多种的混合物。无机盐的加入量为 1~50mg/ml 缓冲溶液。无机盐的具体实例有例如氯化镁、硫酸镁、氯化钠、二氯化锰、氯化锌、硫酸锌等。
在一根据本发明的特定实施方案中,制备方法的实施过程如下:在反应容器中加入缓冲溶液,然后依次加入烟酰胺核苷、三磷酸腺苷二钠盐、、六偏磷酸钠、烟酰胺核苷激酶、无机焦磷酸酶、 NAD 激酶、多聚磷酸激酶以及无机盐,控制温度 10 ℃ ~40℃,搅拌反应,利用液相色谱- 质谱联用监测反应的转化率,至检测到磷酸腺苷消耗完毕,停止反应。
优选地,控制反应在温度 20 ℃ ~40℃下进行。
在停止反应后,依次经过滤、大孔树脂吸附、冻干、用乙醇和水的混合溶剂重结晶得到氧化型辅酶 II 。
由于以上技术方案的实施,本发明与现有技术相比具有如下优点:
本发明是一种利用微生物酶在温和条件下高效制备氧化型辅酶 II 的方法。与已存在的从酵母中分离提取的方法相比,本方法避免了传统方法的高能耗、高材料消耗和产物价格昂贵等缺点,具备酶催化过程所特有的反应条件温和、立体专一性强、催化效率高等特点。本发明与现有的酶催化技术相比,原料易于大量得到,用多酶偶联一锅法方式进行转化,简单有效,反应周期短,产能大,进一步结合等电点结晶和大孔树脂相结合的方式进行产物分离纯化,使得整个工艺成本较低,有利于大批量地工业化制备氧化型辅酶 II 。
具体实施方式
本发明采用廉价易得的烟酰胺核苷和 ATP 二钠盐为起始原料,首先通过烟酰胺核苷激酶和无机焦磷酸酶为催化剂,添加金属离子作为酶活力增强剂,催化烟酰胺核苷和 ATP 二钠盐偶联转化为 NAD+ ;然后利用 NAD 激酶和 NAD+ 合成 NADP+ ,反应中通过加入六偏磷酸钠代替昂贵的 ATP 作为 NAD 转化为 NADP 反应的磷酸供体。本发明的特征还在于,为了启动酶催化反应 , 使用对烟酰胺核苷和 ATP 没有影响的缓冲溶液 , 如磷酸盐缓冲溶液、 Tri-HCl 缓冲溶液或 TEA 缓冲溶液中,其中优选磷酸盐缓冲溶液,酶反应适当地在 4.0~8.5 ,更优选地 5.0~7.5 pH 值范围内进行 , 可用无机酸或碱例如氢氧化钾调节 pH 值;合适的反应温度为 10~60℃,优选温度是10~40℃,更优选20~40℃,特别优选30~40℃。保温时间可以根据反应条件来改变,但通常反应时间为30 分钟 ~24 小时,更优选地 1~18 小时,可以实现以 85~100% 的转化率制备产物氧化型辅酶 II 。
本发明所述的反应以原料和生物酶催化剂同时加入水相反应体系开始酶促催化反应,中间体无需分离纯化。
停止反应后,可以容易的按照下述的方法回收,例如,反应结束后,反应混合物中的蛋白通过加热、酸、碱或有机溶剂变性沉淀并通过离心除去。为此目的,可以使用一般用于上清液提取某些产物并适合于氧化型辅酶 II 各种特性的方法,因此例如,用大孔树脂纯化上清中的氧化型辅酶 II ,进一步利用等电点特性从用乙醇和水的混合溶剂的混合物中重结晶出氧化型辅酶 II 。
下面结合具体实施例对本发明做进一步详细的说明,但本发明的保护范围并不限于以下实施例。
实施例 1
在 20 mL 三口烧瓶中加入 10 mL 磷酸盐缓冲溶液 (100 mM , pH 为 5.8) ,依次加入烟酰胺核苷( J. Med. Chem. 2007, 50 , 6458-6461 ) 50 mg ,三磷酸腺苷二钠盐 25 mg ,六偏磷酸钠 50mg ,烟酰胺核苷激酶( PLoS Biology, 2007, 5(10), 2220-2230 ) 8 mg , 无机焦磷酸酶( 9024-82-2 , EC 3.6.1.1 ) 10 mg , NAD 激酶( European Journal of Biochemistry, 2001, 268(15), 4359-4365 ) 5 mg 和多聚磷酸激酶( PNAS, 1997, 94(2), 439-442 ) 12 mg, 氯化镁 20 mM ,于 37 ℃ 下, 200 rpm 搅拌反应,利用液相色谱 - 质谱联用监测反应的转化率,经过 10 小时反应后检测三磷酸腺苷和 NAD 已经消耗完毕,停止反应。通过进一步的过滤, HZ-818 型大孔树脂吸附,冻干,用乙醇和水的混合溶剂 (15:1) 重结晶即可获得氧化型辅酶 II 产品,收率 60% 。
实施例 2
在 20 mL 三口烧瓶中加入 10 mL Tris-HCl 缓冲溶液 (200 mM , pH 为 7.5) ,依次加入烟酰胺核苷( J. Med. Chem. 2007, 50 , 6458-6461 ) 50 mg ,三磷酸腺苷二钠盐 25 mg ,六偏磷酸钠 50mg ,烟酰胺核苷激酶( PLoS Biology, 2007, 5(10), 2220-2230 ) 12 mg ,无机焦磷酸酶( 9024-82-2 , EC 3.6.1.1 ) 15 mg , NAD 激酶( European Journal of Biochemistry, 2001, 268(15), 4359-4365 ) 12 mg 和多聚磷酸激酶( PNAS, 1997, 94(2), 439-442 ) 20 mg, 氯化锰 30 mM ,氯化镁 20 mM ,于 37 ℃ 下, 200 rpm 搅拌反应,利用液相色谱 - 质谱联用监测反应的转化率,经过 12 小时反应后检测三磷酸腺苷和 NAD 已经消耗完毕,停止反应。通过进一步的过滤, D-101 型大孔树脂吸附,冻干,用乙醇和水的混合溶剂 (20:1) 重结晶即可获得氧化型辅酶 II 产品,收率 75% 。
本说明书中公开的所有特征,或公开的所有方法或过程中的步骤,除了互相排斥的特征和 / 或步骤以外,均可以以任何方式组合。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (10)

1 、一种氧化型辅酶 II 的酶催化制备方法,其特征在于:所述制备方法以烟酰胺核苷、三磷酸腺苷二钠盐和六偏磷酸钠为原料,使它们在烟酰胺核苷激酶、无机焦磷酸酶、 NAD 激酶及多聚磷酸激酶四种酶存在下,在 pH 为 4.0~8.5 的缓冲溶液中,以及温度 10 ℃ ~40℃下进行一锅煮反应得到氧化型辅酶II 。
2 、根据权利要求 1 所述的氧化型辅酶 II 的酶催化制备方法,其特征在于:缓冲溶液为磷酸盐缓冲溶液、 Tri-HCl 缓冲溶液或 TEA 缓冲溶液,缓冲溶液的 pH 用无机酸或碱来调节。
3 、根据权利要求 1 或 2 所述的氧化型辅酶 II 的酶催化制备方法,其特征在于:缓冲溶液的浓度为 100~500 mM 。
4 、根据权利要求 1 所述的氧化型辅酶 II 的酶催化制备方法,其特征在于:反应开始时,烟酰胺核苷、三磷酸腺苷二钠盐和六偏磷酸钠的浓度分别为 10~100 mg/ml 、 20~200 mg/ml 和 20~200 mg/ml 。
5 、根据权利要求 1 至 4 中任一项所述的氧化型辅酶 II 的酶催化制备方法,其特征在于:烟酰胺核苷激酶、无机焦磷酸酶、 NAD 激酶及多聚磷酸激酶的加入量分别为 5-50mg 酶粉 /ml 缓冲溶液、 10-100mg 酶粉 /ml 缓冲溶液、 5-50mg 酶粉 / ml 缓冲溶液和 10-100mg 酶粉 / ml 缓冲溶液。
6 、根据权利要求 1 所述的氧化型辅酶 II 的酶催化制备方法,其特征在于:一锅煮反应在无机盐存在下进行,所述无机盐为选自钠、钾、镁、锌、锰、钴及铁的金属的硫酸、盐酸或磷酸盐中的一种或多种的混合物,所述无机盐的加入量为 1-50mg/ml 缓冲溶液。
7 、根据权利要求 6 所述的氧化型辅酶 II 的酶催化制备方法,其特征在于:无机盐为氯化镁或氯化锰。
8 、根据权利要求 6 或 7 所述的氧化型辅酶 II 的酶催化制备方法,其特征在于:所述制备方法的实施过程如下:在反应容器中加入缓冲溶液,然后依次加入烟酰胺核苷、三磷酸腺苷二钠盐、六偏磷酸钠、烟酰胺核苷激酶、 无机焦磷酸酶、 NAD 激酶、多聚磷酸激酶以及无机盐,控制温度为 10 ℃ ~40℃,搅拌反应,利用液相色谱- 质谱联用监测反应的转化率,至检测到磷酸腺苷消耗完毕,停止反应。
9 、根据权利要求 8 所述的氧化型辅酶 II 的酶催化制备方法,其特征在于:所述制备方法还包括:停止反应后,依次经过滤、大孔树脂吸附、冻干、用乙醇和水的混合溶剂重结晶得到氧化型辅酶 II 。
10 、据权利要求 8 所述的氧化型辅酶 II 的酶催化制备方法,其特征在于:控制反应在温度 20 ℃ ~40℃下进行。
PCT/CN2013/072845 2013-03-19 2013-03-19 一种氧化型辅酶 ii 的酶催化制备方法 WO2014146242A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/072845 WO2014146242A1 (zh) 2013-03-19 2013-03-19 一种氧化型辅酶 ii 的酶催化制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/072845 WO2014146242A1 (zh) 2013-03-19 2013-03-19 一种氧化型辅酶 ii 的酶催化制备方法

Publications (1)

Publication Number Publication Date
WO2014146242A1 true WO2014146242A1 (zh) 2014-09-25

Family

ID=51579266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/072845 WO2014146242A1 (zh) 2013-03-19 2013-03-19 一种氧化型辅酶 ii 的酶催化制备方法

Country Status (1)

Country Link
WO (1) WO2014146242A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112280762A (zh) * 2020-11-13 2021-01-29 中山俊凯生物技术开发有限公司 一种烟酰胺核糖激酶突变体及其编码基因和应用
CN113481265A (zh) * 2021-07-19 2021-10-08 合肥康诺生物制药有限公司 一种应用生物酶法制备nadp的方法
CN114107160A (zh) * 2021-12-27 2022-03-01 浙江工业大学 一种烟酰胺核糖激酶基因工程菌及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4411995A (en) * 1981-09-28 1983-10-25 Massachusetts Institute Of Technology Synthesis of nicotinamide cofactors
EP1416051A1 (en) * 2001-07-02 2004-05-06 Oriental Yeast Co., Ltd. Process for producing nicotinamide adenine dinucleotide phosphate (nadp)
CN102605026A (zh) * 2012-03-06 2012-07-25 苏州汉酶生物技术有限公司 一种氧化型辅酶i的制备方法
CN102605027A (zh) * 2012-03-06 2012-07-25 苏州汉酶生物技术有限公司 一种氧化型辅酶ii的酶催化制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4411995A (en) * 1981-09-28 1983-10-25 Massachusetts Institute Of Technology Synthesis of nicotinamide cofactors
EP1416051A1 (en) * 2001-07-02 2004-05-06 Oriental Yeast Co., Ltd. Process for producing nicotinamide adenine dinucleotide phosphate (nadp)
CN102605026A (zh) * 2012-03-06 2012-07-25 苏州汉酶生物技术有限公司 一种氧化型辅酶i的制备方法
CN102605027A (zh) * 2012-03-06 2012-07-25 苏州汉酶生物技术有限公司 一种氧化型辅酶ii的酶催化制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112280762A (zh) * 2020-11-13 2021-01-29 中山俊凯生物技术开发有限公司 一种烟酰胺核糖激酶突变体及其编码基因和应用
CN112280762B (zh) * 2020-11-13 2022-11-01 中山俊凯生物技术开发有限公司 一种烟酰胺核糖激酶突变体及其编码基因和应用
CN113481265A (zh) * 2021-07-19 2021-10-08 合肥康诺生物制药有限公司 一种应用生物酶法制备nadp的方法
CN114107160A (zh) * 2021-12-27 2022-03-01 浙江工业大学 一种烟酰胺核糖激酶基因工程菌及其应用

Similar Documents

Publication Publication Date Title
Park et al. Enzymatic synthesis of S-adenosyl-L-methionine on the preparative scale
CN102605027B (zh) 一种氧化型辅酶ii的酶催化制备方法
US9416385B2 (en) Method for microbial production of cyclic adenosine 3′, 5′-monophosphate
CN101230373B (zh) 一种s-腺苷蛋氨酸的制备方法
CN113549663B (zh) 一种腺苷参与的全酶法nmn合成方法
CN104561195B (zh) 一种尿苷二磷酸葡萄糖的制备方法
CN102605026A (zh) 一种氧化型辅酶i的制备方法
CN107557412B (zh) 一种固定化酶催化合成nadph的方法
CN108018252B (zh) 一种中间体2’-脱氧鸟苷的制备方法
WO2023273960A1 (zh) 一种腺苷参与的nmn半合成方法
WO2014146242A1 (zh) 一种氧化型辅酶 ii 的酶催化制备方法
WO2022217827A1 (zh) 一种用于制备β-烟酰胺单核苷酸的酶组合物及其应用
CN115927216A (zh) 一种s-尼古丁的制备方法
CN111808899A (zh) 一种胞磷胆碱钠的合成方法
CN111705096A (zh) 一种酶转化法生产β-烟酰胺单核苷酸的方法
CN115433750A (zh) 一种烟酰胺单核苷酸的制备方法
Żymańczyk–Duda et al. Reductive biotransformation of diethyl β-, γ-and δ-oxoalkylphosphonates by cells of baker’s yeast
CN103820506A (zh) 一种基因重组菌发酵生产辅酶q10的方法
CN112725395A (zh) 一种烟酰胺腺嘌呤二核苷酸的制备方法
CN112608960A (zh) 一种尿苷二磷酸葡萄糖醛酸的制备方法
JPH05292988A (ja) ジヌクレオシドポリリン酸,ヌクレオシドポリリン酸又はそれらの誘導体の製造方法
CN117701659A (zh) 一种酶催化制备nadp+的方法
CN114410563B (zh) 大肠杆菌的高密度培养及在催化生产槲皮素中的应用
AU773234B2 (en) A process for the preparation of derivatives of Ruscus aculeatus steroid glycosides
IT8050073A1 (it) PROCEDIMENTO PER PRODURRE ACIDO D(-)-β-IDROSSI-ISOBUTIRRICO.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13878725

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13878725

Country of ref document: EP

Kind code of ref document: A1