WO2014142636A2 - 복수 개의 박막으로 이루어진 지문 방지층의 조성물과 그 제조 방법. - Google Patents

복수 개의 박막으로 이루어진 지문 방지층의 조성물과 그 제조 방법. Download PDF

Info

Publication number
WO2014142636A2
WO2014142636A2 PCT/KR2014/003510 KR2014003510W WO2014142636A2 WO 2014142636 A2 WO2014142636 A2 WO 2014142636A2 KR 2014003510 W KR2014003510 W KR 2014003510W WO 2014142636 A2 WO2014142636 A2 WO 2014142636A2
Authority
WO
WIPO (PCT)
Prior art keywords
water
thin films
deposition
layer consisting
repellent coating
Prior art date
Application number
PCT/KR2014/003510
Other languages
English (en)
French (fr)
Other versions
WO2014142636A3 (ko
Inventor
김훈래
이지영
Original Assignee
(주) 개마텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 개마텍 filed Critical (주) 개마텍
Priority to US14/787,253 priority Critical patent/US10329192B2/en
Priority to CN201480023891.0A priority patent/CN105209568B/zh
Publication of WO2014142636A2 publication Critical patent/WO2014142636A2/ko
Publication of WO2014142636A3 publication Critical patent/WO2014142636A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/42Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating of an organic material and at least one non-metal coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/29Mixtures
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/76Hydrophobic and oleophobic coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/151Deposition methods from the vapour phase by vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/31Pre-treatment

Definitions

  • the present invention relates to a deposition material composition and a method for producing a metal compound.
  • the present invention relates to a composition and a manufacturing method of a coating layer which is pre-deposited when water or oil repellent fingerprints are deposited on glass and plastic surfaces so that the deposited surface has excellent wear resistance, saline water, chemical resistance, and cosmetic resistance.
  • Anti-fingerprint coating is a technology to prevent the adhesion of contaminants such as fingerprints and to easily remove even when contaminants are attached by specially treating the surface of the substrate such as glass, and is a surface treatment technology that imparts a water / oil repellent function of the thin film.
  • Liquid coatings such as dip coating and spray coating show high productivity due to the continuous process. However, the defect rate is high and the performance is inadequate compared with vacuum coating.
  • conventional fingerprint deposition is to deposit a fluorine-based compound that lowers the surface energy on SiO 2 .
  • Korean Patent Publication No. 10-2011-0138541 relates to an anti-fingerprint thin film structure having excellent durability and a method of forming the anti-fingerprint thin film structure, which is formed on a substrate, on a two-dimensional plane, on a plurality of grains, A grain thin film layer including grain boundaries of the grain and a fingerprint coating layer formed by a fingerprint coating material on the grain thin film layer, and to improve the durability of the fingerprint properties, the fingerprint coating material is the plurality of grain boundaries And a lower layer formed between the substrate and the grain thin film layer to improve adhesion of the grain thin film layer, thereby increasing the surface roughness of the anti-fingerprint coating layer, and thereby preventing the fingerprint coating layer from abrasion. It is possible to prevent the easy disappearance by improving the durability to the fingerprint properties. However, the problem of high facility investment cost and defect rate is high compared to vacuum coating, and the problem of insufficient performance still remains.
  • the technical problem to be achieved by the present invention is a deposition material composition and a deposition method which can have excellent wear resistance, salt water, chemicals, cosmetic resistance compared to the conventional deposition.
  • the primer film coating composition of the water and oil repellent coating film deposited to improve the durability of the water and oil repellent coating film is at least one of silicon oxide (SiO x ), titanium (Ti) compound, aluminum (Al) compound, and zirconium (Zr) compound. Contains one or more.
  • the anti-fingerprint layer deposited by the present invention has a first effect having excellent wear resistance, saline resistance, chemical resistance, cosmetic resistance, and the like compared to the existing products.
  • the primer film of the anti-fingerprint layer formed by depositing a water / oil repellent coating film on a primer film of the present invention has a third effect of being deposited at a vacuum degree lower than a conventional vacuum degree and shortening the deposition time.
  • FIG. 1 shows a method for manufacturing a fingerprint prevention layer consisting of a plurality of thin films according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a fingerprint prevention layer consisting of a plurality of thin films according to an embodiment of the present invention.
  • FIG. 3 is a structural diagram of an apparatus for electron beam evaporation according to an embodiment of the present invention.
  • FIG. 4 is a structural diagram of an apparatus for resistance heating vacuum deposition according to an embodiment of the present invention.
  • a glass or polymer substrate 100 In the anti-fingerprint layer 400 formed of a plurality of thin films according to the present invention, a glass or polymer substrate 100, a claim primer film 200 formed on the substrate 100, and the primer film 200 on It will be possible to include a oil and water repellent coating film 300 formed on.
  • the coating composition of the primer film 200 of the water and oil repellent coating film deposited to improve the durability of the water and oil repellent coating film 300 is silicon oxide (SiO x ), titanium (Ti) compounds, aluminum (Al) compounds, zirconium It will be possible to include at least one or more of the mixtures comprising at least one or more of the (Zr) compounds.
  • the composition for coating the primer film 200 of the water and oil repellent coating film deposited for improving durability of the water and oil repellent coating film 300 is a titanium (Ti) compound, an aluminum (Al) compound, a zirconium (Zr) compound. It will be possible to make any one or a combination of two or more.
  • the mixture is titanium dioxide (TiO 2 ), aluminum oxide (Al 2 O 3 ), zirconium dioxide (ZrO 2 ), aluminum silicate (Al 2 (SiO 4 ) O), kaolin (Al 2 Si 2 O 5 It will be preferable to include at least any one of (OH) 4 ).
  • the silicon oxide (SiO x ) may be at least one of quartz, cristobalite, tridymite, and amorphous.
  • the water / oil repellent coating layer 300 may be manufactured by depositing a compound containing at least one of fluorine (F) and silicon (Si).
  • FIG. 1 illustrates a method for manufacturing a fingerprint prevention layer 400 made of a plurality of thin films according to an embodiment of the present invention.
  • a glass or polymer substrate 100 Preparing a glass or polymer substrate 100, forming a portion for depositing a fingerprint protection layer 400 consisting of a plurality of layers by etching on the substrate 100, the water and oil repellent coating film 300 Depositing a primer film 200 made of the composition on the surface of the substrate 100 including a portion to be deposited), and a water / oil repellent coating film 300 on the deposited primer film 200. ) And purging the substrate 100 on which the water / oil repellent coating layer 300 is formed.
  • the preparing of the substrate 100 it may be possible to further include a cleaning process using a wet cleaning agent.
  • the etching may be etched by at least one of ion etching and RF plasma etching.
  • the gas of oxygen (O 2 ), argon (Ar), or oxygen (O 2 ) and argon (Ar) is ionized at a vacuum degree of 7 ⁇ 10 ⁇ 2 Torr to 2 ⁇ 10 ⁇ 7 Torr. And etching ionized gas ions by impinging the ionized gas ions onto the material surface.
  • the etching is performed at a vacuum degree of 6 x 10 -4 Torr, but is not limited thereto.
  • the gas when RF plasma etching is used in the etching step, the gas may be used including oxygen (O 2 ), argon (Ar), or gases of oxygen (O 2 ) and argon (Ar).
  • the primer layer 200 may be deposited in a resistive heating evaporation method, electron beam evaporation method, electron beam ion plating, sputtering, sputtering, or sputtering ion plating system. At least one of Sputtering Ion plating System, Laser Molecular Beam Epitaxy, Pulsed Laser Deposition, Chemical Vapor Deposition, and Ion-Assist Deposition It will be possible to deposit using.
  • an electron beam 520 is irradiated from a tungsten gun (W-Gun) 550 by a magnetic force of a magnet 560 so that the electron beam deposition source 510 is an electron beam deposition molecule.
  • 540 is deposited on the electron beam evaporation substrate 530.
  • FIG 4 shows a structural diagram of a device for a resistance heating vacuum deposition method according to an embodiment of the present invention.
  • the resistive heating vacuum deposition method heats a resistive heating vacuum deposition source 610 located in a tungsten vessel (W-Boat) 620 so that the resistive heating vacuum deposition source 610 is a resistive heating vacuum deposition molecule.
  • (Evaporation Molecule) 640 is deposited on the resistive heating vacuum deposition substrate 630.
  • the vacuum degree is deposited at 7 ⁇ 10 ⁇ 2 Torr to 2 ⁇ 10 ⁇ 7 Torr and the temperature is 20 to 180 ° C.
  • the most preferable electron beam evaporation is deposited at a vacuum degree of 1.6 ⁇ 10 ⁇ 4 Torr and a temperature of 20 to 150 ° C., but is not limited thereto.
  • the primer film 200 may be deposited using ion beam evaporation and ion assist deposition using ion beam evaporation.
  • the ion beam used for the ion assist deposition may be oxygen (O 2 ), argon (Ar), or a gas of oxygen (O 2 ) and argon (Ar).
  • the ion beam is 1 ⁇ 10. It would be desirable to irradiate from 13 / cm 2 to 5 ⁇ 10 17 cells / cm 2.
  • the water / oil repellent coating layer 300 may be manufactured by depositing a compound including at least one of fluorine (F) and silicon (Si).
  • the water / oil repellent coating 300 may be formed by resistance heating evaporation, electron beam evaporation, electron beam ion plating, sputtering, sputtering ion plating system, and the like. at least one of plating system, laser molecular beam epitaxy, pulsed laser deposition, chemical vapor deposition, and ion-assist deposition. It will be possible to deposit by.
  • the water / oil repellent coating layer 300 is deposited using a resistance heating evaporation method, but is not limited thereto.
  • the water and oil repellent coating layer 300 is deposited using a resistance heating evaporation method, it is preferable to deposit the vacuum at 7 x 10 -2 Torr to 2 x 10 -7 Torr and at a temperature of 20 to 180 ° C. will be.
  • the deposition is performed at a vacuum degree of 1.6 ⁇ 10 ⁇ 5 Torr and a temperature of 20 to 150 ° C., but is not limited thereto.
  • Anti-fingerprint deposition having water and oil repellency according to the present invention can be deposited at a lower vacuum than the existing high degree of vacuum can reduce the deposition time.
  • Primer film 200 of the water and oil repellent coating film deposited for improving the durability of the water and oil repellent coating film 300 according to the present invention is deposited by using the electron beam evaporation method (Electron beam evaporation), or It is deposited using an ion-assistance deposition method (Ion-Assist Deposition) at the same time the electron beam evaporation (Ion beam evaporation) and the ion beam evaporation (Ion Beam Evaporation).
  • the electron beam evaporation method Electrodevaporation
  • Ion-Assist Deposition ion-assistance deposition
  • FIG 2 is a sectional view of a fingerprint prevention layer 400 made of a plurality of thin films according to an embodiment of the present invention.
  • the anti-fingerprint layer 400 formed of a plurality of thin films is a glass or polymer substrate, a primer film 200 of the present invention formed on the substrate 100, and a water / oil repellent formed on the primer film 200. It will be possible to include a coating film (300).
  • the anti-fingerprint layer 400 made of a plurality of thin films according to the present invention may be used in an electronic device.
  • the electronic device includes a mobile phone, a tablet, and the like, and in the case of a mobile phone, it may be used in a window, and in the case of a tablet, it may be used in the outermost layer.
  • the tempered glass is placed in a chamber capable of vacuum decompression, and then the sintered primer is placed in the electron beam deposition place, the anti-chemical agent is placed in the resistive heating deposition place, and the vacuum pressure is reduced to 1.8 X 10 -4 Torr using a vacuum pump, followed by argon.
  • the substrate is etched using gas. After the substrate is etched, the chamber is set to 1.5 ⁇ 10 ⁇ 4 Torr, 80 ° C. and primer deposition is performed using an electron beam method.
  • the thickness of the primer film thus obtained was 150 kPa and the thickness of the water / oil repellent coating film was 230 kPa to confirm the contact angle, adhesion, abrasion resistance, saline and chemical resistance of the tempered glass.
  • the spray dried powder was pressed at a pressure of 550 kg / cm 2 and then sintered at 1200 ° C. for 8 hours.
  • the tempered glass is placed in a chamber capable of vacuum decompression, and then the sintered primer is placed in the electron beam deposition place, the anti-chemical agent is placed in the resistive heating deposition place, and the vacuum pressure is reduced to 1.8 X 10 -4 Torr using a vacuum pump, followed by argon.
  • the substrate is etched using gas. After the substrate is etched, the chamber is set to 1.5 ⁇ 10 ⁇ 4 Torr, 80 ° C. and primer deposition is performed using an electron beam method.
  • water and oil repellent deposition is carried out using a resistance heating method, and when the work is completed, the vacuum is removed and the deposition is finished.
  • the thickness of the primer film thus obtained was 150 kPa and the thickness of the water / oil repellent coating film was 230 kPa to confirm the contact angle, adhesion, abrasion resistance, saline and chemical resistance of the tempered glass.
  • the tempered glass is placed in a chamber capable of vacuum decompression, and then the sintered primer is placed in the electron beam deposition place, the anti-chemical agent is placed in the resistive heating deposition place, and the vacuum pressure is reduced to 1.8 X 10 -4 Torr using a vacuum pump, followed by argon.
  • the substrate is etched using gas. After the substrate is etched, the chamber is set to 1.5 ⁇ 10 ⁇ 4 Torr, 80 ° C. and primer deposition is performed using an electron beam method.
  • water and oil repellent deposition is carried out using a resistance heating method, and when the work is completed, the vacuum is removed and the deposition is finished.
  • the thickness of the primer film thus obtained was 150 kPa and the thickness of the water / oil repellent coating film was 230 kPa to confirm the contact angle, adhesion, abrasion resistance, saline and chemical resistance of the tempered glass.
  • the tempered glass is placed in a chamber capable of vacuum decompression, and then the sintered primer is placed in the electron beam deposition place, the anti-chemical agent is placed in the resistive heating deposition place, and the vacuum pressure is reduced to 1.8 X 10 -4 Torr using a vacuum pump, followed by argon.
  • the substrate is etched using gas. After the substrate is etched, the chamber is set to 1.5 ⁇ 10 ⁇ 4 Torr, 80 ° C. and primer deposition is performed using an electron beam method.
  • water and oil repellent deposition is carried out using a resistance heating method, and when the work is completed, the vacuum is removed and the deposition is finished.
  • the thickness of the primer film thus obtained was 150 kPa and the thickness of the water / oil repellent coating film was 230 kPa to confirm the contact angle, adhesion, abrasion resistance, saline and chemical resistance of the tempered glass.
  • Distilled water was used in the contact angle measuring instrument to drop the liquid volume in the middle of the sample at 600 ⁇ l / min in 3 ⁇ l size. 3 seconds after dosing, contact angle is measured.
  • the core With only the wooden part of the pencil cut off, the core is exposed in a cylindrical shape 3mm, and the grinding paper placed on a flat surface is placed at right angles and polished while drawing a circle so that the tip of the shim is flat and angled. 10mm movement at uniform speed by touching the pencil core with 1kg load at an angle. 5 times by changing the sample position.
  • the eraser is placed on the coated film surface of the sample and reciprocated while continuing to keep the methyl alcohol dry. (40 round trips / minute)
  • the anti-fingerprint layer deposited by the present invention has excellent abrasion resistance, saline solution, chemical resistance, cosmetic resistance, etc., compared to existing products, and various as well as SiO 2 deposited to compensate for the degradation of the existing fingerprint.
  • a primer film of a to-membrane film which is a coating film of water / oil repellent.
  • the primer film of the anti-fingerprint layer formed by depositing a water / oil repellent coating film on a primer film can be deposited at a lower vacuum degree than the conventional vacuum, thereby reducing the deposition time, thereby reducing the cost per hour and productivity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physical Vapour Deposition (AREA)
  • Combustion & Propulsion (AREA)
  • Wood Science & Technology (AREA)
  • Laminated Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

발수 발유 코팅막의 내구성 향상을 위해 증착되는 발수 발유 코팅막의 프라이머(Primer)막 코팅용 조성물은 산화규소(SiOx)와 티타늄(Ti) 화합물, 알루미늄 (Al) 화합물, 지르코늄(Zr) 화합물 중 적어도 어느 하나 이상을 포함하는 혼합물인 것을 특징으로 한다. 유리 또는 고분자 기판을 준비하는 단계, 상기 기판 상에 에칭(Etching)에 의해 상기 기판 중 지문 방지층을 증착할 부분을 형성시키는 단계, 상기 발수 발유 코팅막을 증착할 부분을 포함하는 상기 기판 표면에 상기 조성물로 이루어진 프라이머(Primer)막을 증착하는 단계, 상기 증착된 프라이머(Primer)막 상에 발수 발유 코팅막을 형성하는 단계 및 상기 발수 발유 코팅막이 형성된 상기 기판을 퍼징 (Purging)하는 단계를 포함하는 것이 가능할 것이다. 이는 기존 증착 대비 우수한 내마모, 내염수, 내약품, 내화장품성을 지니는 효과를 갖는다.

Description

복수 개의 박막으로 이루어진 지문 방지층의 조성물과 그 제조 방법.
본원 발명은 금속 화합물을 포함하는 증착 물질 조성물 및 제조 방법에 관한 것이다.
보다 상세하게는 글라스, 플라스틱 표면에 발수 발유인 내지문 증착 시 선 증착되는 코팅층의 조성물 및 제조 방법에 관한 것으로 증착된 표면이 우수한 내마모, 내염수, 내약품, 내화장품성을 갖도록 한다.
지문방지코팅은 유리 등의 기재 표면을 특수 처리하여 지문과 같은 오염물질의 부착방지와 오염물질이 부착되더라도 쉽게 제거 가능하도록 하는 기술로서, 박막의 발수 발유 기능을 표면에 부여하는 표면처리 기술이다.
많은 가전 중에 외관에 노출되는 부분 즉, 휴대폰, DVD 등의 가전제품의 윈도우나 케이스의 경우, 사람 손에 노출이 되는 부분이 존재하게 되며, 깨끗한 표면에 손자국(Fingerprint)이 잘 남게 된다.
특히, 스마트폰 및 테블릿의 경우 윈도우 창을 입력수단으로 사용하기 때문에 윈도우 창 표면의 내지문성은 필수적이다.
글라스나 플라스틱 표면에 지문을 방지하는 코팅의 경우 그 응용분야에 따라, 진공코팅, 딥코팅(Dip coating), 스프레이 코팅(Spray coating) 등의 기술을 이용한 코팅방법들이 개발되고 있으며, 국내의 경우 대부분 안경렌즈에 유전물질을 증착하는 용도로 주로 사용되고 있는 전자빔(Electron beam)을 이용한 진공증착 기술이 발달해 있다.
진공증착 기술의 경우 불소계 화합물을 진공에서 기화시켜 글라스나 플라스틱 표면에 박막으로 코팅하는 기술로서, 오염물질에 의한 표면불량률이 낮은 대신에 배치 공정 (Batch process)으로 인한 낮은 생산성이 문제가 되고 있으며, 이를 해소하기 위한 대형장비의 개발이 진행되고 있으나, 높은 설비투자비로 인하여 문제가 되고 있다.
딥코팅(Dip coating), 스프레이 코팅(Spray coating) 등의 액상코팅의 경우 연속 공정으로 인한 높은 생산성을 보이고 있으나, 진공코팅과 비교하여 불량률이 높으며, 성능이 미흡한 문제를 보이고 있다.
또한, 기존의 내지문 증착은 SiO2 위에 표면에너지를 낮춰주는 불소계 화합물을 증착하는 것이다.
이는, 글라스나 플라스틱 상에 발수 발유 물질을 바로 증착하게 되면 내구성 저하가 발생하므로 이를 보완하기 위하여 SiO2를 증착 후 발수 발유 물질 증착을 진행한 것이다.
(선행기술문헌)
공개특허 제 10-2011-0138541 호는 내구성이 우수한 내지문 박막 구조물 및 그 형성 방법에 관한 것으로, 내지문 박막 구조물은 기판, 상기 기판 상에 2차원 평면상으로 형성되며, 다수의 그레인들과 다수의 그레인 바운더리들을 포함하는 그레인 박막층 및 상기 그레인 박막층 상부에 내지문 코팅 물질에 의해 형성되는 내지문 코팅층을 포함하고, 내지문 특성의 내구성을 향상시키기 위해, 상기 내지문 코팅 물질이 상기 다수의 그레인 바운더리들에 침투되도록 형성하며, 상기 그레인 박막층의 접착력을 향상시키기 위해 상기 기판과 상기 그레인 박막층 사이에 형성되는 하도층을 더 포함함으로써, 내지문 코팅층의 표면 조도를 높이고, 이를 통해 내지문 코팅층이 마모에 의해 쉽게 없어지는 것을 방지하여 내지문 특성에 대한 내구성을 향상시킬 수 있다. 그러나, 높은 설비투자비로 인한 문제와 진공코팅과 비교하여 불량률이 높으며, 성능이 미흡한 문제는 여전히 남아 있다.
본원 발명이 이루고자 하는 기술적 과제는 기존 증착 대비 우수한 내마모, 내염수, 내약품, 내화장품성을 가질 수 있는 증착 물질 조성물 및 그 증착 방법이다.
발수 발유 코팅막의 내구성 향상을 위해 증착되는 발수 발유 코팅막의 프라이머(Primer)막 코팅용 조성물은 산화규소(SiOx)와 티타늄(Ti) 화합물, 알루미늄(Al) 화합물, 지르코늄(Zr) 화합물 중 적어도 어느 하나 이상 포함한다.
유리 또는 고분자 기판을 준비하는 단계, 상기 기판 상에 에칭(Etching)을 이용하여 복수 개의 층으로 이루어진 지문 방지층의 증착할 부분을 형성시키는 단계, 상기 발수 발유 코팅막을 증착할 부분을 포함하는 상기 기판 표면에 상기 조성물로 이루어진 프라이머(Primer)막을 증착하는 단계, 상기 증착된 프라이머 (Primer)막 상에 발수 발유 코팅막을 형성하는 단계 및 상기 발수 발유 코팅막이 형성된 상기 기판을 퍼징(Purging)하는 단계를 포함하는 것이 가능할 것이다.
본원 발명에 의해 증착된 지문 방지층은 기존의 제품에 대비하여 우수한 내마모, 내염수, 내약품, 내화장품성 등을 지니는 제 1 효과를 갖는다.
또한, 기존의 내지문의 내구성 저하를 보완하기 위해 증착하였던 SiO2 뿐만 아니라 다양한 화합물을 이용하여 발수 발유의 코팅막인 내지문막의 프라이머막을 사용할 수 있는 제 2 효과를 갖는다.
이와 함께, 본원 발명의 프라이머(Primer)막 상에 발수 발유 코팅막을 증착하여 형성하는 지문 방지층의 상기 프라이머막은 기존의 진공도 보다 낮은 진공도에서 증착이 되어 증착 시간을 단축할 수 있는 제 3 효과를 갖는다.
이를 통해 시간당 비용을 절감시키고, 생산성을 향상시켜 공정 전체 텍타임 (tack time)을 감소시키고 이에 따라 생산효율을 향상시킬 수 있는 제 4 효과를 갖는다.
도 1은 본원 발명의 실시 예에 의한 복수 개의 박막으로 이루어진 지문 방지층 제조 방법을 나타낸다.
도 2는 본원 발명의 실시 예에 의한 복수 개의 박막으로 이루어진 지문 방지층의 단면도를 나타낸다.
도 3은 본원 발명의 실시 예에 의한 전자빔 증착법(Electron beam evaporation)을 위한 장치의 구조도를 나타낸다.
도 4는 본원 발명의 실시 예에 의한 저항가열식 진공 증착법을 위한 장치의 구조도를 나타낸다.
(부호의 설명)
100: 기판
200: 프라이머(Primer)막
300: 발유 발수 코팅막
400: 지문 방지층
510: 전자빔 증착 소스(Source)
520: 전자빔
530: 전자빔 증착법 기판
540: 전자빔 증착 분자(Evaporation Molecule)
550: 텅스텐 건(W-Gun)
560: 마그넷(Magnet)
610: 저항가열식 진공 증착 소스(Source)
620: 텅스텐 용기(W-Boat)
630: 저항가열식 진공 증착법 기판
640: 저항가열식 진공 증착 분자(Evaporation Molecule)
본원 발명에 의한 복수 개의 박막으로 이루어진 지문 방지층(400)에 있어서, 유리 또는 고분자 기판(100), 상기 기판(100)상에 형성된 청구항 프라이머(Primer)막(200), 상기 프라이머막(200) 상에 형성된 발유 발수 코팅막(300)을 포함하는 것이 가능할 것이다.
상기 발수 발유 코팅막(300)의 내구성 향상을 위해 증착하는 발수 발유 코팅막의 프라이머(Primer)막(200) 코팅용 조성물은 산화규소(SiOx)와 티타늄(Ti) 화합물, 알루미늄(Al) 화합물, 지르코늄(Zr) 화합물 중 적어도 어느 하나 이상을 포함하는 혼합물 중 적어도 어느 하나 이상 포함하는 것이 가능할 것이다.
또는, 상기 발수 발유 코팅막(300)의 내구성 향상을 위해 증착하는 발수 발유 코팅막의 프라이머(Primer)막(200) 코팅용 조성물은 티타늄(Ti) 화합물, 알루미늄(Al) 화합물, 지르코늄(Zr) 화합물 중 어느 하나 또는 둘 이상의 조합으로 이루어진 것도 가능할 것이다.
더욱 자세하게는, 상기 혼합물은 이산화티타늄(TiO2), 산화알루미늄(Al2O3), 이산화지르코늄(ZrO2), 규산알루미늄(Al2(SiO4)O), 카올린(Al2Si2O5(OH)4) 중 적어도 어느 하나 이상 포함하는 것이 바람직할 것이다.
상기 산화규소(SiOx)는 석영(Quartz), 크리스토발라이트(Cristobalite), 트리디마이트(Tridymite), 비정질(Amorphous) 중 적어도 어느 하나인 것이 가능할 것이다.
또한, 상기 발수 발유 코팅막(300)은 불소(F), 실리콘(Si) 중 적어도 어느 하나 이상을 포함하는 화합물을 증착하여 제조되는 것이 바람직할 것이다.
도 1은 본원 발명의 실시 예에 의한 복수 개의 박막으로 이루어진 지문 방지층(400) 제조 방법을 나타낸다.
유리 또는 고분자 기판(100)을 준비하는 단계, 상기 기판(100) 상에 에칭(Etching)에 의해 복수 개의 층으로 이루어진 지문 방지층(400)을 증착할 부분을 형성시키는 단계, 상기 발수 발유 코팅막(300)을 증착할 부분을 포함하는 상기 기판(100) 표면에 상기 조성물로 이루어진 프라이머(Primer)막(200)을 증착하는 단계, 상기 증착된 프라이머(Primer)막(200) 상에 발수 발유 코팅막(300)을 형성하는 단계 및 상기 발수 발유 코팅막(300)이 형성된 상기 기판(100)을 퍼징(Purging)하는 단계를 포함하는 것이 가능할 것이다.
또한, 상기 기판(100) 준비 단계에서, 습식 세정제를 이용하는 세정 공정을 추가로 포함하는 것이 가능할 것이다.
상기 에칭 단계에서는 상기 에칭은 이온 에칭, RF 플라즈마 에칭 중 적어도 어느 하나의 방법으로 에칭하는 것이 가능할 것이다.
상기 에칭 단계에서 이온 에칭을 이용할 경우 진공도 7 x 10-2 Torr 내지 2 x 10-7 Torr 에서 산소(O2), 아르곤(Ar), 또는 산소(O2)와 아르곤(Ar)의 가스를 이온화시키고 이온화된 가스 이온을 소재 표면에 충돌시켜서 소재 표면을 에칭시키는 방법을 포함하는 것이 바람직할 것이다.
가장 바람직한 것은 진공도 내지 6 x 10-4 Torr 에서 에칭하는 것이나, 이에 한정된 것은 아니다.
또한, 상기 에칭 단계에서 RF 플라즈마 에칭을 이용할 경우, 기체는 산소(O2), 아르곤(Ar), 또는 산소(O2)와 아르곤(Ar)의 가스를 포함하여 이용하는 것이 가능할 것이다.
상기 프라이머(Primer)막(200) 증착 단계는 저항 가열식 증착법(Thermal evaporation), 전자빔 증착법(Electron beam evaporation), 전자빔 이온 플레이팅(Electron Beam Ion plating), 스퍼터링(Sputering), 스퍼터링 이온 플레이팅 시스템(Sputering Ion plating System), 레이저 분자빔 증착법(Laser Molecular Beam Epitaxy), 펄스 레이저 증착법 (Pulsed Laser Deposition), 화학 기상 증착법(Chemical Vapor Deposition), 이온 어시스트 증착법(Ion-Assist Deposition) 중 적어도 어느 하나의 방법을 이용하여 증착하는 것이 가능할 것이다.
도 3에서 확인할 수 있는 바와 같이, 본원 발명의 실시 예에 의한 전자빔 증착법(Electron beam evaporation)을 위한 장치의 구조도를 나타낸다.
상기 전자빔 증착법은 마그넷(Magnet)(560)의 자력에 의해 텅스텐 건(W-Gun)(550)에서 전자빔(520)을 조사하여 상기 전자빔 증착 소스(Source)(510)가 전자빔 증착 분자(Evaporation Molecule)(540)의 형태로 전자빔 증착법 기판(530)에 증착된다.
도 4에서 확인할 수 있는 바와 같이, 본원 발명의 실시 예에 의한 저항가열식 진공 증착법을 위한 장치의 구조도를 나타낸다.
상기 저항가열식 진공 증착법은 텅스텐 용기(W-Boat)(620)에 위치한 저항가열식 진공 증착 소스(Source)(610)를 가열하여 상기 저항가열식 진공 증착 소스(Source)(610)가 저항가열식 진공 증착 분자(Evaporation Molecule)(640)의 형태로 저항가열식 진공 증착법 기판(630)에 증착된다.
상기 프라이머(Primer)막을 상기 전자빔 증착법(Electron beam evaporation)으로 증착하는 경우, 진공도는 7 x 10-2 Torr 내지 2 x 10-7 Torr, 온도는 20 내지 180 ℃에서 증착되는 것이 바람직할 것이다.
가장 바람직한 전자빔 증착법(Electron beam evaporation)은 진공도 1.6 x 10-4 Torr, 온도 20 내지 150 ℃에서 증착되는 것이나 이에 한정되는 것은 아니다.
상기 프라이머(Primer)막(200) 증착 단계는 상기 전자빔 증착법(Electron beam evaporation)을 이용하고, 이온빔 증착법(Ion Beam Evaporation)을 이용한 이온 어시스트 증착을 병행하는 것이 더욱 바람직할 것이다.
상기 이온 어시스트 증착에 사용하는 이온빔은 산소(O2), 아르곤(Ar), 또는 산소(O2)와 아르곤(Ar)의 가스인 것이 바람직할 것이며, 상기 이온 어시스트 증착 시, 이온빔을 1 x 1013개/㎠ 내지 5 x 1017개/㎠ 수로 조사하는 것이 바람직할 것이다.
상기 발수 발유 코팅막(300)을 형성 단계에서 상기 발수 발유 코팅막(300)은 불소(F), 실리콘(Si) 중 적어도 어느 하나 이상을 포함하는 화합물을 증착하여 제조하는 것이 바람직할 것이다.
또한, 상기 발수 발유 코팅막(300)은 저항 가열식 증착법(Thermal evaporation), 전자빔 증착법(Electron beam evaporation), 전자빔 이온 플레이팅(Electron Beam Ion plating), 스퍼터링(Sputering), 스퍼터링 이온 플레이팅 시스템(Sputering Ion plating System), 레이저 분자빔 증착법(Laser Molecular Beam Epitaxy), 펄스 레이저 증착법 (Pulsed Laser Deposition), 화학 기상 증착법(Chemical Vapor Deposition), 이온 어시스트 증착법(Ion-Assist Deposition) 중 적어도 어느 하나의 방법을 이용하여 증착하는 것이 가능할 것이다.
가장 바람직한 것은 저항 가열식 증착법(Thermal evaporation)을 이용하여 상기 발수 발유 코팅막(300)을 증착하는 것이나, 이에 한정된 것은 아니다.
상기 발수 발유 코팅막(300)을 저항 가열식 증착법(Thermal evaporation)을 이용하여 증착할 경우, 진공도는 7 x 10-2 Torr 내지 2 x 10-7 Torr, 온도는 20 내지 180 ℃에서 증착하는 것이 바람직할 것이다.
가장 바람직한 것은 진공도 1.6 x 10-5 Torr, 온도 20 내지 150 ℃에서 증착하는 것이나, 이에 한정된 것은 아니다.
본원 발명에 따라 진행된 발수 발유성을 가지는 내지문 증착은 기존의 높은 진공도 보다 낮은 진공도에서 증착이 되어 증착 시간을 단축할 수 있다.
이는 생산성을 향상시켜 전체 텍타임(tack time)을 감소시키고 생산효율을 향상시키며 시간당 비용을 절감하는 효과를 갖는다.
또한, 기존 증착 대비 우수한 내마모, 내염수, 내약품, 내화장품성을 지니는 효과를 갖는다.
본원 발명에 의한 발수 발유 코팅막(300)의 내구성 향상을 위해 증착하는 발수 발유 코팅막의 프라이머(Primer)막(200)은 본원 발명에 의한 상기 조성물을 전자빔 증착법(Electron beam evaporation)을 이용하여 증착, 또는 전자빔 증착법(Electron beam evaporation)과 이온빔 증착법(Ion Beam Evaporation)을 동시에 병행하는 이온 어시스트 증착법(Ion-Assist Deposition)을 이용하여 증착된다.
도 2는 본원 발명의 실시 예에 의한 복수 개의 박막으로 이루어진 지문 방지층(400)의 단면도를 나타낸다.
복수 개의 박막으로 이루어진 지문 방지층(400)은 유리 또는 고분자 기판, 상기 기판(100)상에 형성된 본원 발명의 프라이머(Primer)막(200) 및 상기 프라이머(Primer)막(200) 상에 형성된 발유 발수 코팅막(300)을 포함하여 이루어지는 것이 가능할 것이다.
상기 본원 발명에 의한 복수 개의 박막으로 이루어진 지문 방지층(400)은 전자기기에 사용될 수 있다. 상기 전자 기기는 휴대폰, 테블릿 등을 포함하며, 핸드폰의 경우 윈도우(Window)에 사용하는 것이 가능할 것이며, 테블릿의 경우 최외곽층에 사용될 수 있을 것이다.
(실시예 1)
분말로 이루어진 SiO2 90 중량%, Al2O3 6 중량%, ZrO2 2 중량%, TiO2 2 중량%를 혼합한 후 바인더로 PVA, PEG, 올레인산을 5:2:3으로 혼합 후 전체 분말의 1.2중량%,를 추가하여 분무 건조하였다. 분무 건조된 분말을 600kg/㎠의 압력으로 프레싱 후 1150℃에서 6시간 동안 소결하였다.
강화유리를 진공 감압이 가능한 챔버 내 위치시킨 후 소결된 프라이머를 전자빔 증착하는 곳에, 내지문 약품을 저항가열식 증착하는 곳에 위치시킨 후, 진공 펌프를 사용하여 1.8 X 10-4 Torr까지 진공 감압 후 아르곤 가스를 이용하여 기재를 에칭시킨다. 기재가 에칭된 후 챔버를 1.5 X 10-4 Torr, 80℃로 맞추고 전자빔방식을 이용하여 프라이머 증착을 실시한다.
이 후 저항가열방식을 이용하여 발수 발유 증착을 실시하고 작업이 끝나면 진공을 제거 후 증착을 마무리한다. 이렇게 하여 얻어진 프라이머막의 두께는 150Å이고 발수발유 코팅막의 두께는 230Å로 증착된 강화유리의 접촉각, 부착, 내마모, 내염수, 내약품성을 확인하였다.
(실시예 2)
분말로 이루어진 SiO2 90 중량%, Al2O3 8 중량%, ZrO2 2 중량%를 혼합한 후 바인더로 PVA, PEG, 올레인산을 5:2:3으로 혼합 후 전체 분말의 1.5 중량% 를 추가하여 분무 건조하였다.
분무 건조된 분말을 550kg/㎠의 압력으로 프레싱 후 1200℃에서 8시간 동안 소결하였다.
강화유리를 진공 감압이 가능한 챔버 내 위치시킨 후 소결된 프라이머를 전자빔 증착하는 곳에, 내지문 약품을 저항가열식 증착하는 곳에 위치시킨 후, 진공 펌프를 사용하여 1.8 X 10-4 Torr까지 진공 감압 후 아르곤 가스를 이용하여 기재를 에칭시킨다. 기재가 에칭된 후 챔버를 1.5 X 10-4 Torr, 80℃로 맞추고 전자빔방식을 이용하여 프라이머 증착을 실시한다.
이 후 저항가열방식을 이용하여 발수발유 증착을 실시하고 작업이 끝나면 진공을 제거 후 증착을 마무리한다. 이렇게 하여 얻어진 프라이머막의 두께는 150Å이고 발수발유 코팅막의 두께는 230Å로 증착된 강화유리의 접촉각, 부착, 내마모, 내염수, 내약품성을 확인하였다.
(실시예 3)
분말로 이루어진 SiO2 90 중량%, Al2O3 6 중량%, TiO2 4 중량%를 혼합한 바인더로 PVA, PEG, 올레인산을 5:2:3으로 혼합 후 전체 분말의 1.5 중량%를 추가하여 분무 건조하였다. 분무 건조된 분말을 550kg/㎠의 압력으로 프레싱 후 1100℃에서 10시간 동안 소결하였다.
강화유리를 진공 감압이 가능한 챔버 내 위치시킨 후 소결된 프라이머를 전자빔 증착하는 곳에, 내지문 약품을 저항가열식 증착하는 곳에 위치시킨 후, 진공 펌프를 사용하여 1.8 X 10-4 Torr까지 진공 감압 후 아르곤 가스를 이용하여 기재를 에칭시킨다. 기재가 에칭된 후 챔버를 1.5 X 10-4 Torr, 80℃로 맞추고 전자빔방식을 이용하여 프라이머 증착을 실시한다.
이 후 저항가열방식을 이용하여 발수발유 증착을 실시하고 작업이 끝나면 진공을 제거 후 증착을 마무리한다. 이렇게 하여 얻어진 프라이머막의 두께는 150Å이고 발수발유 코팅막의 두께는 230Å로 증착된 강화유리의 접촉각, 부착, 내마모, 내염수, 내약품성을 확인하였다.
(실시예 4)
분말로 이루어진 Al2O3 95 중량%, ZrO2 5 중량%를 혼합한 후 바인더로 PVA, PEG, 올레인산을 5:2:3으로 혼합 후 전체 분말의 1.0 중량%를 추가하여 분무 건조하였다. 분무 건조된 분말을 600kg/㎠의 압력으로 프레싱 후 1650℃에서 8시간 동안 소결하였다.
강화유리를 진공 감압이 가능한 챔버 내 위치시킨 후 소결된 프라이머를 전자빔 증착하는 곳에, 내지문 약품을 저항가열식 증착하는 곳에 위치시킨 후, 진공 펌프를 사용하여 1.8 X 10-4 Torr까지 진공 감압 후 아르곤 가스를 이용하여 기재를 에칭시킨다. 기재가 에칭된 후 챔버를 1.5 X 10-4 Torr, 80℃로 맞추고 전자빔방식을 이용하여 프라이머 증착을 실시한다.
이 후 저항가열방식을 이용하여 발수발유 증착을 실시하고 작업이 끝나면 진공을 제거 후 증착을 마무리한다. 이렇게 하여 얻어진 프라이머막의 두께는 150Å이고 발수발유 코팅막의 두께는 230Å로 증착된 강화유리의 접촉각, 부착, 내마모, 내염수, 내약품성을 확인하였다.
(비교예 1)
강화유리를 진공 감압이 가능한 챔버 내 위치시킨 후 SiO2를 전자빔 증착하는 곳에, 발수발유 약품을 저항가열식 증착하는 곳에 위치시킨 후, 진공 펌프를 사용하여 3.5 X 10-5 Torr까지 진공 감압 후 아르곤 가스를 이용하여 기재를 에칭시킨다. 기재가 에칭된 후 챔버를 2.5 X 10-5 Torr, 80℃로 맞추고 전자빔방식을 이용하여 SiO2 증착을 실시한다.
이 후 저항가열방식을 이용하여 발수 발유 증착을 실시하고 작업이 끝나면 진공을 제거 후 증착을 마무리한다. 이렇게 하여 얻어진 SiO2 코팅막의 두께는 120Å이고 발수발유 코팅막의 두께는 210Å로 증착된 강화유리의 접촉각, 부착, 내마모, 내염수, 내약품성을 확인하였다.
표 1 초기 접촉각
구분 신뢰성 前 접촉각 (초기 접촉각)
항목 내마모 내약품 염수분무
Spec 110º~125º
실시예 1 116.5 116.9 117.2
실시예 2 117.2 117.5 117.1
실시예 3 116.8 116.1 117.5
실시예 4 116.4 117.3 116.7
비교예 1 117.1 116.8 117.1
접촉각 시험법
접촉각 측정기에 증류수를 이용하여 liquid volume을 3㎕ 크기로 600㎕/Min으로 시료 중간에 떨어트린다. Dosing 후 3sec 후 접촉각을 측정한다.
표 2 부착
항목 부착
실시예 1
실시예 2
실시예 3
실시예 4
비교예 1
◎ : 매우우수, ○ : 우수, △ : 보통, X : 나쁨
부착 시험법
시료에 1mm 간격으로 피막에 달하도록 선을 그어 바둑눈을 만든다. 테이프를 접착시켜 수직방향으로 강하게 잡아 당기되 3회 실시하여 테이프 착탈에서 가공면의 박리 여부를 판단한다.
표 3 연필경도
항목 연필경도
실시예 1 9H
실시예 2 9H
실시예 3 9H
실시예 4 9H
비교예 1 9H
연필경도 시험법
연필의 나무부분만 깍아서 심을 원기둥 모양으로 3mm 노출시킨 상태에서 평평한 면에 놓여진 연마지에 심을 직각으로 대고 원을 그리면서 연마하여 심의 끝이 평탄하고 각이 예리하게 되도록하여 시료의 도막면에 약 45도 각도로 1kg 하중으로 연필심을 닿게 하여 균일한 속도로 10mm 움직임. 시료 위치 바꾸어 5회 실시한다.
표 4 내마모
항목 초기접촉각 내마모 신뢰성 후 접촉각
1500회 +500회 +500회 +500회 +1000회 +1000회 +2000회 +2000회 +2000회
2000회 2500회 3000회 4000회 5000회 7000회 9000회 11000회
Spec 초기 접촉각 대비 ±15º
실시예 1 116.5 113.4 111.4 108.2 106.7 107.5 104.3 103.4 102.8 101.3
실시예 2 117.2 115.6 114.9 114.1 112.6 109.5 105.3 102.9 101.7
실시예 3 116.8 114.7 112.6 110.6 108.5 104.3 103.2 101.5
실시예 4 116.4 115.1 112.5 111.6 109.4 106.5 104.3 103.7 102.6 101.2
비교예 1 117.1 105.8 104.1 102.5 100.5 107.6 103.9 102
내마모 시험법
연필지우개에 500g 하중을 인가 후 지우개를 시료의 도막면에 올리고 왕복한다. (40회 왕복/분)
초기 접촉각 대비 변화량 ±15°이내, 외관상 코팅의 벗겨짐 여부를 판단한다.
표 5 내약품
항목 초기 접촉각 내약품 신뢰성 후 접촉각
250회 +50회 +50회 +50회 +100회 +100회
300회 350회 400회 500회 600회
Spec 초기 접촉각 대비 ±10º
실시예 1 116.9 115.4 113.1 100.8 108.5 106.5
실시예 2 117.5 115.3 113.2 110.9 109.5 107.4
실시예 3 116.1 114.8 111.5 107.6 105.9
실시예 4 117.3 113.2 112.1 110.8 109.2 107.1
비교예 1 116.8 113.2 111.7 109.4 107.9 106.5
내약품 시험법
연필지우개에 500g 하중을 인가 후 지우개를 시료의 도막면에 올리고 메틸 알콜이 마르지 않는 조건으로 계속 투입하면서 왕복한다. (40회 왕복 /분)
초기 접촉각 대비 변화량 ±10°이내, 외관상 코팅의 벗겨짐 여부를 판단한다.
표 6 내염수
항목 초기 접촉각 내염수 신뢰성 후 접촉각
72hr +24hr +24hr +24hr +24hr +24hr +48hr +48hr
4일 5일 6일 7일 8일 10일 12일
Spec 초기 접촉각 대비 ±10º
실시예 1 117.2 115.4 114.6 113.8 111.8 109.6 108.5 107.9 107.1
실시예 2 117.1 115.7 114.2 112.7 110.5 108.6 107.4 107.0
실시예 3 117.5 116.1 113.4 112.7 111.6 109.4 107.3 106.8
실시예 4 116.7 115.4 114.9 114.5 112.4 110.8 108.5 107.5 106.4
비교예 1 117.1 114.3 111.3 109.4 107.8 106.9
내염수 시험법
35도에서 5% NaCl을 시료에 분무 후 수세 후 물기를 제거하고 상온에서 4시간 방치하여, 초기 접촉각 대비 변화량 ±10°이내, 외관상 코팅의 벗겨짐 여부를 판단한다.
본 발명을 첨부된 도면과 함께 설명하였으나, 이는 본 발명의 요지를 포함하는 다양한 실시 형태 중의 하나의 실시 예에 불과하며, 당 업계에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 하는 데에 그 목적이 있는 것으로, 본 발명은 상기 설명된 실시 예에만 국한되는 것이 아님은 명확하다. 따라서, 본 발명의 보호범위는 하기의 청구범위에 의해 해석되어야 하며, 본 발명의 요지를 벗어나지 않는 범위 내에서의 변경, 치환, 대체 등에 의해 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함될 것이다. 또한, 도면의 일부 구성은 구성을 보다 명확하게 설명하기 위한 것으로 실제보다 과장되거나 축소되어 제공된 것임을 명확히 한다.
본원 발명에 의해 증착된 지문 방지층은 기존의 제품에 대비하여 우수한 내마모, 내염수, 내약품, 내화장품성 등을 지니며, 기존의 내지문의 내구성 저하를 보완하기 위해 증착하였던 SiO2 뿐만 아니라 다양한 화합물을 이용하여 발수 발유의 코팅막인 내지문막의 프라이머막을 사용할 수 있다. 또한, 프라이머(Primer)막 상에 발수 발유 코팅막을 증착하여 형성하는 지문 방지층의 상기 프라이머막은 기존의 진공도 보다 낮은 진공도에서 증착이 되어 증착 시간을 단축할 수 있으며, 이를 통해 시간당 비용을 절감시키고, 생산성을 향상시켜 공정 전체 텍타임 (tack time)을 감소시키고 이에 따라 생산효율을 향상시킬 수 있는 산업상 이용가능성이 있다.

Claims (23)

  1. 발수 발유 코팅막의 프라이머(Primer)막 코팅용 조성물에 있어서,
    상기 발수 발유 코팅막의 내구성 향상을 위해
    산화규소(SiOx)와
    티타늄(Ti) 화합물, 알루미늄(Al) 화합물, 지르코늄(Zr) 화합물 중 적어도 어느 하나 이상을 포함하는 혼합물인 것
    을 특징으로 하는 조성물.
  2. 발수 발유 코팅막의 프라이머(Primer)막 코팅용 조성물에 있어서,
    상기 발수 발유 코팅막의 내구성 향상을 위해
    티타늄(Ti) 화합물, 알루미늄(Al) 화합물, 지르코늄(Zr) 화합물 중 어느 하나 또는 둘 이상의 조합으로 이루어진 것
    을 특징으로 하는 조성물.
  3. 청구항 1에 있어서,
    상기 혼합물은 이산화티타늄(TiO2), 산화알루미늄(Al2O3), 이산화지르코늄(ZrO2), 규산알루미늄(Al2(SiO4)O), 카올린(Al2Si2O5(OH)4) 중 적어도 어느 하나 이상 포함하는 것
    을 특징으로 하는 조성물.
  4. 청구항 1에 있어서,
    상기 산화규소(SiOx)는 석영(Quartz), 크리스토발라이트(Cristobalite), 트리디마이트(Tridymite), 비정질(Amorphous) 중 적어도 어느 하나인 것
    을 특징으로 하는 조성물.
  5. 청구항 1에 있어서,
    발수 발유 코팅막은 불소(F), 실리콘(Si) 중 적어도 어느 하나 이상을 포함하는 화합물을 증착하여 제조되는 것
    을 특징으로 하는 조성물.
  6. 복수 개의 박막으로 이루어진 지문 방지층 제조 방법에 있어서,
    (i) 유리 또는 고분자 기판을 준비하는 단계;
    (ii) 상기 기판 상에 에칭(Etching)에 의해 상기 기판 중 지문 방지층을 증착할 부분을 형성시키는 단계;
    (iii) 상기 발수 발유 코팅막을 증착할 부분을 포함하는 상기 기판 표면에 청구항 1 내지 5의 조성물로 이루어진 프라이머(Primer)막을 증착하는 단계;
    (iv) 상기 증착된 프라이머(Primer)막 상에 발수 발유 코팅막을 형성하는 단계;
    (v) 상기 발수 발유 코팅막이 형성된 상기 기판을 퍼징(Purging)하는 단계;
    를 포함하는 것
    을 특징으로 하는 복수 개의 박막으로 이루어진 지문 방지층 제조 방법.
  7. 청구항 6에 있어서,
    상기 (i) 단계와 (ii) 단계 사이에,
    습식 세정제를 이용하는 세정 공정을 추가로 포함하는 것
    을 특징으로 하는 복수 개의 박막으로 이루어진 지문 방지층 제조 방법.
  8. 청구항 6에 있어서,
    상기 (ii) 단계에서,
    상기 에칭은 이온 에칭, RF 플라즈마 에칭 중 적어도 어느 하나의 방법으로 에칭하는 것
    을 특징으로 하는 복수 개의 박막으로 이루어진 지문 방지층 제조 방법.
  9. 청구항 8에 있어서,
    상기 (ii) 단계에서,
    이온 에칭을 이용할 경우, 진공도 7 x 10-2 Torr 내지 2 x 10-7 Torr 에서 산소(O2), 아르곤(Ar), 또는 산소(O2)와 아르곤(Ar)의 가스를 이온화시키고 이온화된 가스 이온을 소재 표면에 충돌시켜서 소재 표면을 에칭시키는 방법을 포함하는 것
    을 특징으로 하는 복수 개의 박막으로 이루어진 지문 방지층 제조 방법.
  10. 청구항 8에 있어서,
    상기 (ii) 단계에서,
    RF 플라즈마 에칭을 이용할 경우, 기체는 산소(O2), 아르곤(Ar), 또는 산소(O2)와 아르곤(Ar)의 가스를 포함하여 이용하는 것
    을 특징으로 하는 복수 개의 박막으로 이루어진 지문 방지층 제조 방법.
  11. 청구항 6에 있어서,
    상기 (iii) 단계에서,
    상기 혼합물은 산화규소(SiOx)와 이산화티타늄(TiO2), 산화알루미늄(Al2O3), 이산화지르코늄 (ZrO2), 규산알루미늄(Al2(SiO4)O), 카올린(Al2Si2O5(OH)4) 중 적어도 어느 하나 이상 포함하는 것
    을 특징으로 하는 복수 개의 박막으로 이루어진 지문 방지층 제조 방법.
  12. 청구항 11에 있어서,
    상기 산화규소(SiOx)는 석영(Quartz), 크리스토발라이트(Cristobalite), 트리디마이트(Tridymite), 비정질(Amorphous) 중 적어도 어느 하나인 것
    을 특징으로 하는 복수 개의 박막으로 이루어진 지문 방지층 제조 방법.
  13. 청구항 6에 있어서,
    상기 (iii) 단계에서,
    상기 프라이머(Primer)막 증착은 저항 가열식 증착법(Thermal evaporation), 전자빔 증착법(Electron beam evaporation), 전자빔 이온 플레이팅(Electron Beam Ion plating), 스퍼터링(Sputering), 스퍼터링 이온 플레이팅 시스템(Sputering Ion plating System), 레이저 분자빔 증착법(Laser Molecular Beam Epitaxy), 펄스 레이저 증착법 (Pulsed Laser Deposition), 화학 기상 증착법(Chemical Vapor Deposition), 이온 어시스트 증착법(Ion-Assist Deposition) 중 적어도 어느 하나의 방법을 이용하여 증착하는 것
    을 특징으로 하는 복수 개의 박막으로 이루어진 지문 방지층 제조 방법.
  14. 청구항 13에 있어서,
    상기 프라이머(Primer)막을 상기 전자빔 증착법(Electron beam evaporation)으로 증착하는 경우, 진공도는 7 x 10-2 Torr 내지 2 x 10-7 Torr, 온도는 20 내지 180 ℃에서 증착되는 것
    을 특징으로 하는 복수 개의 박막으로 이루어진 지문 방지층 제조 방법.
  15. 청구항 13에 있어서,
    상기 이온 어시스트 증착법(Ion-Assist Deposition)은 전자빔 증착법(Electron beam evaporation)과 이온빔 증착법(Ion Beam Evaporation)을 동시에 병행하는 것
    을 특징으로 하는 복수 개의 박막으로 이루어진 지문 방지층 제조 방법.
  16. 청구항 15에 있어서,
    상기 (iii) 단계에서
    상기 이온빔 증착법에 사용하는 이온빔은 산소(O2), 아르곤(Ar), 또는 산소(O2)와 아르곤(Ar)의 가스인 것
    을 특징으로 하는 복수 개의 박막으로 이루어진 지문 방지층 제조 방법.
  17. 청구항 15에 있어서,
    상기 (iii) 단계에서
    상기 이온빔 증착법 증착 시, 이온빔을 1 x 1013개/㎠ 내지 5 x 1017개/㎠ 수로 조사하는 것
    을 특징으로 하는 복수 개의 박막으로 이루어진 지문 방지층 제조 방법.
  18. 청구항 6에 있어서,
    상기 (iv) 단계에서
    상기 발수 발유 코팅막은 불소(F), 실리콘(Si) 중 적어도 어느 하나 이상을 포함하는 화합물을 증착하여 제조되는 것
    을 특징으로 하는 복수 개의 박막으로 이루어진 지문 방지층 제조 방법.
  19. 청구항 6에 있어서,
    상기 (iv) 단계에서
    상기 발수 발유 코팅막은 저항 가열식 증착법(Thermal evaporation), 전자빔 증착법(Electron beam evaporation), 전자빔 이온 플레이팅(Electron Beam Ion plating), 스퍼터링(Sputering), 스퍼터링 이온 플레이팅 시스템(Sputering Ion plating System), 레이저 분자빔 증착법(Laser Molecular Beam Epitaxy), 펄스 레이저 증착법 (Pulsed Laser Deposition), 화학 기상 증착법(Chemical Vapor Deposition), 이온 어시스트 증착법(Ion-Assist Deposition) 중 적어도 어느 하나의 방법을 이용하여 증착하는 것
    을 특징으로 하는 복수 개의 박막으로 이루어진 지문 방지층 제조 방법.
  20. 청구항 19에 있어서,
    상기 발수 발유 코팅막을 저항 가열식 증착법(Thermal evaporation)을 이용하여 증착할 경우,
    진공도는 7 x 10-2 Torr 내지 2 x 10-7 Torr, 온도는 20 내지 180 ℃에서 증착하는 것
    을 특징으로 하는 복수 개의 박막으로 이루어진 지문 방지층 제조 방법.
  21. 발수 발유 코팅막의 프라이머(Primer)막에 있어서,
    상기 청구항 1 내지 5의 조성물을
    전자빔 증착법(Electron beam evaporation)을 이용하여 증착, 또는 전자빔 증착법(Electron beam evaporation)과 이온빔 증착법(Ion Beam Evaporation)을 동시에 병행하는 이온 어시스트 증착법(Ion-Assist Deposition)을 이용하여 증착하는 것
    을 특징으로 하는 발수 발유 코팅막의 프라이머막.
  22. 복수 개의 박막으로 이루어진 지문 방지층에 있어서,
    유리 또는 고분자 기판;
    상기 기판상에 형성된 청구항 21의 프라이머(Primer)막; 및
    상기 프라이머(Primer)막 상에 형성된 발유 발수 코팅막;
    을 포함하는 것
    을 특징으로 하는 복수 개의 박막으로 이루어진 지문 방지층.
  23. 청구항 22의 복수 개의 박막으로 이루어진 지문 방지층을 포함하는 것
    을 특징으로 하는 전자 기기.
PCT/KR2014/003510 2013-03-11 2014-04-23 복수 개의 박막으로 이루어진 지문 방지층의 조성물과 그 제조 방법. WO2014142636A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/787,253 US10329192B2 (en) 2013-03-11 2014-04-23 Composition of fingerprint-resistant layer consisting of a plurality of thin films and preparation method therefor
CN201480023891.0A CN105209568B (zh) 2014-04-23 2014-04-23 由多个薄膜形成的防指纹层的组合物及其制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130025860A KR101524271B1 (ko) 2013-03-11 2013-03-11 복수 개의 박막으로 이루어진 지문 방지층의 조성물과 그 제조 방법.
KR10-2013-0025860 2013-03-11

Publications (2)

Publication Number Publication Date
WO2014142636A2 true WO2014142636A2 (ko) 2014-09-18
WO2014142636A3 WO2014142636A3 (ko) 2014-11-06

Family

ID=51538257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/003510 WO2014142636A2 (ko) 2013-03-11 2014-04-23 복수 개의 박막으로 이루어진 지문 방지층의 조성물과 그 제조 방법.

Country Status (3)

Country Link
US (1) US10329192B2 (ko)
KR (1) KR101524271B1 (ko)
WO (1) WO2014142636A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104844010A (zh) * 2015-05-29 2015-08-19 广东欧珀移动通信有限公司 一种屏幕的加工方法和屏幕
WO2016122059A1 (ko) * 2015-01-26 2016-08-04 주식회사 맥스젠테크놀로지 지문방지층을 가진 고경도의 유리 구조체 및 이를 위한 코팅방법

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101805692B1 (ko) * 2015-04-08 2018-01-09 (주)누오스지유아이 초발수 초발유 표면 형성 방법 및 그 제조 물체
CN106011749A (zh) * 2016-08-01 2016-10-12 合肥佳瑞林电子技术有限公司 一种电子元器件表面镀膜工艺
RU2747875C1 (ru) * 2017-10-13 2021-05-17 Хуавей Текнолоджиз Ко., Лтд. Высокопрочное, не оставляющее отпечатков пальцев стекло, способ его получения, внешняя часть высокопрочного, не оставляющего отпечатков пальцев стекла и способ его получения
KR20220083348A (ko) 2020-12-11 2022-06-20 삼성전자주식회사 적층체, 이를 포함한 표시장치 및 물품
KR20220120794A (ko) 2021-02-23 2022-08-31 삼성디스플레이 주식회사 윈도우 및 이의 제조 방법
WO2023204762A1 (en) * 2022-04-19 2023-10-26 Nanyang Technological University An amphiphobic coating and method of preparing an amphiphobic coating

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000026844A (ja) * 1998-07-15 2000-01-25 Ntt Advanced Technology Corp 撥水性コーティング用塗料及びその塗膜
JP2000144097A (ja) * 1998-01-31 2000-05-26 Toppan Printing Co Ltd 防汚剤、防汚層の形成方法、光学部材、反射防止光学部材、光学機能性部材及び表示装置
JP2006289356A (ja) * 2005-03-18 2006-10-26 Nagasaki Prefecture 光触媒用の機能性超微粒子材料、その製造方法及び製品
KR20120139919A (ko) * 2011-06-20 2012-12-28 바코스 주식회사 내지문과 반사방지를 위한 코팅방법 및 코팅장치

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5326584A (en) * 1989-04-24 1994-07-05 Drexel University Biocompatible, surface modified materials and method of making the same
US5846649A (en) * 1994-03-03 1998-12-08 Monsanto Company Highly durable and abrasion-resistant dielectric coatings for lenses
EP1029832A1 (en) * 1998-08-05 2000-08-23 Nippon Sheet Glass Co., Ltd. Antireflection colored film coated glass article and plasma display panel optical filter
US7217440B2 (en) * 2003-06-13 2007-05-15 Essilor International Compagnie Generale D'optique Process for replacing an initial outermost coating layer of a coated optical lens with a different coating layer or by depositing thereon a different coating layer
US20050008784A1 (en) * 2003-06-27 2005-01-13 3M Innovative Properties Company Removal and replacement of antisoiling coatings
US6991826B2 (en) * 2004-04-20 2006-01-31 3M Innovative Properties Company Antisoiling coatings for antireflective substrates
KR20060031744A (ko) * 2004-10-09 2006-04-13 주식회사 아이몰드텍 금속의 멀티코팅방법, 멀티코팅된 금속제품 및 이의코팅장치
DE102004056965A1 (de) * 2004-11-25 2006-06-08 Rodenstock Gmbh Verbesserung der Haftung von hydrophoben Beschichtungen auf Brillengläsern
DE102005019000A1 (de) * 2005-04-22 2006-10-26 Degussa Ag Katalytisch beschichteter Träger, Verfahren zu dessen Herstellung und damit ausgestatteter Reaktor sowie dessen Verwendung
KR20110138541A (ko) 2010-06-21 2011-12-28 (주)에이엠피테크놀로지 내구성이 우수한 내지문 박막 구조물 및 그 형성 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000144097A (ja) * 1998-01-31 2000-05-26 Toppan Printing Co Ltd 防汚剤、防汚層の形成方法、光学部材、反射防止光学部材、光学機能性部材及び表示装置
JP2000026844A (ja) * 1998-07-15 2000-01-25 Ntt Advanced Technology Corp 撥水性コーティング用塗料及びその塗膜
JP2006289356A (ja) * 2005-03-18 2006-10-26 Nagasaki Prefecture 光触媒用の機能性超微粒子材料、その製造方法及び製品
KR20120139919A (ko) * 2011-06-20 2012-12-28 바코스 주식회사 내지문과 반사방지를 위한 코팅방법 및 코팅장치

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016122059A1 (ko) * 2015-01-26 2016-08-04 주식회사 맥스젠테크놀로지 지문방지층을 가진 고경도의 유리 구조체 및 이를 위한 코팅방법
CN104844010A (zh) * 2015-05-29 2015-08-19 广东欧珀移动通信有限公司 一种屏幕的加工方法和屏幕

Also Published As

Publication number Publication date
WO2014142636A3 (ko) 2014-11-06
US20160185659A1 (en) 2016-06-30
KR20140111555A (ko) 2014-09-19
US10329192B2 (en) 2019-06-25
KR101524271B1 (ko) 2015-05-29

Similar Documents

Publication Publication Date Title
WO2014142636A2 (ko) 복수 개의 박막으로 이루어진 지문 방지층의 조성물과 그 제조 방법.
JP6361162B2 (ja) 両面低反射膜付ガラス基板の製造方法
US20180162771A1 (en) Glass plate with antifouling layer
CN111163936B (zh) 防水防油构件和防水防油构件的制造方法
KR101587308B1 (ko) 코팅용 조성물, 방오처리 방법 및 방오성 기재
KR20120083436A (ko) 감소된 마찰 특성을 갖는 장치
KR20170035890A (ko) 커버 유리
KR20140098178A (ko) 광학 코팅 및 etc 코팅을 가진 유리 물품 제조 방법
WO2013141478A1 (ko) 반사방지 기능을 구비한 투명기판
WO2016190047A1 (ja) 表面処理層を有する物品の製造方法
KR20170076660A (ko) 방오막 형성 기체
TWI614233B (zh) 防污處理組成物、處理裝置、處理方法及處理物品
KR0141907B1 (ko) 액정표시(lcd)디바이스용 유리판넬의 제조방법
CN108929052B (zh) 覆盖构件、覆盖构件的制造方法以及显示装置
JP2007258634A5 (ko)
KR101898559B1 (ko) 세정 용이성이 우수하여 포토리소그래피 수율을 향상시킬 수 있는 친환경 포토마스크 및 이의 제조방법
JPH0798414A (ja) 偏光板および偏光板の製造方法
KR20090019226A (ko) 표면보호용 유리막 형성 방법
CN110325663B (zh) 用于喷溅装置的基材支撑体
JP2020116741A (ja) 機能層付き基体およびその製造方法
EP3623440A1 (en) Surface treatment agent containing perfluoro(poly)ether group-containing compound
EP2886205A1 (en) Method for antireflective coating protection with organosilanes
WO2015152481A1 (ko) 고경도 박막형 투명 박판 글라스, 이의 제조 방법, 고경도 박막형 투명 박판 도전성 글라스 및 이를 포함하는 터치 패널
JP2020060657A (ja) 反射防止ガラス
CN115542434A (zh) 一种增透复合薄膜及其制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14787253

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14764031

Country of ref document: EP

Kind code of ref document: A2