WO2014142252A1 - ジシロキサンを配位子とする金属錯体および担持金属錯体、その製造方法、並びに、それを用いて調製した担持金属触媒 - Google Patents

ジシロキサンを配位子とする金属錯体および担持金属錯体、その製造方法、並びに、それを用いて調製した担持金属触媒 Download PDF

Info

Publication number
WO2014142252A1
WO2014142252A1 PCT/JP2014/056716 JP2014056716W WO2014142252A1 WO 2014142252 A1 WO2014142252 A1 WO 2014142252A1 JP 2014056716 W JP2014056716 W JP 2014056716W WO 2014142252 A1 WO2014142252 A1 WO 2014142252A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal complex
compound
catalyst
supported
supported metal
Prior art date
Application number
PCT/JP2014/056716
Other languages
English (en)
French (fr)
Inventor
準哲 崔
訓久 深谷
弘之 安田
Original Assignee
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所 filed Critical 独立行政法人産業技術総合研究所
Priority to EP14765042.8A priority Critical patent/EP2975045B1/en
Priority to KR1020157028223A priority patent/KR101747766B1/ko
Priority to US14/774,481 priority patent/US9616418B2/en
Priority to JP2015505558A priority patent/JP6090759B2/ja
Priority to CN201480025536.7A priority patent/CN105209474B/zh
Publication of WO2014142252A1 publication Critical patent/WO2014142252A1/ja
Priority to US15/448,128 priority patent/US10213777B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1608Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes the ligands containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/0308Mesoporous materials not having base exchange properties, e.g. Si-MCM-41
    • B01J29/0316Mesoporous materials not having base exchange properties, e.g. Si-MCM-41 containing iron group metals, noble metals or copper
    • B01J29/0325Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1616Coordination complexes, e.g. organometallic complexes, immobilised on an inorganic support, e.g. ship-in-a-bottle type catalysts
    • B01J31/1625Coordination complexes, e.g. organometallic complexes, immobilised on an inorganic support, e.g. ship-in-a-bottle type catalysts immobilised by covalent linkages, i.e. pendant complexes with optional linking groups
    • B01J31/1633Coordination complexes, e.g. organometallic complexes, immobilised on an inorganic support, e.g. ship-in-a-bottle type catalysts immobilised by covalent linkages, i.e. pendant complexes with optional linking groups covalent linkages via silicon containing groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/20Carbonyls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2265Carbenes or carbynes, i.e.(image)
    • B01J31/2269Heterocyclic carbenes
    • B01J31/2273Heterocyclic carbenes with only nitrogen as heteroatomic ring members, e.g. 1,3-diarylimidazoline-2-ylidenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2282Unsaturated compounds used as ligands
    • B01J31/2295Cyclic compounds, e.g. cyclopentadienyls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0209Impregnation involving a reaction between the support and a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/03Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of non-aromatic carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/006Palladium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/006Palladium compounds
    • C07F15/0066Palladium compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0086Platinum compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0086Platinum compounds
    • C07F15/0093Platinum compounds without a metal-carbon linkage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/30Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
    • B01J2231/32Addition reactions to C=C or C-C triple bonds
    • B01J2231/323Hydrometalation, e.g. bor-, alumin-, silyl-, zirconation or analoguous reactions like carbometalation, hydrocarbation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
    • B01J2231/645Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes of C=C or C-C triple bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/824Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/828Platinum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • C07C2531/22Organic complexes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/18Systems containing only non-condensed rings with a ring being at least seven-membered
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals

Definitions

  • the present invention relates to a metal complex having a skeleton structure in which a disiloxane group is coordinated to a central metal as a chelate.
  • the present invention further relates to a supported metal complex in which the metal complex is immobilized on an inorganic oxide while maintaining the skeleton structure, and a method for producing the same.
  • the present invention also relates to a method for producing a supported metal catalyst by firing the supported metal complex.
  • the reaction system using a catalyst containing a metal component as a catalytically active component can be broadly classified as follows: a catalyst such as a metal salt or a metal complex is dissolved or dispersed in a solvent or a reaction substrate and contacted with the reaction substrate in a liquid phase to perform a catalytic reaction.
  • a catalyst such as a metal salt or a metal complex
  • the homogeneous catalyst system generally has a high catalyst utilization efficiency and can advance the catalytic reaction with high activity and selectivity.
  • heterogeneous catalyst system makes it easy to separate the reaction product and the catalyst.
  • the catalyst is used as a fixed bed, the reaction substrate is supplied to the catalyst, and the reaction product is sequentially taken out from the system. Applicable.
  • heterogeneous catalysts, especially supported metal catalysts are widely used in a wide range of fields from petroleum refining to chemical synthesis and environmental purification.
  • a solution containing a metal component such as a metal salt is generally impregnated into a support such as an inorganic oxide, and the metal is applied to the support through processes such as drying, firing, and reduction.
  • the method of immobilizing is done.
  • the metal since the metal usually forms large particles, it is very difficult to obtain a catalyst in which the metal is uniformly and highly dispersed on the support.
  • the metal complex having catalytic activity can be fixed on the support as it is, it is expected that a catalyst having the above-mentioned merit of the heterogeneous catalyst can be obtained while maintaining the catalytic activity and selectivity of the metal complex in the homogeneous system.
  • the metal component is expected to be more uniformly dispersed and immobilized on the carrier. It is expected that metal particles having a small particle diameter are formed more uniformly dispersed and a supported catalyst having higher catalytic activity can be obtained.
  • a method of immobilizing a metal complex to an inorganic oxide (1) a method of immobilizing using a reaction between a hydroxyl group on the surface of the inorganic oxide and the metal or ligand of the metal complex, (2) There is a method of modifying the surface of the inorganic oxide with an organic group such as an amino group or a phosphino group and immobilizing the organic group as a ligand.
  • the skeleton structure of the metal complex changes (isomerization, clustering, decomposition) due to the action of the surface hydroxyl group of the inorganic oxide. Etc.), it is difficult to fix the metal complex with its original skeleton structure, such as the central metal of the metal complex being directly bonded to the support surface, and it is difficult to maintain the catalytic activity of the metal complex It is. Moreover, it is very difficult to produce a supported metal catalyst in which metal particles having a small particle diameter are uniformly and highly dispersed supported on a support by firing this.
  • the carrier of the inorganic oxide modified with an organic group such as an amino group or a phosphine group itself has a high temperature. It is weak, and it is very difficult to produce a metal catalyst in which metal fine particles are uniformly supported on a carrier by firing this.
  • the present invention provides a metal complex that can be immobilized on an inorganic oxide support while retaining the skeleton structure of the original metal complex, and the metal complex is immobilized on a support, It is a first object to provide a supported metal complex that maintains equivalent catalytic activity.
  • the supported metal complex thus obtained is calcined so that the metal is uniformly dispersed and supported on the support with a smaller particle size than the conventional supported metal catalyst. It is a second problem to provide an improved supported metal catalyst.
  • the present inventors have surprisingly found a metal complex having a skeleton structure in which a disiloxane group newly prepared by the present inventors is coordinated to a central metal as a chelate. It should be found that the skeleton structure is immobilized on the inorganic oxide and the catalytic activity equivalent to that of the original metal complex can be maintained.
  • the present inventors have found that a supported metal catalyst having catalytic activity significantly improved as compared with a conventional supported metal catalyst can be obtained by calcining the supported metal complex thus obtained. The present invention has been completed based on such new findings.
  • a metal complex represented by the following general formula (1) (Wherein M is palladium or platinum, L is carbon monoxide, an olefin compound, an amine compound, a phosphine compound, an N-heterocyclic carbene compound, a nitrile compound, an isocyanide compound, and n is a ligand. (An integer of 0 to 2 representing the number, and R 1 to R 4 represent an organic group.) ⁇ 2> A supported metal complex having a structure of the following general formula (2), wherein the metal complex is immobilized on an inorganic oxide.
  • M is palladium or platinum
  • L is carbon monoxide, an olefin compound, an amine compound, a phosphine compound, an N-heterocyclic carbene compound, a nitrile compound, an isocyanide compound, and n is a ligand.
  • n represents an integer from 0 to 2 representing the number.
  • Metal Complex LnMX 2 (wherein M is palladium or platinum, L is carbon monoxide, olefin compound, amine compound, phosphine compound, N-heterocyclic carbene compound, nitrile compound, isocyanide compound) , N represents an integer of 0 to 2, which represents the number of ligands, and X represents a halogen or a hydroxyl group) in the presence of an alkali metal hydride, HO- (R 1 ) (R 2 ) Si
  • the method for producing a metal complex according to ⁇ 1> characterized by reacting with —O— (R 3 ) (R 4 ) Si—OH (R 1 to R 4 each represents an organic group).
  • the metal complex is supported on the inorganic oxide by bringing an organic solvent solution of the metal complex represented by the following general formula (3) into contact with the inorganic oxide, ⁇ 2> or ⁇ 3
  • the method for producing a supported metal complex according to ⁇ 1> wherein M is palladium or platinum, L is carbon monoxide, an olefin compound, an amine compound, a phosphine compound, an N-heterocyclic carbene compound, a nitrile compound, an isocyanide compound, and n is a ligand.
  • a supported metal catalyst obtained by heat-treating the supported metal complex according to ⁇ 2> or ⁇ 3> at a temperature of 80 ° C. to 600 ° C. in an oxygen atmosphere.
  • a catalyst for hydrogenation reaction of olefins comprising the supported metal catalyst according to ⁇ 6>.
  • the hydrogenation reaction catalyst according to ⁇ 7>, wherein the central metal of the catalyst is platinum.
  • a catalyst for hydrosilylation reaction of olefins comprising the metal complex compound according to ⁇ 1>.
  • a catalyst for hydrosilylation reaction of olefins comprising the supported metal complex according to ⁇ 2> or ⁇ 3>.
  • the metal complex By using a metal complex represented by the general formula (1) provided by the present invention and having a skeleton structure in which a disiloxane group is coordinated to a central metal as a chelate, the metal complex retains its skeleton structure.
  • the supported metal complex thus obtained can be immobilized on an inorganic oxide, and can maintain catalytic activity equivalent to that of the original metal complex. Furthermore, by calcining the supported metal complex, a supported metal catalyst having a significantly improved catalytic activity as compared with a supported metal catalyst prepared by a conventional method can be obtained.
  • the supported metal catalysts (1) and (2) of the present invention (Examples 11 and 12), the supported metal catalysts (4) and (5) according to the prior art, and a commercially available platinum silica catalyst (Comparative Examples 1, 2, 4)
  • the figure which compared the catalytic activity of the hydrogenation reaction of octene The figure which compared the catalytic activity of the hydrogenation reaction of the cyclooctene by the supported metal catalyst (3) (Example 13) of this invention, and the supported metal catalyst (6) (comparative example 3) by a prior art.
  • the metal complex of the present invention is represented by the following general formula (1).
  • M is palladium or platinum
  • L is carbon monoxide
  • an olefin compound is represented by the following general formula (1).
  • an amine compound is represented by the following general formula (2)
  • a phosphine compound is represented by the following general formula (3).
  • n is a ligand.
  • R 1 to R 4 represent an organic group.
  • the ligand L is not particularly limited as long as it can substantially form a coordinate bond with the central metal.
  • Examples of such a ligand include carbon monoxide and olefin compounds such as 1,5- Examples include cyclooctadiene (COD), 1,3-cyclopentadiene, 1,2,3,4,5-pentamethylcyclopentadiene, 2,5-norbornadiene, ethylene, dibenzylideneacetone, and the amine compound.
  • COD cyclooctadiene
  • 1,3-cyclopentadiene 1,2,3,4,5-pentamethylcyclopentadiene
  • 2,5-norbornadiene ethylene
  • dibenzylideneacetone and the amine compound.
  • 2,2'-bipyridyl 1,10-phenanthroline
  • ethylenediamine 1,2-bis (dimethylamino) ethane
  • 1,2-diphenylethylenediamine 1,2-cyclohexanediamine, etc.
  • N-heterocyclic carbene compounds include 1,3-bis (2 , 6-Diisopropylphenyl) imidazolidin-2-ylidene
  • isocyanide compound examples include tert-butyl isocyanide, 1,1,3,3-tetramethylbutyl isocyanide, among which 1,5-cyclooctadiene, dibenzylideneacetone, trimethylphosphine, triethyl Phosphine, tri-tert-butylphosphine, triphenylphosphine and the like are preferable, and among them, 1,5-cyclooctadiene and trimethylphosphine are more preferable.
  • N is an integer of 0 to 2 representing the number of ligands.
  • n When the ligand L is a bidentate ligand such as 1,5-cyclooctadiene, n is usually 1, and when it is a monodentate ligand such as trimethylphosphine, n Is usually 2.
  • organic groups R 1 to R 4 virtually any organic group can be used, but from the viewpoint of enabling immobilization on an inorganic oxide, a hydrolyzable alkoxy group or amino group Are preferable, and an alkoxy group is particularly preferable.
  • the metal complex of the present invention is, for example, a metal complex LnMX 2 (wherein M is palladium or platinum, L is carbon monoxide, olefin compound, amine compound, phosphine compound, N-heterocyclic carbene compound, nitrile compound, isocyanide compound)
  • N represents an integer of 0 to 2 representing the number of ligands
  • X represents a halogen or a hydroxyl group) in the presence of an alkali metal hydride
  • the disiloxane compound HO- (R 1 ) (R 2 ) Si—O— (R 3 ) (R 4 ) Si—OH (R 1 to R 4 each represents an organic group) can be synthesized.
  • the supported metal complex of the present invention has the structure of the following general formula (2).
  • M is palladium or platinum
  • L is carbon monoxide, an olefin compound, an amine compound, a phosphine compound, an N-heterocyclic carbene compound, a nitrile compound, an isocyanide compound, and
  • n is a ligand. (Represents an integer from 0 to 2 representing the number.)
  • the inorganic oxide used in the present invention is not particularly limited, but single oxides such as silicon, titanium, aluminum, zirconium and magnesium, or composite oxides containing them can be used.
  • silica that is an oxide of silicon, such as amorphous silica
  • a composite oxide containing silicon such as aluminosilicate
  • a regular meso-type such as MCM-41 or SBA-15 can be used.
  • zeolite such as polar silica or ordered mesoporous metallosilicate, crystalline aluminosilicate, metallosilicate, aluminophosphate, silicaaluminophosphate, porous glass, clay mineral and the like.
  • the inorganic oxide used in the present invention may be synthesized by a known method or may be a commercially available product.
  • the inorganic oxide preferably has an average pore diameter of 0.5 to 500 nm, and more preferably has an average pore diameter of 1 to 100 nm.
  • the inorganic oxide has a large surface area, for example, one having a specific surface area of 100 to 1500 m 2 / g.
  • the supported metal complex of the present invention can be obtained, for example, by bringing an organic solvent solution of a metal complex represented by the following general formula (3) into contact with an inorganic oxide.
  • M is palladium or platinum
  • L is carbon monoxide, an olefin compound, an amine compound, a phosphine compound, an N-heterocyclic carbene compound, a nitrile compound, an isocyanide compound, and n is a ligand.
  • the inorganic oxide is suspended in a solution in which the metal complex of the general formula (3) is dissolved in an organic solvent, and stirred at room temperature or while heating. Thereafter, the solid is collected by filtration, washed and dried to obtain a supported metal complex.
  • the organic solvent include aliphatic hydrocarbons such as pentane and hexane, aromatic hydrocarbons such as toluene and xylene, and ethers such as diethyl ether and dibutyl ether, which may be used alone or in combination. Also good.
  • the supported metal complex of the general formula (3) By reacting the metal complex of the general formula (3) with an inorganic oxide, part or all of the organic groups R 1 ′ to R 4 ′ are eliminated, and the supported metal complex retaining the unique skeleton structure of the metal complex. Can be obtained.
  • the amount of supported metal in the obtained supported metal complex can be determined by analysis such as ICP-OES.
  • the supported metal complex of the present invention since the metal complex supported on the support retains the skeleton structure of the metal complex before supporting, the catalytic action of the metal complex before supporting can be maintained.
  • the supported metal complex (1) of the present invention is a hydrosilylation reaction of olefins such as norbornene, like the corresponding metal complex (2) before support. It has catalytic activity for the hydrosilylation reaction.
  • the supported metal catalyst of the present invention can be obtained by calcining the supported metal complex of the present invention at a temperature of 80 to 600 ° C. in an oxygen atmosphere.
  • oxygen atmosphere oxygen may be used, but air may be used.
  • the amount of the supported metal of the obtained supported metal catalyst can be determined by analysis such as ICP-OES.
  • the supported metal catalyst of the present invention can be used for various catalytic reactions in which a conventional supported platinum catalyst or supported palladium catalyst is used.
  • the method for evaluating the activity of the supported metal catalyst of the present invention is not particularly limited.
  • the catalytic activity for the hydrogenation reaction of olefins for example, the hydrogenation reaction of cyclooctene, which is a typical catalytic reaction of platinum metal species. It can be evaluated by considering it.
  • the supported metal catalyst of the present invention has a catalytic activity significantly improved in the hydrogenation reaction of olefins as compared with the conventional supported metal catalyst. This is because the supported metal catalyst according to the present invention was formed by uniformly dispersing fine particles of the catalyst metal on the support, and the same improvement in catalytic activity was obtained in other catalytic reactions using the supported metal catalyst. It is clear that
  • Example 1 Synthesis of metal complex (1) A Schlenk tube with a volume of 200 mL containing (COD) PdBr 2 (0.9 g, 2.4 mmol) and 20 mL of THF solvent was charged with HO [(tert-BuO) 2 SiO] 2 H (eg, J. Beckmann Al., Appl. Organometal. Chem., Vol. 17, p.52 (2003), etc.) (1.02 g, 2.6 mmol) and KH (0.24 g, 6 mmol) THF 45 mL of the solution was added dropwise and reacted for 2 hours. The reaction solution was filtered and dried under reduced pressure to obtain 1.1 g of the following metal complex (1). The structure of the metal complex (1) was identified by solution NMR spectrum. Solution NMR (room temperature, solvent (C 6 D 6 )) 1 H NMR (400 MHz); ⁇ 1.26, 1.33, 2.71
  • Example 2 Synthesis of Metal Complex (2) 1.51 g of Metal Complex (2) was obtained by the same operation as in Example 1 except that (COD) PtI 2 (1.34 g, 2.4 mmol) was used.
  • the structure of the metal complex (2) was identified by solution NMR spectrum and elemental analysis (C, H analysis).
  • solid state NMR spectra were measured for structural identification in the solid state (see FIGS. 1 and 2).
  • Example 3 Synthesis of metal complex (3) By performing the same operation as in Example 1 except that (Me 3 P) 2 PtI 2 (1.44 g, 2.4 mmol) was used, 1.61 g of metal complex (3) was obtained. .
  • the structure of the metal complex (3) was identified by solution NMR spectrum and elemental analysis (C, H analysis).
  • Example 4 Synthesis of supported metal complex (1)
  • Mesoporous silica MCM-41 (for example, synthesized by the method described in CTKresge, et. Al., Nature, vol.359, p.710 (1992)) (5 g) under reduced pressure And dried at 120 ° C. for 1 hour. After cooling to room temperature, the inside of the reaction system was replaced with dry nitrogen gas. To this were added metal complex (2) (0.18 g, 0.26 mmol) and toluene (100 mL), and the mixture was stirred at room temperature for 24 hours. The resulting solid was filtered and washed 3 times with toluene (100 mL).
  • FIGS. 1 and 2 show the results of 13 C CPMAS NMR measurement and 29 Si CPMAS NMR measurement of metal complex (2) and supported metal complex (1). The observed peaks can be attributed to COD, t Bu group, and Si, respectively, as shown in the figure, so that the metal complex (2) is mesoporous with the elimination of four t BuO groups. It was confirmed that the supported metal complex (1) was obtained by binding to silica as shown in Chemical Formula 7.
  • the supported metal complex (1) was subjected to scanning transmission electron microscope (STEM) observation and energy dispersive X-ray (EDX) analysis. 3 and 4 show the results of STEM observation and EDX analysis. Although the presence of platinum was clear from EDX analysis, the presence of platinum particles could not be confirmed by STEM observation. As a result, it was confirmed that platinum was supported on the mesoporous silica support in a single atom state while maintaining the original complex structure. The amount of platinum supported on the obtained supported metal complex (1) was 1.06% by weight as a result of determination by the ICP-OES method.
  • Example 5 Synthesis of supported metal complex (2) A supported metal complex (2) was obtained in the same manner as in Example 4 except that the metal complex (3) (0.39 g, 0.52 mmol) was used.
  • Example 6 Synthesis of supported metal complex (3) The same procedure as in Example 4 was carried out except that amorphous silica (manufactured by Fuji Silysia Chemical Co., CARiACT Q-10, surface area 250 m 2 / g) was used as the support. Complex (3) was obtained. 13 results of C CPMAS NMR measurement and 29 Si CPMAS NMR measurement of supported metal complex (3) is similar to FIG. 1 and 2, thereby, the metal complex (2) with elimination of the four t BuO groups It was confirmed that the supported metal complex (3) was obtained by bonding to amorphous silica as shown in Chemical Formula 9.
  • amorphous silica manufactured by Fuji Silysia Chemical Co., CARiACT Q-10, surface area 250 m 2 / g
  • Example 7 Synthesis of supported metal complex (4) A supported metal complex (4) was obtained in the same manner as in Example 4 except that 0.36 g and 0.52 mmol of metal complex (2) were used.
  • Example 8 FIG. Synthesis of supported metal catalyst (1) 2 g of supported metal complex (1) was calcined in an oxygen stream for 3 hours at 300 ° C. to obtain 1.9 g of supported metal catalyst (1). The amount of platinum supported on the obtained supported metal catalyst (1) was 1.04% by weight as determined by the ICP-OES method.
  • Example 9 Synthesis of supported metal catalyst (2) 1.8 g of supported metal catalyst (2) was obtained in the same manner as in Example 8, except that 2 g of supported metal complex (3) was used. The amount of platinum supported on the obtained supported metal catalyst (2) was 1.03% by weight as determined by the ICP-OES method.
  • Example 10 Synthesis of supported metal catalyst (3) 1.9 g of supported metal catalyst (3) was obtained in the same manner as in Example 8, except that 2 g of supported metal complex (4) was used. STEM observation was performed about the supported metal catalyst (3). The results are shown in FIG. It was observed that platinum was supported on a mesoporous silica support dispersed in a relatively uniform manner with small particles of 2 to 3 nm or less. The amount of platinum supported on the obtained supported metal catalyst (3) was 2.04% by weight as determined by the ICP-OES method. [Reference Example] Synthesis of supported metal catalyst by conventional technology
  • Reference Example 1 Synthesis of Supported Metal Catalyst (4) After impregnation by adding 50 mL of an aqueous solution containing 0.1 g of (NH 3 ) 4 Pt (NO 3 ) 2 to 5 g of mesoporous silica MCM-41, 60 g The powder obtained was dried at 3 ° C. for 3 hours, and the obtained powder was calcined at 300 ° C. for 3 hours in an oxygen stream to obtain 5.1 g of a supported metal catalyst (4) having platinum supported on mesoporous silica. The amount of platinum supported on the obtained supported metal catalyst (4) was 0.92% by weight as determined by the ICP-OES method.
  • Reference Example 2 Synthesis of supported metal catalyst (5) A supported metal catalyst (5) was obtained in the same manner as in Reference Example 1 except that amorphous silica CARiACT Q-10 was used as a support. The amount of platinum supported on the obtained supported metal catalyst (5) was about 0.91% by weight as determined by the ICP-OES method.
  • Reference Example 3 Synthesis of supported metal catalyst (6) The same procedure as in Reference Example 1 was carried out except that 50 mL of an aqueous solution containing 0.2 g of (NH 3 ) 4 Pt (NO 3 ) 2 was used. Got. The amount of platinum supported on the obtained supported metal catalyst was about 1.68% by weight as determined by the ICP-OES method. STEM observation was performed about the supported metal catalyst (6). The results are shown in FIG. Although the amount of platinum supported was smaller than that of the supported metal catalyst (3), it was confirmed that platinum aggregated and was unevenly present on the mesoporous silica support. [Evaluation of catalytic activity of supported metal catalyst by hydrogenation reaction]
  • Example 11 20 mg of the supported metal catalyst (1) obtained in Example 8 was weighed into a 25 mL Schlenk tube and subjected to reduction treatment at 300 ° C. for 1 hour in a hydrogen stream. After cooling the Schlenk tube to room temperature, the inside of the Schlenk tube was replaced with argon gas, 5 mL of isopropanol containing 120 ⁇ L of mesitylene and 2.5 mmol of cyclooctene were charged as reference materials, and then the inside of the Schlenk tube was replaced again with hydrogen gas, The reaction was stirred at room temperature under 1 atm. About the catalyst activity, it evaluated by the time-dependent change of the cyclooctane yield which is a product. The result is shown in FIG.
  • Example 12 Except for using the supported metal catalyst (2) obtained in Example 9, the catalytic activity was evaluated by the same operation as in Example 11. The results are also shown in FIG.
  • Example 13 Except that the supported metal catalyst (3) obtained in Example 10 was used, the catalytic activity was evaluated by the same operation as in Example 11. The result is shown in FIG.
  • Comparative Example 4 The catalytic activity was evaluated by the same operation as in Example 11 except that a commercially available 1 wt% platinum silica catalyst (manufactured by Sigma-Aldrich) was used. The results are also shown in FIG. [Evaluation of catalytic activity of metal complexes and supported metal complexes by hydrosilylation reaction]
  • Example 14 Into a 25 mL Schlenk tube, 0.2 mol% of the supported metal complex (1) obtained in Example 5 was weighed out with respect to 1.2 mmol of norbornene as shown in Formula 2, and the mixture was vacuumed at 80 ° C. for 1 hour. A drying treatment was performed. After cooling the Schlenk tube to room temperature, the inside of the Schlenk tube was replaced with argon gas, and 5 mL of toluene containing 100 ⁇ L of mesitylene, 1.2 mmol of norbornene, and 2.4 mmol of dimethylchlorosilane were charged as a reference substance, and the mixture was stirred at room temperature for 20 minutes. The catalytic activity was evaluated by the conversion rate of norbornene (FIG. 9) and the yield of the product shown in Formula 2 (FIG. 10).
  • Example 15 Except that the metal complex (2) obtained in Example 2 was used, the catalytic activity was evaluated by the same operation as in Example 14. The results are shown in FIGS. 9 and 10 together.
  • Comparative Example 5 The catalytic activity was evaluated by the same operation as in Example 14 except that a chloroplatinic acid (H 2 PtCl 6 ) solution dissolved in an isopropanol solvent was used. The results are shown in FIGS. 9 and 10 together.
  • Comparative Example 6 The catalytic activity was evaluated by performing the same operation as in Example 14 except that a commercially available 1 wt% platinum silica catalyst (manufactured by Sigma-Aldrich) was used and the reaction was stirred at room temperature for 60 minutes. It was. The results are shown in FIGS. 9 and 10 together. [Evaluation of catalyst recycling]
  • Example 16 Using the supported metal complex (1), the same operation as in Example 14 was repeated several times to evaluate the recycling catalyst characteristics of the supported metal complex (1). The result is shown in FIG.
  • the present invention can be used in various technical fields using a supported metal catalyst, a supported metal complex catalyst, and a metal complex catalyst.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

下記一般式(1)で表される金属錯体。 (式中M はパラジウムまたは白金、L は一酸化炭素、オレフィン化合物、アミン化合物、ホスフィン化合物、N-複素環式カルベン化合物、ニトリル化合物、イソシアニド化合物から選ばれる配位子、n は配位子の個数を表す0 から2の整数、R1~R4 は有機基を表す。) 上記金属錯体は、その骨格構造を保持したまま無機酸化物へ固定化され、担持金属錯体とすることができ、これにより、当該担持金属錯体は、もとの金属錯体が有するのと同等の触媒活性を維持することができる。 また、このようにして得られた担持金属錯体を焼成することにより、従来の担持金属触媒よりも触媒活性が大幅に向上した担持金属触媒を得ることができる。

Description

ジシロキサンを配位子とする金属錯体および担持金属錯体、その製造方法、並びに、それを用いて調製した担持金属触媒
 本発明は、ジシロキサン基がキレートとして中心金属に配位した骨格構造を有する金属錯体に関する。本発明は、さらに、当該金属錯体がその骨格構造を保持したまま無機酸化物へ固定化されてなる担持金属錯体およびその製造方法に関する。
 本発明は、また、当該担持金属錯体を焼成することにより、担持金属触媒を製造する方法に関する。
 触媒活性成分として金属成分を含む触媒を用いる反応系は、大別すると、金属塩、金属錯体等の触媒を溶媒あるいは反応基質中に溶解乃至分散させ、液相で反応基質と接触させて触媒反応を進行させる、均一触媒系と、金属成分を固体担体に担持させた担持金属触媒等を、反応基質を含む気相乃至液相と接触させて触媒反応を進行させる、不均一触媒系に分けられる。
 これらのうち、均一触媒系は、一般に、触媒の利用効率が高く、高い活性および選択性で触媒反応を進行させることができるが、反応後の反応生成物からの触媒の分離・回収に手間がかかるという欠点を有する。
 一方、不均一触媒系は、反応生成物と触媒の分離が容易であり、触媒を固定床とし、反応基質をこれに供給し、反応生成物を順次系から取り出す、流通反応系にも容易に適用できる。このため、不均一触媒、なかでも担持金属触媒は、石油精製から化成品合成、環境浄化に至る幅広い分野で、広く利用されている。
 このような担持金属触媒の製造法としては、従来、一般に、金属塩などの金属成分を含む溶液を無機酸化物などの担体に含浸させ、乾燥、焼成、還元等の過程を経て金属を担体上に固定化する方法が行われている。しかしながら、このような方法では、通常、金属は大きな粒子を形成するため、金属が担体へ均一かつ高分散に担持された触媒を得ることが非常に困難である。
 均一系触媒および担持金属触媒の有するこのような欠点を改善するために、金属錯体を固体担体に固定化することが考えられる。触媒活性を有する金属錯体をそのまま担体上に固定できれば、均一系における金属錯体の触媒活性や選択性を維持したまま、不均一系触媒の有する上記メリットを有する触媒が得られることが期待される。また、金属成分を金属錯体の形で担体に固定化することで、金属成分が、担体上でより均一に分散されて固定されることが期待され、これを焼成することで、担体上でより粒径の小さな金属粒子がより均一に分散されて形成され、より触媒活性の高い担持触媒が得られることが期待される。
 一般的に、無機酸化物への金属錯体の固定化方法としては、(1)無機酸化物表面の水酸基等と金属錯体の金属や配位子との反応を利用して、固定化する方法、及び、(2)無機酸化物表面をアミノ基、ホスフィノ基等の有機基で修飾し、当該有機基を配位子として、固定化する方法がある。
 しかしながら、(1)の固定化方法では、金属錯体を無機酸化物担体に固定化する際に、無機酸化物の表面水酸基等の作用により金属錯体の骨格構造の変化(異性化、クラスター化、分解等)が起り、金属錯体の中心金属が直接担体表面に結合するなどして、金属錯体の固有の骨格構造を保持したまま固定化することが難しく、金属錯体の触媒活性を維持することが困難である。また、これを焼成することにより、粒径の小さな金属粒子が担体上に均一かつ高分散に担持された担持金属触媒を製造することは非常に困難である。
 例えば、(1)の固定化方法に関連し、Tilleyらは、金属錯体をシリカ担体へ固定化する際に、金属を担体上に単核で担持するために、3つの有機脱離基(R)を持つシロキシ基を2つ有する金属錯体化合物を利用する方法を報告している(非特許文献1~2)。
 しかしながら、この方法では、以下の式1に示すように、金属錯体の有する有機脱離基(R)ではなく、金属と結合しているシロキシ基が脱離し、金属と担体が担体表面の酸素原子を介して直接結合する構造となることが報告されている。すなわち、この方法では金属錯体の骨格構造は保持されない。また、金属と担体が一本の共有結合のみで結合されるため、結合強度が十分でなく、焼成する過程で金属-金属結合が形成され易く、粒径の大きな金属粒子として担体上に担持される可能性もある。
  [式1]
Figure JPOXMLDOC01-appb-I000004
(M=パラジウム、白金)、(Ln=配位子)
 また、(2)の固定化方法においても、同様の金属錯体の骨格構造の変化が起こり得ることに加え、アミノ基、ホスフィン基等の有機基で修飾された無機酸化物の担体自体が高温に弱く、これを焼成することにより、金属微粒子が担体上に均一に担持された金属触媒を製造することは非常に困難である。
 このように、従来の無機酸化物担体への金属錯体の固定化方法では、金属錯体の固有の骨格構造を保持できず、骨格構造の変化(異性化、クラスター化、分解等)が生じるため、金属錯体の触媒活性を維持することが困難であり、また、これを焼成することで容易に金属-金属結合が形成され、触媒金属の微粒子が担体上に均一かつ高分散に担持された担持金属触媒を得ることが困難である等の問題を有する。
Chem. Mater.,vol. 20,p. 6517 (2008) ACS Catal.,vol. 1,p. 1166 (2011)
 本発明は、もとの金属錯体の骨格構造を保持したまま、無機酸化物担体に固定化し得る金属錯体を提供すること、および、当該金属錯体を担体に固定化して、もとの金属錯体と同等の触媒活性を維持する担持金属錯体を提供することを、第一の課題とする。
 本発明は、また、このようにして得た担持金属錯体を焼成することにより、従来の担持金属触媒よりも金属が小粒径で均一に担体上に分散して担持され、これにより触媒活性が向上した担持金属触媒を提供することを、第二の課題とする。
 本発明者らは、上記問題点を解決すべく鋭意研究を行った結果、本発明者らが新たに作製したジシロキサン基がキレートとして中心金属に配位した骨格構造を有する金属錯体が、驚くべきことに、その骨格構造を保持したまま無機酸化物へ固定化され、これにより、もとの金属錯体が有するのと同等の触媒活性を維持し得ることを見出した。
 また、本発明者らは、このようにして得られた担持金属錯体を焼成することにより、従来の担持金属触媒よりも触媒活性が大幅に向上した担持金属触媒を得ることができることを見出した。
 本発明は、かかる新たな知見に基づき完成されたものである。
 すなわち、この出願は、以下の発明を提供する。
下記一般式(1)で表される金属錯体。
Figure JPOXMLDOC01-appb-C000005
(式中Mはパラジウムまたは白金、Lは一酸化炭素、オレフィン化合物、アミン化合物、ホスフィン化合物、N-複素環式カルベン化合物、ニトリル化合物、イソシアニド化合物から選ばれる配位子、nは配位子の個数を表す0から2の整数、R1~R4は有機基を表す。)
〈2〉下記一般式(2)の構造を有する、金属錯体が無機酸化物へ固定化された、担持金属錯体。
Figure JPOXMLDOC01-appb-C000006
(式中Mはパラジウムまたは白金、Lは一酸化炭素、オレフィン化合物、アミン化合物、ホスフィン化合物、N-複素環式カルベン化合物、ニトリル化合物、イソシアニド化合物から選ばれる配位子、nは配位子の個数を表す0から2の整数を表す。)
〈3〉前記無機酸化物がシリカまたはケイ素を含む複合酸化物であることを特徴とする、〈2〉に記載の担持金属錯体。
〈4〉金属錯体LnMX2(式中Mはパラジウムまたは白金、Lは一酸化炭素、オレフィン化合物、アミン化合物、ホスフィン化合物、N-複素環式カルベン化合物、ニトリル化合物、イソシアニド化合物から選ばれる配位子、nは配位子の個数を表す0から2の整数を表す。Xはハロゲンまたは水酸基を表す)を、アルカリ金属水素化物の存在下、ジシロキサン化合物HO-(R1)(R2)Si-O-(R3)(R4)Si-OH(R1~R4は有機基を表す。)と反応させることを特徴とする、〈1〉に記載の金属錯体の製造方法。
〈5〉下記一般式(3)で表される金属錯体の有機溶媒溶液を無機酸化物に接触させることにより、金属錯体を無機酸化物に担持させることを特徴とする、〈2〉または〈3〉に記載の担持金属錯体の製造方法。
Figure JPOXMLDOC01-appb-C000007
(式中Mはパラジウムまたは白金、Lは一酸化炭素、オレフィン化合物、アミン化合物、ホスフィン化合物、N-複素環式カルベン化合物、ニトリル化合物、イソシアニド化合物から選ばれる配位子、nは配位子の個数を表す0から2の整数、R1’~R4’は炭素数1~4のアルコキシ基を表す。)
〈6〉〈2〉または〈3〉に記載の担持金属錯体を酸素雰囲気下において80℃~600℃の温度で熱処理することによって得られる担持金属触媒。
〈7〉〈6〉に記載の担持金属触媒からなるオレフィン類の水素化反応用触媒。
〈8〉触媒の中心金属が白金であることを特徴とする、〈7〉に記載の水素化反応用触媒。
〈9〉〈1〉に記載の金属錯体化合物からなるオレフィン類のヒドロシリル化反応用触媒。
〈10〉〈2〉または〈3〉に記載の担持金属錯体からなるオレフィン類のヒドロシリル化反応用触媒。
〈11〉触媒の中心金属が白金であることを特徴とする、〈9〉または〈10〉に記載のヒドロシリル化反応用触媒。
 本発明により提供される、一般式(1)で表される、ジシロキサン基がキレートとして中心金属に配位する骨格構造を有する金属錯体を用いることにより、金属錯体をその骨格構造を保持したまま無機酸化物へ固定化することができ、このようにして得られた担持金属錯体は、もとの金属錯体と同等の触媒活性を維持することができる。さらに、当該担持金属錯体を焼成することにより、従来の方法で調製された担持金属触媒に比べて大幅に触媒活性が向上した担持金属触媒を得ることができる。
本発明の金属錯体(2)(実施例2)と担持金属錯体(1)(実施例4)の13C CPMAS NMRスペクトルを対比した図。 本発明の金属錯体(2)(実施例2)と担持金属錯体(1)(実施例4)の29SiCPMAS NMRスペクトルを対比した図。 本発明の担持金属錯体(1)(実施例4)の走査透過電子顕微鏡(STEM)観察図。 本発明の担持金属錯体(1)(実施例4)のエネルギー分散型X線(EDX)分析図。 本発明の担持金属触媒(3)(実施例10)の走査透過電子顕微鏡(STEM)観察図。 従来技術の担持金属触媒(6)(参考例3)の走査透過電子顕微鏡(STEM)観察図。 本発明の担持金属触媒(1)、(2)(実施例11、12)と従来技術による担持金属触媒(4)、(5)および市販白金シリカ触媒(比較例1、2、4)によるシクロオクテンの水素化反応の触媒活性を比較した図。 本発明の担持金属触媒(3)(実施例13)と従来技術による担持金属触媒(6)(比較例3)によるシクロオクテンの水素化反応の触媒活性を比較した図。 本発明の担持金属錯体(1)および金属錯体(2)(実施例14、15)と従来技術の白金触媒(塩化白金酸および市販白金シリカ触媒)(比較例5、6)によるノルボルネンのヒドロシリル化反応の触媒活性(ノルボルネンの転化率)を比較した図。 本発明の担持金属錯体(1)および金属錯体(2)(実施例14、15)と従来技術の白金触媒(塩化白金酸および市販白金シリカ触媒)(比較例5、6)によるノルボルネンのヒドロシリル化反応の触媒活性(ヒドロシリル化物の収率)を比較した図。 本発明の担持金属錯体(1)を触媒とするノルボルネンのヒドロシリル化反応を複数回繰り返した際の、触媒活性(ヒドロシリル化物の収率)の推移を示す図。
 本発明の金属錯体は、下記の一般式(1)で表される。
Figure JPOXMLDOC01-appb-C000008
(式中Mはパラジウムまたは白金、Lは一酸化炭素、オレフィン化合物、アミン化合物、ホスフィン化合物、N-複素環式カルベン化合物、ニトリル化合物、イソシアニド化合物から選ばれる配位子、nは配位子の個数を表す0から2の整数、R1~R4は有機基を表す。)
配位子Lは、実質的に中心金属と配位結合ができるものであれば特に制限はないが、このような配位子として、一酸化炭素、オレフィン化合物としては、例えば、1,5-シクロオクタジエン(COD)、1,3-シクロペンタジエン、1,2,3,4,5-ペンタメチルシクロペンタジエン、2,5-ノルボルナジエン、エチレン、ジベンジリデンアセトン等が挙げられ、アミン化合物としては、例えば、2,2’-ビピリジル、1,10-フェナントロリン、エチレンジアミン、1,2-ビス(ジメチルアミノ)エタン、1,2-ジフェニルエチレンジアミン、1,2-シクロヘキサンジアミン等が挙げられ、ホスフィン化合物としては、例えば、トリメチルホスフィン、トリエチルホスフィン、トリイソプロピルホスフィン、トリ-tert-ブチルホスフィン、トリシクロヘキシルホスフィン、トリフェニルホスフィン、ジメチルフェニルホスフィン、トリメチルホスファイト、トリエチルホスファイト、トリイソプロピルホスファイト、トリ-tert-ブチルホスファイト、トリフェニルホスファイト、メチルジフェニルホスファイト、1,2-ビス(ジメチルホスフィノ)エタン、1,2-ビス(ジフェニルホスフィノ)エタン、1,3-ビス(ジメチルホスフィノ)プロパン、ジフェニルホスフィノフェロセン等が挙げられ、N-複素環式カルベン化合物としては、例えば、1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾリジン-2-イリデン、1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン、1,3-ジ-tert-ブチルイミダゾール-2-イリデン、1,3-ビス(2,4,6-トリメチルフェニル)イミダゾリジン-2-イリデン、1,3-ビス(2,4,6-トリメチルフェニル)イミダゾール-2-イリデン、1,3-ジ(1-アダマンチル)イミダゾリジン-2-イリデン、1,3-ジ(1-アダマンチル)イミダゾール-2-イリデン、1,3-ジシクロヘキシルイミダゾール-2-イリデン等が挙げられ、ニトリル化合物としては、例えば、ベンゾニトリル、アセトニトリル等が挙げられ、イソシアニド化合物としては、例えば、tert-ブチルイソシアニド、1,1,3,3-テトラメチルブチルイソシアニド等が挙げられ、中でも1,5-シクロオクタジエン、ジベンジリデンアセトン、トリメチルホスフィン、トリエチルホスフィン、トリ-tert-ブチルホスフィン、トリフェニルホスフィン等が好ましく、中でも更に1,5-シクロオクタジエン、トリメチルホスフィンが好ましい。
 また、nは配位子の個数を表す0~2の整数である。配位子Lが、例えば1,5-シクロオクタジエンのような二座配位子である場合は、nは通常1であり、例えばトリメチルホスフィンのような単座配位子である場合は、nは通常2である。
 有機基R1~R4は、それぞれ独立に、実質的にいかなる有機基でも用いることができるが、無機酸化物への固定化を可能にする観点から、加水分解性を有するアルコキシ基、アミノ基が好ましく、特にアルコキシ基が好ましい。
 本発明の金属錯体は、例えば、金属錯体LnMX2(式中Mはパラジウムまたは白金、Lは一酸化炭素、オレフィン化合物、アミン化合物、ホスフィン化合物、N-複素環式カルベン化合物、ニトリル化合物、イソシアニド化合物から選ばれる配位子、nは配位子の個数を表す0から2の整数を表す。Xはハロゲンまたは水酸基を表す)を、アルカリ金属水素化物の存在下、ジシロキサン化合物HO-(R1)(R2)Si-O-(R3)(R4)Si-OH(R1~R4は有機基を表す。)と反応させることで、合成することができる。
 本発明の担持金属錯体は、下記の一般式(2)の構造を有する。
Figure JPOXMLDOC01-appb-C000009
(式中Mはパラジウムまたは白金、Lは一酸化炭素、オレフィン化合物、アミン化合物、ホスフィン化合物、N-複素環式カルベン化合物、ニトリル化合物、イソシアニド化合物から選ばれる配位子、nは配位子の個数を表す0から2の整数を表す。)
 本発明で用いる無機酸化物は、特に制限はないが、ケイ素、チタン、アルミニウム、ジルコニウム、マグネシウム等の単独酸化物またはそれらを含む複合酸化物などを用いることができる。中でも、表面に水酸基としてシラノール基を多く有しており、有機脱離基と無機酸化物との間に強固な共有結合を形成できるという観点から、ケイ素の酸化物であるシリカ、例えばアモルファスシリカ、またはケイ素を含む複合酸化物、例えばアルミノシリケートを用いることが好ましく、さらに大きな表面積を利用して単位重量あたりの金属錯体の導入量を多くできることから、MCM-41、SBA-15等の規則性メソポーラシリカまたは規則性メソポーラスメタロシリケート、結晶性アルミノシリケート、メタロシリケート、アルミノホスフェート、シリカアルミノホスフェート等のゼオライト、多孔質ガラス、粘土鉱物等を用いることも好ましい。なお、本発明で用いる無機酸化物は、公知の手法で合成されたものでも、市販品でもよい。
 上記無機酸化物は、0.5~500nmの平均細孔径を有するものが好ましく、1~100nmの平均細孔径を有するものがより好ましい。また、上記金属錯体を無機酸化物に高密度に結合させるためには、無機酸化物の表面積が大きなものが好ましく、例えば、100~1500m2/gの比表面積を有するものが好ましい。
 本発明の担持金属錯体は、例えば、下記の一般式(3)で表される金属錯体の有機溶媒溶液を無機酸化物に接触させることにより得られる。
Figure JPOXMLDOC01-appb-C000010
(式中Mはパラジウムまたは白金、Lは一酸化炭素、オレフィン化合物、アミン化合物、ホスフィン化合物、N-複素環式カルベン化合物、ニトリル化合物、イソシアニド化合物から選ばれる配位子、nは配位子の個数を表す0から2の整数、R1’~R4’は炭素数1~4のアルコキシ基を表す。)
 一般式(3)の金属錯体を有機溶媒に溶解させた溶液に無機酸化物を懸濁させ、室温又は加熱しながら撹拌する。その後、ろ過によって固体を集め、洗浄、乾燥を行うことによって担持金属錯体を得る。有機溶媒としては、例えば、ペンタン、ヘキサン等の脂肪族炭化水素類、トルエン、キシレン等の芳香族炭化水素類、ジエチルエーテル、ジブチルエーテル等のエーテル類が挙げられ、単独でもしくは混合して用いても良い。
 一般式(3)の金属錯体を無機酸化物と反応させることにより、有機基R1’~R4’の一部あるいは全てが脱離され、金属錯体の固有の骨格構造を保持した担持金属錯体を得ることができる。
 得られた担持金属錯体の担持金属量はICP-OES等の分析により決定できる。
 本発明の担持金属錯体は、担体上に担持された金属錯体が担持前の金属錯体の骨格構造を保持しているので、担持前の金属錯体が有する触媒作用を維持することができる。
 例えば、後述の実施例14、15において確認されているように、本発明の担持金属錯体(1)は、担持前の対応する金属錯体(2)と同様、オレフィン類のヒドロシリル化反応、例えばノルボルネンのヒドロシリル化反応に対して触媒活性を有している。
 本発明の担持金属触媒は、本発明の担持金属錯体を酸素雰囲気下において80~600℃の温度で焼成することによって得ることができる。酸素雰囲気としては、酸素中でも良いが、空気を用いても良い。得られた担持金属触媒の担持金属量はICP-OES等の分析により決定できる。
 本発明の担持金属触媒は、従来の担持白金触媒、担持パラジウム触媒が用いられる、各種触媒反応に使用することができる。
 本発明の担持金属触媒の活性評価の方法は特に制限がないが、例えば、白金金属種の代表的な触媒反応である、オレフィン類の水素化反応、例えばシクロオクテンの水素化反応に対する触媒活性を検討することで評価できる。
 後述の実施例11~13において確認されているように、本発明の担持金属触媒は、オレフィン類の水素化反応において、従来の担持金属触媒に比べて、大幅に触媒活性が向上している。これは、本発明による担持金属触媒が、担体上に触媒金属の微粒子が均一に分散して形成されたためであり、同様の触媒活性の向上は、担持金属触媒を用いる他の触媒反応においても得られることが明らかである。
 本発明を、以下の実施例、参考例により、更に詳細に説明する。
実施例1.金属錯体(1)の合成
 (COD)PdBr2(0.9g、2.4mmol)とTHF溶媒20mLを入れた200mL容積のシュレンク管に、HO[(tert-BuO)2SiO]2 H(例えばJ. Beckmann,et. al.,Appl. Organometal. Chem.,vol.17,p.52 (2003)等に記載された方法により合成可能)(1.02g、2.6mmol)とKH(0.24g、6mmol)のTHF溶液45mLを滴下し、2時間反応させた。反応溶液をろ過し、減圧乾燥することで下記金属錯体(1)1.1gを得た。金属錯体(1)について、溶液NMRスペクトルにて構造同定を行った。
Figure JPOXMLDOC01-appb-C000011
溶液NMR(室温、溶媒(C6D6))
1H NMR(400MHz);δ1.26、1.33、2.71
実施例2.金属錯体(2)の合成
 (COD)PtI2(1.34g、2.4mmol)を用いた以外は、実施例1と同様の操作を行うことにより、金属錯体(2)1.51gを得た。金属錯体(2)について、溶液NMRスペクトルと元素分析(C、H分析)にて構造同定を行った。また、固体状態での構造同定のために、固体のNMRスペクトル測定を行った(図1及び2参照)。
Figure JPOXMLDOC01-appb-C000012
溶液NMR(室温、溶媒(CD))
〈1〉1H NMR(400MHz);δ1.09、1.63、1.70、4.66
〈2〉13C{1H} NMR;δ29.7、31.1、71.7、91.3
〈3〉29Si{1H} NMR;δ-84.9
元素分析(C24H48O7Si2Pt1)
〈1〉理論値:C、41.19;H、6.91%
〈2〉測定値:C、41.67;H、6.92%
実施例3.金属錯体(3)の合成
 (Me3P)2PtI2(1.44g、2.4mmol)を用いた以外は、実施例1と同様の操作を行うことにより、金属錯体(3)1.61gを得た。金属錯体(3)について、溶液NMRスペクトルと元素分析(C、H分析)にて構造同定を行った。
Figure JPOXMLDOC01-appb-C000013
溶液NMR(室温、溶媒(CD2Cl2))
〈1〉1H NMR(400MHz);δ1.31、1.54-1.58
〈2〉13C{1H} NMR;δ14.2-14.8、31.2、40.4
〈3〉31P{1H} NMR;δ-26.95
元素分析(C22H54O7P2Si2Pt1)
〈1〉理論値:C、35.52;H、7.32%
〈2〉測定値:C、35.59;H、7.15%
実施例4.担持金属錯体(1)の合成
 メソポーラスシリカMCM-41(例えばC.T.Kresge,et. al.,Nature,vol.359,p.710(1992)等に記載された方法により合成可能)(5g)を減圧下、120℃で1時間乾燥した。室温まで冷却後、反応系内を乾燥した窒素ガスで置換した。ここに金属錯体(2)(0.18g、0.26mmol)とトルエン(100mL)を加え、室温で24時間、撹拌を行った。得られた固体をろ過し、トルエン(100mL)で3回洗浄した。その後、減圧下、室温で24時間乾燥し、担持金属錯体(1)を得た。
 担持金属錯体(1)について、その固体NMRスペクトルを金属錯体(2)と比較することにより、金属錯体(2)のメソポーラスシリカ担体への結合状態の解析を行った。図1と2には金属錯体(2)と担持金属錯体(1)の13C CPMAS NMR測定と29Si CPMAS NMR測定の結果を示した。観測されたピークは、それぞれ図中に示したようにCOD、tBu基、及びSiに帰属させることができ、これにより、金属錯体(2)が4つのtBuO基の脱離を伴ってメソポーラスシリカに化7に示すように結合し、担持金属錯体(1)が得られたことが確認された。また、担持金属錯体(1)について、走査透過電子顕微鏡(STEM)観察及びエネルギー分散型X線(EDX)分析を行った。図3と4にSTEM観察及びEDX分析の結果を示した。EDX分析から白金の存在は明らかであるにもかかわらず、STEM観察で白金粒子の存在は確認できなかった。これにより、白金がもとの錯体構造を保持したまま単原子の状態で、メソポーラスシリカ担体に担持されていることが確認された。得られた担持金属錯体(1)に担持された白金量は、ICP-OES法により求めた結果、1.06重量%であった。
Figure JPOXMLDOC01-appb-C000014
実施例5.担持金属錯体(2)の合成
 金属錯体(3)(0.39g、0.52mmol)を用いた以外は、実施例4と同様の操作を行うことにより、担持金属錯体(2)を得た。
Figure JPOXMLDOC01-appb-C000015
実施例6.担持金属錯体(3)の合成
 担体としてアモルファスシリカ(富士シリシア化学社製、CARiACT Q-10、表面積250m2/g)を用いた以外は、実施例4と同様の操作を行うことにより、担持金属錯体(3)を得た。
 担持金属錯体(3)の13C CPMAS NMR測定と29Si CPMAS NMR測定の結果は図1及び2と同様であり、これにより、金属錯体(2)が4つのtBuO基の脱離を伴ってアモルファスシリカに化9に示すように結合し、担持金属錯体(3)が得られたことが確認された。
Figure JPOXMLDOC01-appb-C000016
実施例7.担持金属錯体(4)の合成
 金属錯体(2)を0.36g、0.52mmol用いた以外は、実施例4と同様の操作を行うことにより、担持金属錯体(4)を得た。
実施例8.担持金属触媒(1)の合成
 担持金属錯体(1)2gを300℃で3時間、酸素気流中で焼成することで、担持金属触媒(1)1.9gを得た。得られた担持金属触媒(1)に担持された白金量は、ICP-OES法により求めた結果、1.04重量%であった。
実施例9.担持金属触媒(2)の合成
 担持金属錯体(3)2gを用いた以外は、実施例8と同様の操作を行うことにより、担持金属触媒(2)1.8gを得た。得られた担持金属触媒(2)に担持された白金量は、ICP-OES法により求めた結果、1.03重量%であった。
実施例10.担持金属触媒(3)の合成
 担持金属錯体(4)2gを用いた以外は、実施例8と同様の操作を行うことにより、担持金属触媒(3)1.9gを得た。担持金属触媒(3)について、STEM観察を行った。図5に結果を示した。白金が2~3nm以下の小粒子で比較的均一にメソポーラスシリカ担体上に分散して担持されていることが観察された。得られた担持金属触媒(3)に担持された白金量は、ICP-OES法により求めた結果、2.04重量%であった。
[参考例]従来技術による担持金属触媒の合成
参考例1.担持金属触媒(4)の合成
 メソポーラスシリカMCM-41、5gに、(NH3)4Pt(NO3)2を0.1g含有する水溶液50mLを滴下して加えることにより含浸した後、減圧下、60℃で3時間乾燥し、得られた粉末を300℃で3時間、酸素気流中で焼成することで、メソポーラスシリカに白金を担持させた担持金属触媒(4)5.1gを得た。得られた担持金属触媒(4)に担持された白金量は、ICP-OES法により求めた結果、0.92重量%であった。
参考例2.担持金属触媒(5)の合成
 担体としてアモルファスシリカCARiACT Q-10を用いた以外は、参考例1と同様の操作を行うことにより、担持金属触媒(5)を得た。得られた担持金属触媒(5)に担持された白金量は、ICP-OES法により求めた結果、約0.91重量%であった。
参考例3.担持金属触媒(6)の合成
 (NH3)4Pt(NO3)2を0.2g含有する水溶液50mLを用いた以外は、参考例1と同様の操作を行うことにより、担持金属触媒(6)を得た。得られた担持金属触媒に担持された白金量は、ICP-OES法により求めた結果、約1.68重量%であった。担持金属触媒(6)について、STEM観察を行った。図6に結果を示した。担持金属触媒(3)に比べて担持された白金量は少ないにもかかわらず、白金が凝集して不均一にメソポーラスシリカ担体上に存在していることが確認された。
[水素化反応による担持金属触媒の触媒活性の評価]
 オレフィンとしてシクロオクテン、水素源として水素を用い、水素化反応での触媒活性の評価を行った。
実施例11
 25mL容積のシュレンク管に、実施例8で得られた担持金属触媒(1)を20mg量り取り、水素気流下、300℃で1時間還元処理を行った。シュレンク管を室温まで冷やした後、アルゴンガスでシュレンク管内部を置換し、基準物質としてメシチレン120μLを含むイソプロパノール5mL及びシクロオクテン2.5mmolを仕込んだ後、水素ガスでシュレンク管内部を再び置換し、水素1気圧下、室温で撹拌反応させた。触媒活性については、生成物であるシクロオクタン収率の経時変化で評価した。その結果を図7に示す。
実施例12
 実施例9で得られた担持金属触媒(2)を用いた以外は、実施例11と同様の操作を行うことにより、触媒活性の評価を行った。その結果を図7に併せて示す。
実施例13
 実施例10で得られた担持金属触媒(3)を用いた以外は、実施例11と同様の操作を行うことにより、触媒活性の評価を行った。その結果を図8に示す。
比較例1
 参考例1で得られた担持金属触媒(4)を用いた以外は、実施例11と同様の操作を行うことにより、触媒活性の評価を行った。その結果を図7に併せて示す。
比較例2
 参考例2で得られた担持金属触媒(5)を用いた以外は、実施例11と同様の操作を行うことにより、触媒活性の評価を行った。その結果を図7に併せて示す。
比較例3
 参考例3で得られた担持金属触媒(6)を用いた以外は、実施例11と同様の操作を行うことにより、触媒活性の評価を行った。その結果を図8に併せて示す。
比較例4
 市販の1重量%白金シリカ触媒(Sigma-Aldrich社製)を用いた以外は、実施例11と同様の操作を行うことにより、触媒活性の評価を行った。その結果を図7に併せて示す。
[ヒドロシリル化反応による金属錯体および担持金属錯体の触媒活性の評価]
 オレフィンとしてノルボルネンを用い、ジメチルクロロシランによるヒドロシリル化反応での本発明の金属錯体および担持金属錯体の触媒活性の評価を行った。
  [式2]
Figure JPOXMLDOC01-appb-I000017
実施例14
 25mL容積のシュレンク管に、式2に示したように、1.2mmolのノルボルネンに対し、実施例5で得られた担持金属錯体(1)を0.2mol%量り取り、真空下、80℃で1時間乾燥処理を行った。シュレンク管を室温まで冷やした後、アルゴンガスでシュレンク管内部を置換し、基準物質としてメシチレン100μLを含むトルエン5mL、ノルボルネン1.2mmol、及びジメチルクロロシラン2.4mmolを仕込んだ後、室温で20分撹拌反応させ、ノルボルネンの転化率(図9)と式2に示した生成物の収率(図10)で触媒活性を評価した。
実施例15
 実施例2で得られた金属錯体(2)を用いた以外は、実施例14と同様の操作を行うことにより、触媒活性の評価を行った。その結果を図9及び10に併せて示す。
比較例5
 イソプロパノール溶媒に溶解した塩化白金酸(H2PtCl6)溶液を用いた以外は、実施例14と同様の操作を行うことにより、触媒活性の評価を行った。その結果を図9及び10に併せて示す。
比較例6
 市販の1重量%白金シリカ触媒(Sigma-Aldrich社製)を用いたことと室温で60分撹拌反応させたこと以外は、実施例14と同様の操作を行うことにより、触媒活性の評価を行った。その結果を図9及び10に併せて示す。
[触媒リサイクルの評価]
実施例16
 担持金属錯体(1)を用い、実施例14と同様の操作を複数回繰り返し行って、担持金属錯体(1)のリサイクル触媒特性を評価した。その結果を図11に示す。
 本発明は、担持金属触媒、担持金属錯体触媒、並びに、金属錯体触媒を用いる各種の技術分野に利用可能である。

Claims (11)

  1.  下記一般式(1)で表される金属錯体。
    Figure JPOXMLDOC01-appb-C000001
    (式中Mはパラジウムまたは白金、Lは一酸化炭素、オレフィン化合物、アミン化合物、ホスフィン化合物、N-複素環式カルベン化合物、ニトリル化合物、イソシアニド化合物から選ばれる配位子、nは配位子の個数を表す0から2の整数、R1~R4は有機基を表す。)
  2.  下記一般式(2)の構造を有する、金属錯体が無機酸化物へ固定化された、担持金属錯体。
    Figure JPOXMLDOC01-appb-C000002
    (式中Mはパラジウムまたは白金、Lは一酸化炭素、オレフィン化合物、アミン化合物、ホスフィン化合物、N-複素環式カルベン化合物、ニトリル化合物、イソシアニド化合物から選ばれる配位子、nは配位子の個数を表す0から2の整数を表す。)
  3.  前記無機酸化物がシリカまたはケイ素を含む複合酸化物である、請求項2に記載の担持金属錯体。
  4.  金属錯体LnMX2(式中Mはパラジウムまたは白金、Lは一酸化炭素、オレフィン化合物、アミン化合物、ホスフィン化合物、N-複素環式カルベン化合物、ニトリル化合物、イソシアニド化合物から選ばれる配位子、nは配位子の個数を表す0から2の整数を表す。Xはハロゲンまたは水酸基を表す)を、アルカリ金属水素化物の存在下、ジシロキサン化合物HO-(R1)(R2)Si-O-(R3)(R4)Si-OH(R1~R4は有機基を表す。)と反応させることを特徴とする、請求項1に記載の金属錯体の製造方法。
  5.  下記一般式(3)で表される金属錯体の有機溶媒溶液を無機酸化物に接触させることにより、金属錯体を無機酸化物に担持させることを特徴とする、請求項2または3に記載の担持金属錯体の製造方法。
    Figure JPOXMLDOC01-appb-C000003
    (式中Mはパラジウムまたは白金、Lは一酸化炭素、オレフィン化合物、アミン化合物、ホスフィン化合物、N-複素環式カルベン化合物、ニトリル化合物、イソシアニド化合物から選ばれる配位子、nは配位子の個数を表す0から2の整数、R1’~R4’は炭素数1~4のアルコキシ基を表す。)
  6.  請求項2または3に記載の担持金属錯体を酸素雰囲気下において80℃~600℃の温度で熱処理することによって得られる担持金属触媒。
  7.  請求項6に記載の担持金属触媒からなるオレフィン類の水素化反応用触媒。
  8.  触媒の中心金属が白金であることを特徴とする、請求項7に記載の水素化反応用触媒。
  9.  請求項1に記載の金属錯体化合物からなるオレフィン類のヒドロシリル化反応用触媒。
  10.  請求項2または3に記載の担持金属錯体からなるオレフィン類のヒドロシリル化反応用触媒。
  11.  触媒の中心金属が白金であることを特徴とする、請求項9または請求項10に記載のヒドロシリル化反応用触媒。
PCT/JP2014/056716 2013-03-14 2014-03-13 ジシロキサンを配位子とする金属錯体および担持金属錯体、その製造方法、並びに、それを用いて調製した担持金属触媒 WO2014142252A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP14765042.8A EP2975045B1 (en) 2013-03-14 2014-03-13 Metal complex and supported metal complex having disiloxane as ligand, preparation method therefor, and supported metal catalyst prepared using same
KR1020157028223A KR101747766B1 (ko) 2013-03-14 2014-03-13 디실록산을 배위자로 하는 금속착체 및 담지 금속착체, 그 제조 방법, 및 그것을 이용하여 조제한 담지 금속 촉매
US14/774,481 US9616418B2 (en) 2013-03-14 2014-03-13 Metal complex and supported metal complex having disiloxane as ligand, method for production therefor, and supported metal catalyst prepared by using the same
JP2015505558A JP6090759B2 (ja) 2013-03-14 2014-03-13 ジシロキサンを配位子とする金属錯体および担持金属錯体、その製造方法、並びに、それを用いて調製した担持金属触媒
CN201480025536.7A CN105209474B (zh) 2013-03-14 2014-03-13 具有二硅氧烷作为配体的金属络合物和负载型金属络合物、它们的制备方法和通过使用负载型金属络合物制备的负载型金属催化剂
US15/448,128 US10213777B2 (en) 2013-03-14 2017-03-02 Metal complex and supported metal complex having disiloxane as ligand, method for production therefor, and supported metal catalyst prepared by using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013051526 2013-03-14
JP2013-051526 2013-03-14

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/774,481 A-371-Of-International US9616418B2 (en) 2013-03-14 2014-03-13 Metal complex and supported metal complex having disiloxane as ligand, method for production therefor, and supported metal catalyst prepared by using the same
US15/448,128 Division US10213777B2 (en) 2013-03-14 2017-03-02 Metal complex and supported metal complex having disiloxane as ligand, method for production therefor, and supported metal catalyst prepared by using the same

Publications (1)

Publication Number Publication Date
WO2014142252A1 true WO2014142252A1 (ja) 2014-09-18

Family

ID=51536901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056716 WO2014142252A1 (ja) 2013-03-14 2014-03-13 ジシロキサンを配位子とする金属錯体および担持金属錯体、その製造方法、並びに、それを用いて調製した担持金属触媒

Country Status (6)

Country Link
US (2) US9616418B2 (ja)
EP (1) EP2975045B1 (ja)
JP (1) JP6090759B2 (ja)
KR (1) KR101747766B1 (ja)
CN (1) CN105209474B (ja)
WO (1) WO2014142252A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017035171A1 (en) * 2015-08-27 2017-03-02 Momentive Performance Materials Inc. Platinum (II) Diene Complexes with Chelating Dianionic Ligands and their use in Hydrosilylation Reactions
CN106715536A (zh) * 2014-09-19 2017-05-24 莫门蒂夫性能材料股份有限公司 用于受控的硅氧烷交联的铂(ii)二烯配合物
JP2017179038A (ja) * 2016-03-29 2017-10-05 信越化学工業株式会社 熱硬化性オルガノポリシロキサン組成物
WO2017169469A1 (ja) * 2016-03-29 2017-10-05 信越化学工業株式会社 担持白金触媒を含有する樹脂組成物、及びそれを用いた熱硬化性オルガノポリシロキサン組成物ならびにその硬化方法
JP2019535505A (ja) * 2016-11-11 2019-12-12 中国科学院大▲連▼化学物理研究所Dalian Institute Of Chemical Physics,Chinese Academy Of Sciences 溶液中で貴金属孤立原子を調製する方法及びその応用
JP2021109834A (ja) * 2020-01-07 2021-08-02 信越化学工業株式会社 1,1,3,3−テトラアルコキシジシロキサン−1,3−ジオールの製造方法
JP2022551646A (ja) * 2019-11-06 2022-12-12 ヘレウス ドイチェラント ゲーエムベーハー ウント カンパニー カーゲー 白金錯体の調製物

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110049815B (zh) * 2016-12-07 2022-04-12 国立研究开发法人产业技术综合研究所 有机金属络合物催化剂
JP7103371B2 (ja) * 2017-11-15 2022-07-20 信越化学工業株式会社 オルガノポリシロキサン組成物
CN108906036B (zh) * 2018-07-12 2020-09-08 苏州大学 掺杂双核铑配合物的铂/中空介孔二氧化硅球复合材料及其制备方法与应用
CN108993599A (zh) * 2018-08-07 2018-12-14 上海师范大学 一种N-杂环卡宾官能化的有序介孔有机硅Pd催化剂及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3625934A (en) * 1968-07-02 1971-12-07 Jacobus Rinse Oligomers of mixed tetravalent element oxides

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4423195A1 (de) * 1994-07-01 1996-01-04 Wacker Chemie Gmbh Triazenoxid-Übergangsmetall-Komplexe als Hydrosilylierungskatalysatoren
FR2801887B1 (fr) * 1999-12-07 2002-10-11 Rhodia Chimie Sa Complexes metalliques appropries a la catalyse de reactions d'hydrosilylation, composition catalytique les contenant et leur utilisation
DE10250901A1 (de) * 2002-10-31 2004-05-19 Umicore Ag & Co.Kg Verfahren zur Herstellung von Palladium(0)-haltigen Verbindungen
JP3795895B2 (ja) * 2004-03-25 2006-07-12 田中貴金属工業株式会社 触媒の製造方法
JP4715294B2 (ja) * 2005-05-11 2011-07-06 トヨタ自動車株式会社 金属クラスター担持金属酸化物担体及びその製造方法
US8097229B2 (en) 2006-01-17 2012-01-17 Headwaters Technology Innovation, Llc Methods for manufacturing functionalized inorganic oxides and polymers incorporating same
JP4613853B2 (ja) * 2006-03-01 2011-01-19 トヨタ自動車株式会社 複数金属錯体含有化合物及び金属錯体

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3625934A (en) * 1968-07-02 1971-12-07 Jacobus Rinse Oligomers of mixed tetravalent element oxides

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
ACS CATAL., vol. 1, 2011, pages 1166
C. T. KRESGE, NATURE, vol. 359, 1992, pages 710
CHEM. MATER., vol. 20, 2008, pages 6517
J. BECKMANN, APPL. ORGANOMETAL. CHEM., vol. 17, 2003, pages 52
J.BECKMANN ET AL.: "Strained Metallastannoxanes-Ring-Opening Polymerization versus Retention of Six-Membered-Ring Structure", ORGANOMETALLICS, vol. 18, no. 9, 1999, pages 1586 - 1595, XP055289972 *
M.B.HURSTHOUSE ET AL.: "Cyclic cobaltadisiloxane compounds. Crystal structures of a pyridinolithium [bis(cyclosiloxy)cobalt] cobalt chloride and a bis (tetramethylethylenediaminolithium)-bis (cyclosiloxy)cobaltate", JOURNAL OF ORGANOMETALLIC CHEMISTRY, vol. 381, no. 2, 1990, pages C43 - C46, XP055289970 *
See also references of EP2975045A4

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI686429B (zh) * 2014-09-19 2020-03-01 美商摩曼帝夫特性材料公司 用於經控制之矽氧烷交聯的鉑(ii)二烯錯合物
CN106715536A (zh) * 2014-09-19 2017-05-24 莫门蒂夫性能材料股份有限公司 用于受控的硅氧烷交联的铂(ii)二烯配合物
CN106715536B (zh) * 2014-09-19 2021-06-01 莫门蒂夫性能材料股份有限公司 用于受控的硅氧烷交联的铂(ii)二烯配合物
US10597496B2 (en) * 2014-09-19 2020-03-24 Momentive Performance Materials Inc. Platinum (II) diene complexes for controlled siloxane crosslinking
JP2017536432A (ja) * 2014-09-19 2017-12-07 モメンティブ パフォーマンス マテリアルズ インコーポレイテッド シロキサンの制御された架橋のための白金(ii)ジエン錯体
EP3194469A4 (en) * 2014-09-19 2018-04-11 Momentive Performance Materials Inc. Platinum (ii) diene complexes for controlled siloxane crosslinking
WO2017035171A1 (en) * 2015-08-27 2017-03-02 Momentive Performance Materials Inc. Platinum (II) Diene Complexes with Chelating Dianionic Ligands and their use in Hydrosilylation Reactions
CN108368141A (zh) * 2015-08-27 2018-08-03 莫门蒂夫性能材料股份有限公司 具有螯合二价阴离子配体的铂(ii)二烯配合物及其在氢化硅烷化反应中的用途
US10047108B2 (en) 2015-08-27 2018-08-14 Momentive Performance Materials Inc. Platinum (II) diene complexes with chelating dianionic ligands and their use in hydrosilylation reactions
JP2017179046A (ja) * 2016-03-29 2017-10-05 信越化学工業株式会社 担持白金触媒を含有する樹脂組成物、及びそれを用いた熱硬化性オルガノポリシロキサン組成物ならびにその硬化方法
WO2017169469A1 (ja) * 2016-03-29 2017-10-05 信越化学工業株式会社 担持白金触媒を含有する樹脂組成物、及びそれを用いた熱硬化性オルガノポリシロキサン組成物ならびにその硬化方法
US10738190B2 (en) 2016-03-29 2020-08-11 Shin-Etsu Chemical Co., Ltd. Resin composition containing supported platinum catalyst, thermosetting organopolysiloxane composition using the resin composition, and method for curing the thermosetting organopolysiloxane composition
JP2017179038A (ja) * 2016-03-29 2017-10-05 信越化学工業株式会社 熱硬化性オルガノポリシロキサン組成物
JP2019535505A (ja) * 2016-11-11 2019-12-12 中国科学院大▲連▼化学物理研究所Dalian Institute Of Chemical Physics,Chinese Academy Of Sciences 溶液中で貴金属孤立原子を調製する方法及びその応用
JP2022551646A (ja) * 2019-11-06 2022-12-12 ヘレウス ドイチェラント ゲーエムベーハー ウント カンパニー カーゲー 白金錯体の調製物
JP7354435B2 (ja) 2019-11-06 2023-10-02 ヘレウス ドイチェラント ゲーエムベーハー ウント カンパニー カーゲー 白金錯体の調製物
JP2021109834A (ja) * 2020-01-07 2021-08-02 信越化学工業株式会社 1,1,3,3−テトラアルコキシジシロキサン−1,3−ジオールの製造方法
JP7284719B2 (ja) 2020-01-07 2023-05-31 信越化学工業株式会社 1,1,3,3-テトラアルコキシジシロキサン-1,3-ジオールの製造方法

Also Published As

Publication number Publication date
KR20150127215A (ko) 2015-11-16
EP2975045A4 (en) 2016-10-05
EP2975045B1 (en) 2018-07-25
US9616418B2 (en) 2017-04-11
JP6090759B2 (ja) 2017-03-08
CN105209474B (zh) 2017-07-14
US10213777B2 (en) 2019-02-26
CN105209474A (zh) 2015-12-30
JPWO2014142252A1 (ja) 2017-02-16
US20160030932A1 (en) 2016-02-04
US20170225156A1 (en) 2017-08-10
EP2975045A1 (en) 2016-01-20
KR101747766B1 (ko) 2017-06-15

Similar Documents

Publication Publication Date Title
JP6090759B2 (ja) ジシロキサンを配位子とする金属錯体および担持金属錯体、その製造方法、並びに、それを用いて調製した担持金属触媒
Hu et al. MCM-41-supported mercapto platinum complex as a highly efficient catalyst for the hydrosilylation of olefins with triethoxysilane
Li et al. Mesoporous SBA-15 material functionalized with ferrocene group and its use as heterogeneous catalyst for benzene hydroxylation
Gholampour et al. Investigation of the preparation and catalytic activity of supported Mo, W, and Re oxides as heterogeneous catalysts in olefin metathesis
Wang et al. Chirally functionalized mesoporous organosilicas with built-in BINAP ligand for asymmetric catalysis
Farjadian et al. Phosphinite-functionalized silica and hexagonal mesoporous silica containing palladium nanoparticles in Heck coupling reaction: synthesis, characterization, and catalytic activity
Silva et al. Performance evaluation of mesoporous host materials in olefin epoxidation using Mo (II) and Mo (VI) active species—Inorganic vs. hybrid matrix
Vasconcellos-Dias et al. Heptacoordinate tricarbonyl Mo (II) complexes as highly selective oxidation homogeneous and heterogeneous catalysts
Wang et al. Palladium immobilized in the nanocages of SBA-16: An efficient and recyclable catalyst for Suzuki coupling reaction
Peng et al. Immobilization of rhodium complexes ligated with triphenyphosphine analogs on amino-functionalized MCM-41 and MCM-48 for 1-hexene hydroformylation
Crosman et al. Enantioselective hydrogenation over immobilized rhodium diphosphine complexes on aluminated SBA-15
CN114450087A (zh) 具有双位点表面物类的负载型氧化物nh3-scr催化剂和合成方法
Peng et al. Asymmetric hydrogenation by RuCl 2 (R-Binap)(dmf) n encapsulated in silica-based nanoreactors
JPWO2007083684A1 (ja) 触媒およびそれを用いるオレフィンの製造方法
Xia et al. Ruthenium complex immobilized on supported ionic-liquid-phase (SILP) for alkoxycarbonylation of olefins with CO 2
Chen et al. Insight into the effect of Lewis Acid of W/Al-MCM-41 Catalyst on Metathesis of 1-Butene and Ethylene
Lin et al. Immobilized Zn (OAc) 2 on bipyridine-based periodic mesoporous organosilica for N-formylation of amines with CO 2 and hydrosilanes
Lazar et al. A simple, phosphine free, reusable Pd (ii)–2, 2′-dihydroxybenzophenone–SBA-15 catalyst for arylation and hydrogenation reactions of alkenes
Gimenez et al. Hepta-coordinate halocarbonyl molybdenum (II) and tungsten (II) complexes as heterogeneous polymerization catalysts
Saraiva et al. New Mo (II) complexes in MCM-41 and silica: Synthesis and catalysis
Kamegawa et al. Preparation of inorganic–organic hybrid mesoporous material incorporating organoruthenium complexes (–[C 6 H 4 RuCp] PF 6–) and its application as a heterogeneous catalyst
Serrano et al. A comparison of methods for the heterogenization of the chiral Jacobsen catalyst on mesostructured SBA-15 supports
Saraiva et al. The effect of immobilization on the catalytic activity of molybdenum η3-allyldicarbonyl complexes with nitrogen donor ligands bearing N–H groups
Saraiva et al. Activity of Mo (II) allylic complexes supported in MCM-41 as oxidation catalysts precursors
Wang et al. Electrostatic grafting of a triphenylphosphine sulfonate on SBA-15: application in palladium catalyzed hydrogenation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14765042

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14774481

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015505558

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014765042

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157028223

Country of ref document: KR

Kind code of ref document: A