WO2014142152A1 - プロセス監視診断装置 - Google Patents

プロセス監視診断装置 Download PDF

Info

Publication number
WO2014142152A1
WO2014142152A1 PCT/JP2014/056439 JP2014056439W WO2014142152A1 WO 2014142152 A1 WO2014142152 A1 WO 2014142152A1 JP 2014056439 W JP2014056439 W JP 2014056439W WO 2014142152 A1 WO2014142152 A1 WO 2014142152A1
Authority
WO
WIPO (PCT)
Prior art keywords
principal component
output
variable
monitoring
variables
Prior art date
Application number
PCT/JP2014/056439
Other languages
English (en)
French (fr)
Inventor
理 山中
明弘 長岩
由紀夫 平岡
山本 勝也
勝実 佐野
知幸 濱田
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to CN201480010812.2A priority Critical patent/CN105027014B/zh
Publication of WO2014142152A1 publication Critical patent/WO2014142152A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0224Process history based detection method, e.g. whereby history implies the availability of large amounts of data
    • G05B23/024Quantitative history assessment, e.g. mathematical relationships between available data; Functions therefor; Principal component analysis [PCA]; Partial least square [PLS]; Statistical classifiers, e.g. Bayesian networks, linear regression or correlation analysis; Neural networks

Definitions

  • Embodiments of the present invention relate to a process monitoring diagnostic apparatus.
  • Examples of specified target performance include compliance with effluent quality standards in the sewage treatment process, stable generation of generated energy (such as methane and hydrogen) in the sludge digestion process, and supply and distribution water quality standards through disinfection and sterilization in the water purification process. Compliance, the achievement of a predetermined target value for the yield of refined products such as petroleum in the petrochemical process, and the achievement of a predetermined target value for the yield of semiconductor products in the semiconductor manufacturing process.
  • Examples of energy-saving and cost-saving operations include reduction of blower and pump drive power and chemical injection in the sewage treatment process, maximization of generated energy efficiency in the sludge digestion process, and minimization of chemical injection in the water purification process. In the petrochemical process and semiconductor manufacturing process, the yield can be maximized.
  • the process status related to the target performance is monitored so as not to fall into a state where the predetermined target cannot be achieved, and a state change or abnormal state that impedes the achievement of the predetermined target is quickly detected and countermeasures are taken in advance. Taking it is an important point in operation management.
  • the process state related to the target performance and energy savings and cost savings is always kept in a good state and likely to deviate from the good state. Need to quickly detect process state changes.
  • Multivariate statistical process monitoring using the “multivariate statistical analysis method” developed mainly in the petrochemical process field as a method for diagnosing such process changes and abnormalities
  • a method called “Control” is known.
  • Principal component analysis PCA: Principal Component Analysis
  • PLS Latent Variable Projection Method / Partial Least Square Method
  • Common point Generate time series data of several summary statistics using correlation information between process data from a large number of measurement data, detect changes in process status with a small number of generated statistics data, and then The variables that cause this are estimated.
  • the method of generating summary statistics is the same for both PCA and PLS.
  • a highly correlated data set (data subspace) is generated, and a statistic called T2 statistic that is a distribution index of data in this subspace.
  • a statistic called a Q statistic which is a deviation index from the partial space, is used.
  • PCA treats all monitoring items (variables) for constructing a monitoring diagnostic model in the same line, and does not distinguish between explanatory variables (inputs) and result variables (outputs). However, PLS does not distinguish between explanatory variables (inputs) and results. Differentiate variables (outputs).
  • the diagnostic method using PCA and the diagnostic method using PLS are similar to each other, but they are selectively used depending on whether input / output is distinguished.
  • the final product quality (result variable / output) quality ( ⁇ normal / abnormal) we want to diagnose the final product quality (result variable / output) quality ( ⁇ normal / abnormal), but it is difficult to measure this product quality online.
  • diagnosis is often performed using PLS or PCR (principal component regression) related thereto.
  • MLR multiple regression analysis
  • PCA is mainly used for detecting and diagnosing various abnormal states that may occur in a plant for general purposes.
  • Nonlinear component analysis as a kernel eigenvalue problem Neural Computation, 10 (5): 1299-1319, 1998. '' C.Rosen “Monitoring Wastewater Treatment Systems”, Lic.Thesis, Dept. of Industrial Electrical Engineering and Automation, Lund University, Lund, Sweden (1998)
  • Problem 1 Although it is desired to make a diagnosis by distinguishing between a result variable and an explanatory variable, it is difficult to select a result variable and an explanatory variable in advance, and it is desired to define a result variable and an explanatory variable while developing a diagnostic system.
  • Problem 2 I want to switch the result variable that should be monitored according to the situation during plant operation.
  • Problem 3 You do not necessarily want to identify and diagnose a result variable, but you do not want to make an unnecessary diagnosis. For example, it is not necessary to issue an alarm when the sensor is under maintenance and in an abnormal state. In other words, we do not want to make an overly generalized abnormality diagnosis, but only an abnormality diagnosis related to some result variables.
  • the present invention has been made in view of the above circumstances, and when a result variable is appropriately designated while based on a PCA process abnormality diagnosis system that does not distinguish between a result variable and an explanatory variable, the result variable It is an object of the present invention to provide a process monitoring and diagnosis apparatus capable of extracting a factor variable strongly related to the process.
  • the process monitoring and diagnosing apparatus is a process monitoring and diagnosing apparatus that monitors an arbitrary process having at least two process sensors capable of measuring a state quantity and an operation quantity of a target process at a predetermined cycle.
  • output-related principal component extraction means for extracting principal components having an influence on output variables, and principal components extracted by the output-related principal component extraction means
  • Summary statistic monitoring means for calculating and monitoring the defined summary statistics for abnormality detection
  • summary statistic abnormality determining means for determining whether the statistics monitored by the summary statistic monitoring means are abnormal or not .
  • FIG. 2 is a diagram for explaining an example of principal component extraction means that is primarily related to an output variable after primary extraction of main principal components in the process monitoring diagnostic apparatus shown in FIG. 1.
  • FIG. 2 is a diagram for explaining an example of removing a process diagnosis configuration variable having a small correlation with an output variable from output related principal components in the process monitoring diagnosis apparatus shown in FIG.
  • FIG. 1 shows a configuration example of a process monitoring diagnostic apparatus and a monitoring target process according to the present embodiment.
  • the process monitoring diagnostic apparatus according to the present embodiment is a monitoring apparatus that monitors the advanced sewage treatment process 1 for the purpose of removing nitrogen and phosphorus.
  • the sewage advanced treatment process 1 to be monitored includes an initial sedimentation tank 101, an anaerobic tank 102, an oxygen-free tank 103, an aerobic tank 104, a final sedimentation tank 105, an actuator, an operation amount sensor, and a process sensor. And.
  • the actuator and its operation amount sensor are the first settling tank excess sludge pulling pump 111P and its extraction flow rate sensor 111S, the blower 112B for supplying oxygen to the aerobic tank 104 and its supply air flow rate sensor 112S, the circulation pump 113P and its A circulation flow rate sensor 113S, a return sludge pump 114P and its return flow rate sensor 114S, a final sedimentation basin surplus sludge removal pump 115P and its extraction flow rate sensor 115S are included.
  • the process sensor measures a rain sensor 121, a sewage inflow sensor 122 for measuring the inflow sewage, an inflow TN sensor 123 for measuring the total nitrogen contained in the inflow sewage, and a total phosphorus amount contained in the inflow sewage.
  • Inflow TP sensor 124, inflow UV sensor (or inflow COD sensor) 125 for measuring the amount of organic matter contained in inflow sewage, anaerobic tank ORP sensor 126 for measuring ORP of anaerobic tank 102, and pH of anaerobic tank 102 are measured.
  • the various actuators 111P, 112B, 113P, 114P, and 115P operate at a predetermined cycle.
  • the operation amount sensors 111S to 115S and the various process sensors 121 to 1221 measure at a predetermined cycle.
  • the process monitoring diagnosis apparatus includes a process measurement data collection / storage unit 2, a past data (offline data) extraction unit 3, a process monitoring model construction / supply unit 4, and a current data (online data) extraction unit. 5, a process monitoring / diagnostic unit 6, and a user interface unit 7 capable of notifying a plant manager and an operator of information on state changes and abnormal signs detected by the process monitoring / diagnostic unit 6 and the cause variable candidates; It is equipped with.
  • the process measurement data collection / storage unit 2 collects and holds process data obtained at predetermined intervals from the operation amount sensors 111S to 115S and the process sensors 121 to 1221.
  • the past data (offline data) extraction unit 3 extracts past offline data from various time series data stored in the process measurement data collection / storage unit 2.
  • the process monitoring model construction / supply unit 4 uses the offline data extracted by the past data (offline data) extraction unit 3 to construct a process monitoring / diagnosis model offline in advance.
  • the process monitoring model construction / supply unit 4 includes a monitoring model configuration variable definition unit 41, a principal component calculation unit 42, an output variable designation unit 43, an output related principal component extraction unit 44, and a statistic and contribution definition unit 45. And a statistic threshold value setting unit 46.
  • the monitoring model configuration variable definition unit 41 is necessary for constructing a process monitoring model from information of past time series data of measurement variables extracted from the process measurement data collection / storage unit 2 through the past data (offline data) extraction unit 3. Monitor items are selected, and variables such as management indices are newly synthesized from the monitor items as necessary to define input variables for n monitoring models.
  • the principal component calculation unit 42 performs n pre-processing using PCA, robust PCA, kernel PCA, etc. after performing appropriate preprocessing such as outlier removal, filtering, and normalization (scaling) in the data. To do.
  • the output variable designation unit 43 designates an output variable that the user wants to monitor from among the monitoring model configuration variables defined by the monitoring model configuration variable definition unit 41.
  • the output related principal component extraction unit 44 extracts only the principal components having a strong relationship with the output variable designated by the output variable designation unit 43.
  • the statistic and contribution amount definition unit 45 uses the principal components extracted by the output-related principal component extraction unit 44, the Q statistic that is a summary statistic for abnormality detection, the Hotelling T2 statistic, and the monitoring model configuration variable. The contribution amount to the Q statistic and Hotelling's T2 statistic defined by the definition unit 41 is defined.
  • the statistic threshold value setting unit 46 sets threshold values for the two statistic values defined by the statistic and contribution amount defining unit 45.
  • the current data (online data) extraction unit 5 extracts the current online data from various time series data stored in the process measurement data collection / storage unit 2.
  • the process monitoring / diagnosis unit 6 monitors the state of the process using the online data extracted by the current data (online data) extraction unit 5 and the process monitoring model constructed by the process monitoring model construction / supply unit 4. Detect state changes and abnormal signs.
  • the process monitoring / diagnosis unit 6 includes a variable selection unit 61, a statistic monitoring unit 62, a statistic abnormality determination unit 63, and a factor variable estimation unit 64.
  • variable selection unit 61 defines the variables defined by the monitoring model configuration variable definition unit 41 for the current time series data of the measurement variables extracted from the process measurement data collection / storage unit 2 through the current data (online data) extraction unit 5. Is taken out and calculated.
  • the statistic monitoring unit 62 performs appropriate preprocessing such as removal and normalization of missing values and outliers on the current data of the variable selected by the variable selection unit 61, These statistics are calculated according to the Q statistic determined by the contribution amount definition unit 45 and the Hotelling T2 statistic calculation formula.
  • the statistic abnormality determining unit 63 detects a process state change or an abnormal sign when the statistic monitored by the statistic monitoring unit 62 exceeds the threshold defined by the statistic threshold setting unit 46. .
  • the factor variable estimator 64 when the statistic abnormality determination unit 63 detects a change in the Q statistic or the Hotelling T2 statistic, determines the contribution amount of the constituent variable that becomes the change factor, and a statistic and contribution amount definition unit. The calculation is performed according to the formula defined in 45, and the variable as a factor is estimated.
  • the user interface unit 7 can notify the plant manager and the operator of information on the state change and the abnormal sign detected by the process monitoring / diagnostic unit 6 and the cause variable candidate.
  • the user interface unit 7 includes a display unit for notifying the operator of information and input means such as a mouse and a keyboard for the operator to input commands.
  • process information is measured at predetermined intervals by the operation amount sensors 111S to 115S and the process sensors 121 to 1221. These pieces of measurement information are stored as time series data by the process measurement data collection / storage unit 2 according to a predetermined format.
  • past process data stored in the process measurement data collection / storage unit 2 over a predetermined period of time is extracted as past data (offline data) extraction unit 3.
  • Extract with The process monitoring model construction / supply unit 4 constructs a process monitoring model using past process data for a predetermined period extracted by the past data (offline data) extraction unit 3.
  • the monitoring model configuration variable definition unit 41 in FIG. 1 defines and extracts measurement variables necessary for constructing the process monitoring model.
  • the equipment such as the pumps 111P, 113P, 114P, and 115P.
  • measurement variables such as measurement variables or integrated values accumulated over time.
  • these variables are excluded and appropriate variables are defined as configuration variables of the monitoring model.
  • blower or pump flow data that rarely starts up is input as it is, it is 0 in most time zones, so the monitoring model must be constructed correctly. Since these are not possible, these are also excluded.
  • an MLSS sensor 1213 that measures the amount of activated sludge in at least one tank among the reaction tanks 102 to 104, an excess sludge SS sensor 1215 that measures the solid matter concentration of the amount of sludge pulled away from the final sedimentation basin 105, and a final SRT (sludge retention time), A-SRT (aerobic tank sludge retention time), etc. are determined from the information of the sedimentation tank surplus sludge drain pump 115P and its extraction flow rate sensor 115S and the volumes of the reaction tanks 102 to 104. It can also be one of the variables.
  • a sewage discharge sensor 1218 for measuring the amount of discharged sewage a discharge TN sensor 1219 for measuring the total amount of nitrogen contained in the discharged sewage, a discharge TP sensor 1220 for measuring the total amount of phosphorus contained in the discharged sewage, or
  • the discharge load amount is calculated by the product of the water concentration measured by the discharge UV sensor (or discharge COD sensor) 1221 for measuring the amount of organic matter contained in the discharged sewage, and this may be made a part of the configuration variable. it can.
  • the principal component calculation unit 42 appropriately performs removal of missing data and outliers, normalization of a plurality of monitoring items (monitoring model configuration variables) having different physical dimensions, and the like. Is calculated.
  • PCA which is well known as multivariate analysis is usually used.
  • Non-Patent Document 1 Non-Patent Document 2
  • Various robust PCA algorithms that take into account robustness against outliers may be used.
  • the principal component calculation unit 42 in the present embodiment can calculate n principal components having the same number as the configuration variables without distinguishing between output variables and input variables. In the following description, explanation will be given using a normal PCA.
  • a matrix X ⁇ Rm ⁇ n consisting of n configuration variables and m samples (time series data) is decomposed by PCA as follows. (However, it is assumed that X is normalized.)
  • Ta ⁇ Rm ⁇ n is a matrix called a score matrix composed of m samples (or time series data) and n principal components
  • Pa ⁇ Rn ⁇ n is a relationship between n constituent variables and n principal components. Is a matrix called a loading matrix.
  • T ⁇ Rm ⁇ p is a Ta partial matrix truncated by p ⁇ n principal components, and is usually called a score matrix.
  • P ⁇ Rn ⁇ p is a submatrix of Pa that represents the relationship with the principal component truncated by p ⁇ n for n variables, and this P is normally called a loading matrix.
  • E ⁇ Rm ⁇ n is an error matrix composed of m samples (or time series data) and n variables, and represents an error when the principal component is cut off with p ⁇ n.
  • Ta and T and Pa and P are clearly distinguished, Ta and Pa are called a score matrix and a loading matrix, respectively, and T and P are called a main score matrix and a main loading matrix. I will decide.
  • the output variable designating unit 43 selects an output variable that is particularly noted by a user such as a plant administrator from among the variables defined by the monitoring model configuration variable defining unit 41. At this time, the output variable that the plant manager pays attention to must be defined as a configuration variable in the monitoring model configuration variable definition unit 41.
  • water quality considered to be the main performance index of the plant discharge phosphorus concentration, discharge nitrogen concentration, discharge COD concentration, discharge phosphorus load amount, discharge nitrogen load amount, discharge COD load considering these as load amounts
  • the blower 112B for supplying oxygen to the aerobic tank 104 and its supply air flow rate sensor 112S, the circulation pump 113P and its circulation flow rate sensor 113S, the return sludge pump 114P and its return flow rate From the flow rate of the sensor 114S, the final sedimentation basin surplus sludge removal pump 115P and its extraction flow rate sensor 115S, and the ratings and operating states (such as the number of starts and the number of revolutions) of the pumps 111P, 113P, 114P, 115P and the blower 112B,
  • the amount of power in the pumps 111P, 113P, 114P, 115P and the blower 112B may be calculated, and the amount of power or the amount of power per unit processing amount (energy intensity) may be used as an output variable.
  • the output variable designating unit 43 selects and defines the water quality and cost indicators related to the plant performance.
  • FIG. 2 is a diagram for explaining an example of the principal component extracting means strongly related to the output variable in the process monitoring diagnostic apparatus of the present embodiment.
  • the output-related principal component extraction unit 44 selects a certain output variable and extracts a loading matrix of the principal component that has a strong influence on the output variable.
  • the loading matrix Pa of the principal component is represented by a 15 ⁇ 15 matrix. Note that an element of i rows and j columns of this matrix is described as Pa (i, j).
  • the tenth output variable for example, electric energy
  • This variable is, for example, a variable that the plant operator wants to actually monitor, such as the amount of electric power and the concentration of discharged phosphorus.
  • looking at the vertical axis direction (the direction in which the principal component items are arranged) of the tenth variable of interest the magnitude of the contribution of this output variable to each principal component can be seen.
  • Pa (i, j) has a property that the loading matrix Pa becomes an orthonormal matrix, and its element takes a value in the range from ⁇ 1 to 1, and the i-th principal component (hereinafter, referred to as “i” principal component of i row of Pa).
  • > PMa (i,:) / 15 may be set as an output variable related principal component.
  • the output related principal component extraction unit 44 constructs a matrix composed of principal components that are strongly related to the output variables.
  • FIG. 3 is a diagram for explaining an example of principal component extraction means when a plurality of output variables are selected in the process monitoring diagnostic apparatus.
  • the output variable designating unit 43 defines a plurality of output variables less than the number of the plurality of measurement variables, and the output related principal component extracting means 44 extracts the principal components having an influence on each output variable and then The principal component defined by the logical sum is used as the output-related principal component.
  • principal components related to two or more outputs can be extracted.
  • the principal component strongly related to the output variable can also be extracted by this method.
  • Such an extraction method is particularly effective when it is desired to make a comprehensive judgment on a plurality of monitoring items such as the quality of discharged water.
  • FIG. 4 shows a diagram for explaining an example of principal component extraction means that is strongly related to an output variable after primary extraction of main principal components in the process monitoring diagnostic apparatus.
  • the output related principal component extraction unit 44 extracts one or a plurality of main principal components based on the cumulative contribution ratio of the principal components or the value of the eigenvalue in each principal component direction, and then extracts the extracted main principal components.
  • the principal components having an influence on the output variable designated by the output variable designation unit 43 are extracted from the inside.
  • principal components are selected from the first principal component by, for example, a method in which major principal components having a cumulative contribution rate of about 80% to 90% are sequentially extracted from above. Further, after extracting main principal components based on criteria such as the cumulative contribution rate, output-related principal components that are strongly related to the output variables are extracted from the main principal components based on the criteria shown in FIG. 3 or FIG. It is also possible.
  • the principal component obtained by principal component analysis has the largest variation in the first principal component direction, and the variation of the n-th (in this case, fifteenth) principal component is considered to be minimal. Therefore, for the principal components other than the main principal components extracted by the index such as the conventional cumulative contribution rate, even if the influence of the selected output variable is strong, the fluctuation in the direction itself is small, so it is rather ignored. Sometimes it is better to do this.
  • the principal components related to the output variable may be extracted after first extracting the main principal components based on the cumulative contribution rate.
  • the output-related principal component extraction unit 44 includes principal component display means (not shown) for displaying a loading matrix of the same number of principal components as the plurality of measurement variables defined by the principal component computation unit 42, and a principal component Principal component selection means for selecting an output-related principal component according to a user instruction based on the loading matrix displayed by the display means.
  • FIGS. 2 to 4 are presented on the monitoring screen, and a check box BX as shown on the right side of each diagram is provided so that a human can determine which principal component is selected and respond. It is also possible to have a mechanism for instructing selection to the principal component selecting means by checking the check box to support selection of the principal component.
  • a loading matrix consisting of output related principal components is defined as follows.
  • principal component analysis normally, after calculating a variance covariance matrix of X composed of normalized (standardized) variables, a loading matrix and a score matrix are obtained by using singular value decomposition.
  • the loading matrix Poutput composed of the eighth, ninth, twelfth, fourteenth, and fifteenth principal components is constructed as follows.
  • Poutput [Pa (8,1), Pa (8,2), ..., Pa (8,15), Pa (9, 1), Pa (9, 2), ..., Pa (9, 15), Pa (12, 1), Pa (12, 2), ..., Pa (12, 15), Pa (14, 1), Pa (14, 2), ..., Pa (14, 15), Pa (15, 1), Pa (15, 2), ..., Pa (15, 15)]
  • the output-related principal component extraction unit 44 can be modified as follows. When the output-related principal component and the loading matrix Poutput are extracted, there are many monitoring variables that hardly contribute to the principal component.
  • the first, third, fifth, seventh, eighth, eleventh, and twelfth variables surrounded by the dotted line in FIG. Has little effect. This means that there is almost no correlation between the selected tenth output variable and these variables. Therefore, the abnormality of the selected output variable and the abnormality of these variables are almost unrelated.
  • a measurement variable having a small influence of the absolute value of loading (factor load) representing the magnitude of the influence of each measurement variable on each principal component of the principal component extracted by the output-related principal component extraction unit 44 A correction may be made so that the value of is replaced with zero and the corresponding measurement variable is excluded from the input items.
  • the variance covariance 1 (correlation matrix) C X ′ * X used for the calculation of the principal component analysis is output before the principal component analysis.
  • a correlation coefficient between the variable and another variable is obtained, and the principal component analysis may be performed using only the C submatrix from which the variable having a very weak correlation with the output variable (the tenth in FIG. 2) is removed.
  • the output-related principal component extraction unit 44 outputs the output variable designation unit 43 from the correlation matrix or the variance covariance matrix that is calculated immediately before the principal component calculation is performed before the calculation of the principal component calculation unit 42 is performed.
  • a highly correlated variable extracting means (not shown) for extracting a correlation matrix or a partial matrix of a variance-covariance matrix that extracts a correlation with the output specified by the above.
  • the row is first, third, fifth, seventh, eighth, eleventh, twelfth
  • the tenth output variable first, third, fifth, seventh
  • the principal component analysis is performed using the C submatrix Cr from which the first, third, fifth, seventh, eighth, eleventh, and twelfth rows and columns of C are removed.
  • the output related component extraction unit 44 extracts the loading matrix Poutput having a strong correlation with the output variable including the correcting means as described above.
  • the statistic and contribution definition unit 45 defines a calculation formula for calculating the Q statistic and the Hotelling T2 statistic using the loading matrix Poutput having a strong correlation with the output as follows.
  • Equation (3) and (4) are statistics defined by the statistics and contribution amount definition unit 45.
  • the definition formula of the contribution amount of the input variable of each diagnosis model to the statistic defined by formula (3) and formula (4) is set.
  • the contribution amount can be defined as follows.
  • Qcont (n, t) x T (t, n) F (:, n) T F (:, n) x (t, n) (5)
  • F (I ⁇ PoutputPoutput T )
  • Contribution amount of Hotelling's T2 statistic: T 2 cont (n, t) x T (t) Poutput T ⁇ 1 Poutput (:, n) x (t, n) (6 )
  • n means the nth variable
  • t is a variable representing a certain time.
  • the conventional method is obtained by replacing Poutput in the equations (3) to (6) with P.
  • P is extracted from Pa in accordance with the magnitude of data dispersion in each principal component direction.
  • statistics and contributions are defined, in this embodiment, Poutput is extracted from principal components that are strongly related to a specific output variable from Pa, and statistics and contributions are defined. Thereby, it is possible to improve the detection of an abnormality related to a specific output and the factor estimation accuracy.
  • the loading matrix Poutput can be implemented by the same method as the conventional method. Therefore, if the output to be specified is changed, there is no change other than simply changing the principal component to be extracted. Therefore, it is possible to construct a process monitoring and diagnosing apparatus with almost the same effort as in the past, that is, avoiding complicated work such as repeatedly constructing a diagnostic model according to output variables.
  • the statistic threshold value setting unit 46 sets the threshold values of the expressions (3) and (4). Since this threshold setting value is greatly related to the detection of state changes and abnormal signs, its setting method is important. In this embodiment, a typical setting method will be described.
  • the statistical confidence limit value of the Q statistic and the statistical confidence limit value of the Hotelling T2 statistic can be used as the default setting method.
  • Qlimit theoretical calculation formula: Qlimit ⁇ 1 [(c ⁇ (2 ⁇ 2 h 0 2 ) 1/2 ) / ⁇ 1 +1+ ( ⁇ 2 h 0 (h 0 ⁇ 1)) / ( ⁇ 1 2 )] 1 / h 0 (7)
  • p is the number of variables left in the model.
  • ⁇ i is a diagonal element of ⁇ (that is, ⁇ i is the sum of i powers of components included in the error term).
  • T2limit p (m-1) / (mp) F (p, mp, ⁇ ) (8)
  • m is the number of all variables.
  • F (p, mp, ⁇ ) is an F distribution when the degree of freedom is (p, mp) and the confidence limit is ⁇ (often 0.01 or 0.05). It is.
  • the threshold value of the statistic can be set based on the equations (7) and (8).
  • the process monitoring / diagnosis unit 6 supplies the process monitoring model constructed by the process monitoring model construction / supply unit 4. The process is monitored using this process monitoring model.
  • the current data (online data) extraction unit 5 extracts the online data at the point of time (hereinafter referred to as the present or present) at which diagnosis is collected in the process measurement data collection / storage unit 2.
  • the process monitoring / diagnostic unit 6 monitors the process state, and if there is a change in the state or an indication of an abnormality is observed. Detect it.
  • the variable selection unit 61 takes out the current data corresponding to the variables defined by the monitoring model configuration variable definition unit 41 and appropriately normalizes them using the average or variance of each variable. In addition, the outlier is removed as necessary.
  • the statistic monitoring unit 62 substitutes the current Q statistic and the T2 statistic by substituting the X statistic and the T2 statistic defined by the equations (3) and (4) into X (t). Monitor. Since this statistic changes from time to time, it may be monitored in the form of a time series graph (trend graph).
  • FIG. 6 shows an example of a display in which the output variable and the abnormal point of the Q statistic and / or T2 statistic are overlapped for monitoring.
  • the main purpose is to estimate an abnormal factor for a specific output variable. Therefore, as shown in FIG. 6, abnormal points due to Q statistics and / or T2 statistics on the time-series data of output variables. Are preferably displayed in an overlapping manner. In FIG. 6, the abnormal points of the Q statistic and / or the T2 statistic are plotted overlapping the output variable graph.
  • the abnormality related to the output variable (A in FIG. 6) Although it is qualitatively determined whether it is other abnormality (B in FIG. 6), it can be visually determined.
  • FIG. 7 shows an example of a switching display in which the output variable and the abnormal point of the Q statistic and / or T2 statistic are overlapped for monitoring.
  • diagnosis ON (ON) / OFF (OFF) operation screen as shown in FIG. 7
  • the link between the trend graph monitoring screen for the output variable and the process diagnosis screen of the present embodiment is switched based on the judgment of the user. Can do.
  • Clicking the “Process diagnosis ON” button switches the display so that abnormal points are plotted and displayed on the output variable graph.
  • Clicking the “Process diagnosis OFF” button displays only the output variable graph. The display switches as shown.
  • FIG. 8 is a diagram for explaining an example of a concept of cooperation between a plurality of process diagnosis menu lists and a process monitoring monitoring screen. As shown in FIG. 8, a diagnostic menu for a plurality of output variables can be prepared in advance.
  • process diagnosis is performed using time-series data of Q statistics and / or T2 statistics.
  • process diagnosis is performed using time-series data of Q statistics and / or T2 statistics.
  • the time series data of the Q statistics and / or T2 statistics in the upper left of FIG. Switch to the function to display the overlapping points of the quantity and / or T2 statistics in an overlapping manner.
  • Process monitoring by statistics can be performed by the method as described above.
  • the current Q statistic or T2 statistic is defined by the threshold value set by the statistic threshold value setting unit 46, for example, the equations (7) and (8) If the threshold is exceeded, it is determined that a state change has occurred in the process.
  • This is the minimum function of the statistic abnormality determination unit 63, but this function can be modified as follows.
  • a Q statistic and / or a T2 statistic based on a diagnosis model that uses a loading matrix P of several higher-order principal components from the conventional first principal component in advance and a main correlation strongly related to an output variable are prepared, and the following abnormality determination can be performed.
  • Judgment A P Q and T2 statistics normal, loading matrix Poutput Q and T2 statistics normal, and within output variable control value ⁇ Process is normal
  • Judgment B1 P or T2 statistics abnormal in P, Q and T2 statistics normal in loading matrix Poutput, and within output variable control value ⁇
  • Judgment B2 P or T2 statistics abnormality of P, Q or T2 statistics abnormality of loading matrix Poutput, and within output variable control value ⁇
  • Process abnormality not related to output variable Determination C Q and T2 statistics of P are normal, Q and T2 statistics of loading matrix Poutput are normal, and other than output variable control value ⁇
  • Judgment D P Q and T2 statistics normal, loading matrix Poutput Q or T2 statistics abnormal, and within output variable control value ⁇
  • Judgment E P Q and T2 statistics normal, loading matrix Poutput Q or T2 statistics abnormal and other than output variable control value ⁇
  • the factor variable estimation unit 64 estimates a process diagnosis configuration variable that causes the abnormality.
  • the variable that becomes the factor may be estimated only when it is determined that the abnormality is related to the designated output variable.
  • the contribution amount of each variable of the process diagnosis configuration variable is calculated based on the equations (5) and (6).
  • A The variable with the largest amount of contribution is used as the state change factor variable.
  • B Three variables in order from the largest contribution amount are used as state change factor variables.
  • C The value of the contribution amount exceeds the average contribution amount ⁇ k * standard deviation of the contribution amount, k: parameter, and is defined as a state change factor variable.
  • the user interface unit 7 presents not only the abnormality detection result and the factor variable estimation result as described above, but also a time series graph (trend graph) of statistical data such as Q statistics and T2 statistics as described above. It may be possible to always monitor.
  • FIGS it is preferable to have a monitoring screen as shown in FIGS. It is also preferable to have display means for extracting the output-related main components as shown in FIG. Furthermore, it is preferable to provide input means such as a mouse and a keyboard used when inputting a command when the user clicks a check box on the screen.
  • the present embodiment it is possible to easily estimate an abnormal sign and a factor related to a specific process variable that the plant operation manager wants to monitor. That is, in the plant monitoring and diagnosis apparatus according to the present embodiment, only one monitoring diagnosis model using PCA is used, and means for specifying an output variable to be monitored and selecting a corresponding main component are added. It is very easy to estimate abnormal signs and factors of specific process monitoring items that the plant operation manager wants to monitor.
  • the factor variable strongly related to the result variable is determined.
  • a process monitoring and diagnosis device that can be extracted, and is particularly flexible with respect to changes in the result variables. The number of steps and costs required for development and maintenance of the diagnosis system It is possible to provide a process monitoring diagnostic apparatus that can be realized at a low cost.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

 プロセスセンサ(121~1221)によって計測される複数の計測変数の時系列データを収集し保持するデータ収集保存手段(2)と、入力と出力とを区別しない多変量解析により計測変数と同じ数の主成分を定義可能な主成分演算手段(42)と、複数の計測変数の中から1又は複数の出力変数を指定する出力変数指定手段(43)と、主成分演算手段(42)の中から出力変数指定手段(43)によって指定された出力変数に影響を持つ主成分を抽出する出力関連主成分抽出手段(44)と、出力関連主成分抽出手段(44)によって抽出した主成分を用いて、予め定義した異常検出用の要約統計量を計算し監視する要約統計量監視手段(62)と、要約統計量監視手段(62)によって監視されている統計量に対する異常か否かの判断を行う要約統計量異常判定手段(63)と、を備える。

Description

プロセス監視診断装置
 本発明の実施形態は、プロセス監視診断装置に関する。
 下水処理プロセス、汚泥消化プロセス、浄水プロセス、給配水プロセスなどの水処理/水運用プロセス、石油化学プロセス、あるいは、半導体製造プロセスなどのプロセスの運転管理では、プロセスの所定目標性能を達成した上で省エネルギ・省コストに繋がる運用が求められる。
 ここで所定目標性能の例としては、下水処理プロセスでは放流水質基準の遵守、汚泥消化プロセスでは生成エネルギー(メタンや水素など)の安定的は発生、浄水プロセスでは消毒・殺菌などによる給配水水質基準の遵守、石油化学プロセスでは石油など精製製品歩留まりの所定目標値達成、半導体製造プロセスでは半導体製品歩留まりの所定目標値の達成などが挙げられる。
 また、省エネ・省コスト運用の例としては、下水処理プロセスではブロワやポンプの駆動電力や薬品注入量の削減、汚泥消化プロセスでは生成エネルギ-効率の最大化、浄水プロセスでは薬品注入量の最小化、石油化学プロセスや半導体製造プロセスでは歩留まりの最大化などがあげられる。
 このためには、所定目標を達成できないような状態に陥らない様に目標性能に関するプロセスの状態を監視し、所定目標の達成を阻害する様な状態変化や異常状態を素早く検知し事前に対策をとることが運転管理上の重要なポイントとなる。また、所定目標の達成を制約とした上で省エネ・省コストにつながる運用を行うためには、目標性能や省エネ・省コストに関するプロセス状態を常に良好な状態に保ち、良好な状態から逸脱しそうなプロセス状態変化を素早く検知する必要がある。
 このようなプロセスの状態変化や異常を診断する方法として、主に石油化学プロセスの分野で発展してきた「多変量統計解析手法」を用いた多変量統計的プロセス監視(MSPC:Multi-Variate Statistical Process Control)と呼ばれる方法が知られている。MSPCの中で最も良く利用される手法として、主成分分析(PCA:Principal Component Analysis)と潜在変数射影法/部分最小二乗法(PLS:Projection to LatentStructure/Partial Least Square)が知られている。
 PCAとPLSの2つの代表的な手法の共通点(類似点)と相違点は主に以下の2つである。 
 共通点:多数の計測データからプロセスデータ間の相関情報を利用して数個の要約統計量の時系列データを生成し、生成された少数の統計量データによってプロセス状態の変化を検出し、その後にその要因となる変数を推定する。PCAでもPLSでも要約統計量の生成方法の考え方は共通であり、相関の強いデータ集合(データの部分空間)を生成し、この部分空間内のデータの分布指標であるT2統計量と呼ばれる統計量と、この部分空間からの乖離指標であるQ統計量と呼ばれる統計量を用いることが多い。
 相違点:PCAでは、監視診断モデルを構築するための監視項目(変数)を全て同列に扱い、説明変数(入力)と結果変数(出力)を区別しないが、PLSでは説明変数(入力)と結果変数(出力)を区別する。
 すなわち、PCAを用いた診断手法とPLSを用いた診断手法とは互いに類似した診断手法であるが、入出力を区別するか否かで使い分けられている。たとえば、半導体プロセスや石油化学プロセスなどの生産ラインでは、最終的な製品品質(結果変数/出力)の良否(≒正常/異常)を診断したいが、この製品品質をオンラインで計測することが困難である場合や、計測できてもその信頼性が低い場合には、PLSやこれに関連するPCR(主成分回帰)などを用いて診断を行うことが多い。
 特に、複数の説明変数/入力同士の相関が弱く互いの独立性が高い場合には、古典的なMLR(重回帰分析)を用いることもある。一方、プラントで生じ得る様々な異常状態を汎用的に検出・診断したい場合には、PCAが主に用いられる。
 たとえば、上下水処理プロセスでは、センサドリフト、センサ故障・センサメンテナンス、ポンプ・ブロワ・バルブ等機器の経年劣化、ポンプ・ブロワ・バルブ等機器の異常停止(誤操作による停止も含む)、流入水質・取水水質の異常、流入水・取水への毒物の混入、放流水質・供給水質の異常、プロセスの各種処理異常、各種制御系の異常、などの様々な異常が生じ得るがこれらの異常を汎用的に検出し、どのようなタイプの異常であるかを同定する際にはPCAベースの診断を用いることができる。
特開平7-068905号公報 特開2003-096467号公報 特開2005-249816号公報
「Mia Hubert , Peter J. Rousseeuw , Karlien V , "ROBPCA: a New Approach to Robust Principal Component Analysis (2005) "Technometrics」 「C Croux, A Ruiz-Gazen ,High breakdown estimators for principal components: the projection-pursuit approach revisited ,Journal of Multivariate Analysis」 「 K.-R. Muller, S. Mika, G. Ratsch, K. Tsuda, andB. Scholkopf. An introduction to kernel-based learning algorithms. IEEE Trans. Pattern Anal. Machine Intell.,12(2):181-201, March 2001.」 「B. Scholkopf, A. J. Smola, and K.-R. Muller. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10(5):1299-1319, 1998.」 C.Rosen "Monitoring Wastewater Treatment Systems", Lic.Thesis, Dept. of Industrial Electrical Engineering and Automation, Lund University, Lund, Sweden (1998)
 上記のように、結果変数と説明変数とを区別するPLSベースの手法と結果変数と説明変数を区別しないPCAベースの手法を使い分けることができるが、実際のプラントで診断システムを実現しようとする際には、次の様な課題に直面することがある。
 課題1:結果変数と説明変数とを区別して診断したいが、結果変数と説明変数とを予め選定しておくことが困難であり、診断システムを開発しながら結果変数と説明変数とを定義したい。 
 課題2:プラント運用時に状況に応じて監視すべき結果変数を適宜切り替えたい。 
 課題3:必ずしも結果変数を特定して診断したいわけではないが、不必要な診断を行いたくない。たとえば、センサがメンテナンス中で異常状態になっている状況でのアラーム発報は不要である。すなわち、過度に汎用的な異常診断ではなく、いくつかの結果変数に関連する異常診断のみを行いたい。
 具体的に説明する。実際の診断システム開発の初期段階では、「所定目標性能達成と省エネルギ・省コスト運用に関連する診断システムを開発したい」という抽象的かつ漠然とした要求のみがある場合が多い。下水処理プロセスを例にとると、所定性能とは「放流水質の遵守」に該当し、省エネルギ・省コスト運用とは「ポンプ、ブロワ、攪拌機などの動力コストと薬品費などの薬品コストあるいは汚泥処分費などの処理コストを低減できる運用」などが対応する。
 しかし、開発初期段階では、このような漠然とした要求があるだけであり、この中の何にターゲットを絞るべきかが明確でない場合がある。これを明確化するためには、おおまかに以下の項目を順に明らかにする必要がある。 
 (1)処理場を管理する管理者にとって優先順位の高い要求は何か。 
 (2)優先順位の高い要求の中で最も効果が高いと見込める具体的ターゲットは何か。 
 (3)絞ったターゲットに対し、どの変数を結果変数として監視すればよいか。 
 (4)結果変数に影響を与えそうな説明変数の候補は何か。
 実際の開発では、上記ステップを1回だけ行って開発が完了することは稀であり、(1)~(4)を繰り返し行う場合が多い。また、(3)~(4)のステップを部分的に何度も繰り返す必要がある場合もある。さらに、(1)の優先順位がプラント管理者やプラント運転状況に依存して変化し、それに応じて(2)~(4)のステップを頻繁に変更させる必要があることも多い。 
 このような状況で、結果変数と説明変数とを区別するPLS(およびPCRやMLR)を用いて診断モデルを構築すると、診断モデルの構築に非常に開発工数がかかり、これに伴い開発コストが増加する。加えて、プラントの運転状況やプラント管理者の好みに応じて性能指標としての結果変数の変更を伴う場合には、複数の結果変数に対する診断モデルを繰り返し構築する必要があり、診断モデルのメンテナンスに多大の労力とコストを必要とする。
 また、このようなケースに対応するためには、診断モデルの構築を行うことのできる専門技術者が専任で対応する必要があるが、(複数人の)専門家がある特定プラントの診断システム開発に専任できる組織的な仕組みを構築することは技術マネジメントの観点から、実際には大変困難であることが多い。その結果、多変量解析を用いた診断技術がいかに原理的に優れたものであっても、これらの診断技術の多方面の産業分野への普及が阻害される可能性も高い。 
 一方、PCAに基づく方法では、結果変数と説明変数とを区別しないため、複数のモデルを構築する必要はなく、一旦一つの診断システムを開発できれば、PLSに基づく方法と比較して診断モデルの維持にかかるコストは小さい。しかし、PCAに基づく方法は、ある特定の結果変数に着目した診断方法としてはPLSと比較すると適していない。
 本発明は、上記の事情を鑑みて成されたものであって、結果変数と説明変数とを区別しないPCAによるプロセス異常診断システムをベースとしながら、結果変数を適宜指定した場合に、その結果変数に強く関連する要因変数を抽出できるプロセス監視診断装置を提供することを目的とする。
 実施形態によるプロセス監視診断装置は、対象プロセスの状態量や操作量を所定の周期で計測可能な少なくとも2つのプロセスセンサを有する任意のプロセスを監視するプロセス監視診断装置であって、前記プロセスセンサによって計測される複数の計測変数の時系列データを収集し、予め保持しておくデータ収集・保存手段と、入力と出力とを区別しない多変量解析により、前記計測変数と同じ数の主成分を定義可能な主成分演算手段と、前記複数の計測変数の中から、1又は複数の出力変数を指定する出力変数指定手段と、前記主成分演算手段の中から、前記出力変数指定手段によって指定された出力変数に影響を持つ主成分を抽出する出力関連主成分抽出手段と、前記出力関連主成分抽出手段によって抽出した主成分を用いて、予め定義した異常検出用の要約統計量を計算し監視する要約統計量監視手段と、前記要約統計量監視手段によって監視されている統計量に対する異常か否かの判断を行う要約統計量異常判定手段と、を備える。
実施形態のプロセス監視診断装置の一構成例について説明するための図である。 図1に示すプロセス監視診断装置において出力変数に強く関連する主成分抽出手段の一例を説明するための図である。 図1に示すプロセス監視診断装置において出力変数を複数選択した場合の主成分抽出手段の一例を説明するための図である。 図1に示すプロセス監視診断装置において、主要な主成分を一次抽出した上で、出力変数に強く関連する主成分抽出手段の一例を説明するための図である。 図1に示すプロセス監視診断装置において、出力変数と相関の小さいプロセス診断構成変数を出力関連主成分しから除去する一例を説明するための図である。 出力変数と、Q統計量および/またはT2統計量の異常点とをオーバラップさせて監視する表示の一例を示す図である。 出力変数と、Q統計量および/またはT2統計量の異常点とをオーバラップさせて監視する切り替え表示の一例を示す図である。 複数のプロセス診断メニュー一覧とプロセス監視の監視画面との連携概念の一例を説明するための図である。
実施形態
 以下、実施形態のプロセス監視診断装置について、図面を参照して説明する。
 図1に、本実施形態に係るプロセス監視診断装置および監視対象プロセスの一構成例を示す。本実施形態に係るプロセス監視診断装置は、窒素およびリン除去を目的とした下水高度処理プロセス1を監視対象とする監視装置である。
 監視対象である下水高度処理プロセス1は、最初沈殿池101と、嫌気槽102と、無酸素槽103と、好気槽104と、最終沈殿池105と、アクチュエータと、操作量センサと、プロセスセンサと、を備えている。
 アクチュエータおよびその操作量センサは、最初沈殿池余剰汚泥引きぬきポンプ111Pおよびその引き抜き流量センサ111Sと、好気槽104に酸素を供給するブロワ112Bおよびその供給空気流量センサ112Sと、循環ポンプ113Pおよびその循環流量センサ113Sと、返送汚泥ポンプ114Pおよびその返送流量センサ114Sと、最終沈殿池余剰汚泥引きぬきポンプ115Pおよびその引き抜き流量センサ115Sと、を含む。
 プロセスセンサは、雨量センサ121と、流入下水量を計測する下水流入量センサ122と、流入下水に含まれる全窒素量を計測する流入TNセンサ123と、流入下水に含まれる全リン量を計測する流入TPセンサ124と、流入下水に含まれる有機物量を計測する流入UVセンサ(あるいは流入CODセンサ)125と、嫌気槽102のORPを計測する嫌気槽ORPセンサ126と、嫌気槽102のpHを計測する嫌気槽PHセンサ127と、無酸素槽103のORPを計測する無酸素槽ORPセンサ128と、無酸素槽103のpHを計測する無酸素槽pHセンサ129と、好気槽104のリン酸濃度を計測するリン酸センサ1210と、好気槽104の溶存酸素濃度を計測するDOセンサ1211と、好気槽104のアンモニア濃度を計測するアンモニアセンサ1212と、反応槽102~104の少なくとも1ヶ所の槽で活性汚泥量を計測するMLSSセンサ1213と、反応槽102~104の少なくとも1ヶ所の槽で水温を計測する水温センサ1214と、最終沈殿池105から引きぬかれる汚泥量の固形物濃度を計測する余剰汚泥SSセンサ1215と、最終沈殿池105から放流される放流水のSS濃度を計測する放流SSセンサ1216と、最終沈殿池105の汚泥界面レベルを計測する汚泥界面センサ1217と、放流下水量を計測する下水放流量センサ1218と、放流下水に含まれる全窒素量を計測する放流TNセンサ1219と、放流下水に含まれる全リン量を計測する放流TPセンサ1220と、放流下水に含まれる有機物量を計測する放流UVセンサ(あるいは放流CODセンサ)1221とを含む。
 各種アクチュエータ111P、112B、113P、114P、115Pは、所定の周期で動作している。操作量センサ111S~115Sと各種プロセスセンサ121~1221とは所定の周期で計測を行っている。
 本実施形態に係るプロセス監視診断装置は、プロセス計測データ収集・保存部2と、過去データ(オフラインデータ)抽出部3と、プロセス監視モデル構築・供給部4と、現在データ(オンラインデータ)抽出部5と、プロセス監視・診断部6と、プロセス監視・診断部6によって検出された状態変化や異常兆候とその要因変数候補に関する情報をプラント管理者やオペレータに通知することのできるユーザインタフェース部7と、を備えている。
 プロセス計測データ収集・保存部2は、操作量センサ111S~115Sおよびプロセスセンサ121~1221から所定の周期で得られるプロセスデータを収集し保持する。
 過去データ(オフラインデータ)抽出部3は、プロセス計測データ収集・保存部2に保存された各種時系列データの中から、過去のオフラインデータを抽出する。
 プロセス監視モデル構築・供給部4は、過去データ(オフラインデータ)抽出部3で抽出されたオフラインデータを用いて、予めプロセスの監視・診断モデルをオフラインで構築する。
 プロセス監視モデル構築・供給部4は、監視モデル構成変数定義部41と、主成分演算部42と、出力変数指定部43と、出力関連主成分抽出部44と、統計量および寄与量定義部45と、統計量しきい値設定部46と、を備えている。
 監視モデル構成変数定義部41は、プロセス計測データ収集・保存部2から過去データ(オフラインデータ)抽出部3を通して抽出された計測変数の過去の時系列データの情報から、プロセス監視モデル構築に必要な監視項目を選定し、必要に応じて監視項目から新たに管理指標等の変数を合成してn個の監視モデルの入力変数を定義する。
 主成分演算部42は、データ中のアウトライア除去、フィルタリング、正規化(スケーリング)などの適切な前処理を行った後に、PCA、ロバストPCA、カーネルPCAなどを用いてn個の主成分を演算する。
 出力変数指定部43は、監視モデル構成変数定義部41で定義した監視モデル構成変数の中からユーザが監視したい出力変数を指定する。
 出力関連主成分抽出部44は、出力変数指定部43で指定された出力変数と強い関係を持つ主成分のみを抽出する。
 統計量および寄与量定義部45は、出力関連主成分抽出部44で抽出した主成分を用いて、異常検出用の要約統計量であるQ統計量とHotellingのT2統計量と、監視モデル構成変数定義部41で定義した構成変数のこのQ統計量とHotellingのT2統計量に対する寄与量を各々定義する。
 統計量しきい値設定部46は、統計量および寄与量定義部45で定義した2つの統計量に対するしきい値を設定する。
 現在データ(オンラインデータ)抽出部5は、プロセス計測データ収集・保存部2に保存された各種時系列データの中から,現在のオンラインデータを抽出する。
 プロセス監視・診断部6は、現在データ(オンラインデータ)抽出部5で抽出されたオンラインデータとプロセス監視モデル構築・供給部4で構築されたプロセス監視モデルとを用いて、プロセスの状態を監視し、状態変化や異常兆候を検出する。
 プロセス監視・診断部6は、変数選定部61と、統計量監視部62と、統計量異常判定部63と、要因変数推定部64と、を備えている。
 変数選定部61は、プロセス計測データ収集・保存部2から現在データ(オンラインデータ)抽出部5を通して抽出された計測変数の現時点の時系列データに対し、監視モデル構成変数定義部41で定義した変数を取り出し、演算する。
 統計量監視部62は、変数選定部61で選択された変数の現在のデータに対して、欠測値やアウトライアを除去、正規化などの適切な前処理を行った上で、統計量および寄与量定義部45で決定したQ統計量およびHotellingのT2統計量計算式に従ってこれらの統計量を計算する。
 統計量異常判定部63は、統計量監視部62で監視されている統計量が統計量しきい値設定部46で定義したしきい値を超えた場合にプロセスの状態変化や異常兆候を検出する。
 要因変数推定部64は、統計量異常判定部63でQ統計量やHotellingのT2統計量の変化が検出された場合に、その変化要因となる構成変数の寄与量を統計量および寄与量定義部45で定義した式に従って計算し、要因となる変数を推定する。
 ユーザインタフェース部7は、プロセス監視・診断部6によって検出された状態変化や異常兆候とその要因変数候補に関する情報をプラント管理者やオペレータに通知することが可能である。ユーザインタフェース部7は、オペレータに情報を通知する表示部や、オペレータが指令を入力するマウスおよびキーボード等の入力手段を備えている。
 まず、下水高度処理プロセス1では、操作量センサ111S~115Sと、プロセスセンサ121~1221とによって、所定の周期でプロセスの情報が計測されている。これらの計測情報は、プロセス計測データ収集・保存部2によって、予め決められたフォーマットに従って、時系列データとして保存されている。
 本実施形態のプロセス監視診断装置を構築する際は、まず、このプロセス計測データ収集・保存部2に保存されている、所定の期間にわたる過去のプロセスデータを、過去データ(オフラインデータ)抽出部3で抽出する。この過去データ(オフラインデータ)抽出部3で抽出した所定の期間に亘る過去のプロセスデータを用いて、プロセス監視モデル構築・供給部4ではプロセス監視モデルを構築する。
 図1の監視モデル構成変数定義部41では、プロセス監視モデルを構築するために必要な計測変数を定義し、抽出する。通常下水処理プロセスでは、操作量センサ111S~115Sとプロセスセンサ121~1221とで計測されている項目だけでなく、フィードバック制御の目標値やブロワ112Bやポンプ111P、113P、114P、115Pなどの機器に関する計測変数、あるいは、時間と共に積算されている積算量など通常数千項目にもおよぶ計測変数が存在する。この中には、プロセスの監視診断に対してノイズとなる有用情報を持たない変数も数多く存在するので、これらの変数を除外して適切な変数を監視モデルの構成変数として定義する。
 除外すべき変数の例としては、積算量などは単調に増加する変数であるため、プロセス監視モデル構築用の入力データとして選定すると、プロセス監視モデルが正しく構築できないため、除外する。
 また、複数のポンプやブロワが用意されているようなケースで、稀にしか起動しないブロワやポンプの流量データをそのまま入力すると、ほとんどの時間帯において0であるため、監視モデルを正しく構築することができないため、これらも除外する。
 これらの変数を除去した上で、監視診断に対して有用な計測変数を選定する。例えばこの場合、操作量センサ111S~115Sとプロセスセンサ121~1221とで計測されている計測変数を選定する。また、必要に応じて各種計測変数から運転員にとって有用な管理指標やプロセスの状態変化や異常兆候の早期検出に有用な指標を監視データから合成する。
 例えば、最初沈殿池余剰汚泥引きぬきポンプ111Pおよびその引き抜き流量センサ111S、好気槽104に酸素を供給するブロワ112Bおよびその供給空気流量センサ112S、循環ポンプ113Pおよびその循環流量センサ113S、返送汚泥ポンプ114Pおよびその返送流量センサ114S、最終沈殿池余剰汚泥引きぬきポンプ115Pおよびその引き抜き流量センサ115Sなどで計測されている流量と、ポンプ111P、113P、114P、115Pやブロワ112Bの定格容量や回転数などの情報から各々のポンプやブロワで消費される電力量と、を計算し、流入下水量を計測する下水流入量センサ122で計測している流入量でこれらの電力量を割ることによって、各ポンプ111P、113P、114P、115Pやブロワ112Bで消費される電力原単位(エネルギー原単位)を合成して構成変数として加えることができる。
 また、反応槽102~104の少なくとも1ヶ所の槽で活性汚泥量を計測するMLSSセンサ1213と、最終沈殿池105から引きぬかれる汚泥量の固形物濃度を計測する余剰汚泥SSセンサ1215と、最終沈殿池余剰汚泥引きぬきポンプ115Pおよびその引き抜き流量センサ115Sの情報と反応槽102~104の容積とからSRT(汚泥滞留時間)やA-SRT(好気槽汚泥滞留時間)などを求めて、構成変数の一つとすることもできる。
 さらに、放流下水量を計測する下水放流量センサ1218と、放流下水に含まれる全窒素量を計測する放流TNセンサ1219、あるいは、放流下水に含まれる全リン量を計測する放流TPセンサ1220、あるいは、放流下水に含まれる有機物量を計測する放流UVセンサ(あるいは放流CODセンサ)1221で計測されている水質濃度との積によって放流負荷量を計算し、これを構成変数の一部とすることもできる。
 次に、主成分演算部42では、欠測データやアウトライアの除去や、物理的な次元の異なる複数の監視項目(監視モデル構成変数)の正規化などを適切に行った上で、主成分を演算する。この際、通常は多変量解析として良く知られているPCAを用いるが、データの中にアウトライアなどが多量に含まれることが想定される場合には、例えば非特許文献1、非特許文献2などのアウトライアに対するロバスト性を考慮した様々なロバストPCAアルゴリズムを用いてもよい。
 また、監視モデル構成変数定義部41で定義したデータ間に強い非線形の相関が想定される様な場合には、例えば、非特許文献3、非特許文献4などに記載されているカーネルPCAなどの非線形性を考慮したPCAを用いても良い。
 さらに、非線形性とアウトライアの問題が両方存在している場合には、ロバストPCAとカーネルPCAを組み合わせた方法を用いることも可能である。
 本実施形態における主成分演算部42では、出力変数と入力変数とを区別しないで構成変数と同じ数のn個の主成分が計算できる。なお、以降の説明では通常のPCAを用いた場合で説明を行う。
 通常のPCAを用いると、n個の構成変数とm個のサンプル(時系列データ)とからなる行列XεRm×nはPCAによって以下の様に分解される。(ただし、Xは正規化されているとする。) 
 X = Σi=1n ti*piT 
   = TaPaT 
   = Σi=1p ti*piT+Σi=p+1n ti*piT 
   = TPT + E (1)
 TaεRm×nはm個のサンプル(あるいは時系列データ)とn個の主成分数とからなるスコア行列と呼ばれる行列であり、PaεRn×nはn個の構成変数とn個の主成分との関係を示すローディング行列と呼ばれる行列である。
 TεRm×pは、p<<n個の主成分で打ち切ったTaの部分行列であり通常はスコア行列と呼んでいる。同様に、PεRn×pはn個の変量に対してp<<n個で打ち切った主成分との関係を表すPaの部分行列であり、通常はこのPをローディング行列と呼んでいる。また、EεRm×nはm個のサンプル(あるいは時系列データ)とn個の変量とからなる誤差行列であり、p<<nで主成分を打ち切った場合の誤差を表す。
 本実施形態では、TaとTと、PaとPとを明確に区別し、TaとPaとを各々スコア行列、ローディング行列と呼び、TとPとの事は主要スコア行列、主要ローディング行列と呼ぶことにする。
 次に、出力変数指定部43では、プラント管理者などのユーザが特に注目した出力変数を、監視モデル構成変数定義部41で定義した変数の中から選択する。この際、プラント管理者が注目する出力変数は、必ず監視モデル構成変数定義部41の中の構成変数として定義しておく必要がある。
 出力変数としては、プラントの主たる性能指標と考えられる水質として、放流リン濃度、放流窒素濃度、放流COD濃度、あるいは、これらを負荷量として考えた放流リン負荷量、放流窒素負荷量、放流COD負荷量などを指定することができる。また、生物反応槽内の特定の水質や管理状態に興味がある場合には、好気槽アンモニア濃度や好気槽リン酸濃度、あるいは嫌気槽ORP値、無酸素槽ORP値などを出力変数としても良い。
 さらに、プラント運転コスト低減を指向するのであれば、好気槽104に酸素を供給するブロワ112Bおよびその供給空気流量センサ112S、循環ポンプ113Pおよびその循環流量センサ113S、返送汚泥ポンプ114Pおよびその返送流量センサ114S、最終沈殿池余剰汚泥引きぬきポンプ115Pおよびその引き抜き流量センサ115Sなどの流量と、ポンプ111P、113P、114P、115Pやブロワ112Bの定格および運転状態(起動台数や回転数など)とから、ポンプ111P、113P、114P、115Pやブロワ112Bでの電力量を計算し、電力量や単位処理量あたりの電力量である電力原単位(エネルギー原単位)を出力変数としても良い。
 このように、出力変数指定部43では、プラントの性能に関わる水質やコストに関わる指標を選択して、定義を行う。
 図2に、本実施形態のプロセス監視診断装置において出力変数に強く関連する主成分抽出手段の一例を説明する図を示す。
 出力関連主成分抽出部44では、ある出力変数を選定して、その出力変数が強い影響を持つ主成分のローディング行列を抽出する。図2では、変数の数n=15の場合を示しており、この時、主成分のローディング行列Paは15×15の行列であらわされる。なお、この行列のi行、j列の要素をPa(i,j)と記載することにする。
 ここで、今出力変数として第10番目の出力変数(たとえば電力量)に着目することにする。すなわち、図2では、1の横軸方向(監視項目が並ぶ方向)の10番目の項目に着目する。この変数は、例えば、電力量や放流リン濃度などプラント運転員が実際に監視を行いたい変数である。次にこの着目した10番目の変数の縦軸方向(主成分項目が並ぶ方向)を見ると、各主成分に対するこの出力変数の寄与の大きさがわかる。
 Pa(i,j)は、ローディング行列Paが正規直交行列になるという性質から、その要素は-1から1までの範囲の値をとり、また、Paのi行の第i主成分(以下、Pa(i,:)と記述)の2乗和Σ_{j=1}^{15}Pa(i,j)は1となる。これはすなわち、Pa(i,j)の平均値が1/n=1/15であることを意味するから、例えば、Pa(i,10)>1/15である主成分iを出力変数に強く関連する主成分として抽出することができる。
 他の基準としては、主成分Pa(i,:)毎に、その絶対値の平均値PMa(i,:):=(Σ_{j=1}^{15}|Pa(i,j)|)/15を計算し、|Pa(i,10)|>PMa(i,:)/15である主成分iを出力変数関連主成分とすることもできる。
 あるいは、Pa(i,10)の絶対値をiについてソートし、大きい値のものから予め決めたある個数k<<n個の主成分を抽出するという様な基準を持つこともできる。このような基準を設定することによって、出力関連主成分抽出部44では、出力変数に強く関係する主成分から成る行列を構成する。
 図3に、プロセス監視診断装置において出力変数を複数選択した場合の主成分抽出手段の一例を説明するための図を示す。
 この場合、出力変数指定部43は、複数の計測変数の数未満の複数個の出力変数を定義し、出力関連主成分抽出手段44は、各出力変数に影響を持つ主成分を抽出した後にその論理和で定義される主成分を出力関連主成分とする。
 すなわち、出力関連主成分の抽出にあたっては、2つ以上の複数の出力に関連する主成分を抽出することもできる。例えば、放流水質として、放流リン濃度と放流窒素濃度に着目したい場合には、例えば、図3に示すように第6番目の放流リンと第15番目の放流窒素とに着目して、上記と同様の方法によって出力変数に強く関連する主成分を抽出することもできる。このような抽出方法は、放流水質の様に複数の監視項目を総合して判断したい様な場合には特に有効になる。
 図4に、プロセス監視診断装置において、主要な主成分を一次抽出した上で、出力変数に強く関連する主成分抽出手段の一例を説明するための図を示す。
 この場合、出力関連主成分抽出部44は、主成分の累積寄与率あるいは各主成分方向の固有値の値に基づいて1又は複数の主な主成分を抽出した後、抽出した主な主成分の中から出力変数指定部43によって指定された出力変数に影響を持つ主成分を抽出する。
 すなわち、図4に示す様に第1主成分から、例えば、累積寄与率80%~90%ぐらいまでの主要な主成分を順次上から抽出するという方法で主成分を選択している。さらに、同様に累積寄与率などの基準で主要な主成分を抽出した上で、その中から図3あるいは図3に示すような判断基準によって、出力変数に強く関連する出力関連主成分を抽出することも可能である。
 主成分分析で得られる主成分は第1主成分方向への変動が最も大きく、第n(この場合第15)主成分の変動はあまりないと考えられる。従って、従来の累積寄与率などの指標で抽出した主要な主成分以外の主成分に対しては、仮に選択した出力変数の影響が強かったとしてもその方向への変動自身が小さいため、むしろ無視した方が良い場合もある。
 このような考えに従って、累積寄与率などで主要な主成分を一次抽出した上で、出力変数に関連する主成分を抽出してもよい。
 さらに、出力関連主成分をユーザが判断して選択するようにすることも可能である。この場合、出力関連主成分抽出部44は、主成分演算部42で定義された複数の計測変数と同じ数の主成分のローディング行列を表示する主成分表示手段(図示せず)と、主成分表示手段で表示されたローディング行列に基づいて出力関連の主成分をユーザの指示に従って選定する主成分選定手段と、を備える。
 例えば、図2乃至図4に示す様な図を監視画面上で提示し、各図の右に示した様なチェックボックスBXを設けて、どの主成分を選択するかを人間が判断して対応するチェックボックスにチェックを入れることにより主成分選定手段へ選定を指示し、主成分の選択をサポートする仕組みを持つこともできる。
 この様にして、出力関連主成分からなるローディング行列を下記の様に定義する。なお、主成分分析の計算は、通常、正規化(標準化)された変数からなるXの分散共分散行列を計算した後に、特異値分解を用いてローディング行列とスコア行列を求める。
 例えば、図2に示す例では、第8、第9、第12、第14、第15番目の主成分から成るローディング行列Poutputを次の様に構成する。 
 Poutput=[Pa(8,1),Pa(8,2),…,Pa(8,15), 
       Pa(9,1),Pa(9,2),…,Pa(9,15), 
       Pa(12,1),Pa(12,2),…,Pa(12,15), 
       Pa(14,1),Pa(14,2),…,Pa(14,15), 
       Pa(15,1),Pa(15,2),…,Pa(15,15)]
 なお、出力関連主成分抽出部44に対して、以下の様な修正行うこともできる。出力関連主成分、ローディング行列Poutputを抽出すると、その主成分に対して、ほとんど寄与しない監視変数がある場合も多い。
 例えば、図2で抽出したローディング行列Poutputについては、図5に点線で囲んだ、第1番目、第3番目、第5番目、第7番目、第8番目、第11番目、第12番目の変数はほとんど影響を与えていない。これは、選択した第10番目の出力変数とこれらの変数にはほとんど相関が無いことを意味するため、選択した出力変数の異常とこれらの変数の異常はほとんど関連が無いことを意味する。
 そこで、出力関連主成分抽出部44によって抽出した主成分の、各計測変数の各主成分への影響の大きさを表すローディング(因子負荷)の絶対値が、所定値以下の影響の小さい計測変数の値をゼロに置換し、対応する計測変数を入力項目から除外するように修正を加えてもよい。
 すなわち、出力関連主成分Poutputの中から、これらの変数に対応する係数Pa(i,j)=0、i=8、9、12、14、15、j=1、3、5、7、8、11、12、という様に、予めゼロに設定しておけば、出力変数に関する異常の要因をより明確にたどりやすくなる。
 このようにすることによって、ローディング行列が正規直交行列であるという性質は失われるものの、出力変数とほぼ無関係と思われる変数の影響を予め除去しておくことができる。
 一方、ローディング行列が正規直交行列であるという性質を維持するためには、主成分分析を行う前に、主成分分析の計算に用いる分散共分散1(相関行列)C=X’*Xから出力変数と他の変数との相関係数を求め、出力変数(図2では10番目)との相関が非常に弱い変数を除去したCの部分行列だけを用いて主成分分析を行えばよい。
 この場合、出力関連主成分抽出部44は、主成分演算部42の演算を実行する前に、主成分計算実行直前に演算される相関行列あるいは分散共分散行列の中から、出力変数指定部43によって指定された出力との相関が所定値以上のものを抽出し、相関行列あるいは分散共分散行列の部分行列を抽出する高相関変数抽出手段(図示せず)を有する。
 例えば、出力変数が10番目の変数である場合は、Cの10列目(Cは対称行列なので10行目でも良い)の値が所定の値(=相関の有無を識別するしきい値)以下になる行(列)を見つける。
 例えば、その行が1番目、3番目、5番目、7番目、8番目、11番目、12番目、であったとすると、10番目の出力変数と、1番目、3番目、5番目、7番目、8番目、11番目、12番目の変数との相関が小さいと判断できる。この場合、Cの1番目、3番目、5番目、7番目、8番目、11番目、12番目の行および列を除去したCの部分行列Crを用いて主成分分析を実施する。
 こうすることによって、予め出力変数との関係の弱い変数を除外した上で、ローディング行列の正規直交性を保つことができる。出力関連成分抽出部44は、上記のような修正手段も含め、出力変数と強い相関を持つローディング行列Poutputを抽出する。
 次に、統計量および寄与量定義部45では、出力と強い相関を持つローディング行列Poutputを用いてQ統計量やHotellingのT2統計量を計算する計算式を以下の様に定義する。
Q統計量:Q(x(t))=x(t)(I-PoutputPoutput)x(t) (3) HotellingのT2統計量:T2(x(t))=xT(t)PoutputΛoutput-1Poutputx(t) (4) ここで,Λoutputは,主成分分析による出力関連の主成分の分散を対角要素として持つ行列であり、分散を正規化していることを意味する。また,Iは適当なサイズの単位行列である。また,x(t)は,行列Xのt番目の要素である。実際のプロセス監視では,このx(t)がオンラインで計測されてくるプロセスデータに置き換わって計算される。(3)式と(4)式とが統計量および寄与量定義部45で定義される統計量である。
 さらに、(3)式や(4)式で定義された統計量に対する各診断モデルの入力変数の寄与量の定義式を設定する。寄与量の定義方法も複数あるが、例えば、以下の様に定義することができる。
 Q統計量の寄与量:Qcont(n,t)=x(t,n)F(:,n)F(:,n)x(t,n) (5) 
 F=(I-PoutputPoutput)  HotellingのT2統計量の寄与量:Tcont(n,t)=x(t)PoutputΛ-1Poutput(:,n)x(t,n) (6) 
 ここで,nはn番目変数という意味であり,tはある時刻を表す変数である。
 従来の方法は、(3)~(6)式のPoutputをPで置き換えたものであり、従来手法では、各主成分方向に対するデータの分散の大きさに応じてPaからPを抽出して、統計量や寄与量を定義しているのに対し、本実施形態ではPaからある特定の出力変数に関係の強い主成分を、Poutputを抽出して統計量や寄与量を定義している。これにより、ある特定の出力に関連する異常の検出とその要因推定精度を向上できる。
 また、従来の監視診断手法をローディング行列Pをローディング行列Poutputに置換している以外は、従来法と同様の方法で実施でき、ローディング行列Poutputの決定手段は上記から明らかな様に、単に主成分を選択するという手段だけで実行されているため、指定する出力を変更すれば、単に抽出する主成分が変化するという以外の変更は生じない。従って、従来とほぼ同じ程度の労力で、すなわち、診断モデルを出力変数に応じて繰り返し構築するという様な複雑な作業を回避して、プロセス監視診断装置を構築することができる。
 次に、統計量しきい値設定部46では、(3)式と(4)式とのしきい値を設定する。このしきい値の設定値は状態変化や異常兆候の検出に大きく関わるため、その設定方法は重要であるが、本実施形態では、典型的な設定方法について説明する。
 仮に、過去のオフラインデータに対して何ら事前情報が無い場合には、デフォルトの設定法として、Q統計量の統計的信頼限界値とHotellingのT2統計量に関する統計的信頼限界値を用いることができる(たとえば非特許文献5) これらは、以下の様に書くことができる。 
 Qlimitの理論計算式:Qlimit=Θ[(cα(2Θ 1/2)/Θ+1+(Θ(h-1))/(Θ )]1/h  (7) 
 h0:=1-2ΘΘ/3Θ   Θ:=λp+1 +λp+2 +………+λ  
 ここで、pはモデルの中に残された変数の数である。cαは,信頼区間の限界が1-αである場合の標準正規分布の標準偏差のずれ(例:α=0.01の場合,2.53,α=0.05の場合,1.96)である。また、λはΛの対角要素である(つまり,Θは,誤差項に含まれる各成分のi乗和である。)。
 なお、本実施形態では、Pの代わりにPoutputを用いているため、Θ=λp+1 +λp+2 +…+λ で用いられているλ、j=p+1,p+2,…,nは必ずしもモデルの中に残されたλ、k=1,2,…,pよりも小さい値になるわけではない。
 T2limitの理論計算式: 
 T2limit=p(m-1)/(m-p)F(p,m-p,α)(8) 
 ここで、pは選択した(=モデルの中に残された)変数の数であり,mは全変数の数である。F(p,m-p,α)は,自由度が(p,m-p)であり,信頼限界をα(=0.01あるいは0.05とすることが多い)とした場合のF分布である。
 このように(7)式や(8)式に基づいて統計量のしきい値を設定することができる。
 上記の手順に従って、プロセス監視モデル構築・供給部4でプロセス監視モデルを構築した後、次にプロセス監視・診断部6では,プロセス監視モデル構築・供給部4で構築したプロセス監視モデルを供給してもらい、このプロセス監視モデルを用いてプロセスの監視を行う。
 まずプロセス計測データ収集・保存部2で収集している診断を行いたい時点(以下現時点あるいは現在という)のオンラインデータを現在データ(オンラインデータ)抽出部5で抽出する。この現在データ(オンラインデータ)抽出部5で抽出した現在データを用いて、プロセス監視・診断部6ではプロセス状態の監視を行い、状態に変化があったり異常の兆候が認められたりした場合にはそれを検出する。
 変数選定部61では、監視モデル構成変数定義部41で定義した変数に対応する現時点のデータを取り出し、各変数の平均や分散などを用いて適当に正規化しておく。また、必要に応じて、アウトライアの除去を行っておく。
 次に統計量監視部62では、(3)式と(4)式とで定義したQ統計量とT2統計量とのX(t)に代入することによって現時点のQ統計量とT2統計量を監視する。この統計量は時間の経過と共に時々刻々と変化するので、時系列グラフ(トレンドグラフ)の様な形で監視してもよい。
 図6に、出力変数と、Q統計量および/またはT2統計量の異常点とをオーバラップさせて監視する表示の一例を示す。本実施形態では、特定の出力変数に対する異常要因を推定することを主目的としているため、図6に示す様に、出力変数の時系列データ上にQ統計量および/またはT2統計量による異常点をオーバラップさせて表示することが好ましい。図6では、Q統計量および/またはT2統計量の異常点を、出力変数のグラフにオーバラップしてプロットされている。
 このような表示を行うことによって、電力量や水質などの物理量を監視しながら、その異常点と統計量の異常点を重ねてみることによって、出力変数に関係する異常(図6中A)かそれ以外の異常(図6中B)かを定性的にではあるが、視覚的に判断することが可能になる。
 図7に、出力変数と、Q統計量および/またはT2統計量の異常点とをオーバラップさせて監視する切り替え表示の一例を示す。図7に示すような診断のオン(ON)/オフ(OFF)操作画面を設けると、出力変数に対するトレンドグラフの監視画面と本実施形態のプロセス診断画面とのリンクをユーザの判断によってスイッチすることができる。ここでは「プロセス診断ON」のボタンをクリックすると、出力変数のグラフに異常点がプロットされて表示されるように表示が切り替わり、「プロセス診断OFF」のボタンをクリックすると、出力変数のグラフのみが表示されるように表示が切り替わり。
 図8に、複数のプロセス診断メニュー一覧とプロセス監視の監視画面との連携概念の一例を説明するための図を示す。図8に示すように、複数の出力変数に関する診断メニューを予め準備しておくこともできる。
 図8では、デフォルトとして、通常のPCAによる汎用的なプロセス診断を行う様にしている。この際、Q統計量および/またはT2統計量の時系列データによってプロセス診断が行われている。この時、例えばプロセス診断メニュー上でブロワ原単位診断のボタンをクリックすると、図8の左上のQ統計量および/またはT2統計量の時系列データが、図8の左下のブロワ原単位にQ統計量および/またはT2統計量の異常点をオーバラップさせて表示する機能に切り替わる。
 このような表示画面を有することによって、ユーザが状況に応じてフレキシブルにプロセス診断を実施することができる。以上の様な方法によって統計量によるプロセス監視を行うことができる。
 次に、統計量異常判定部63では、現時点のQ統計量あるいはT2統計量が統計量しきい値設定部46で設定したしきい値、例えば(7)式と(8)式とで定義したしきい値を超えた場合に、プロセスに状態変化が生じたと判断する。これが統計量異常判定部63の最低限の機能であるが、この機能は以下の様に修正可能である。
 例えば、設定した出力変数に対する上下限値も設定できる様にしておき、出力変数の上下限値を超過して、かつ統計量の異常が生じている点を出力変数に関連する異常であるという判定ロジックを組み込んでも良い。
 また、プロセス診断モデルとして、予め従来の第1主成分からいくつかの上位の主成分のローディング行列Pを用いた診断モデルによるQ統計量および/またはT2統計量と、出力変数に強く関連する主成分のローディング行列Poutputを用いた診断モデルによるQ統計量および/またはT2統計量の2組のものを用意しておき、以下の様な異常判定を行うこともできる。
 判定A:PのQおよびT2統計量正常、かつ、ローディング行列PoutputのQおよびT2統計量正常、かつ、出力変数管理値以内 ⇒ プロセスは正常 
 判定B1:PのQまたはT2統計量異常、かつ、ローディング行列PoutputのQおよびT2統計量正常、かつ、出力変数管理値以内 ⇒ 出力変数には関係しないプロセス異常 
 判定B2:PのQまたはT2統計量異常、かつ、ローディング行列PoutputのQまたはT2統計量異常、かつ、出力変数管理値以内 ⇒ 出力変数には関係しないプロセス異常 
 判定C:PのQおよびT2統計量正常、かつ、ローディング行列PoutputのQおよびT2統計量正常、かつ、出力変数管理値以外 ⇒ 出力変数の単独異常 
 判定D:PのQおよびT2統計量正常、かつ、ローディング行列PoutputのQまたはT2統計量異常、かつ、出力変数管理値以内 ⇒ 出力変数が異常になる兆候あり 
 判定E:PのQおよびT2統計量正常、かつ、ローディング行列PoutputのQまたはT2統計量異常かつ出力変数管理値以外 ⇒ 出力変数異常 
 判定F:PのQまたはT2統計量異常、かつ、ローディング行列PoutputのQまたはT2統計量異常、かつ、出力変数管理値以外 ⇒ 恐らく出力変数に関連する異常 
 判定不能:PのQまたはT2統計量異常、かつ、ローディング行列PoutputのQまたはT2統計量異常、かつ、出力変数管理値以外 ⇒ 不明 上記の様な統計量を用いた異常判定を行い、その旨をユーザインタフェース部7を通してオペレータあるいはプロセス管理者に通知する。この場合、例えば、しきい値を超える回数が連続してr回(rは正の整数)続いた場合にオペレータに通知するなどのルールを入れてアラームの頻発を避けるようにしておいてもよい。
 次に、要因変数推定部64は、統計量異常判定部63で何らかの異常が検出された場合に、その要因となるプロセス診断構成変数を推定する。この際、指定した出力変数に関連する異常という判断がなされた場合にのみ要因となる変数を推定しても良い。
 この際、例えば(5)式と(6)式とに基づいてプロセス診断構成変数の各変数の寄与量を各々計算する。そして、例えば 
 (a)寄与量の最も大きいものを状態変化要因変数とする 
 (b)寄与量の大きいものから順に3個を状態変化要因変数とする 
 (c)寄与量の値が、寄与量の平均±k*寄与量の標準偏差、k:パラメータ、を超えたものを状態変化要因変数とする 
 などのルール(a)~(c)を予め決めておくことによって、状態変化の要因と考えられる計測変数あるいは指標を推定し、ユーザインタフェース部7を通して推定した指標をオペレータあるいはプロセス管理者に通知する。
 ユーザインタフェース部7では、上述の様に異常の検出結果と要因変数推定結果を提示するだけでなく、先述したとおり、Q統計量やT2統計量などの統計量データの時系列グラフ(トレンドグラフ)を常に監視できるようにしておいてもよい。
 また、上述したとおり、図6乃至図8に示すような監視画面を備えていることが好ましい。また、図2の様な出力関連の主成分を抽出するための表示手段も持っていることが好ましい。さらに、ユーザが画面上でチェックボックスをクリックする際等、指令を入力するときに使用するマウスやキーボード等の入力手段を備えていることが好ましい。
 本実施形態によると、プラント運転管理者が監視したい特定のプロセス変数に着目して、その変数に関する異常兆候と要因を容易に推定することが可能になる。すなわち、本実施形態に係るプラント監視診断装置では、PCAを用いた実質的に一つの監視診断モデルを用いるだけで、監視したい出力変数の指定とそれに対応する主成分の選択という手段を付加して、極めて容易にプラント運転管理者が監視したい特定のプロセス監視項目の異常兆候と要因を容易に推定することができる。
 これにより、PLSなどの予め入出力を明確に定義しておかなければ診断モデルを構築できないという非柔軟性を排除し、フレキシブルに、ユーザであるプラント運転管理者へ必要とする診断情報を提供することができる。
 上記のように本実施形態によれば、結果変数と説明変数とを区別しないPCAによるプロセス異常診断システムをベースとしながら、結果変数を適宜指定した場合に、その結果変数に強く関連する要因変数を抽出できるプロセス監視診断装置を提供し、特に、結果変数の変更に対して柔軟性を持ち、診断システムの開発やメンテナンスにかかる工数やコストについて、通常のPCAによる異常診断システムと同程度の工程やコストで実現できるプロセス監視診断装置を提供することができる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。

Claims (11)

  1.  対象プロセスの状態量や操作量を所定の周期で計測可能な少なくとも2つのプロセスセンサを有する任意のプロセスを監視するプロセス監視診断装置であって、
     前記プロセスセンサによって計測される複数の計測変数の時系列データを収集し、保持するデータ収集・保存手段と、
     入力と出力とを区別しない多変量解析により、前記計測変数と同じ数の主成分を定義可能な主成分演算手段と、
     前記複数の計測変数の中から1又は複数の出力変数を指定する出力変数指定手段と、
     前記主成分演算手段の中から、前記出力変数指定手段によって指定された出力変数に影響を持つ主成分を抽出する出力関連主成分抽出手段と、
     前記出力関連主成分抽出手段によって抽出した主成分を用いて、予め定義した異常検出用の要約統計量を計算し監視する要約統計量監視手段と、
     前記要約統計量監視手段によって監視されている統計量に対する異常か否かの判断を行う要約統計量異常判定手段と、を備えることを特徴とするプロセス監視診断装置。
  2.  前記多変量解析は、主成分分析、ロバスト主成分分析、カーネル主成分分析、のいずれかであることを特徴とする請求項1記載のプロセス監視診断装置。
  3.  前記異常判定手段によって異常と判定された場合に、前記要約統計量に対する各計測変数の寄与量を計算し要因となる変数を推定する要因変数推定手段をさらに備えることを特徴とする請求項1または請求項2記載のプロセス監視診断装置。
  4.  前記出力変数指定手段は、前記複数の計測変数の数未満の複数個の出力変数を定義し、
     前記出力関連主成分抽出手段は、各出力変数に影響を持つ主成分を抽出した後にその論理和で定義される主成分を出力関連主成分とすることを特徴とする、請求項1乃至請求項3のいずれか1項記載のプロセス監視診断装置。
  5.  前記出力関連主成分抽出手段は、主成分の累積寄与率あるいは各主成分方向の固有値の値に基づいて1又は複数の主な主成分を抽出した後、前記主な主成分の中から前記出力変数指定手段によって指定された出力変数に影響を持つ主成分を抽出することを特徴とする、請求項1乃至請求項4のいずれか1項記載のプロセス監視診断装置。
  6.  出力関連主成分抽出手段は、前記主成分演算手段で定義された前記複数の計測変数と同じ数の主成分のローディング行列を表示する主成分表示手段と、前記主成分表示手段で表示されたローディング行列に基づいて出力関連の主成分をユーザの指示に従って選定する主成分選定装置と、を備えることを特徴とする、請求項1乃至請求項5のいずれか1項記載のプロセス監視診断装置。
  7.  前記出力関連主成分抽出手段によって抽出した主成分の、各計測変数の各主成分への影響の大きさを表すローディングの絶対値が、所定値以下の計測変数の値をゼロに置換し、対応する計測変数を入力項目から除外するように修正を加えることを特徴とする請求項1乃至請求項6のいずれか1項記載のプロセス監視診断装置。
  8.  前記主成分演算手段の演算を実行する前に、主成分計算実行直前に演算される相関行列あるいは分散共分散行列の中から、前記出力変数指定手段によって指定された出力との相関が所定値以上のものを抽出し、前記相関行列あるいは前記分散共分散行列の部分行列を抽出する高相関変数抽出手段をさらに有することを特徴とする、請求項1乃至請求項6のいずれか1項記載のプロセス監視診断装置。
  9.  前記出力変数指定手段で指定した出力変数を時系列データとして監視する表示装置を備え、
     前記表示装置は前記要約統計量異常判定手段によって異常と判定された箇所を前記出力変数のグラフに重複して表示可能であることを特徴とする請求項1乃至請求項8のいずれか1項記載のプロセス監視診断装置。
  10.  前記表示装置は、前記出力変数のグラフを表示する異常診断オフ表示と、前記要約統計量異常判定手段によって異常と判定された箇所を前記出力変数のグラフに重複して表示する異常診断オン表示とを切替え可能であることを特徴とする、請求項9記載のプロセス監視診断装置。
  11.  複数の出力変数から所定の出力変数を選択可能なプロセス診断メニューを表示する診断メニュー表示および選択手段を備え、
     前記メニュー表示および選択手段は、前記プロセス診断メニュー上で前記所定の出力変数を指定すると、指定された前記出力変数に関するプロセス診断モデルを構築し、それに対応する診断結果を表示することを特徴とする、請求項1乃至請求項10のいずれか1項記載のプロセス監視診断装置。
PCT/JP2014/056439 2013-03-14 2014-03-12 プロセス監視診断装置 WO2014142152A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480010812.2A CN105027014B (zh) 2013-03-14 2014-03-12 工序监视诊断装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-051930 2013-03-14
JP2013051930A JP6214889B2 (ja) 2013-03-14 2013-03-14 プロセス監視診断装置

Publications (1)

Publication Number Publication Date
WO2014142152A1 true WO2014142152A1 (ja) 2014-09-18

Family

ID=51536803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056439 WO2014142152A1 (ja) 2013-03-14 2014-03-12 プロセス監視診断装置

Country Status (3)

Country Link
JP (1) JP6214889B2 (ja)
CN (1) CN105027014B (ja)
WO (1) WO2014142152A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104808626A (zh) * 2015-04-20 2015-07-29 中国石油化工股份有限公司 化工装置开车时工艺参数的报警方法
CN104914821A (zh) * 2015-04-20 2015-09-16 中国石油化工股份有限公司 化工装置精馏系统开车时的报警方法
US20170299565A1 (en) * 2016-04-15 2017-10-19 Beijing University Of Technology Computing system for detecting total phosphorus in effluent using data driven A2/O process
WO2018052015A1 (ja) * 2016-09-14 2018-03-22 日本電気株式会社 システムの分析支援装置、システムの分析支援方法及びプログラム
CN107949814A (zh) * 2016-04-18 2018-04-20 胜科工业有限公司 用于废水处理工艺控制的系统和方法
CN110333474A (zh) * 2019-06-28 2019-10-15 中国电力科学研究院有限公司 一种在线检测互感器计量异常状态的方法和系统
CN110687895A (zh) * 2019-10-24 2020-01-14 上海工程技术大学 一种基于自适应核主成分分析的化工过程故障检测方法
CN113741224A (zh) * 2021-11-08 2021-12-03 南京铖联激光科技有限公司 一种基于上位机的监控系统和方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105809923A (zh) * 2016-03-08 2016-07-27 胡秀娟 净水系统数据采集方法及系统
WO2017152359A1 (zh) * 2016-03-08 2017-09-14 胡秀娟 净水系统数据采集方法及系统
JP6504089B2 (ja) * 2016-03-10 2019-04-24 横河電機株式会社 工程監視装置、工程監視システム、工程監視方法、工程監視プログラム及び記録媒体
JP7059526B2 (ja) * 2017-06-30 2022-04-26 横河電機株式会社 水処理施設における運転監視装置
WO2019202700A1 (ja) * 2018-04-19 2019-10-24 三菱電機株式会社 異常設備を特定する装置、方法、およびコンピュータプログラム
US11460364B1 (en) 2019-02-07 2022-10-04 Starrycom Sensing Technologies Inc. Multiplexed inductive tactile sensor array
CN111083662B (zh) * 2019-12-18 2020-10-27 深圳市快鱼环保技术有限公司 基于云计算的水质监测物联网系统
CN113048402A (zh) * 2019-12-27 2021-06-29 柯思科技股份有限公司 中低压管线监控系统及其方法
WO2021168308A1 (en) * 2020-02-21 2021-08-26 Nanotronics Imaging, Inc. Systems, methods, and media for manufacturing processes
WO2024180746A1 (ja) * 2023-03-01 2024-09-06 富士通株式会社 因果探索プログラム、因果探索方法および情報処理装置
JP2024129372A (ja) * 2023-03-13 2024-09-27 オムロン株式会社 情報処理装置、情報処理方法、プログラムおよび生産システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08241121A (ja) * 1995-03-03 1996-09-17 Toshiba Corp プラント異常検知装置
JP2004303007A (ja) * 2003-03-31 2004-10-28 Mitsubishi Chemicals Corp プロセス監視方法
JP2007065883A (ja) * 2005-08-30 2007-03-15 Toshiba Corp プロセス監視装置及びその方法
JP2012141712A (ja) * 2010-12-28 2012-07-26 Toshiba Corp プロセス監視診断装置
JP2012155361A (ja) * 2011-01-21 2012-08-16 Toshiba Corp プロセス監視装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101251754B (zh) * 2008-03-13 2010-06-02 西安交通大学 一种多工序加工过程误差流的处理及控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08241121A (ja) * 1995-03-03 1996-09-17 Toshiba Corp プラント異常検知装置
JP2004303007A (ja) * 2003-03-31 2004-10-28 Mitsubishi Chemicals Corp プロセス監視方法
JP2007065883A (ja) * 2005-08-30 2007-03-15 Toshiba Corp プロセス監視装置及びその方法
JP2012141712A (ja) * 2010-12-28 2012-07-26 Toshiba Corp プロセス監視診断装置
JP2012155361A (ja) * 2011-01-21 2012-08-16 Toshiba Corp プロセス監視装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OSAMU YAMANAKA ET AL.: "Application of Multivariate Statistical Process Control Technique for Efficient and Stable Plant Operation of Wastewater Treatment Process", THE JOURNAL OF THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS, vol. 94, no. 4, 1 April 2011 (2011-04-01), pages 299 - 304 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104808626A (zh) * 2015-04-20 2015-07-29 中国石油化工股份有限公司 化工装置开车时工艺参数的报警方法
CN104914821A (zh) * 2015-04-20 2015-09-16 中国石油化工股份有限公司 化工装置精馏系统开车时的报警方法
CN104914821B (zh) * 2015-04-20 2017-12-12 中国石油化工股份有限公司青岛安全工程研究院 化工装置精馏系统开车时的报警方法
CN104808626B (zh) * 2015-04-20 2018-01-02 中国石油化工股份有限公司青岛安全工程研究院 化工装置开车时工艺参数的报警方法
US20170299565A1 (en) * 2016-04-15 2017-10-19 Beijing University Of Technology Computing system for detecting total phosphorus in effluent using data driven A2/O process
US10788473B2 (en) * 2016-04-15 2020-09-29 Beijing University Of Technology Computing system for detecting total phosphorus in effluent using data driven A2/O process
EP3353613A4 (en) * 2016-04-18 2019-08-21 SembCorp Industries Ltd SYSTEM AND METHOD FOR CONTROLLING A PROCESS FOR WASTEWATER TREATMENT
CN107949814A (zh) * 2016-04-18 2018-04-20 胜科工业有限公司 用于废水处理工艺控制的系统和方法
JPWO2018052015A1 (ja) * 2016-09-14 2019-06-24 日本電気株式会社 システムの分析支援装置、システムの分析支援方法及びプログラム
WO2018052015A1 (ja) * 2016-09-14 2018-03-22 日本電気株式会社 システムの分析支援装置、システムの分析支援方法及びプログラム
US11455203B2 (en) 2016-09-14 2022-09-27 Nec Corporation Abnormality detection support device, abnormality detection support method, and program
JP7183790B2 (ja) 2016-09-14 2022-12-06 日本電気株式会社 システムの分析支援装置、システムの分析支援方法及びプログラム
CN110333474A (zh) * 2019-06-28 2019-10-15 中国电力科学研究院有限公司 一种在线检测互感器计量异常状态的方法和系统
CN110687895A (zh) * 2019-10-24 2020-01-14 上海工程技术大学 一种基于自适应核主成分分析的化工过程故障检测方法
CN110687895B (zh) * 2019-10-24 2022-11-18 上海工程技术大学 一种基于自适应核主成分分析的化工过程故障检测方法
CN113741224A (zh) * 2021-11-08 2021-12-03 南京铖联激光科技有限公司 一种基于上位机的监控系统和方法
CN113741224B (zh) * 2021-11-08 2022-02-08 南京铖联激光科技有限公司 一种基于上位机的监控系统和方法

Also Published As

Publication number Publication date
CN105027014B (zh) 2017-09-05
JP2014178844A (ja) 2014-09-25
CN105027014A (zh) 2015-11-04
JP6214889B2 (ja) 2017-10-18

Similar Documents

Publication Publication Date Title
JP6214889B2 (ja) プロセス監視診断装置
JP5284433B2 (ja) プロセス監視・診断・支援装置
JP5996384B2 (ja) プロセス監視診断装置、プロセス監視診断プログラム
JP4762088B2 (ja) プロセス異常診断装置
Aguado et al. Multivariate SPC of a sequencing batch reactor for wastewater treatment
JP5813317B2 (ja) プロセス状態監視装置
JP4468269B2 (ja) プロセス監視装置及びその方法
Wang Robust data-driven modeling approach for real-time final product quality prediction in batch process operation
Garcia-Alvarez et al. Fault detection and isolation in transient states using principal component analysis
JP6933899B2 (ja) プラント運転支援装置、プラント運転支援方法、及びプラント運転支援プログラム
JP4604987B2 (ja) 水処理プラントの運転管理方法および装置
García-Muñoz et al. Model predictive monitoring for batch processes
JP6606003B2 (ja) プロセス診断装置、プロセス診断方法及びコンピュータプログラム
JP2018120343A (ja) プロセス診断装置、プロセス診断方法及びプロセス診断システム
Marais et al. Comparing statistical process control charts for fault detection in wastewater treatment
JP2024001315A (ja) プロセス監視装置、プロセス監視方法及びプログラム
JP5722371B2 (ja) ノウハウ可視化装置及びノウハウ可視化方法
WO2020054850A1 (ja) プロセス監視支援装置、プロセス監視支援システム、プロセス監視支援方法、プロセス監視支援プログラム及び端末装置
JP2014106841A (ja) エネルギー管理支援装置および方法、ならびにプログラム
Rusinov et al. Real time diagnostics of technological processes and field equipment
Kaneko et al. Data density-based fault detection and diagnosis with nonlinearities between variables and multimodal data distributions
JP6749219B2 (ja) プラント運転データ解析システム
Ivan Fault Detection in Wastewater Treatment: Process Supervision to Improve Wastewater Reuse
JP7551425B2 (ja) プラント監視支援装置
JP7566525B2 (ja) プロセス監視支援装置、プロセス監視支援方法、プロセス監視支援プログラム及び端末装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480010812.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14765435

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201506444

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 14765435

Country of ref document: EP

Kind code of ref document: A1