WO2014141666A1 - 光波長測定方法および光波長測定装置 - Google Patents

光波長測定方法および光波長測定装置 Download PDF

Info

Publication number
WO2014141666A1
WO2014141666A1 PCT/JP2014/001316 JP2014001316W WO2014141666A1 WO 2014141666 A1 WO2014141666 A1 WO 2014141666A1 JP 2014001316 W JP2014001316 W JP 2014001316W WO 2014141666 A1 WO2014141666 A1 WO 2014141666A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
input light
measuring
beams
scale
Prior art date
Application number
PCT/JP2014/001316
Other languages
English (en)
French (fr)
Inventor
毅 小西
豪真 佐藤
知貴 永島
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Priority to JP2015505282A priority Critical patent/JP6056096B2/ja
Priority to US14/775,321 priority patent/US9846081B2/en
Priority to EP14765498.2A priority patent/EP2975372A4/en
Publication of WO2014141666A1 publication Critical patent/WO2014141666A1/ja
Priority to US15/812,049 priority patent/US10481004B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/457Correlation spectrometry, e.g. of the intensity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0297Constructional arrangements for removing other types of optical noise or for performing calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2803Investigating the spectrum using photoelectric array detector
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating
    • G01J2003/1842Types of grating
    • G01J2003/1861Transmission gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J2003/2866Markers; Calibrating of scan

Definitions

  • the present invention relates to a method and apparatus for measuring the wavelength of light.
  • a dispersion element for example, a diffraction grating, a prism, or an etalon
  • an interferometer or the like
  • the general measurement accuracy is about several nanometers when the measurable bandwidth is wide, and about several picometers when the measurable bandwidth is narrow.
  • the technical level of the conventional wavelength measurement is already complete, and it is difficult to achieve high accuracy with the conventional approach.
  • the pitch of a diffraction grating used as a dispersive element has already been reduced to about the wavelength to be measured. Therefore, it is difficult to improve the measurement accuracy by reducing the pitch of the diffraction grating or by improving the creation accuracy of the diffraction grating.
  • the present invention provides an optical wavelength measurement method and an optical wavelength measurement apparatus that can measure the wavelength of light with high accuracy.
  • An optical wavelength measurement method is an optical wavelength measurement method for measuring the wavelength of input light, and is a second method for outputting a plurality of second beams at a plurality of positions corresponding to the wavelength of the input light.
  • the wavelength of the input light by using the plurality of second beams output at a plurality of positions corresponding to the wavelength of the input light as a vernier. Therefore, it is possible to measure the wavelength with higher accuracy than when measuring the wavelength using the conventional main scale.
  • the second dispersion device a diffraction grating having a pitch change can be used, and it is not necessary to greatly improve the creation accuracy of the dispersion device. Therefore, the wavelength can be measured with high accuracy relatively easily.
  • the step of inputting the input light to a first dispersion device that outputs a first beam at a position corresponding to the wavelength of the input light; and the output from the first dispersion device A step of determining a wavelength range of the input light based on a positional relationship between the first beam and the main scale, wherein the step of measuring the wavelength of the input light is output from the second dispersion device.
  • the wavelength of the input light can be measured with high accuracy by adding the measurement using the vernier to the measurement using the main scale.
  • the main beam out of the plurality of second beams output from the second dispersion device for each wavelength range having a size corresponding to the scale interval of the main scale.
  • size corresponding to the scale interval of a main scale is measured. Can do. Therefore, when the input light includes components of a plurality of wavelengths, the intensity of each wavelength component can be measured with high accuracy.
  • the optical wavelength measurement method further includes a step of converting an input optical analog signal into the input light having a wavelength corresponding to a signal intensity, and a step of generating a digital signal according to the measured wavelength of the input light. But you can.
  • a recording medium such as a system, apparatus, integrated circuit, computer program, or computer-readable CD-ROM, and the system, method, integrated circuit, and computer program. And any combination of recording media.
  • the light wavelength measurement method can measure the wavelength of light with high accuracy.
  • FIG. 1 is a diagram illustrating an example of a configuration of an optical wavelength measurement device according to the first embodiment.
  • FIG. 2 is a diagram for explaining an example of the configuration of the optical wavelength measurement device according to the first embodiment.
  • FIG. 3 is a flowchart showing an example of the optical wavelength measurement method in the first embodiment.
  • FIG. 4 is a diagram illustrating an example of a configuration of an optical wavelength measurement device according to a modification of the first embodiment.
  • FIG. 5 is a diagram for explaining an example of the configuration of the optical wavelength measurement apparatus according to the second embodiment.
  • FIG. 6 is a flowchart illustrating an example of an optical wavelength measurement method according to the second embodiment.
  • FIG. 7 is a diagram illustrating an example of the configuration of the optical A / D converter.
  • FIG. 8 is a diagram showing output results of a plurality of beams for each of the three input lights.
  • FIG. 9 is a diagram showing the relationship between the main scale and the sub-scale in the experiment.
  • FIG. 10 is a diagram showing an experimental result of wavelength measurement using three second beams as vernier.
  • FIG. 11 is an explanatory diagram of a simulation result of the optical wavelength measurement method according to the second embodiment.
  • the optical wavelength measurement apparatus specifies the wavelength range of input light based on the positional relationship between the first beam output from the first dispersion device and the main scale. Then, the optical wavelength measuring apparatus measures the wavelength of the input light within the specified wavelength range by using the plurality of second beams output from the second dispersion device as a vernier scale.
  • FIG. 1 is a diagram illustrating an example of the configuration of the optical wavelength measurement device 100 according to the first embodiment.
  • FIG. 2 is a diagram for explaining an example of the configuration of the optical wavelength measurement device 100 according to the first embodiment.
  • the input light input beam
  • the input light is light composed of only a single wavelength component (hereinafter referred to as “monochromatic light”).
  • the measurement target of the optical wavelength measuring device 100 is not limited to monochromatic light. That is, the optical wavelength measuring device 100 may measure the wavelength of light including a plurality of wavelength components. Furthermore, the optical wavelength measuring device 100 may measure not only the wavelength but also the intensity (amplitude) of light at the measured wavelength.
  • the optical wavelength measuring device 100 includes a dispersion device 110 and a measuring means 120 as shown in FIG.
  • the distribution device 110 includes a first distribution device 110a and a second distribution device 110b.
  • the first dispersion device 110a outputs the first beam at a position corresponding to the wavelength of the input light. For example, as shown in FIG. 2A, the first dispersion device 110a reflects the input light at a position depending on the wavelength of the input light.
  • the first dispersion device 110a is a reflective diffraction grating having a characteristic (angular dispersion characteristic) in which the diffraction angle changes with respect to the wavelength of the input light.
  • the first dispersion device 110a is not limited to the reflective diffraction grating as shown in FIG.
  • the first dispersion device 110a may be a transmissive diffraction grating.
  • the first dispersion device 110a may be a prism or an etalon, for example.
  • the second dispersion device 110b outputs a plurality of second beams at a plurality of positions corresponding to the wavelength of the input light. For example, as shown in FIG. 2B, the second dispersion device 110b reflects the input light at a plurality of positions depending on the wavelength of the input light and arranged at substantially equal intervals. .
  • the substantially equal interval includes an interval within a range that can be regarded as substantially the same as a strict equal interval.
  • the second dispersion device 110b is a reflective diffraction grating in which a diffraction grating is formed so that the pitch changes with respect to the incident direction of input light.
  • the second dispersion device 110b is not limited to the reflective diffraction grating.
  • the second dispersion device 110b may be a transmissive diffraction grating.
  • the second dispersion device 110b may be an AWG (Arrayed Waveguide Grating) device, for example, instead of a diffraction grating.
  • the second distributed device 110b may be realized by CGH (Computer Generated Hologram).
  • the first dispersion device 110a and the second dispersion device 110b are arranged side by side in a direction (depth direction of the paper) perpendicular to a plane from which a plurality of second beams are output.
  • the first distribution device 110a and the second distribution device 110b may be integrated or separate.
  • distribution device 110b may be alternately installed in the same position, for example.
  • the measuring means 120 uses the plurality of second beams output from the second dispersion device 110b as a sub measure for measuring the wavelength of the input light within the wavelength range specified by the main measure, and Measure the wavelength.
  • the measurement means 120 first specifies the wavelength range of the input light based on the positional relationship between the first beam output from the first dispersion device 110a and the main scale. Then, the measuring unit 120 extracts the second beam output at a position corresponding to the scale of the main scale from the plurality of second beams output from the second dispersion device 110b. Measure the wavelength of the input light within the range. That is, the measuring unit 120 is identified by extracting the second beam output at a position that coincides with one of the main scales from the plurality of second beams output from the second dispersion device 110b. Measure the wavelength of the input light within the wavelength range.
  • the main scale is a scale for measuring the wavelength. That is, the main scale is a scale for measuring the wavelength of the input light with the first accuracy or the first resolution determined in advance.
  • the main scale associates the output position of the first beam with the wavelength range of the input light.
  • the vernier scale is an auxiliary scale for measuring the value less than one scale of the main scale more finely. That is, the vernier is a scale for measuring the wavelength of the input light with a second accuracy higher than the first accuracy or a second resolution finer than the first resolution based on the wavelength measured by the main measure. is there.
  • each of the plurality of second beams corresponds to one scale of a vernier.
  • the scale interval of the vernier scale is different from the scale interval of the main scale.
  • the wavelength can be measured in a measurement unit of 1/10 of the main scale.
  • the scale interval of the vernier is 19/20 of the scale interval of the main scale
  • the wavelength can be measured in a measurement unit of 1/20 of the main scale.
  • the vernier scale interval (second beam interval) is (n-1) / n (where n is an integer greater than 1) of the main scale interval (pixel interval of the imaging device).
  • the wavelength is measured in a measurement unit of 1 / n of the main scale.
  • the scale interval of the vernier scale may be larger than the scale interval of the main scale. Even in this case, if there is a difference in the scale interval between the main scale and the sub-scale, the wavelength can be measured in a measurement unit smaller than the main scale.
  • the measurement unit 120 includes a lens 121, an imaging device 122, and a measurement unit 123.
  • the lens 121 is installed between the dispersion device 110 and the imaging device 122.
  • the lens 121 refracts the first beam output from the first dispersive device 110a and the plurality of second beams output from the second dispersive device 110b so as to enter the imaging device 122.
  • the imaging device 122 is an image sensor (for example, a CMOS (Complementary Metal Oxide Semiconductor) image sensor or a CCD (Charge Coupled Device) image sensor).
  • the imaging device 122 has at least one pixel column. Each pixel included in the pixel column is arranged at a position corresponding to the main scale.
  • the measurement unit 123 acquires the light intensity distribution formed by the first beam from the imaging device 122. Then, the measuring unit 123 specifies the wavelength range of the input light based on the main scale corresponding to the position of the pixel where the highest intensity is obtained in the light intensity distribution formed by the first beam.
  • the measurement unit 123 acquires the light intensity distribution formed by the plurality of second beams from the imaging device 122. Then, the measurement unit 123 extracts the second beam having the highest intensity among the plurality of second beams based on the light intensity distribution formed by the plurality of second beams.
  • the second beam extracted in this way corresponds to the second beam output at a position corresponding to the main scale. That is, the extracted second beam corresponds to a vernier scale that matches the scale of the main scale. Therefore, the measurement unit 123 measures the wavelength of the input light within the specified wavelength range according to the extracted second beam.
  • FIG. 3 is a flowchart showing an example of the optical wavelength measurement method in the first embodiment.
  • the measuring unit 120 specifies the wavelength range of the input light based on the positional relationship between the first beam output from the first dispersion device 110a and the main scale (S104).
  • step S106 may be executed in parallel with step S102.
  • the measuring unit 120 extracts the second beam output at a position corresponding to the main scale from the plurality of second beams output from the second dispersion device 110b as described above.
  • the wavelength of the input light is measured within the specified wavelength range (S108).
  • the input light using the plurality of second beams output to the plurality of positions corresponding to the wavelength of the input light as the vernier. Can be measured. Therefore, it is possible to measure the wavelength with higher accuracy than when measuring the wavelength using the conventional main scale.
  • the second dispersion device a diffraction grating having a pitch change can be used, and it is not necessary to greatly improve the creation accuracy of the dispersion device. Therefore, the wavelength can be measured with high accuracy relatively easily.
  • the measuring unit 120 may not include the lens 121 and the imaging device 122.
  • the measurement unit 120 may include a member that is simply graduated instead of the imaging device 122. Even in this case, the wavelength can be measured with high accuracy by using the vernier by visual observation by the user.
  • FIG. 4 is a diagram illustrating an example of the configuration of the optical wavelength measurement device 150 according to the modification of the first embodiment.
  • the optical wavelength measurement device 150 includes a dispersion device 110 and a measurement unit 170.
  • the measuring unit 170 includes a lens 121, a slit member 172, a lens 173, an imaging device 174, and a measuring unit 175.
  • the slit members 172 are each formed with a slit at the position of the main scale. Therefore, only the second beam output at a position corresponding to the scale of the main scale among the plurality of second beams passes through the slit member 172 and reaches the lens 173.
  • the lens 173 refracts the second beam that has passed through the slit member 172, and makes the second beam incident on a pixel that is included in the imaging device 174 and that corresponds to the second beam. That is, the second beam that has passed through the slit member 172 is incident on the pixel corresponding to the relative position of the second beam among the plurality of second beams. For example, in FIG. 4, when the seventh second beam from the top of the plurality of second beams passes through the slit member 172, the second beam that has passed passes through the imaging device 174 to the fourth pixel from the top. Incident.
  • the imaging device 174 is an image sensor having pixels equal to or more than the number of the plurality of second beams.
  • the measurement unit 175 detects the position of the pixel on which the second beam that has passed through the slit member 172 is incident. Then, the measuring unit 175 identifies which second beam of the plurality of second beams has passed through the slit member 172 based on the detected pixel position. And the measurement part 175 measures the wavelength corresponding to the specified 2nd beam as the wavelength of input light within the wavelength range specified by the main scale. That is, the measurement unit 175 can measure the wavelength of the input light within the wavelength range specified by the main scale by detecting which pixel of the imaging device 174 the second beam is incident on.
  • the wavelength of the input light is measured with high accuracy by adding the wavelength measurement using the vernier to the wavelength measurement using the conventional main ruler. can do.
  • the input light is monochromatic light
  • the input light includes a plurality of wavelength components within the wavelength range specified by the main scale.
  • the optical wavelength measuring device can measure a plurality of wavelengths. That is, the optical wavelength measuring device can distinguish and measure a plurality of wavelengths of input light included in the wavelength range specified by the main scale.
  • the optical wavelength measuring device in the present embodiment uses the plurality of second beams for each wavelength range having a size corresponding to the main scale interval, and the wavelength and intensity (amplitude) of each component included in the input light. Measure.
  • FIG. 5 is a diagram for explaining an example of the configuration of the optical wavelength measurement apparatus 200 according to the second embodiment.
  • the input light input beam
  • the input light is light composed of components of a plurality of wavelengths.
  • the optical wavelength measurement apparatus 200 includes a dispersion device 210 and a measurement unit 220.
  • the dispersion device 210 outputs a plurality of beams at a plurality of positions corresponding to the wavelength of the input light.
  • the distribution device 210 corresponds to the second distribution device 110b of the first embodiment. That is, the plurality of beams correspond to a plurality of second beams.
  • the plurality of beams output from the dispersion device 210 include a plurality of beams for each wavelength component.
  • the measuring unit 220 calculates the intensity of the beam output at a position corresponding to the main scale among the plurality of beams output from the dispersion device 210 for each wavelength range having a size corresponding to the main scale. By measuring, the wavelength and intensity of each component contained in the input light are measured.
  • the wavelength range having a size corresponding to the scale interval of the main scale corresponds to the wavelength accuracy or resolution that can be measured by a plurality of beams output from the dispersion device 210 for one wavelength component.
  • the measurement unit 220 includes a lens 221, an imaging device 222, an optical filter 223, and a measurement unit 224.
  • the lens 221 is installed between the dispersion device 210 and the imaging device 222.
  • the lens 221 refracts the plurality of beams output from the dispersion device 210 and makes the light incident on the optical filter 223.
  • the imaging device 222 is an image sensor (for example, a CMOS image sensor or a CCD image sensor).
  • the imaging device 222 has a plurality of pixel columns respectively corresponding to a plurality of wavelength ranges.
  • each pixel included in each pixel column is arranged at a position corresponding to the main scale.
  • the optical filter 223 is installed between the lens 221 and the imaging device 222.
  • the optical filter 223 has a plurality of filter regions respectively corresponding to the plurality of pixel columns of the imaging device 222.
  • Each filter region passes only a beam having a wavelength range corresponding to each pixel column. That is, the plurality of beams that have passed through each filter region are incident on the corresponding pixel column. That is, a plurality of beams in a wavelength range corresponding to the pixel column reach each pixel column.
  • the measurement unit 224 acquires the light intensity distribution formed by a plurality of beams for each pixel column of the imaging device 222.
  • This light intensity distribution corresponds to the intensity of the beam output at a position corresponding to each scale on the main scale. That is, the measurement unit 224 acquires the light intensity distribution formed by a plurality of beams for each pixel column of the imaging device 222, so that each component included in the input light for each wavelength range corresponding to the pixel column. Wavelength and intensity can be measured. That is, the measurement unit 224 can measure the spectrum of the input light with high accuracy.
  • FIG. 6 is a flowchart showing an example of the optical wavelength measurement method according to the second embodiment.
  • step S204 input light is input to the dispersion device 210 (S202). Subsequently, the process of step S204 is executed for each wavelength range.
  • the measuring means 220 measures the beam output at a position corresponding to the main scale among the plurality of beams output from the dispersion device 210 for each wavelength range having a size corresponding to the main scale interval. By measuring the intensity, the wavelength and intensity of the input light are measured in the wavelength range (S204).
  • the main scale is selected from the plurality of beams for each wavelength range having a size corresponding to the main scale interval.
  • the intensity of the beam output at the corresponding position can be measured. Therefore, when the input light includes components of a plurality of wavelengths, the intensity of each wavelength component can be measured with high accuracy.
  • the pixel interval may be changed for each pixel column (that is, a wavelength range corresponding to the pixel column).
  • FIG. 11 is an explanatory diagram of a simulation result of the optical wavelength measurement method according to the second embodiment.
  • the rectangular block indicating each of the input light and the plurality of beams represents a spectral distribution. Further, the interval between the plurality of beams (sub-scales) is 0.96 times the interval between the main scales.
  • optical wavelength measurement device has been described above based on the embodiment, but the present invention is not limited to this embodiment. Unless it deviates from the gist of the present invention, various modifications conceived by those skilled in the art have been made in this embodiment, and forms constructed by combining components in different embodiments are also within the scope of one or more aspects. May be included.
  • the lens included in the measuring means is a transmission lens, but may be a reflection lens.
  • the measurement means may include a plurality of lenses.
  • the optical wavelength measuring device may include a slit member as in the modification of the first embodiment.
  • the optical wavelength measuring device may further include an optical filter.
  • an optical filter that removes components of wavelengths other than the measurement target range may be installed between the dispersion device and the lens, or between the lens and the imaging device.
  • an optical filter for removing diffracted light of an order other than the target order may be installed.
  • FIG. 7 is a diagram illustrating an example of a configuration of an optical A / D conversion device including the above-described optical wavelength measurement device as a spectrum analyzer.
  • the optical A / D converter of FIG. 7 converts an input optical analog signal into an optical signal having a wavelength corresponding to the signal intensity, and measures the wavelength of the converted optical signal (input light). Generate.
  • the optical wavelength measuring device in each of the above embodiments it is possible to improve the resolution of optical quantization or reduce the A / D conversion error. It becomes possible. Note that the detailed description of the optical A / D conversion device in FIG.
  • FIG. 8 is a diagram showing output results of three second beams for each of the three input lights.
  • the three second beams of the second input light were shifted to the left with respect to the three second beams of the first input light. Further, the three second beams of the third input light are shifted to the left with respect to the three second beams of the second input light. That is, as the wavelength increases, the second beam is shifted to the left.
  • FIG. 9 is a diagram showing the relationship between the main scale and the sub-scale in the experiment.
  • the second scale of the main scale was 2.2 cm
  • FIG. 10 is a diagram showing experimental results of wavelength measurement using three second beams as vernier. Specifically, FIG. 10 shows a result of superimposing a main scale on three second beams corresponding to each input light.
  • the second beam at the right end is also used as the first beam.
  • the first beam of the first input light coincided with the scale on the right side of the main scale
  • the first beam of the third input light was not shifted to the center scale of the main scale. That is, a difference of 40 nm could not be determined only by the first beam and the main scale. Therefore, the measurement unit of this main scale was larger than 40 nm, and the wavelength range specified by the main scale was larger than 40 nm.
  • the second beams output at positions corresponding to the scales of the main scale are different second beams for the first to third input lights. That is, in the first input light, the rightmost second beam is output to a position corresponding to the main scale, and in the second input light, the center second beam is output to a position corresponding to the main scale. In the input light, the second beam at the left end was output at a position corresponding to the main scale.
  • the difference in the wavelengths of the first to third input lights could be discriminated. That is, by using the three second beams as the vernier, it was possible to measure the wavelength of the input light with a measurement unit of 20 nm smaller than the measurement unit of the main scale.
  • the optical wavelength measuring device can measure the wavelength of input light with high accuracy, and can be applied to, for example, a spectrum analyzer and an optical A / D converter.
  • Optical wavelength measuring apparatus 110 210 Dispersion device 110a First dispersion device 110b Second dispersion device 120, 170, 220 Measuring means 121, 173, 221 Lens 122, 174, 222 Imaging device 123, 175, 224 Measurement 172 Slit member 223 Optical filter

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

入力光の波長を測定する光波長測定方法は、入力光の波長に対応する複数の位置に複数の第2ビームを出力する第2分散デバイスに入力光を入力するステップ(S106、S202)と、第2分散デバイスから出力された複数の第2ビームを、主尺によって特定される波長の範囲内で入力光の波長を測定するための副尺として用いて、入力光の波長を測定するステップ(S108、S204)とを含む。

Description

光波長測定方法および光波長測定装置
 本発明は、光の波長を測定する方法および装置に関する。
 従来、光の波長あるいはスペクトルの測定において、光の波長に対する角度分散特性を有する分散素子(例えば、回折格子、プリズムあるいはエタロンなど)または干渉計などが用いられる(例えば、特許文献1を参照)。
 このような測定において、測定可能な光の帯域の広さと測定精度とはトレードオフの関係を有する。一般的な測定精度は、測定可能な帯域が広い場合には数ナノメートル程度であり、測定可能な帯域が狭い場合には数ピコメートル程度である。
特開2005-338021号公報
Tsuyoshi Konishi, Kazunori Tanimura, and Kousuke Asano, "All-optical analog-to-digital converter by use of self-frequency shifting in fiber and a pulse-shaping technique", JOSA B, Vol.19, Issue 11, pp.2817-2823 (2002)
 近年、直交周波数分割多重化方式(OFDM:Orthogonal Frequency-Division Multiplexing)による情報通信の分野などにおいて、従来よりも高精度な光波長測定技術が求められている。
 しかしながら、上記従来の波長測定の技術レベルは既に完成度が高く、従来のアプローチでは高精度化が難しい。例えば、分散素子として用いられる回折格子のピッチは、すでに測定対象の波長程度まで小さくなっている。そのため、回折格子のピッチを小さくすること、あるいは回折格子の作成精度を向上させることにより、測定精度を向上させることは難しい。
 そこで、本発明は、光の波長を高精度に測定することができる光波長測定方法および光波長測定装置を提供する。
 本発明の一態様に係る光波長測定方法は、入力光の波長を測定する光波長測定方法であって、前記入力光の波長に対応する複数の位置に複数の第2ビームを出力する第2分散デバイスに前記入力光を入力するステップと、前記第2分散デバイスから出力された前記複数の第2ビームを、主尺によって特定される波長の範囲内で前記入力光の波長を測定するための副尺として用いて、前記入力光の波長を測定するステップとを含む。
 これによれば、入力光の波長に対応する複数の位置に出力された複数の第2ビームを副尺として用いて入力光の波長を測定することができる。したがって、従来の主尺を用いて波長を測定する場合よりも高い精度で波長を測定することができる。また、第2分散デバイスとしては、ピッチが変化する回折格子などを利用することができ、分散デバイスの作成精度を大きく向上させる必要がない。したがって、比較的容易に波長を高精度に測定することができる。
 例えば、前記光波長測定方法は、さらに、前記入力光の波長に対応する位置に第1ビームを出力する第1分散デバイスに前記入力光を入力するステップと、前記第1分散デバイスから出力された第1ビームと前記主尺との位置関係に基づいて、前記入力光の波長の範囲を特定するステップとを含み、前記入力光の波長を測定するステップでは、前記第2分散デバイスから出力された前記複数の第2ビームの中から前記主尺の目盛りに対応する位置に出力された第2ビームを抽出することにより、特定された前記波長の範囲内で前記入力光の波長を測定してもよい。
 これによれば、従来の主尺を用いた測定に副尺を用いた測定を加えることにより、入力光の波長を高精度に測定することができる。
 例えば、前記入力光の波長を測定するステップでは、前記主尺の目盛り間隔に対応する大きさの波長の範囲ごとに、前記第2分散デバイスから出力された前記複数の第2ビームのうち前記主尺の目盛りに対応する位置に出力された第2ビームの強度を測定することにより、前記入力光に含まれる各成分の波長および強度を測定してもよい。
 これによれば、主尺の目盛り間隔に対応する大きさの波長の範囲ごとに、複数の第2ビームのうち主尺の目盛りに対応する位置に出力された第2ビームの強度を測定することができる。したがって、入力光に複数の波長の成分が含まれる場合に、各波長の成分の強度を高精度に測定することができる。
 例えば、前記光波長測定方法は、さらに、入力光アナログ信号を信号強度に対応する波長の前記入力光に変換するステップと、測定された前記入力光の波長に従ってデジタル信号を生成するステップとを含んでもよい。
 これによれば、光量子化の分解能の向上あるいはA/D変換エラーの低減を実現することができる。
 なお、これらの包括的または具体的な態様は、システム、装置、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。
 本発明の一態様に係る光波長測定方法は、高精度に光の波長を測定することができる。
図1は、実施の形態1における光波長測定装置の構成の一例を示す図である。 図2は、実施の形態1における光波長測定装置の構成の一例を説明するための図である。 図3は、実施の形態1における光波長測定方法の一例を示すフローチャートである。 図4は、実施の形態1の変形例における光波長測定装置の構成の一例を示す図である。 図5は、実施の形態2における光波長測定装置の構成の一例を説明するための図である。 図6は、実施の形態2における光波長測定方法の一例を示すフローチャートである。 図7は、光A/D変換装置の構成の一例を示す図である。 図8は、3つの入力光の各々に対する複数のビームの出力結果を示す図である。 図9は、実験における主尺と副尺との関係を示す図である。 図10は、3つの第2ビームを副尺として用いた波長測定の実験結果を示す図である。 図11は、実施の形態2における光波長測定方法のシミュレーション結果の説明図である。
 以下、実施の形態について、図面を参照しながら具体的に説明する。
 なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、請求の範囲を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 (実施の形態1)
 実施の形態1における光波長測定装置は、第1分散デバイスから出力される第1ビームと主尺(main scale)との位置関係に基づいて入力光の波長の範囲を特定する。そして、光波長測定装置は、第2分散デバイスから出力される複数の第2ビームを副尺(vernier scale)として用いて、特定された波長の範囲内において入力光の波長を測定する。
 <光波長測定装置の構成>
 まず、本実施の形態における光波長測定装置の構成について説明する。
 図1は、実施の形態1における光波長測定装置100の構成の一例を示す図である。図2は、実施の形態1における光波長測定装置100の構成の一例を説明するための図である。ここでは、入力光(入力ビーム)が、単一の波長の成分のみからなる光(以下において「単色光」という)である場合について説明する。
 なお、光波長測定装置100の測定対象は、単色光に限定されない。つまり、光波長測定装置100は、複数の波長の成分を含む光の波長を測定してもよい。さらに、光波長測定装置100は、波長のみではなく、測定された波長における光の強度(振幅)を測定してもよい。
 光波長測定装置100は、図1に示すように、分散デバイス110と、測定手段120とを備える。
 <分散デバイス>
 分散デバイス110は、第1分散デバイス110aと、第2分散デバイス110bとを有する。
 第1分散デバイス110aは、入力光の波長に対応する位置に第1ビームを出力する。例えば、第1分散デバイス110aは、図2の(a)に示すように、入力光の波長に依存する位置に入力光を反射する。
 本実施の形態では、第1分散デバイス110aは、入力光の波長に対して回折角度が変化する特性(角度分散特性)を有する反射型回折格子である。なお、第1分散デバイス110aは、図2の(a)のような反射型回折格子に限定されない。例えば、第1分散デバイス110aは、透過型回折格子であってもよい。また、第1分散デバイス110aは、例えばプリズムあるいはエタロンであってもよい。
 第2分散デバイス110bは、入力光の波長に対応する複数の位置に複数の第2ビームを出力する。例えば、第2分散デバイス110bは、図2の(b)に示すように、入力光の波長に依存する複数の位置であって実質的に等間隔に並んだ複数の位置に入力光を反射する。実質的に等間隔とは、厳密な等間隔と実質的に同一とみなせる範囲内の間隔を含む。
 本実施の形態では、第2分散デバイス110bは、入力光の入射方向に対してピッチが変化するように回折格子が形成された反射型回折格子である。なお、第2分散デバイス110bは、反射型回折格子に限定されない。例えば、第2分散デバイス110bは、透過型回折格子であってもよい。また、第2分散デバイス110bは、回折格子ではなく、例えばAWG(Arrayed Waveguide Grating)デバイスであってもよい。また例えば、第2分散デバイス110bは、CGH(Computer Generated Hologram)によって実現されてもよい。
 本実施の形態では、第1分散デバイス110aおよび第2分散デバイス110bは、複数の第2ビームが出力される平面と直交する方向(紙面の奥行き方向)に並んで配置されている。この場合、第1分散デバイス110aおよび第2分散デバイス110bは、一体であってもよいし、別体であってもよい。なお、第1分散デバイス110aおよび第2分散デバイス110bは、例えば、同じ位置に交代で設置されてもよい。
 <測定手段>
 測定手段120は、第2分散デバイス110bから出力された複数の第2ビームを、主尺によって特定される波長の範囲内で入力光の波長を測定するための副尺として用いて、入力光の波長を測定する。
 具体的には、測定手段120は、まず、第1分散デバイス110aから出力された第1ビームと主尺との位置関係に基づいて、入力光の波長の範囲を特定する。そして、測定手段120は、第2分散デバイス110bから出力された複数の第2ビームの中から主尺の目盛りに対応する位置に出力された第2ビームを抽出することにより、特定された波長の範囲内で入力光の波長を測定する。つまり、測定手段120は、第2分散デバイス110bから出力された複数の第2ビームの中から主尺の目盛りのいずれかと一致する位置に出力された第2ビームを抽出することにより、特定された波長の範囲内で入力光の波長を測定する。
 主尺とは、波長を測定するための目盛りである。つまり、主尺は、予め定められた第1精度あるいは第1分解能で入力光の波長を測定するための目盛りである。ここでは、主尺は、第1ビームの出力位置と入力光の波長の範囲とを対応付ける。
 また、副尺とは、主尺の一目盛り未満の値をさらに細かく測定するための補助目盛りである。つまり、副尺は、主尺によって測定された波長に基づいて、第1精度より高い第2精度、あるいは、第1分解能よりも細かい第2分解能で、入力光の波長を測定するための目盛りである。ここでは、複数の第2ビームの各々が副尺の一目盛りに相当する。
 なお、副尺の目盛り間隔は、主尺の目盛り間隔と異なる。例えば、副尺の目盛り間隔が主尺の目盛り間隔の9/10である場合、主尺の1/10の測定単位で波長を測定することができる。また例えば、副尺の目盛り間隔が主尺の目盛り間隔の19/20である場合、主尺の1/20の測定単位で波長を測定することができる。つまり、副尺の目盛り間隔(第2ビームの間隔)が主尺の目盛り間隔(撮像デバイスの画素の間隔)の(n-1)/n(ただし、nは1より大きい整数)となるように複数の第2ビームが出力されることにより、主尺の1/nの測定単位で波長が測定される。なお、副尺の目盛り間隔は主尺の目盛り間隔よりも大きくてもよい。この場合であっても、主尺と副尺とにおいて目盛り間隔に差異があれば主尺よりも小さな測定単位で波長を測定することができる。
 ここで、測定手段120の具体的な構成の一例について説明する。本実施の形態では、測定手段120は、レンズ121と、撮像デバイス122と、測定部123とを備える。
 レンズ121は、分散デバイス110と撮像デバイス122との間に設置される。レンズ121は、第1分散デバイス110aから出力された第1ビームと、第2分散デバイス110bから出力された複数の第2ビームとを屈折させて、撮像デバイス122に入射させる。
 撮像デバイス122は、イメージセンサ(例えば、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサあるいはCCD(Charge Coupled Device)イメージセンサなど)である。撮像デバイス122は、少なくとも1つの画素列を有する。画素列に含まれる各画素は、主尺の目盛りに対応する位置に配置されている。
 測定部123は、撮像デバイス122から第1ビームによって形成された光強度分布を取得する。そして、測定部123は、第1ビームによって形成された光強度分布において最も大きい強度が得られた画素の位置に対応する主尺の目盛りに基づいて、入力光の波長の範囲を特定する。
 さらに、測定部123は、撮像デバイス122から複数の第2ビームによって形成された光強度分布を取得する。そして、測定部123は、複数の第2ビームによって形成された光強度分布に基づいて、複数の第2ビームの中で最も大きい強度が得られた第2ビームを抽出する。
 このように抽出された第2ビームは、主尺の目盛りに対応する位置に出力された第2ビームに相当する。つまり、抽出された第2ビームは、主尺の目盛りと一致する副尺の目盛りに相当する。そこで、測定部123は、抽出された第2ビームに従って、特定された波長の範囲内で入力光の波長を測定する。
 <光波長測定方法>
 次に、以上のように構成された光波長測定装置100を用いて入力光の波長を測定する方法を説明する。
 図3は、実施の形態1における光波長測定方法の一例を示すフローチャートである。
 まず、第1分散デバイス110aに入力光が入力される(S102)。続いて、測定手段120は、上述したように第1分散デバイス110aから出力された第1ビームと主尺との位置関係に基づいて、入力光の波長の範囲を特定する(S104)。
 次に、第2分散デバイス110bに入力光が入力される(S106)。なお、このステップS106は、ステップS102と並列に実行されてもよい。
 続いて、測定手段120は、上述したように第2分散デバイス110bから出力された複数の第2ビームの中から主尺の目盛りに対応する位置に出力された第2ビームを抽出することにより、特定された波長の範囲内で入力光の波長を測定する(S108)。
 以上のように、本実施の形態における光波長測定装置および光波長測定方法によれば、入力光の波長に対応する複数の位置に出力された複数の第2ビームを副尺として用いて入力光の波長を測定することができる。したがって、従来の主尺を用いて波長を測定する場合よりも高い精度で波長を測定することができる。また、第2分散デバイスとしては、ピッチが変化する回折格子などを利用することができ、分散デバイスの作成精度を大きく向上させる必要がない。したがって、比較的容易に波長を高精度に測定することができる。
 なお、測定手段120は、レンズ121および撮像デバイス122を備えなくてもよい。この場合、測定手段120は、例えば、撮像デバイス122の代わりに、単に目盛りが付された部材を備えてもよい。この場合であっても、ユーザの目視によって副尺を用いて高精度に波長を測定することができる。
 (実施の形態1の変形例)
 次に、実施の形態1の変形例について説明する。
 図4は、実施の形態1の変形例における光波長測定装置150の構成の一例を示す図である。図4において、図1または図2と同様の構成要素については、同一の符号を付し、説明を適宜省略する。
 光波長測定装置150は、分散デバイス110と、測定手段170とを備える。測定手段170は、レンズ121と、スリット部材172と、レンズ173と、撮像デバイス174と、測定部175とを備える。
 スリット部材172は、主尺の目盛りの位置にそれぞれスリットが形成されている。したがって、複数の第2ビームの中で、主尺の目盛りに対応する位置に出力された第2ビームのみがスリット部材172を通過してレンズ173に到達する。
 レンズ173は、スリット部材172を通過した第2ビームを屈折させて、撮像デバイス174に含まれる画素であって当該第2ビームに対応する画素に入射させる。つまり、スリット部材172を通過した第2ビームは、複数の第2ビームにおける当該第2ビームの相対的な位置に対応する画素に入射する。例えば、図4では、複数の第2ビームのうちの上から7番目の第2ビームがスリット部材172を通過した場合は、通過した第2ビームは、撮像デバイス174の上から4番目の画素に入射する。
 撮像デバイス174は、複数の第2ビームの数以上の画素を有するイメージセンサである。
 測定部175は、スリット部材172を通過した第2ビームが入射した画素の位置を検出する。そして、測定部175は、検出された画素の位置に基づいて、複数の第2ビームのうちのどの第2ビームがスリット部材172を通過したかを特定する。そして、測定部175は、主尺によって特定された波長の範囲内において、特定した第2ビームに対応する波長を、入力光の波長として測定する。つまり、測定部175は、撮像デバイス174のどの画素に第2ビームが入射したかを検出することにより、主尺によって特定された波長の範囲内において入力光の波長を測定することができる。
 以上のように、本変形例における光波長測定装置によれば、従来の主尺を用いた波長の測定に副尺を用いた波長の測定を加えることにより、入力光の波長を高精度に測定することができる。
 なお、上記実施の形態1およびその変形例では、入力光が単色光である場合について説明したが、例えば、入力光が、主尺によって特定される波長の範囲内に複数の波長の成分を含む場合も、光波長測定装置は、複数の波長を測定することができる。つまり、光波長測定装置は、主尺によって特定される波長の範囲に含まれる入力光の複数の波長を区別して測定することができる。
 (実施の形態2)
 次に、実施の形態2について、図面を参照しながら具体的に説明する。本実施の形態における光波長測定装置は、主尺の目盛り間隔に対応する大きさの波長の範囲ごとに、複数の第2ビームを用いて入力光に含まれる各成分の波長および強度(振幅)を測定する。
 <光波長測定装置の構成>
 まず、本実施の形態における光波長測定装置の構成について説明する。
 図5は、実施の形態2における光波長測定装置200の構成の一例を説明するための図である。ここでは、入力光(入力ビーム)が、複数の波長の成分からなる光である場合について説明する。
 図5に示すように、光波長測定装置200は、分散デバイス210と、測定手段220とを備える。
 <分散デバイス>
 分散デバイス210は、入力光の波長に対応する複数の位置に複数のビームを出力する。この分散デバイス210は、実施の形態1の第2分散デバイス110bに相当する。つまり、複数のビームは、複数の第2ビームに相当する。ただし、本実施の形態では、入力光に複数の波長の成分が含まれるので、分散デバイス210が出力する複数のビームは、各波長の成分ごとの複数のビームを含む。
 <測定手段>
 測定手段220は、主尺の目盛り間隔に対応する大きさの波長の範囲ごとに、分散デバイス210から出力された複数のビームのうち主尺の目盛りに対応する位置に出力されたビームの強度を測定することにより、入力光に含まれる各成分の波長および強度を測定する。主尺の目盛り間隔に対応する大きさの波長の範囲とは、1つの波長の成分に対して分散デバイス210から出力される複数のビームによって測定することができる波長の精度あるいは分解能に対応する。
 ここで、測定手段220の具体的な構成の一例について説明する。本実施の形態では、測定手段220は、レンズ221と、撮像デバイス222と、光学フィルタ223と、測定部224とを備える。
 レンズ221は、分散デバイス210と撮像デバイス222との間に設置される。レンズ221は、分散デバイス210から出力された複数のビームを屈折させて、光学フィルタ223に入射させる。
 撮像デバイス222は、イメージセンサ(例えば、CMOSイメージセンサあるいはCCDイメージセンサなど)である。撮像デバイス222は、複数の波長の範囲にそれぞれ対応する複数の画素列を有する。ここでは、各画素列に含まれる各画素は、主尺の目盛りに相当する位置に配置されている。
 光学フィルタ223は、レンズ221と撮像デバイス222との間に設置される。光学フィルタ223は、撮像デバイス222の複数の画素列にそれぞれ対応する複数のフィルタ領域を有する。
 各フィルタ領域は、各画素列に対応する波長の範囲のビームのみを通過させる。つまり、各フィルタ領域を通過した複数のビームは、対応する画素列に入射する。つまり、各画素列には、当該画素列に対応する波長の範囲の複数のビームが到達する。
 測定部224は、撮像デバイス222の画素列ごとに、複数のビームによって形成された光強度分布を取得する。この光強度分布は、主尺の各目盛りに対応する位置に出力されたビームの強度に相当する。つまり、測定部224は、撮像デバイス222の画素列ごとに、複数のビームによって形成された光強度分布を取得することにより、画素列に対応する波長の範囲ごとに、入力光に含まれる各成分の波長および強度を測定することができる。すなわち、測定部224は、入力光のスペクトルを高精度に測定することができる。
 <光波長測定方法>
 次に、以上のように構成された光波長測定装置200を用いて入力光の波長および各波長における入力光の強度を測定する方法を説明する。
 図6は、実施の形態2における光波長測定方法の一例を示すフローチャートである。
 まず、分散デバイス210に入力光が入力される(S202)。続いて、波長の範囲ごとにステップS204の処理が実行される。つまり、測定手段220は、主尺の目盛り間隔に対応する大きさの波長の範囲ごとに、分散デバイス210から出力された複数のビームのうち主尺の目盛りに対応する位置に出力されたビームの強度を測定することにより、当該波長の範囲において入力光の波長および強度を測定する(S204)。
 以上のように、本実施の形態における光波長測定装置および光波長測定方法によれば、主尺の目盛り間隔に対応する大きさの波長の範囲ごとに、複数のビームのうち主尺の目盛りに対応する位置に出力されたビームの強度を測定することができる。したがって、入力光に複数の波長の成分が含まれる場合に、各波長の成分の強度を高精度に測定することができる。
 なお、本実施の形態における撮像デバイス222において、画素列(つまり、画素列に対応する波長の範囲)ごとに、画素の間隔を変化させてもよい。これにより、波長によって複数のビームの間隔が微小に変化するときに、その間隔の変化に適した画素の間隔を実現することができ、高精度に波長を測定することが可能となる。
 <シミュレーション結果>
 ここで、実施の形態2における光波長測定方法のシミュレーション結果について説明する。図11は、実施の形態2における光波長測定方法のシミュレーション結果の説明図である。
 図11において、入力光および複数のビームの各々を示す矩形ブロックは、スペクトル分布を表す。また、複数のビーム(副尺)の間隔は、主尺の間隔の0.96倍である。
 つまり、このシミュレーションでは、分散デバイスによって、主尺の間隔の0.96倍の間隔で並ぶ22個のビームが出力された。そして、図11に示すように、この22個のビームを主尺と重ね合わせた結果、入力光のスペクトル分布を22倍程度引き伸ばしたスペクトル分布が得られた。つまり、入力光に含まれる各波長の成分の強度を高精度に測定することができた。
 (他の実施の形態)
 以上、1つまたは複数の態様に係る光波長測定装置について、実施の形態に基づいて説明したが、本発明は、この実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、1つまたは複数の態様の範囲内に含まれてもよい。
 例えば、上記各実施の形態において、測定手段に含まれるレンズは、透過レンズであったが、反射レンズであってもよい。また、測定手段は、複数のレンズを含んでもよい。
 また、上記実施の形態2において、光波長測定装置は、実施の形態1の変形例のようにスリット部材を備えてもよい。
 また、光波長測定装置は、さらに、光学フィルタを備えてもよい。例えば、測定対象範囲以外の波長の成分を除去する光学フィルタが、分散デバイスおよびレンズの間に、または、レンズおよび撮像デバイスの間に設置されてもよい。また例えば、分散デバイスが回折格子である場合に、目的次数以外の次数の回折光を除去するための光学フィルタが設置されてよい。
 また、光波長測定装置は、光A/D変換(量子化)の技術に適用することができる。図7は、上述の光波長測定装置をスペクトル分析装置(spectrum analyzer)として備える光A/D変換装置の構成の一例を示す図である。
 図7の光A/D変換装置は、入力光アナログ信号を信号強度に対応する波長の光信号に変換し、変換された光信号(入力光)の波長を測定することにより、出力デジタル信号を生成する。この変換された光信号の波長を、上記各実施の形態における光波長測定装置を用いて高精度に測定することにより、光量子化の分解能の向上あるいはA/D変換エラーの低減を実現することが可能となる。なお、図7の光A/D変換装置の詳細な説明は、非特許文献1と同様であるので省略する。
 (実験結果)
 ここで、複数のビーム(第2ビーム)を副尺として用いた波長の測定が可能であることを検証するための実験結果について、図8~図10を参照しながら説明する。なお、以下に示す数値等は、検証のために行った本実験における一例であり、変更されてもよい。
 本実験では、波長がそれぞれ1530nm、1550nmおよび1570nmである3つの入力光の波長を3つの第2ビームを用いて測定(判別)できるか否かを検証した。以下において、波長が1530nmの入力光を第1入力光と呼び、波長が1550nmの入力光を第2入力光と呼び、波長が1570nmの入力光を第3入力光と呼ぶ。
 また本実験では、第2分散デバイスとして、ピッチが異なる3種類の回折格子からなるアレイ状回折格子群を用いた。したがって、この第2分散デバイスからは、3つの第2ビームが出力された。
 図8は、3つの入力光の各々に対する3つの第2ビームの出力結果を示す図である。第2入力光の3つの第2ビームは、第1入力光の3つの第2ビームに対して左側にシフトしていた。また、第3入力光の3つの第2ビームは、第2入力光の3つの第2ビームに対して左側にシフトしていた。つまり、波長が長くなるしたがって、第2ビームは左にシフトしていた。
 図9は、実験における主尺と副尺との関係を示す図である。本実験では、画像上において、主尺の2目盛りが2.2cmであり、副尺の2目盛りが1.88cmであった。つまり、主尺の目盛り間隔が1.1cmであり、副尺の目盛り間隔が0.94cmであった。したがって、主尺の目盛り間隔に対する副尺の目盛り間隔の比は、0.85(=0.94/1.1)であった。
 図10は、3つの第2ビームを副尺として用いた波長測定の実験結果を示す図である。具体的には、図10は、各入力光に対応する3つの第2ビームに主尺の目盛りを重ね合わせた結果を示す。
 ここでは、右端の第2ビームが第1ビームとしても用いられると仮定した。第1入力光の第1ビームが主尺の右側の目盛りと一致していたが、第3入力光の第1ビームは主尺の中央の目盛りまでシフトしていなかった。つまり、第1ビームおよび主尺だけでは、40nmの差異を判別できなかった。したがって、この主尺の測定単位は40nmより大きく、主尺によって特定される波長の範囲は40nmより大きかった。
 これに対して、3つの第2ビームに注目すると、主尺の目盛りに対応する位置に出力された第2ビームは、第1~第3入力光でそれぞれ異なる第2ビームであった。つまり、第1入力光では右端の第2ビームが主尺の目盛りに対応する位置に出力され、第2入力光では中央の第2ビームが主尺の目盛りに対応する位置に出力され、第3入力光では左端の第2ビームが主尺の目盛りに対応する位置に出力されていた。
 すなわち、本実験では、第1~第3入力光の波長の差異を判別することができた。つまり、3つの第2ビームを副尺として用いることにより、主尺の測定単位よりも小さい20nmの測定単位で入力光の波長を測定することができた。
 本発明の一態様に係る光波長測定装置は、入力光の波長を高精度に測定することができ、例えばスペクトル分析装置および光A/D変換装置などに適用できる。
 100、150、200  光波長測定装置
 110、210  分散デバイス
 110a  第1分散デバイス
 110b  第2分散デバイス
 120、170、220  測定手段
 121、173、221  レンズ
 122、174、222  撮像デバイス
 123、175、224  測定部
 172  スリット部材
 223  光学フィルタ

Claims (5)

  1.  入力光の波長を測定する光波長測定方法であって、
     前記入力光の波長に対応する複数の位置に複数の第2ビームを出力する第2分散デバイスに前記入力光を入力するステップと、
     前記第2分散デバイスから出力された前記複数の第2ビームを、主尺によって特定される波長の範囲内で前記入力光の波長を測定するための副尺として用いて、前記入力光の波長を測定するステップとを含む
     光波長測定方法。
  2.  前記光波長測定方法は、さらに、
     前記入力光の波長に対応する位置に第1ビームを出力する第1分散デバイスに前記入力光を入力するステップと、
     前記第1分散デバイスから出力された第1ビームと前記主尺との位置関係に基づいて、前記入力光の波長の範囲を特定するステップとを含み、
     前記入力光の波長を測定するステップでは、
     前記第2分散デバイスから出力された前記複数の第2ビームの中から前記主尺の目盛りに対応する位置に出力された第2ビームを抽出することにより、特定された前記波長の範囲内で前記入力光の波長を測定する
     請求項1に記載の光波長測定方法。
  3.  前記入力光の波長を測定するステップでは、
     前記主尺の目盛り間隔に対応する大きさの波長の範囲ごとに、前記第2分散デバイスから出力された前記複数の第2ビームのうち前記主尺の目盛りに対応する位置に出力された第2ビームの強度を測定することにより、前記入力光に含まれる各成分の波長および強度を測定する
     請求項1に記載の光波長測定方法。
  4.  前記光波長測定方法は、さらに、
     入力光アナログ信号を信号強度に対応する波長の前記入力光に変換するステップと、
     測定された前記入力光の波長に従ってデジタル信号を生成するステップとを含む
     請求項1~3のいずれか1項に記載の光波長測定方法。
  5.  入力光の波長を測定する光波長測定装置であって、
     前記入力光の波長に対応する複数の位置に複数のビームを出力する分散デバイスと、
     前記分散デバイスから出力された前記複数のビームを、主尺によって特定される波長の範囲内で前記入力光の波長を測定するための副尺として用いて、前記入力光の波長を測定する測定手段とを備える
     光波長測定装置。
PCT/JP2014/001316 2013-03-12 2014-03-10 光波長測定方法および光波長測定装置 WO2014141666A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015505282A JP6056096B2 (ja) 2013-03-12 2014-03-10 光波長測定方法および光波長測定装置
US14/775,321 US9846081B2 (en) 2013-03-12 2014-03-10 Light wavelength measurement method and light wavelength measurement apparatus
EP14765498.2A EP2975372A4 (en) 2013-03-12 2014-03-10 METHOD AND APPARATUS FOR MEASURING A LIGHT WAVE LENGTH
US15/812,049 US10481004B2 (en) 2013-03-12 2017-11-14 Light wavelength measurement method and light wavelength measurement apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-049675 2013-03-12
JP2013049675 2013-03-12

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/775,321 A-371-Of-International US9846081B2 (en) 2013-03-12 2014-03-10 Light wavelength measurement method and light wavelength measurement apparatus
US15/812,049 Division US10481004B2 (en) 2013-03-12 2017-11-14 Light wavelength measurement method and light wavelength measurement apparatus

Publications (1)

Publication Number Publication Date
WO2014141666A1 true WO2014141666A1 (ja) 2014-09-18

Family

ID=51536345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001316 WO2014141666A1 (ja) 2013-03-12 2014-03-10 光波長測定方法および光波長測定装置

Country Status (4)

Country Link
US (2) US9846081B2 (ja)
EP (1) EP2975372A4 (ja)
JP (1) JP6056096B2 (ja)
WO (1) WO2014141666A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020203592A1 (ja) * 2019-03-29 2020-10-08 国立大学法人大阪大学 光検出装置、光検出方法、光検出装置の設計方法、試料分類方法、及び、不良検出方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108606779A (zh) * 2018-04-26 2018-10-02 中国科学院长春光学精密机械与物理研究所 一种高速扫频激光光源的扫频参数测量仪
CN108489618A (zh) * 2018-07-02 2018-09-04 北方民族大学 一种激光波长测量装置及其标定方法、测量方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09145477A (ja) * 1995-11-20 1997-06-06 Tokyo Instr:Kk 分光器
JP2005338021A (ja) 2004-05-31 2005-12-08 Yokogawa Electric Corp 波長測定方法およびこれを用いた分光装置
WO2010084957A1 (ja) * 2009-01-22 2010-07-29 独立行政法人産業技術総合研究所 分光放射計

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4326802A (en) * 1980-02-06 1982-04-27 Instrumentation Laboratory Inc. Dual monochromator type of spectroanalysis system
FR2794858A1 (fr) * 1999-06-09 2000-12-15 Denis Trouchet Dispositif analyseur de spectre optique a reseau de diffraction en optique integree
US6640117B2 (en) * 2000-09-26 2003-10-28 Sensys Medical, Inc. Method and apparatus for minimizing spectral effects attributable to tissue state variations during NIR-based non-invasive blood analyte determination
JP2002116087A (ja) 2000-10-10 2002-04-19 Fuji Electric Co Ltd 波長計測装置
JP2004163154A (ja) 2002-11-11 2004-06-10 Fuji Electric Systems Co Ltd 波長計測装置
US7035505B2 (en) * 2003-07-23 2006-04-25 Jds Uniphase Corporation Optical performance monitor
JP2007506947A (ja) * 2003-09-26 2007-03-22 タイダール フォトニクス,インク. 強化されたスペクトル測定システムに関する装置および方法
JP4660694B2 (ja) * 2005-06-28 2011-03-30 コニカミノルタセンシング株式会社 分光装置の波長校正方法及び分光装置
EP1998155A1 (de) * 2007-05-30 2008-12-03 Roche Diagnostics GmbH Verfahren zur Wellenlängenkalibration eines Spektrometers
JP2010084957A (ja) 2008-09-30 2010-04-15 Hitachi Zosen Corp 排ガス冷却塔
JP5709372B2 (ja) * 2009-12-01 2015-04-30 キヤノン株式会社 校正手段、校正方法、及びプログラム
JP6051543B2 (ja) * 2012-03-09 2016-12-27 株式会社リコー 分光計測装置、画像評価装置及び画像形成装置
CN102607702A (zh) * 2012-03-21 2012-07-25 昆山煜肸传感器科技有限公司 宽带参考光源光频域游标法光谱仪

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09145477A (ja) * 1995-11-20 1997-06-06 Tokyo Instr:Kk 分光器
JP2005338021A (ja) 2004-05-31 2005-12-08 Yokogawa Electric Corp 波長測定方法およびこれを用いた分光装置
WO2010084957A1 (ja) * 2009-01-22 2010-07-29 独立行政法人産業技術総合研究所 分光放射計

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
See also references of EP2975372A4
TSUYOSHI KONISHI: "All-optical analog-to-digital converter by use of self-frequency shifting in fiber and a pulse-shaping technique", JOURNAL OF THE OPTICAL SOCIETY OF AMERICA.B, vol. 19, no. 11, 1 November 2002 (2002-11-01), pages 2817 - 2823, XP002462868 *
TSUYOSHI KONISHI; KAZUNORI TANIMURA; KOUSUKE ASANO: "All-optical analog-to-digital converter by use of self-frequency shifting in fiber and a pulse-shaping technique", JOSA B, vol. 19, no. 11, 2002, pages 2817 - 2823

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020203592A1 (ja) * 2019-03-29 2020-10-08 国立大学法人大阪大学 光検出装置、光検出方法、光検出装置の設計方法、試料分類方法、及び、不良検出方法
JPWO2020203592A1 (ja) * 2019-03-29 2021-12-16 国立大学法人大阪大学 光検出装置、光検出方法、光検出装置の設計方法、試料分類方法、及び、不良検出方法
JP7236170B2 (ja) 2019-03-29 2023-03-09 国立大学法人大阪大学 光検出装置、光検出方法、光検出装置の設計方法、試料分類方法、及び、不良検出方法
US11933735B2 (en) 2019-03-29 2024-03-19 Osaka University Optical detection device, optical detection method, method for designing optical detection device, sample classification method, and defect detection method

Also Published As

Publication number Publication date
US10481004B2 (en) 2019-11-19
JPWO2014141666A1 (ja) 2017-02-16
EP2975372A4 (en) 2016-12-21
US20180073926A1 (en) 2018-03-15
US20160033331A1 (en) 2016-02-04
JP6056096B2 (ja) 2017-01-11
US9846081B2 (en) 2017-12-19
EP2975372A1 (en) 2016-01-20

Similar Documents

Publication Publication Date Title
US9228900B2 (en) Multi-function spectrometer-on-chip with a single detector array
Florjańczyk et al. Multiaperture planar waveguide spectrometer formed by arrayed Mach-Zehnder interferometers
JP6332987B2 (ja) 光学式エンコーダ
WO2012081252A1 (ja) 表面形状測定方法及び表面形状測定装置
JP2018502299A (ja) オーバーレイ誤差を検出するための装置及び方法
JP2012112663A (ja) 分光光度計
JP6056096B2 (ja) 光波長測定方法および光波長測定装置
JP2011226871A (ja) 形状測定方法及び装置並びに歪み測定方法及び装置
JP2003255113A (ja) 光分離素子およびそれを用いた光学機器
KR102229048B1 (ko) 두께 측정 장치 및 두께 측정 방법
JP2019158507A (ja) 光学計測装置
JP5259036B2 (ja) 波長変化の測定
Huang et al. Birefringent prism based Fourier transform spectrometer
KR102039826B1 (ko) Awg 분광센서
Zou et al. Novel High‐Resolution and Large‐Bandwidth Micro‐Spectrometer Using Multi‐Input Counter‐Propagating Arrayed Waveguide Grating and Dual‐Wavelength Grating Coupler on Silicon on Insulator
JP6445814B2 (ja) 分光器およびスペクトル測定方法
JP2013088263A (ja) 分光装置校正方法
JP2005156343A (ja) 分光装置及び分光装置用光学フィルタ
EP3483573B1 (en) Spectroscope and spectrum measuring method
JP2010043892A (ja) Fbgセンサの計測方法及びその計測装置
JP7191311B2 (ja) 集光機能を有する分光素子を利用した分光装置
JP2001116618A (ja) 分光計
US20130293961A1 (en) Optical System and Reflection Type Diffraction Grating Thereof
JP5012145B2 (ja) 偏光解析装置
JP2014182129A (ja) 光学偏光計

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14765498

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015505282

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14775321

Country of ref document: US

Ref document number: 2014765498

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE