WO2014141562A1 - 駆動力伝達装置 - Google Patents

駆動力伝達装置 Download PDF

Info

Publication number
WO2014141562A1
WO2014141562A1 PCT/JP2013/084578 JP2013084578W WO2014141562A1 WO 2014141562 A1 WO2014141562 A1 WO 2014141562A1 JP 2013084578 W JP2013084578 W JP 2013084578W WO 2014141562 A1 WO2014141562 A1 WO 2014141562A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving force
frictional engagement
force transmission
clutch
transmission device
Prior art date
Application number
PCT/JP2013/084578
Other languages
English (en)
French (fr)
Inventor
拓洋 杉本
石井 繁
和裕 宮地
卓 桑原
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to RU2015143050/11A priority Critical patent/RU2582507C1/ru
Priority to EP13878212.3A priority patent/EP2975283B1/en
Priority to JP2015505241A priority patent/JP5967291B2/ja
Priority to US14/764,995 priority patent/US9458909B2/en
Priority to CN201380074602.5A priority patent/CN105008744A/zh
Priority to MX2015011413A priority patent/MX345957B/es
Publication of WO2014141562A1 publication Critical patent/WO2014141562A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/46Gearings having only two central gears, connected by orbital gears
    • F16H3/48Gearings having only two central gears, connected by orbital gears with single orbital gears or pairs of rigidly-connected orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/06Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch
    • F16D25/062Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces
    • F16D25/063Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially
    • F16D25/0635Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially with flat friction surfaces, e.g. discs
    • F16D25/0638Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially with flat friction surfaces, e.g. discs with more than two discs, e.g. multiple lamellae
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/22Friction clutches with axially-movable clutching members
    • F16D13/38Friction clutches with axially-movable clutching members with flat clutching surfaces, e.g. discs
    • F16D13/52Clutches with multiple lamellae ; Clutches in which three or more axially moveable members are fixed alternately to the shafts to be coupled and are pressed from one side towards an axially-located member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/58Details
    • F16D13/74Features relating to lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/021Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings toothed gearing combined with continuous variable friction gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/042Guidance of lubricant
    • F16H57/043Guidance of lubricant within rotary parts, e.g. axial channels or radial openings in shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0467Elements of gearings to be lubricated, cooled or heated
    • F16H57/0473Friction devices, e.g. clutches or brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/048Type of gearings to be lubricated, cooled or heated
    • F16H57/0482Gearings with gears having orbital motion
    • F16H57/0484Gearings with gears having orbital motion with variable gear ratio or for reversing rotary motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D66/00Arrangements for monitoring working conditions, e.g. wear, temperature
    • F16D2066/001Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2300/00Special features for couplings or clutches
    • F16D2300/02Overheat protection, i.e. means for protection against overheating
    • F16D2300/021Cooling features not provided for in group F16D13/72 or F16D25/123, e.g. heat transfer details
    • F16D2300/0214Oil or fluid cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/12Details not specific to one of the before-mentioned types
    • F16D25/123Details not specific to one of the before-mentioned types in view of cooling and lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/021Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings toothed gearing combined with continuous variable friction gearing
    • F16H2037/026CVT layouts with particular features of reversing gear, e.g. to achieve compact arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • F16H2061/1256Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected
    • F16H2061/1276Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected the failing part is a friction device, e.g. clutches or brakes

Definitions

  • the present invention relates to a driving force transmission device that includes a plurality of frictional engagement elements, and at least selectively engages one of the first frictional engagement element and the second frictional engagement element so as to release the other.
  • a forward / reverse switching device that is selectively fastened is known (for example, see Patent Document 1).
  • This forward / reverse switching device includes a planetary gear, and as a frictional engagement element, a forward frictional engagement element that directly connects a sun gear to which rotation is input from a driving source to an output-side ring gear, and a brake drum coupled to a pinion And a reverse friction fastening element for fixing to the case.
  • the present invention has been made paying attention to the above problem, and in the driving force transmission device that selectively engages one of the first friction engagement element and the second friction engagement element to release the other, It is an object of the present invention to provide a driving force transmission device capable of detecting the temperature of lubricating oil flowing through each frictional engagement element with a small number of temperature sensors by reducing the number of lubricating oil paths passing through each frictional engagement element.
  • the present invention provides: The first frictional engagement element and the second frictional engagement element are arranged in an inner and outer double in the radial direction so as to overlap in the axial direction, Place the temperature sensor at the outer peripheral position of both friction fastening elements, A driving force transmission device characterized in that the lubricating oil for cooling both frictional engagement elements forms a lubricating oil path from the inside of both frictional engagement elements through both frictional engagement elements in the radial direction to the temperature sensor; did.
  • the driving force transmission device of the present invention when the driving force transmission device is operated, the lubricating oil flows in the order of the first friction engagement element, the second friction engagement element, and the temperature sensor along the lubricating oil path. Therefore, in the first driving force transmission state in which the first friction engagement element is engaged and the second friction engagement element is released, the temperature sensor can detect the temperature of the first friction engagement element based on the lubricating oil temperature. On the other hand, in the second driving force transmission state in which the second friction engagement element is engaged and the first friction engagement element is released, the temperature sensor can detect the temperature of the second friction engagement element based on the lubricating oil temperature. In this way, in the present invention, since one lubricating oil path is provided via both frictional engagement elements, the temperature of both frictional engagement elements can be detected by one temperature sensor, and the number of necessary temperature sensors can be reduced. It is possible to reduce costs and reduce costs.
  • FIG. 1 is an overall system diagram showing a drive system and a control system of an FF hybrid vehicle to which a drive force transmission device of Embodiment 1 is applied.
  • FIG. 2 is a configuration explanatory diagram illustrating an outline of a forward / reverse switching device as a driving force transmission device according to the first embodiment; It is sectional drawing which shows the structure of the principal part of the said forward / reverse switching device.
  • FIG. 3 is a conceptual diagram of a lubricating oil path of the forward / reverse switching device. It is operation
  • movement explanatory drawing which shows the operation state of the forward clutch and reverse brake at the time of the forward / reverse switching device at the time of forward, reverse, and neutral.
  • FIG. 6 is a cross-sectional view illustrating a main part of a driving force transmission device according to a second embodiment.
  • FIG. 1 is an overall schematic diagram showing an FF hybrid vehicle according to a first embodiment. The overall configuration of the apparatus will be described below with reference to FIG.
  • the hybrid drive system configuration includes an engine 1 (drive source), a motor generator 2 (drive source), a forward / reverse switching device (drive force transmission device) 3, and a belt type continuously variable transmission mechanism 4. And a final reduction mechanism 5 and drive wheels 6 and 6.
  • a first clutch 12 whose engagement / release is controlled according to the selected travel mode.
  • the motor generator 2 is a three-phase alternating current synchronous rotating electric machine, and converts the electric power discharged from the battery 72 into three-phase alternating current power by the inverter 71 and applies it when powering with a positive torque command. Is demonstrated. On the other hand, during regeneration by a negative torque command, power is generated by rotational energy input from the drive wheels 6 and 6 (or engine 1), and the inverter 71 converts the three-phase AC power into single-phase DC power and charges the battery 72. By doing so, the generator function is exhibited.
  • the forward / reverse switching device 3 is a mechanism that switches the input rotation direction to the belt type continuously variable transmission mechanism 4 between a forward rotation direction during forward travel and a reverse rotation direction during reverse travel.
  • the forward / reverse switching device 3 includes a double pinion planetary gear 30 (hereinafter referred to as planetary gear 30), a forward clutch (first frictional engagement element) 31, and a reverse brake (shown in FIG. 2). Second frictional engagement element) 32.
  • the forward / reverse switching device 3 and the belt-type continuously variable transmission mechanism 4 constitute a belt-type continuously variable transmission CVT.
  • the belt-type continuously variable transmission mechanism 4 continuously changes the speed ratio, which is the ratio between the input rotational speed of the transmission input shaft 40 and the output rotational speed of the transmission output shaft 41, by changing the belt contact diameter.
  • a continuously variable transmission function is provided.
  • This belt-type continuously variable transmission mechanism 4 is a well-known one having a primary pulley 42, a secondary pulley 43, and a belt 44.
  • the primary pulley 42 and the secondary pulley 43 perform an operation of changing the gear ratio by the primary hydraulic pressure led to the primary hydraulic chamber 45 and the secondary hydraulic pressure led to the secondary hydraulic chamber 46, respectively.
  • the final reduction mechanism 5 is a mechanism that decelerates the transmission output rotation from the transmission output shaft 41 of the belt-type continuously variable transmission mechanism 4 and transmits it to the left and right drive wheels 6 and 6 while providing a differential function.
  • the hybrid vehicle has a mode according to a driving mode, and includes an electric vehicle mode (hereinafter referred to as “EV mode”), a hybrid vehicle mode (hereinafter referred to as “HEV mode”), and a drive torque control mode (hereinafter referred to as “HEV mode”).
  • EV mode electric vehicle mode
  • HEV mode hybrid vehicle mode
  • HEV mode drive torque control mode
  • WSC drive torque control mode
  • the “EV mode” is a mode in which the first clutch 12 is disengaged and the drive source is only the motor generator 2, and has a motor drive mode (motor power running) and a generator power generation mode (generator regeneration). This “EV mode” is selected, for example, when the required driving force is low and the battery SOC is secured.
  • the “HEV mode” is a mode in which the first clutch 12 is engaged and the driving source is the engine 1 and the motor generator 2.
  • the motor assist mode (motor power running), engine power generation mode (generator regeneration), and deceleration regenerative power generation mode are used. (Generator regeneration).
  • This “HEV mode” is selected, for example, when the required driving force is high or when the battery SOC is insufficient.
  • the second clutch (the forward clutch 31 at the time of forward movement and the reverse brake 32 at the time of backward movement) is brought into the slip engagement state, and the second In this mode, the torque transmission capacity of the clutch is controlled.
  • the torque transmission capacity of the second clutch is controlled so that the driving force transmitted after passing through the second clutch becomes the required driving force that appears in the accelerator operation amount of the driver.
  • the “WSC mode” is selected in a region where the engine speed is lower than the idle speed, such as when starting in the “HEV mode” selection state.
  • the control system includes a hybrid control module 100, a CVT control unit 110, a motor control unit 120, and an engine control unit 130.
  • the hybrid control module 100 and the control units 110, 120, and 130 are connected via a CAN communication line 150 capable of exchanging information.
  • the hybrid control module 100 manages the energy consumption of the entire vehicle and has an integrated control function for running the vehicle with maximum efficiency.
  • the hybrid control module 100 inputs information from the accelerator opening sensor 101, the vehicle speed sensor 102, the temperature sensor 9 and the like and necessary information via the CAN communication line.
  • the CVT control unit 110 performs hydraulic control of the belt-type continuously variable transmission CVT such as line pressure control, transmission hydraulic pressure control, forward / reverse switching control, and the like. Is switched via the hydraulic control unit 140.
  • the motor control unit 120 outputs a target powering command (positive torque command) or a target regeneration command (negative torque command) to the inverter 71 based on a control command from the hybrid control module 100. Further, the actual motor driving torque information or the actual generator braking torque information obtained by detecting the motor applied current value or the like is sent to the hybrid control module 100.
  • the engine control unit 130 outputs a drive command to the engine control actuator 10 based on the control command from the hybrid control module 100. Further, actual engine drive torque information obtained from the rotational speed of the engine 1 and the fuel injection amount is sent to the hybrid control module 100.
  • the forward / reverse switching device 3 transmits the rotation of the input shaft 30a on the drive source side to the output shaft 30b connected to the transmission input shaft 40 on the drive wheel side, while rotating the rotation direction forward and backward. Transmit in reverse.
  • the forward / reverse switching device 3 includes a planetary gear 30 shown in FIG. 2 for switching the rotation direction.
  • the planetary gear 30 includes a sun gear 33, a carrier 34, and a ring gear 35 as shown in FIG.
  • the carrier 34 has a double pinion structure including a plurality of pairs of inner and outer pinions 34a and 34a.
  • the sun gear 33 is coupled to the motor shaft 21 via the input shaft 30a.
  • the carrier 34 is coupled to the transmission input shaft 40 via the output shaft 30b.
  • the forward clutch 31 connects the carrier 34 and the ring gear 35, while the reverse brake 32 fixes the ring gear 35 to the case 36.
  • the case 36 houses the planetary gear 30 and the belt-type continuously variable transmission mechanism 4, although details are omitted.
  • the forward clutch 31 includes a hub / clutch drum 31a, a clutch hub 31b, a drive plate 31c, and a driven plate 31d.
  • the hub / clutch drum 31a is formed integrally with the ring gear 35, as shown in FIG.
  • a plurality of driven plates 31d are arranged in parallel in the axial direction so as to be movable in the axial direction (left-right direction in FIG. 3) on the inner periphery of the hub-cum-use clutch drum 31a.
  • the clutch hub 31b is disposed in the inner diameter direction (downward in FIG. 3) of the hub-cum-use clutch drum 31a, and a plurality of drive plates 31c interposed between the driven plates 31d can slide in the axial direction on the outer periphery thereof. Are arranged side by side in the axial direction.
  • the clutch hub 31b is formed integrally with the carrier 34 as shown in FIG.
  • the hub / clutch drum 31a has a cylinder chamber 31e, and a clutch piston 31f is accommodated in the cylinder chamber 31e so as to be slidable in the axial direction. Then, when the engagement hydraulic pressure is supplied to the cylinder chamber 31e, the clutch piston 31f presses the drive plate 31c and the driven plate 31d in the axial direction, and the forward clutch 31 is frictionally engaged.
  • the carrier 34 rotates together with the ring gear 35 together with the hub / clutch drum 31a as shown in FIG.
  • the input shaft 30a and the output shaft 30b that is, the motor shaft 21 and the transmission input shaft 40 rotate in a normal rotation on a one-to-one basis.
  • the reverse brake 32 includes a housing 32a, a drive plate 32b, and a driven plate 32c.
  • the housing 32a is fixed to the case 36.
  • a plurality of drive plates 32b are arranged in the axial direction on the outer periphery of the hub-cum-use clutch drum 31a so as to be transportable in the axial direction.
  • the driven plate 32c is interposed between the drive plates 32b, is arranged in parallel in the axial direction, and is provided on the inner periphery of the housing 32a so as to be movable in the axial direction.
  • the two plates 32b and 32c are arranged at substantially the same position in the outer diameter direction of both the plates 31c and 31d of the forward clutch 31, that is, in the axial direction with both the plates 31c and 31d.
  • a cylinder chamber 32e is formed in the housing 32a, and a brake piston 32f is accommodated in the cylinder chamber 32e so as to be slidable in the axial direction. Then, when the engagement hydraulic pressure is supplied to the cylinder chamber 32e, the brake piston 32f presses both the plates 32b and 32c in the axial direction, and the reverse brake 32 is frictionally engaged.
  • the ring gear 35 of the planetary gear 30 is fixed to the case 36 together with the hub / clutch drum 31a as shown in FIG.
  • the transmission input shaft 40 rotates in the reverse direction with respect to the rotation of the motor shaft 21.
  • the forward / reverse switching device 3 is provided with a temperature sensor 9.
  • the temperature sensor 9 is for detecting the temperatures of the forward clutch 31 and the reverse brake 32, is the outer peripheral position of the forward clutch 31 and the reverse brake 32, and further overlaps the forward clutch 31 and the reverse brake 32 in the axial direction. And arranged in the outer diameter direction.
  • a lubricating oil path 80 is formed in which the cooling lubricant is passed through the forward clutch 31 and the reverse brake 32 in series in the radial direction and led to the temperature sensor 9.
  • a hub oil hole 31g, a drum oil hole 31h, and a housing oil hole 32g are formed through the clutch hub 31b, the hub-and-use clutch drum 31a, and the housing 32a in the radial direction.
  • the hub oil hole 31g and the drum oil hole 31h are arranged at substantially the center positions in the axial range where the plates 31c and 31d of the forward clutch 31 are arranged.
  • the housing oil hole 32g is substantially the same axial position as the hub oil hole 31g and the drum oil hole 31h so as to be arranged in the outer diameter direction of the hub oil hole 31g and the drum oil hole 31h. It arrange
  • This lubricating oil path 80 is conceptually shown in FIG. As shown in FIG. 4, the lubricating oil path 80 is connected to a forward clutch 31 and a reverse brake 32 from a lubricating oil discharge port 40 a provided in a lubricating oil path (not shown) provided through the transmission input shaft 40. This is a path that reaches the temperature sensor 9 via.
  • the CVT control unit 110 releases the reverse brake 32 while engaging the forward clutch 31 as shown in FIG. 5 during the forward operation. Further, during the reverse operation, the forward clutch 31 is released while the reverse brake 32 is engaged. Further, during the neutral operation, the forward clutch 31 and the reverse brake 32 are released.
  • the fail determination unit 110a shown in FIG. This failure determination is a determination for protecting the friction material of the forward clutch 31 and the reverse brake 32, and when the temperature of the forward clutch 31 and the reverse brake 32 exceeds a preset threshold value, the failure is determined. To be judged.
  • the forward clutch 31 or the reverse brake 32 is set to the slip engagement state. For this reason, if this state continues for a long time, the forward clutch 31 or the reverse brake 32 in the engaged state may become hot.
  • the fail determination unit 110a performs a fail determination, and, for example, the CVT control unit 110 performs a fail-safe process such as releasing the slip engagement state and completely engaging.
  • the fail determination unit 110a performs the fail determination based on the temperature measurement value of the temperature sensor 9 and the fail determination based on the estimated temperature in parallel as shown in FIG.
  • This estimated temperature is the temperature of the forward clutch 31 or the reverse brake 32 in the engaged state estimated by the temperature estimation logic unit 110c based on the measured temperature in the oil pan measured by the temperature sensor 110b installed in the oil pan (not shown). is there.
  • the first comparative example shown in FIG. 7 is an example in which the forward clutch 231 and the reverse brake 232 are arranged in the same manner as the conventional structure described in Patent Document 1, and the temperature sensor 9 is arranged on the outer periphery of the reverse brake 232. is there.
  • the planetary gear 230 includes a sun gear 233, a single pinion 234a, a carrier 234, and a ring gear 235.
  • the clutch hub 231b that supports the driven plate 231d of the forward clutch 231 is coupled to the sun gear 233, and the clutch drum 231a that supports the drive plate 231c is coupled to the ring gear 235.
  • the clutch drum 231a is connected to an input shaft 30a (not shown), and includes a cylinder chamber 231e and a clutch piston 231f similar to those described in the first embodiment.
  • a clutch hub 232h that supports the drive plate 232b is coupled to the carrier 234.
  • the driven plate 232c is supported by a housing 232a similar to that described in the first embodiment.
  • the housing 232a includes a cylinder chamber 232e and a clutch piston 232f.
  • the reverse brake 232 is supported by the housing 32a similar to the first embodiment. Further, the forward clutch 231 and the reverse brake 232 are disposed at different positions with a slight shift in the axial direction.
  • the hub oil hole 231g is penetrated in the radial direction through the clutch hub 231b, and the same position in the axial direction as the hub oil hole 231g in the clutch drum 231a.
  • a drum oil hole 231j is provided penetrating in the radial direction.
  • a hub oil hole 232g is penetrated in the radial direction through the clutch hub 232h, and the housing oil hole 232j has a diameter in the housing 232a at the same position in the axial direction as the hub oil hole 232g. It is provided penetrating in the direction.
  • the cooling lubricating oil supplied in the lubricating oil path 280 passes through the forward clutch 231 in the radial direction, and moves from the drum oil hole 231j toward the outer radial direction, and then the clutch.
  • the hub 232h is divided in the horizontal direction in the figure, and only a part thereof is supplied to the reverse brake 232 from the hub oil hole 232g. For this reason, the lubrication efficiency and the cooling efficiency in the reverse brake 232 are not sufficient, and in addition, when the temperature detection is performed by the temperature sensor 9, there is a possibility that the detection accuracy may be lowered.
  • the forward clutch 031 and the reverse brake 032 are arranged at different axial positions.
  • the hub / clutch drum 031a is formed with a cylinder chamber 031e, and a clutch piston 031f for fastening the forward clutch 031 is provided in the cylinder chamber 031e.
  • a cylinder chamber 031e is formed in the housing 032a, and a clutch piston 031f for fastening the reverse brake 032 is provided in the cylinder chamber 031e.
  • a drum oil hole 031g forming a first lubricating oil path 081 for cooling the forward clutch 031 is penetrated in the radial direction at the installation position of the forward clutch 031 in the hub-and-use clutch drum 031a.
  • the first temperature sensor 09a is provided at a position in front of the drum oil hole 031g in the radial direction.
  • a drum oil hole 032g forming a lubricating oil path 082 for cooling the reverse brake 032 is penetrated in a radial direction at the installation position of the reverse brake 032 in the hub-use clutch drum 031a.
  • the housing oil hole 032g forming the second lubricating oil path 082 is penetrated in the radial direction at the position where the reverse brake 032 is installed and in the outer diameter direction position of the drum oil hole 032g.
  • a second temperature sensor 09b is provided at a position in front of the housing oil hole 032g in the radial direction.
  • the cooling lubricating oil is supplied in parallel through the two paths of the first lubricating oil path 081 and the second lubricating oil path 082.
  • the first lubricating oil path 081 and the second lubricating oil path 082 are formed in parallel, the lubricating efficiency is poor and the space efficiency is also poor.
  • the temperature of the forward clutch 031 and the temperature of the reverse brake 032 need to be detected independently by the first temperature sensor 09a and the second temperature sensor 09b, respectively, resulting in an increase in cost.
  • the forward / reverse switching device as the driving force transmission device of Embodiment 1 is A plurality of frictional engagement elements are provided between the input shaft 30a and the output shaft 30b, and the forward clutch 31 as the first frictional engagement element is engaged, while the reverse brake 32 as the second frictional engagement element is released.
  • a driving force transmission device capable of forming
  • the forward clutch 31 and the reverse brake 32 overlap with each other in the axial direction and are arranged in a double direction in the radial direction.
  • the temperature sensor 9 is disposed at the outer peripheral position of the forward clutch 31 and the reverse brake 32, Lubricating oil path for cooling the forward clutch 31 and the reverse brake 32 from the inside of the forward clutch 31 and the reverse brake 32 to the temperature sensor 9 through the forward clutch 31 and the reverse brake 32 in the radial direction. 80 is formed. Since only one lubricating oil path 80 for cooling the two frictional engagement elements of the forward clutch 31 and the reverse brake 32 is formed, as compared with the case where the lubricating path is branched or formed in a plurality as in the comparative example.
  • the lubrication efficiency can be improved.
  • the temperature of the forward clutch 31 and the reverse brake 32 that are selectively engaged can be detected by one temperature sensor 9.
  • the forward / reverse switching device as the driving force transmission device of the first embodiment is The temperature sensor 9 is disposed at a position overlapping the forward clutch 31 and the reverse brake 32 in the axial direction. Therefore, a higher temperature detection accuracy can be obtained as compared to the position of the temperature sensor 9 that is arranged at the outer peripheral position of the forward clutch 31 and the reverse brake 32 and does not overlap in the axial direction.
  • the forward / reverse switching device as the driving force transmission device of Embodiment 1 is A failure determination unit 110a for determining safety regarding the temperatures of the forward clutch 31 and the reverse brake 32 as both frictional engagement elements;
  • the fail determination unit 110a detects the first temperature based on the temperature detected by the temperature sensor 9 and the second temperature sensor that detects the temperature of the oil in an oil pan (not shown) at a position different from the lubricating oil path.
  • the second determination based on the temperature is executed in parallel. Therefore, even if a failure occurs in one of the two types of fail judgment, the fail judgment can be continued, and the accuracy of the fail judgment and the protection system based on the fail judgment can be improved.
  • the forward / reverse switching device as the driving force transmission device of the first embodiment is While the clutch plate (driven plate 31d) of the forward clutch 31 as being disposed inside both frictional engagement elements is supported on the inner periphery, the reverse brake 32 as being disposed outside both frictional engagement elements A hub and clutch drum 31a for supporting the clutch plate (drive plate 32b) on the outer periphery;
  • the hub-and-use clutch drum 31a is provided with a drum oil hole 31h that penetrates in the radial direction at a position where the clutch plate (driven plate 31d, drive plate 32b) is provided in the axial direction and forms a lubricating oil path. It is characterized by.
  • the portion that forms the lubricating oil path 80 between the forward clutch 31 and the reverse brake 32 can be made one, and oil holes are formed in the two members as in the first comparative example.
  • the dispersion of the lubricating oil path can be prevented and the temperature detection accuracy can be improved.
  • the forward / reverse switching device as the driving force transmission device of the first embodiment is The input shaft 30a is connected so as to be able to input driving force from the motor generator 2 side which is a driving source of the vehicle, while the output shaft 30b can transmit driving force to the transmission input shaft 40 which is the driving wheel side of the vehicle.
  • a planetary gear 30 is provided between the input shaft 30a and the output shaft 30b, The forward clutch 31 and the reverse brake 32 fix and release the rotating element of the planetary gear 30 so that the rotational directions of the input shaft 30a and the output shaft 30b are the same when moving forward in the first driving force transmission state.
  • the forward / reverse switching device 3 is provided for reversing the rotational direction of the input shaft 30a and the output shaft 30b during reverse movement in the second driving force transmission state.
  • the effects (1) to (4) can be obtained.
  • the forward clutch of the forward / reverse switching device 3 that is selectively engaged at the time of forward movement and backward movement as the WSC mode at the time of start. 31 or the reverse brake 32 was made to slip.
  • the forward clutch 31 or the reverse brake 32 since the forward clutch 31 or the reverse brake 32 generates heat, in order to ensure the durability thereof, it is necessary to detect the temperature by the temperature sensor 9 and prevent them from being overheated. Accordingly, when the temperature sensor 9 detects the temperatures of the forward clutch 31 and the reverse brake 32, the effects (1) to (4) are effective.
  • the forward / reverse switching device as the driving force transmission device of the first embodiment is
  • the planetary gear 30 includes a sun gear 33 connected to the input shaft 30a, a ring gear 35 connected to the clutch drum 31a serving as a hub, and a carrier 34 connected to the output shaft 30b.
  • a forward clutch 31 as a first frictional engagement element is provided between the hub-cum-use clutch drum 31a and the carrier 34 so as to fix the carrier 34 and the ring gear 35 at the time of engagement
  • the reverse brake 32 as the second frictional engagement element fixes the ring gear 35 to the case 36 between the hub and the clutch drum 31a and the housing 32a provided on the outer periphery thereof and fixed to the case 36.
  • the housing 32a is provided with a housing oil hole 32g that penetrates in the radial direction at a position overlapping the drum oil hole 31h in the axial direction to form a lubricating oil path 80. Therefore, when the forward clutch 31 is engaged, the carrier 34 and the ring gear 35 can be fixed in the planetary gear 30, and the rotation can be transmitted one-to-one from the input shaft 30a to the output shaft 30b. Further, when the reverse brake 32 is engaged, the ring gear 35 can be fixed in the planetary gear 30 and the rotation can be transmitted from the input shaft 30a to the output shaft 30b in the reverse direction to that when the forward clutch 31 is engaged.
  • the second embodiment is a modification of the first embodiment, and like the first comparative example, the drive plate 331c and the driven plate 331d of the forward clutch 331 are supported by the clutch drum 331a and the clutch hub 331b. In addition, the drive plate 332b and the driven plate 332c of the reverse brake 332 are supported by the clutch hub 332h and the housing 332a.
  • the same planetary gear 330 as in the first comparative example is provided. That is, the planetary gear 3030 includes a sun gear 333, a single pinion 334 a and a carrier 334, and a ring gear 335.
  • the clutch hub 331b that supports the driven plate 331d of the forward clutch 331 is coupled to the sun gear 333, and the clutch drum 331a that supports the drive plate 331c is coupled to the ring gear 335.
  • the clutch drum 331a is connected to an input shaft 30a (not shown), and includes a cylinder chamber 331e and a clutch piston 331f.
  • the reverse brake 332 has a clutch hub 332 h that supports the drive plate 332 b coupled to the carrier 334.
  • the driven plate 332c is supported by a housing 332a, and the housing 332a includes a cylinder chamber 332e and a clutch piston 332f.
  • the hub oil hole 331g formed through the clutch hub 331b in the radial direction and the drum oil hole 331j formed through the clutch drum 331a in the radial direction are arranged in the axial direction.
  • a hub oil hole 332g formed through the clutch hub 332h in the radial direction, a housing oil hole 332j formed through the housing 332a in the radial direction, a hub oil hole 331g and a drum oil hole 331j, and an axial direction Are arranged identically.
  • the hub oil hole 331g, the drum oil hole 331j, the hub oil hole 332g, and the housing oil hole 332j are provided at the same position in the axial direction at the outer diameter direction and supported by the case 36. .
  • the lubricant oil that passes through the forward clutch 331 and the reverse brake 332 in the radial direction and reaches the temperature sensor 9 by the hub oil hole 331g, the drum oil hole 331j, the hub oil hole 332g, and the housing oil hole 332j.
  • a path 380 is formed.
  • the lubrication efficiency can be improved as compared with the case where the lubrication path is branched or formed in plural.
  • the temperature of the forward clutch 331 and the reverse brake 332 that are selectively engaged can be detected by one temperature sensor 9, and high detection accuracy can be obtained while reducing costs. be able to.
  • the position of the temperature sensor 9 is the outer peripheral position of the forward clutch 331 and the reverse brake 332, and is disposed at a position overlapping in the axial direction. Therefore, high temperature detection accuracy can be obtained.
  • the forward / reverse switching device of the present invention has been described based on the embodiment.
  • the specific configuration is not limited to these examples, and the gist of the invention according to each claim of the claims. As long as they do not deviate, design changes and additions are permitted.
  • the forward / reverse switching device of the present invention is applied to a hybrid vehicle equipped with an engine and a motor / generator.
  • the forward / reverse switching device of the present invention can also be applied to an engine vehicle equipped with only an engine as a drive source, an electric vehicle or a fuel cell vehicle equipped with only a motor / generator as a drive source.
  • the forward / reverse switching device is shown as the driving force transmission device.
  • the first friction engagement element and the second friction engagement are related to each other by having a plurality of friction engagement elements and releasing the other when one is engaged.
  • it can also be applied to a power transmission device for other vehicles such as a transmission and a power transmission device for industrial equipment other than the vehicle.
  • the temperature sensor is arranged on the outer periphery of both frictional engagement elements (forward clutch, reverse brake) and in a position overlapping with both frictional engagement elements (forward clutch, reverse brake) in the axial direction.
  • the present invention is not limited to this. In other words, if the temperature sensor is at the outer peripheral position of both frictional engagement elements, the direction of the lubricating oil path from the outer frictional engagement element is changed in the axial direction even if the temperature sensor is at a position different in the axial direction. In this way, it is possible to form with one.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
  • General Details Of Gearings (AREA)
  • Mechanical Operated Clutches (AREA)
  • Retarders (AREA)

Abstract

第1摩擦締結要素と第2摩擦締結要素との一方を締結した際に他方を解放するよう選択的に締結させる駆動力伝達装置において、少ない温度センサにより各摩擦締結要素を流れる潤滑油の温度を検出可能な駆動力伝達装置を提供する。 前進クラッチ(31)と後退ブレーキ(32)との一方を締結した際に他方を解放するように選択的に締結させる駆動力伝達装置であって、前進クラッチ(31)と後退ブレーキ(32)とが、軸方向に重なって径方向で内外二重に配置され、前進クラッチ(31)と後退ブレーキ(32)との外周位置に温度センサ(9)が配置され、前進クラッチ(31)と後退ブレーキ(32)との冷却用の潤滑油が、前進クラッチ(31)と後退ブレーキ(32)との内側から前進クラッチ(31)と後退ブレーキ(32)とを径方向に通過して温度センサ9に至る潤滑油経路(80)が形成されていることを特徴とする動力伝達装置とした。

Description

駆動力伝達装置
 本発明は、複数の摩擦締結要素を備え、少なくとも、第1摩擦締結要素と第2摩擦締結要素との一方を締結した際に他方を解放するよう選択的に締結させる駆動力伝達装置に関する。
 従来、第1摩擦締結要素と第2摩擦締結要素との一方を締結した際に他方を解放するよう選択的に締結させる駆動力伝達装置として、前進用摩擦締結要素と後進用摩擦締結要素とを選択的に締結させる前後進切替装置が知られている(例えば、特許文献1参照)。
  この前後進切替装置は、遊星歯車を備えるとともに、摩擦締結要素として、駆動源から回転が入力されるサンギアを出力側のリングギアに直結させる前進用摩擦締結要素と、ピニオンに結合されたブレーキドラムをケースに固定させる後進用摩擦締結要素と、を備えている。
特開2010-151312号公報
 上述の従来の前後進切替装置は、各摩擦締結要素の締結時に、各摩擦締結要素を冷却する潤滑油の経路が、それぞれ独立して存在する。
  このため、潤滑油経路の潤滑油温度により各摩擦締結要素の温度を検出する場合、温度センサは、各潤滑油経路に設ける必要があり、その分、製造コストが嵩むという問題があった。
 本発明は、上記問題に着目してなされたもので、第1摩擦締結要素と第2摩擦締結要素との一方を締結した際に他方を解放するよう選択的に締結させる駆動力伝達装置において、各摩擦締結要素を通過する潤滑油経路を削減し、少ない温度センサにより各摩擦締結要素を流れる潤滑油の温度を検出可能な駆動力伝達装置を提供することを目的とする。
 上記目的を達成するため、本発明は、
第1摩擦締結要素と第2摩擦締結要素とを、軸方向に重なるよう径方向で内外二重に配置し、
両摩擦締結要素の外周位置に温度センサを配置し、
両摩擦締結要素の冷却用の潤滑油が、両摩擦締結要素の内側から両摩擦締結要素を径方向に通過して温度センサに至る潤滑油経路を形成した
ことを特徴とする駆動力伝達装置とした。
 本発明の駆動力伝達装置では、駆動力伝達装置の作動時に、潤滑油は、潤滑油経路に沿って、第1摩擦締結要素、第2摩擦締結要素、温度センサの順に流れる。
  したがって、第1摩擦締結要素を締結し、第2摩擦締結要素を解放した第1駆動力伝達状態では、温度センサは、潤滑油温度により第1摩擦締結要素の温度を検出することができる。一方、第2摩擦締結要素を締結し、第1摩擦締結要素を解放した第2駆動力伝達状態では、温度センサは、潤滑油温度により第2摩擦締結要素の温度を検出することができる。
  このように、本発明では、両摩擦締結要素を経由する潤滑油経路を1本にしたため、1つの温度センサにより、両摩擦締結要素の温度をそれぞれ検出可能であり、必要な温度センサの数を削減してコストダウンを図ることが可能である。
実施の形態1の駆動力伝達装置を適用したFFハイブリッド車両の駆動系と制御系を示す全体システム図である。 実施の形態1の駆動力伝達装置としての前後進切替装置の概略を示す構成説明図である。 前記前後進切替装置の要部の構造を示す断面図である。 前記前後進切替装置の潤滑油経路の概念図である。 前記前後進切替装置の前進時、後退時、ニュートラル時における前進クラッチ及び後退ブレーキの作動状態を示す作動説明図である。 FFハイブリッド車両の駆動系と制御系のフェール判断部におけるフェール判断の説明図である。 第1の比較例の駆動力伝達装置における潤滑油経路を示す断面図である。 第2の比較例の駆動力伝達装置における潤滑油経路を示す断面図である。 実施の形態2の駆動力伝達装置の要部を示す断面図である。
 以下、本発明の前後進切替装置を実施するための形態を、図面に示す実施の形態に基づいて説明する。
(実施の形態1)
  まず、構成を説明する。
  実施の形態1の駆動力伝達装置は、図1に示すFFハイブリッド車両の前後進切替装置に適用されている。
  このFFハイブリッド車両の構成を、「全体構成」、「前後進切替装置の構成」に分けて説明する。
 [全体構成]
  図1は、実施の形態1のFFハイブリッド車両を示す全体概略図である。以下、図1に基づき装置の全体構成を説明する。
 (ハイブリッド駆動系構成)
 ハイブリッド駆動系構成は、図1に示すように、エンジン1(駆動源)と、モータジェネレータ2(駆動源)と、前後進切替装置(駆動力伝達装置)3と、ベルト式無段変速機構4と、終減速機構5と、駆動輪6,6と、を備えている。
 エンジン1のエンジン出力軸11とモータジェネレータ2のモータ軸21との間には、選択される走行モードにより締結/解放が制御される第1クラッチ12が介装されている。
 モータジェネレータ2は、三相交流の同期型回転電機であり、正のトルク指令による力行時、バッテリ72から放電される電力をインバータ71により三相交流電力に変換して印加することで、モータ機能が発揮される。一方、負のトルク指令による回生時、駆動輪6,6(又はエンジン1)から入力される回転エネルギーにより発電し、インバータ71により三相交流電力を単相直流電力に変換してバッテリ72に充電することで、ジェネレータ機能が発揮される。
 前後進切替装置3は、ベルト式無段変速機構4への入力回転方向を前進走行時の正転方向と後退走行時の逆転方向で切り替える機構である。この前後進切替装置3は、詳細については後述するが、図2に示すダブルピニオン式遊星歯車30(以下、遊星歯車30という)と、前進クラッチ(第1摩擦締結要素)31と、後退ブレーキ(第2摩擦締結要素)32と、を有する。なお、前後進切替装置3とベルト式無段変速機構4によりベルト式無段変速機CVTが構成される。
 図1に戻りベルト式無段変速機構4は、ベルト接触径の変化により変速機入力軸40の入力回転数と変速機出力軸41の出力回転数の比である変速比を無段階に変化させる無段変速機能を備える。このベルト式無段変速機構4は、プライマリプーリ42と、セカンダリプーリ43と、ベルト44と、を有する周知のものである。なお、プライマリプーリ42およびセカンダリプーリ43は、それぞれ、プライマリ油圧室45に導かれるプライマリ油圧及びセカンダリ油圧室46に導かれるセカンダリ油圧により変速比を変化させる動作を行なう。
 終減速機構5は、ベルト式無段変速機構4の変速機出力軸41からの変速機出力回転を減速すると共に差動機能を与えて左右の駆動輪6,6に伝達する機構である。
 また、ハイブリッド車両は、駆動形態の違いによるモードとして、電気自動車モード(以下、「EVモード」という。)と、ハイブリッド車モード(以下、「HEVモード」という。)と、駆動トルクコントロールモード(以下、「WSC(Wet Start Clutchの略)モード」という。)と、を有する。
 「EVモード」は、第1クラッチ12を解放状態とし、駆動源をモータジェネレータ2のみとするモードであり、モータ駆動モード(モータ力行)・ジェネレータ発電モード(ジェネレータ回生)を有する。この「EVモード」は、例えば、要求駆動力が低く、バッテリSOCが確保されているときに選択される。
 「HEVモード」は、第1クラッチ12を締結状態とし、駆動源をエンジン1とモータジェネレータ2とするモードであり、モータアシストモード(モータ力行)・エンジン発電モード(ジェネレータ回生)・減速回生発電モード(ジェネレータ回生)を有する。この「HEVモード」は、例えば、要求駆動力が高いとき、あるいは、バッテリSOCが不足するようなときに選択される。
 「WSCモード」は、トルクコンバータのような回転差吸収要素を駆動系に有しないことから、第2クラッチ(前進時は前進クラッチ31、後退時は後退ブレーキ32)をスリップ締結状態とし、第2クラッチのトルク伝達容量をコントロールするモードである。第2クラッチのトルク伝達容量は、第2クラッチを経過して伝達される駆動力が、ドライバのアクセル操作量にあらわれる要求駆動力となるようにコントロールされる。この「WSCモード」は、「HEVモード」選択状態での発進時等のように、エンジン回転数がアイドル回転数を下回る領域において選択される。
 (制御系構成)
 制御系としては、ハイブリッドコントロールモジュール100と、CVTコントロールユニット110と、モータコントロールユニット120と、エンジンコントロールユニット130と、を有している。なお、ハイブリッドコントロールモジュール100と各コントロールユニット110,120,130は、情報交換が互いに可能なCAN通信線150を介して接続されている。
 ハイブリッドコントロールモジュール100は、車両全体の消費エネルギーを管理し、最高効率で車両を走らせるための統合制御機能を担う。このハイブリッドコントロールモジュール100は、アクセル開度センサ101や車速センサ102や温度センサ9等からの情報及びCAN通信線を介して必要情報を入力する。
 CVTコントロールユニット110は、ライン圧制御、変速油圧制御、前後進切替制御、等のベルト式無段変速機CVTの油圧制御を行う他、前述の第1クラッチ12の締結解放及び前後進切替装置3の切り替えを、油圧コントロールユニット140を介して行なう。
 モータコントロールユニット120は、ハイブリッドコントロールモジュール100からの制御指令に基づき、インバータ71に対し目標力行指令(正トルク指令)又は目標回生指令(負トルク指令)を出力する。また、モータ印加電流値等を検出することにより得られる実モータ駆動トルク情報または実ジェネレータ制動トルク情報をハイブリッドコントロールモジュール100に送る。
 エンジンコントロールユニット130は、ハイブリッドコントロールモジュール100からの制御指令に基づき、エンジン制御アクチュエータ10に対し駆動指令を出力する。また、エンジン1の回転数や燃料噴射量等により得られる実エンジン駆動トルク情報をハイブリッドコントロールモジュール100に送る。
 [前後進切替装置]
  次に、前後進切替装置3について説明する。
  前後進切替装置3は、駆動源側の入力軸30aの回転を、駆動輪側であって変速機入力軸40に連結された出力軸30bに対して伝達するとともに、その回転方向を正転及び逆転させて伝達する。
 前後進切替装置3は、この回転方向の切り替えのために図2に示す遊星歯車30を備えている。
  この遊星歯車30は、図2に示すように、サンギア33、キャリア34、リングギア35を備えている。また、キャリア34は、内外一対のピニオン34a,34aを複数組備えたダブルピニオン構造となっている。
  そして、サンギア33は、入力軸30aを介してモータ軸21に結合されている。一方、キャリア34は、出力軸30bを介して変速機入力軸40に結合されている。
 前進クラッチ31は、キャリア34とリングギア35とを結合させ、一方、後退ブレーキ32は、リングギア35を、ケース36に固定する。なお、ケース36は、詳細は省略するが、遊星歯車30及びベルト式無段変速機構4を収容している。
 次に、図3に基づいて、前進クラッチ31及び後退ブレーキ32の構造について、より詳細に説明する。
  前進クラッチ31は、ハブ兼用クラッチドラム31a、クラッチハブ31b、ドライブプレート31c、ドリブンプレート31dを備えている。
  ハブ兼用クラッチドラム31aは、図2に示すように、リングギア35と一体に形成されている。そして、ハブ兼用クラッチドラム31aの内周に、図3に示すように、複数のドリブンプレート31dが軸方向(図3において左右方向)に移動可能に軸方向に並設されている。
 クラッチハブ31bは、ハブ兼用クラッチドラム31aの内径方向(図3において下方向)に配置され、その外周に、ドリブンプレート31dの間に介装された複数のドライブプレート31cが、軸方向にスライド可能に軸方向に並設されている。また、クラッチハブ31bは、図2にも示すように、キャリア34に一体に形成されている。
 また、ハブ兼用クラッチドラム31aには、シリンダ室31eが形成され、このシリンダ室31eに軸方向にスライド可能にクラッチピストン31fが収容されている。そして、シリンダ室31eに締結油圧が供給されることにより、クラッチピストン31fがドライブプレート31cとドリブンプレート31dとを軸方向に押圧し、前進クラッチ31が、摩擦締結される。
 そして、この前進クラッチ31の摩擦締結時には、図2示すように、ハブ兼用クラッチドラム31aと共に、キャリア34がリングギア35と一体回転する。この場合、入力軸30aと出力軸30bとが、すなわち、モータ軸21と変速機入力軸40とが1対1で正転回転する。
 後退ブレーキ32は、ハウジング32a、ドライブプレート32b、ドリブンプレート32cを備えている。
  ハウジング32aは、ケース36に固定されている。
  ドライブプレート32bは、ハブ兼用クラッチドラム31aの外周に、軸方向に移送可能に軸方向に複数並設されている。
  ドリブンプレート32cは、ドライブプレート32bの間に介在されて、軸方向に並設され、ハウジング32aの内周に、軸方向に移動可能に設けられている。
 そして、両プレート32b,32cは、前進クラッチ31の両プレート31c,31dの外径方向、すなわち、両プレート31c,31dと軸方向で略同一位置に配置されている。
 また、ハウジング32aには、シリンダ室32eが形成され、このシリンダ室32eに軸方向にスライド可能にブレーキピストン32fが収容されている。そして、シリンダ室32eに締結油圧が供給されることにより、ブレーキピストン32fが両プレート32b,32cを軸方向に押圧し、後退ブレーキ32が、摩擦締結される。
 この後退ブレーキ32の摩擦締結時には、図2示すように、ハブ兼用クラッチドラム31aと共に、遊星歯車30のリングギア35がケース36に固定される。この場合、変速機入力軸40は、モータ軸21の回転に対して逆転回転する。
 図3に戻り、前後進切替装置3には、温度センサ9が設けられている。
  この温度センサ9は、前進クラッチ31及び後退ブレーキ32の温度を検出するためのもので、前進クラッチ31及び後退ブレーキ32の外周位置であり、さらに、前進クラッチ31及び後退ブレーキ32と軸方向に重なって、その外径方向に配置されている。
 そして、前後進切替装置3には、冷却用の潤滑油を前進クラッチ31と後退ブレーキ32とを直列に径方向に通過させ、温度センサ9に導く潤滑油経路80が形成されている。
  この潤滑油経路80を形成するのにあたり、クラッチハブ31b、ハブ兼用クラッチドラム31a、ハウジング32aを、それぞれ径方向に貫通したハブ油穴31g、ドラム油穴31h、ハウジング油穴32gが形成されている。
  すなわち、ハブ油穴31g、ドラム油穴31hは、それぞれ、前進クラッチ31の両プレート31c,31dが配置されている軸方向の範囲の略中央位置に配置されている。また、ハウジング油穴32gも、ハブ油穴31g、ドラム油穴31hの外径方向に配置されるように、ハブ油穴31g、ドラム油穴31hと略同一の軸方向位置であって、両プレート32b,32cが配置されている軸方向の範囲の略中央位置に配置されている。
  したがって、各油穴31g、31h、32gを通る潤滑油経路80は、径方向に略一直線となるように形成されている。
 この潤滑油経路80を、図4に概念的に示す。
  この図4に示すように、潤滑油経路80は、変速機入力軸40を通って設けられた潤滑油路(図示省略)に設けられた潤滑油吐出口40aから、前進クラッチ31及び後退ブレーキ32を経て温度センサ9に至る経路である。
 (前後進切替制御)
  前述したように、CVTコントロールユニット110は、ドライバのシフト操作に応じ、前進操作時には、図5に示すように、前進クラッチ31を締結させる一方で、後退ブレーキ32を解放させる。また、後退操作時には、前進クラッチ31を解放させる一方で、後退ブレーキ32を締結させる。さらに、ニュートラル操作時には、前進クラッチ31及び後退ブレーキ32を解放させる。
 また、CVTコントロールユニット110では、図6に示すフェール判断部110aにてフェール判断を行なっている。このフェール判断は、前進クラッチ31及び後退ブレーキ32の摩擦材の保護を図るための判断であり、前進クラッチ31及び後退ブレーキ32の温度が予め設定された閾値を超える高温になった場合に、フェール判断される。
 すなわち、前述のようにWSCモードでは、前進クラッチ31あるいは後退ブレーキ32をスリップ締結状態とする。このため、この状態が長時間続くと、締結状態の前進クラッチ31あるいは後退ブレーキ32が高温となる場合がある。この場合、フェール判断部110aがフェール判断を行い、例えば、CVTコントロールユニット110は、スリップ締結状態を解除して、完全締結させるなどのフェールセーフ処理を実行する。
 さらに、フェール判断部110aでは、冗長性を持たせるために、図6に示すように、温度センサ9の温度計測値によるフェール判断と、推定温度に基づくフェール判断とを並列に行なっている。この推定温度は、図示を省略したオイルパンに設置した温度センサ110bが計測するオイルパン内計測温に基づいて、温度推定ロジック部110cが推定した締結状態の前進クラッチ31あるいは後退ブレーキ32の温度である。
 (作用の説明)
  実施の形態1の作用を説明するのにあたり、まず、図7、図8に基づいて実施の形態との比較例を説明する。
 (第1の比較例)
  図7に示す第1の比較例は、前進クラッチ231及び後退ブレーキ232を特許文献1に記載された従来構造と同様に配置し、さらに、後退ブレーキ232の外周に温度センサ9を配置した例である。
 この第1の比較例では、遊星歯車230は、サンギア233、シングルのピニオン234a及びキャリア234、リングギア235を備えている。また、前進クラッチ231のドリブンプレート231dを支持するクラッチハブ231bはサンギア233に結合され、ドライブプレート231cを支持するクラッチドラム231aが、リングギア235に結合されている。そして、クラッチドラム231aは、図外の入力軸30aに連結され、かつ、実施の形態1にて説明したのと同様のシリンダ室231eおよびクラッチピストン231fを備えている。
 後退ブレーキ232は、ドライブプレート232bを支持するクラッチハブ232hがキャリア234に結合されている。また、ドリブンプレート232cは、実施の形態1にて説明したのと同様のハウジング232aに支持されている。そして、ハウジング232aは、シリンダ室232e及びクラッチピストン232fを備えている。
 この第1の比較例の場合、温度センサ9をケース36にて支持するため、後退ブレーキ232は、実施の形態1と同様のハウジング32aにより支持している。また、前進クラッチ231と後退ブレーキ232とは、その配置が軸方向で僅かにずれて異なる位置に配置されている。
 したがって、潤滑油経路280を形成するために、前進クラッチ231にあっては、クラッチハブ231bにハブ油穴231gが径方向に貫通され、クラッチドラム231aにおいて、ハブ油穴231gと軸方向で同じ位置に、ドラム油穴231jが径方向に貫通して設けられている。
 そして、後退ブレーキ232にあっては、クラッチハブ232hに、径方向にハブ油穴232gが径方向に貫通され、ハウジング232aにおいて、ハブ油穴232gと軸方向で同じ位置にハウジング油穴232jが径方向に貫通して設けられている。
 このような第1の比較例では、潤滑油経路280にて供給される冷却用の潤滑油は、前進クラッチ231を径方向に通過した、ドラム油穴231jから外径方向に向かった後、クラッチハブ232hにて図において左右方向に分かれ、その一部のみがハブ油穴232gから後退ブレーキ232に供給される。
  このため、後退ブレーキ232における潤滑効率及び冷却効率が十分ではなく、加えて、温度センサ9により温度検出を行なう場合も、検出精度の低下を招くおそれがある。
 (第2の比較例)
  次に、図8に示す比較例について説明する。
  この第2の比較例は、実施の形態1と同様に、前進クラッチ031のドリブンプレート031dと、後退ブレーキ032のドライブプレート032bとを、ハブ兼用クラッチドラム031aにて支持している。
 また、この第2の比較例では、実施の形態1とは異なり、前進クラッチ031と後退ブレーキ032との軸方向の位置を異ならせて配置している。
  なお、ハブ兼用クラッチドラム031aには、シリンダ室031eが形成され、このシリンダ室031eに、前進クラッチ031を締結させるクラッチピストン031fが設けられている。
  また、ハウジング032aには、シリンダ室031eが形成され、このシリンダ室031eに、後退ブレーキ032を締結させるクラッチピストン031fが設けられている。
 さらに、ハブ兼用クラッチドラム031aにおいて前進クラッチ031の設置位置に、前進クラッチ031を冷却する第1潤滑油経路081を形成するドラム油穴031gが径方向に貫通されている。そして、ケース036において、ドラム油穴031gの径方向の正面の位置に第1温度センサ09aが設けられている。
  また、ハブ兼用クラッチドラム031aにおいて後退ブレーキ032の設置位置に、後退ブレーキ032を冷却する潤滑油経路082を形成するドラム油穴032gが径方向に貫通されている。そして、ハウジング032aにおいて、後退ブレーキ032の設置位置であって、ドラム油穴032gの外径方向位置には、第2潤滑油経路082を形成するハウジング油穴032gが径方向に貫通されている。そして、ケース036において、ハウジング油穴032gの径方向の正面の位置に第2温度センサ09bが設けられている。
 したがって、第2の比較例では、冷却用の潤滑油は、第1潤滑油経路081と第2潤滑油経路082との2つの経路を通って並列に供給される。
  このように、第2の比較例では、第1潤滑油経路081と第2潤滑油経路082とが並行して形成されているため、潤滑効率が悪く、また、スペース効率にも劣る。
  加えて、前進クラッチ031の温度と後退ブレーキ032の温度とを、それぞれ、第1温度センサ09aと第2温度センサ09bとにより、独立して検出する必要があり、コストアップを招く。
 次に、実施の形態1の作用を説明する。
  (前進時)
  前進による発進時には、前進クラッチ31が締結され、後退ブレーキ32が解放される。このとき、潤滑油は、潤滑油経路80を通って循環されるが、この潤滑油経路80に介在される前進クラッチ31と後退ブレーキ32とでは、前進クラッチ31のみ締結されているため、温度センサ9により検出される潤滑油温度は、前進クラッチ31の温度を示す。
 (後進時)
  後退による発進時には、前進クラッチ31が解放され、後退ブレーキ32が締結される。このとき、潤滑油は、潤滑油経路80を通って循環され、この潤滑油経路80に介在される前進クラッチ31と後退ブレーキ32とでは、後退ブレーキ32のみ締結されているため、温度センサ9により検出される潤滑油温度は、後退ブレーキ32の温度を示す。
 (実施の形態1の効果)
  実施の形態1の前後進切替装置にあっては、下記に列挙する効果を得ることができる。
(1)実施の形態1の駆動力伝達装置としての前後進切替装置は、
入力軸30aと出力軸30bとの間に複数の摩擦締結要素を備え、第1摩擦締結要素としての前進クラッチ31を締結させる一方で、第2摩擦締結要素としての後退ブレーキ32を解放させた第1駆動力伝達状態としての前進状態と、第1摩擦締結要素としての前進クラッチ31を解放させる一方で、第2摩擦締結要素としての後退ブレーキ32を締結させた第2駆動伝達状態としての後退状態と、を形成可能な駆動力伝達装置であって、
前進クラッチ31と後退ブレーキ32とが、軸方向に重なって径方向で内外二重に配置され、
前進クラッチ31と後退ブレーキ32との外周位置に温度センサ9が配置され、
前進クラッチ31と後退ブレーキ32との冷却用の潤滑油が、前進クラッチ31と後退ブレーキ32との内側から前進クラッチ31と後退ブレーキ32とを径方向に通過して温度センサ9に至る潤滑油経路80が形成されていることを特徴とする。
  前進クラッチ31と後退ブレーキ32との2つの摩擦締結要素を冷却する潤滑油経路80が1本のみで形成されるため、比較例のように、潤滑経路が枝分かれや複数形成されるものと比較して、潤滑効率を向上させることができる。
  そして、実施の形態1では、1つの温度センサ9により、選択的に締結される前進クラッチ31と後退ブレーキ32との温度をそれぞれ検出することが可能になる。これにより、温度センサ9が複数必要な第2の比較例と比較して、コストダウンを図ることができ、かつ、第1の比較例と比較して、検出精度を向上させることができる。
 (2)実施の形態1の駆動力伝達装置としての前後進切替装置は、
温度センサ9が、前進クラッチ31及び後退ブレーキ32と軸方向で重なる位置に配置されていることを特徴とする。
  したがって、温度センサ9の位置が、前進クラッチ31及び後退ブレーキ32の外周位置であって軸方向で重ならない位置に配置されているものと比較して、高い温度検出精度を得ることができる。
 (3)実施の形態1の駆動力伝達装置としての前後進切替装置は、
両摩擦締結要素としての前進クラッチ31及び後退ブレーキ32の温度に関する安全性を判定するフェール判断部110aを備え、
このフェール判断部110aは、温度センサ9の検出温度に基づく第1の判断と、潤滑油経路とは異なる位置であるオイルパン(図示省略)の潤滑油温度を検出する第2の温度センサの検出温度に基づく第2の判断とを並列に実行することを特徴とする。
  したがって、2系統のフェール判断の一方に不具合が生じても、フェール判断の続行が可能であり、フェール判断及びこれに基づく保護システムの精度向上を図ることができる。
 (4)実施の形態1の駆動力伝達装置としての前後進切替装置は、
両摩擦締結要素の内側に配置されたものとしての前進クラッチ31のクラッチプレート(ドリブンプレート31d)を内周に支持する一方で、両摩擦締結要素の外側に配置されたものとしての後退ブレーキ32のクラッチプレート(ドライブプレート32b)を外周に支持するハブ兼用クラッチドラム31aを備え、
このハブ兼用クラッチドラム31aにおいて軸方向でクラッチプレート(ドリブンプレート31d,ドライブプレート32b)が設けられている位置で径方向に貫通されて潤滑油経路を形成するドラム油穴31hが設けられていることを特徴とする。
  したがって、前進クラッチ31と後退ブレーキ32との間の潤滑油経路80を形成する部分を1本にすることができ、第1の比較例のように、2つの部材に油穴を形成するものと比較して、潤滑油経路の分散を防いで、温度の検出精度を向上させることができる。
 (5)実施の形態1の駆動力伝達装置としての前後進切替装置は、
入力軸30aが車両の駆動源であるモータジェネレータ2側から駆動力を入力可能に連結される一方、出力軸30bが、車両の駆動輪側である変速機入力軸40に駆動力を伝達可能に連結され、
入力軸30aと出力軸30bとの間に遊星歯車30を備え、
前進クラッチ31及び後退ブレーキ32は、遊星歯車30の回転要素の固定及び解放を行うことにより、第1駆動力伝達状態である前進時に、入力軸30aと出力軸30bとの回転方向を同一方向とし、第2駆動力伝達状態である後退時に、入力軸30aと出力軸30bとの回転方向を逆転させる前後進切替装置3として設けられていることを特徴とする。
  2つの摩擦締結要素を選択的に締結及び解放させる前後進切替装置3において、上記(1)~(4)の効果を得ることができる。
 また、本実施の形態1では、駆動力伝達系に流体継手を備えていない構成では、発進時にWSCモードとして、前進時と後退時とに選択的に締結される前後進切替装置3の前進クラッチ31あるいは後退ブレーキ32をスリップさせるようにした。
  このとき、前進クラッチ31あるいは後退ブレーキ32は発熱するため、これらの耐久性を確保するには、温度センサ9により温度を検出し、これらが過加熱状態とならないようにする必要がある。
  したがって、温度センサ9により前進クラッチ31及び後退ブレーキ32の温度検出を行うのにあたり、上記(1)~(4)の効果が有効となる。
 (6)実施の形態1の駆動力伝達装置としての前後進切替装置は、
遊星歯車30は、入力軸30aに連結されたサンギア33と、ハブ兼用クラッチドラム31aに連結されたリングギア35と、出力軸30bに連結されたキャリア34と、を備え、
第1摩擦締結要素としての前進クラッチ31が、ハブ兼用クラッチドラム31aとキャリア34との間に、締結時にキャリア34とリングギア35とを固定するよう設けられ、
第2摩擦締結要素としての後退ブレーキ32が、ハブ兼用クラッチドラム31aと、その外周に設けられてケース36に固定されたハウジング32aとの間に、締結時にリングギア35をケース36に固定するよう設けられ、
ハウジング32aに、ドラム油穴31hと軸方向で重なる位置で径方向に貫通されて潤滑油経路80を形成するハウジング油穴32gが設けられていることを特徴とする。
  したがって、前進クラッチ31の締結時には、遊星歯車30においてキャリア34とリングギア35とを固定し、入力軸30aから出力軸30bへ1対1で回転を伝達することができる。
  また、後退ブレーキ32の締結時には、遊星歯車30においてリングギア35を固定し、前進クラッチ31の締結時とは逆転して入力軸30aから出力軸30bへ回転を伝達することができる。
 (実施の形態2)
  次に、実施の形態2の駆動力伝達装置を図9に基づいて説明する。
  この実施の形態2は、実施の形態1の変形例であって、第1比較例のように、前進クラッチ331のドライブプレート331c及びドリブンプレート331dをクラッチドラム331a及びクラッチハブ331bにより支持した。また、後退ブレーキ332のドライブプレート332b及びドリブンプレート332cを、クラッチハブ332h及びハウジング332aにより支持した例である。
 実施の形態2では、第1の比較例と同様の遊星歯車330を備えている。
  すなわち、遊星歯車3030は、サンギア333、シングルのピニオン334a及びキャリア334、リングギア335を備えている。また、前進クラッチ331のドリブンプレート331dを支持するクラッチハブ331bはサンギア333に結合され、ドライブプレート331cを支持するクラッチドラム331aが、リングギア335に結合されている。そして、クラッチドラム331aは、図外の入力軸30aに連結され、かつ、シリンダ室331eおよびクラッチピストン331fを備えている。
 後退ブレーキ332は、ドライブプレート332bを支持するクラッチハブ332hがキャリア334に結合されている。また、ドリブンプレート332cは、ハウジング332aに支持され、ハウジング332aは、シリンダ室332e及びクラッチピストン332fを備えている。
 そして、実施の形態2では、クラッチハブ331bに径方向に貫通形成されたハブ油穴331gと、クラッチドラム331aに径方向に貫通されたドラム油穴331jと、が軸方向で同一に配置されている。さらに、クラッチハブ332hに、径方向に貫通形成されたハブ油穴332gと、ハウジング332aに、径方向に貫通されたハウジング油穴332jとが、ハブ油穴331g及びドラム油穴331jと、軸方向で同一に配置されている。
さらに、これらハブ油穴331g、ドラム油穴331j、ハブ油穴332g、ハウジング油穴332jと、軸方向で同一位置で外径方向位置に、温度センサ9がケース36に支持されて設けられている。
 したがって、実施の形態2では、ハブ油穴331g、ドラム油穴331j、ハブ油穴332g、ハウジング油穴332jにより、前進クラッチ331及び後退ブレーキ332を径方向に通過して温度センサ9に至る潤滑油経路380が形成されている。
 よって、この実施の形態2にあっても、上記(1)で述べたように、前進クラッチ331と後退ブレーキ332との2つの摩擦締結要素を冷却する潤滑油経路380が1本のみで形成される。このため、比較例のように、潤滑経路が枝分かれや複数形成されるものと比較して、潤滑効率を向上させることができる。加えて、1つの温度センサ9により、選択的に締結される前進クラッチ331と後退ブレーキ332との温度をそれぞれ検出することが可能になり、コストダウンを図ることができながら、高い検出精度を得ることができる。
 また、実施の形態2では、上記(2)で述べたように、温度センサ9の位置が、前進クラッチ331及び後退ブレーキ332の外周位置であって、しかも、軸方向で重なる位置に配置されているため、高い温度検出精度を得ることができる。
 以上、本発明の前後進切替装置を実施の形態に基づき説明してきたが、具体的な構成については、これらの実施例に限られるものではなく、請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。
 実施の形態では、本発明の前後進切替装置をエンジンとモータ/ジェネレータを搭載したハイブリッド車両に適用した例を示した。しかし、本発明の前後進切替装置は、駆動源としてエンジンのみを搭載したエンジン車や、駆動源としてモータ/ジェネレータのみを搭載した電気自動車や燃料電池車等にも適用することができる。
 また、実施の形態では、駆動力伝達装置として前後進切替装置を示したが、複数の摩擦締結要素を有し、一方の締結時に他方を解放する関係の第1摩擦締結要素及び第2摩擦締結要素を有するものであれば、変速機などの他の車両用の動力伝達装置や、車両以外の産業機器などの動力伝達装置にも適用することができる。
 また、実施の形態では、温度センサの配置として、両摩擦締結要素(前進クラッチ、後退ブレーキ)の外周であって、しかも、両摩擦締結要素(前進クラッチ、後退ブレーキ)と軸方向に重なる位置に配置した例を示したが、これに限定されない。すなわち、温度センサは、両摩擦締結要素の外周位置であれば、両摩擦締結要素と軸方向に異なる位置であっても、潤滑油経路としては、外側の摩擦締結要素から軸方向に向きを変えるようにして1本のもので形成することが可能である。
関連出願の相互参照
 本出願は、2013年3月11日に日本国特許庁に出願された特願2013-047596に基づいて優先権を主張し、その全ての開示は完全に本明細書で参照により組み込まれる。

Claims (6)

  1.  入力軸と出力軸との間に複数の摩擦締結要素を備え、第1摩擦締結要素を締結させる一方で、第2摩擦締結要素を解放させた第1駆動力伝達状態と、前記第1摩擦締結要素を解放させる一方で、前記第2摩擦締結要素を締結させた第2駆動伝達状態と、を形成可能な駆動力伝達装置であって、
     前記第1摩擦締結要素と前記第2摩擦締結要素とが、軸方向に重なり径方向に内外二重に配置され、
     両摩擦締結要素の外周位置に温度センサが配置され、
     両摩擦締結要素の冷却用の潤滑油が、両摩擦締結要素の内側から両摩擦締結要素を径方向に通過して温度センサに至る潤滑油経路が形成されていることを特徴とする駆動力伝達装置。
  2.  請求項1に記載の駆動力伝達装置において、
     前記温度センサが、両摩擦締結要素と軸方向で重なる位置に配置されていることを特徴とする駆動力伝達装置。
  3.  請求項1または請求項2に記載の駆動力伝達装置において、
     両摩擦締結要素の温度に関する安全性を判定するフェール判定手段を備え、
     このフェール判断手段は、前記温度センサの検出温度に基づく第1の判断と、前記潤滑油経路とは異なる位置の潤滑油温度を検出する第2の温度センサの検出温度に基づく第2の判断とを並列に実行することを特徴とする駆動力伝達装置。
  4.  請求項1~請求項3のいずれか1項に記載の駆動力伝達装置において、
     両摩擦締結要素の内側に配置されたもののクラッチプレートを内周に支持する一方で、両摩擦締結要素の外側に配置されたもののクラッチプレートを外周に支持するハブ兼用クラッチドラムを備え、
     このハブ兼用クラッチドラムにおいて軸方向で前記クラッチプレートが設けられている位置で径方向に貫通されて前記潤滑油経路を形成するドラム油穴が設けられていることを特徴とする駆動力伝達装置。
  5.  請求項1~請求項4のいずれか1項に記載の駆動力伝達装置において、
     前記入力軸が車両の駆動源側から駆動力を入力可能に連結される一方、前記出力軸が、車両の駆動輪側に駆動力を伝達可能に連結され、
     前記入力軸と前記出力軸との間に遊星歯車を備え、
     前記第1摩擦締結要素及び前記第2摩擦締結要素は、前記遊星歯車の回転要素の固定及び解放を行うことにより、前記第1駆動力伝達状態で、前記入力軸と前記出力軸との回転方向を同一方向とし、前記第2駆動力伝達状態で、前記入力軸と前記出力軸との回転方向を逆転させる前後進切替装置として設けられていることを特徴とする駆動力伝達装置。
  6.  請求項5に記載された駆動力伝達装置において、
     前記遊星歯車は、前記入力軸に連結されたサンギアと、前記ハブ兼用クラッチドラムに連結されたリングギアと、前記出力軸に連結されたキャリアと、を備え、
     前記第1摩擦締結要素が、前記ハブ兼用クラッチドラムと前記キャリアとの間に、締結時に前記キャリアと前記リングギアとを固定するよう設けられ、
     前記第2摩擦締結要素が、前記ハブ兼用クラッチドラムと、その外周に設けられてケースに固定されたハウジングとの間に、締結時に前記リングギアを前記ケースに固定するよう設けられ、
     前記ハウジングに、前記ドラム油穴と軸方向で重なる位置で径方向に貫通されて前記潤滑油経路を形成するハウジング油穴が設けられていることを特徴とする駆動力伝達装置。
PCT/JP2013/084578 2013-03-11 2013-12-25 駆動力伝達装置 WO2014141562A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
RU2015143050/11A RU2582507C1 (ru) 2013-03-11 2013-12-25 Устройство передачи мощности приведения в движение
EP13878212.3A EP2975283B1 (en) 2013-03-11 2013-12-25 Drive power transmission device
JP2015505241A JP5967291B2 (ja) 2013-03-11 2013-12-25 駆動力伝達装置
US14/764,995 US9458909B2 (en) 2013-03-11 2013-12-25 Drive power transmission device
CN201380074602.5A CN105008744A (zh) 2013-03-11 2013-12-25 驱动力传递装置
MX2015011413A MX345957B (es) 2013-03-11 2013-12-25 Dispositivo de transmision de potencia de accionamiento.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013047596 2013-03-11
JP2013-047596 2013-03-11

Publications (1)

Publication Number Publication Date
WO2014141562A1 true WO2014141562A1 (ja) 2014-09-18

Family

ID=51536247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084578 WO2014141562A1 (ja) 2013-03-11 2013-12-25 駆動力伝達装置

Country Status (8)

Country Link
US (1) US9458909B2 (ja)
EP (1) EP2975283B1 (ja)
JP (1) JP5967291B2 (ja)
CN (2) CN110259847B (ja)
MX (1) MX345957B (ja)
MY (1) MY162012A (ja)
RU (1) RU2582507C1 (ja)
WO (1) WO2014141562A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106989146A (zh) * 2015-09-28 2017-07-28 福特全球技术公司 具有流体分配离合器毂的变速器
JPWO2020084913A1 (ja) * 2018-10-22 2021-09-30 ジヤトコ株式会社 前後進切替機構

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6706884B2 (ja) * 2015-03-19 2020-06-10 日産自動車株式会社 車両のオイルポンプ駆動制御装置
RU2637053C1 (ru) * 2016-11-21 2017-11-29 Федеральное государственное унитарное предприятие "Центральный ордена Трудового Красного Знамени научно-исследовательский автомобильный и автомоторный институт "НАМИ" (ФГУП "НАМИ") Сцепляющий узел трансмиссии транспортного средства
RU171528U1 (ru) * 2016-12-05 2017-06-05 Федеральное государственное унитарное предприятие "Центральный ордена Трудового Красного Знамени научно-исследовательский автомобильный и автомоторный институт "НАМИ" (ФГУП "НАМИ") Устройство сцепляющего узла трансмиссии транспортного средства
JP7001365B2 (ja) * 2017-05-22 2022-01-19 クボタ環境サ-ビス株式会社 動力伝達装置及び破砕装置
FR3068746B1 (fr) * 2017-07-06 2020-02-28 Valeo Embrayages Porte-disque de sortie d'un double embrayages et mecanisme comprenant un tel porte-disque
RU2694426C1 (ru) * 2018-05-07 2019-07-12 Федеральное государственное унитарное предприятие "Центральный ордена Трудового Красного Знамени научно-исследовательский автомобильный и автомоторный институт "НАМИ" (ФГУП "НАМИ") Двойная фрикционная муфта сцепления с гидравлическим управлением
DE102018113958B4 (de) * 2018-06-12 2022-03-31 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Kompaktes 2-Gang-Kraftfahrzeuggetriebe zur Ankoppelung einer elektrischen Maschine
CN112654803A (zh) 2018-10-22 2021-04-13 加特可株式会社 齿轮的支承结构
JP7145969B2 (ja) * 2018-11-27 2022-10-03 ジヤトコ株式会社 動力伝達装置及び動力伝達装置の製造方法
EP3990805A4 (en) * 2019-06-28 2023-11-01 Horton, Inc. PLANETARY TRANSMISSION SYSTEM WITH FORWARD AND REVERSE MODE OPERATION
US11465496B2 (en) * 2019-08-29 2022-10-11 Kawasaki Motors, Ltd. Power unit of utility vehicle
EP3786488A1 (en) * 2019-09-02 2021-03-03 Mazda Motor Corporation Control device for automatic transmission, automatic transmission, vehicle, and method of controlling automatic transmission
US11872888B2 (en) * 2022-06-03 2024-01-16 Kawasaki Motors, Ltd. Drive system of hybrid utility vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001124110A (ja) * 1999-09-30 2001-05-08 Mannesmann Sachs Ag 多重クラッチ装置
JP2003172439A (ja) * 2001-12-10 2003-06-20 Toyota Motor Corp 潤滑装置
JP2010151312A (ja) 2008-11-25 2010-07-08 Nissan Motor Co Ltd 乾式クラッチ
DE102009001286A1 (de) * 2009-03-03 2010-09-09 Zf Friedrichshafen Ag Mehrfachkupplungseinrichtung, insbesondere Doppelkupplungseinrichtung, mit einem mit einer äußeren Getriebeeingangswelle mitdrehenden Druckmedium-Zufuhrelement
JP2011052746A (ja) * 2009-09-01 2011-03-17 Honda Motor Co Ltd 湿式多板クラッチ
JP2011112115A (ja) * 2009-11-25 2011-06-09 Mazda Motor Corp 火花点火式エンジンの制御装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4618755Y1 (ja) * 1967-10-27 1971-06-30
SU1414967A1 (ru) * 1985-12-06 1988-08-07 Подмосковный филиал Государственного союзного научно-исследовательского тракторного института Фрикционный механизм
JPH02248748A (ja) 1989-03-20 1990-10-04 Aisin Aw Co Ltd 自動変速機におけるクラッチ装置
DE10004195B4 (de) * 1999-09-30 2013-02-07 Volkswagen Ag Mehrfach-Kupplungseinrichtung
AU2002216020A1 (en) * 2000-12-07 2002-06-18 Mannesmann Sachs Ag Double or multiple disk coupling device and disk arrangement therefor
JP3937936B2 (ja) * 2002-06-14 2007-06-27 三菱ふそうトラック・バス株式会社 クラッチディスク摩耗検知装置
DE10333431A1 (de) * 2003-07-23 2005-02-10 Zf Friedrichshafen Ag Kupplungsanordnung in einem Automatgetriebe mit bauraumsparender Kühlmittelversorgung
US7001301B2 (en) * 2003-11-19 2006-02-21 General Motors Corporation Sealing sleeve for a hydraulic actuator
JP4779341B2 (ja) * 2004-11-18 2011-09-28 トヨタ自動車株式会社 自動変速機用ピストン
DE502006006167D1 (de) * 2006-01-26 2010-04-01 Luk Lamellen & Kupplungsbau Kühlmediumverteileinrichtung
JP2007271018A (ja) 2006-03-31 2007-10-18 Mazda Motor Corp 自動変速機の制御装置
JP2007271019A (ja) 2006-03-31 2007-10-18 Mazda Motor Corp 自動変速機の制御装置
EP1914434A3 (de) * 2006-10-21 2010-03-24 LuK Lamellen und Kupplungsbau Beteiligungs KG Drehmomentübertragungseinrichtung
DE102007022777A1 (de) * 2007-05-15 2008-11-20 Zf Friedrichshafen Ag Sensoranordnung für eine Kupplungsvorrichtung
WO2011094223A1 (en) * 2010-01-26 2011-08-04 Martin Burgbacher Gear assembly for motor vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001124110A (ja) * 1999-09-30 2001-05-08 Mannesmann Sachs Ag 多重クラッチ装置
JP2003172439A (ja) * 2001-12-10 2003-06-20 Toyota Motor Corp 潤滑装置
JP2010151312A (ja) 2008-11-25 2010-07-08 Nissan Motor Co Ltd 乾式クラッチ
DE102009001286A1 (de) * 2009-03-03 2010-09-09 Zf Friedrichshafen Ag Mehrfachkupplungseinrichtung, insbesondere Doppelkupplungseinrichtung, mit einem mit einer äußeren Getriebeeingangswelle mitdrehenden Druckmedium-Zufuhrelement
JP2011052746A (ja) * 2009-09-01 2011-03-17 Honda Motor Co Ltd 湿式多板クラッチ
JP2011112115A (ja) * 2009-11-25 2011-06-09 Mazda Motor Corp 火花点火式エンジンの制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2975283A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106989146A (zh) * 2015-09-28 2017-07-28 福特全球技术公司 具有流体分配离合器毂的变速器
JPWO2020084913A1 (ja) * 2018-10-22 2021-09-30 ジヤトコ株式会社 前後進切替機構
JP7057836B2 (ja) 2018-10-22 2022-04-20 ジヤトコ株式会社 前後進切替機構

Also Published As

Publication number Publication date
CN110259847B (zh) 2021-08-13
JPWO2014141562A1 (ja) 2017-02-16
CN110259847A (zh) 2019-09-20
JP5967291B2 (ja) 2016-08-10
RU2582507C1 (ru) 2016-04-27
US20150369340A1 (en) 2015-12-24
MY162012A (en) 2017-05-31
MX345957B (es) 2017-02-28
EP2975283B1 (en) 2017-07-19
CN105008744A (zh) 2015-10-28
EP2975283A1 (en) 2016-01-20
MX2015011413A (es) 2015-12-16
US9458909B2 (en) 2016-10-04
EP2975283A4 (en) 2016-03-23

Similar Documents

Publication Publication Date Title
JP5967291B2 (ja) 駆動力伝達装置
US8308595B2 (en) Hybrid drive device
US8857188B2 (en) Hybrid drive device
KR102334149B1 (ko) 자동차용 멀티 클러치 장치 및 하이브리드 모듈
RU2628618C2 (ru) Гибридный привод, транспортное средство с таким гибридным приводом, способ управления таким гибридным приводом
US20140331945A1 (en) Hybrid drive device
US20220379712A1 (en) Compact p2 hybrid architecture
US20220219525A1 (en) P2 module architecture
JP6385167B2 (ja) 駆動機構
US20080308375A1 (en) Force transfer device, a drive train with force transfer device, and a method for controlling the operation of a force transfer device in a drive train
KR20170137798A (ko) 하이브리드 차량용 드라이브트레인
US11919401B2 (en) Compact P2 hybrid architecture
JP5306302B2 (ja) 車両の駆動装置
CN108779809B (zh) 湿式多板离合器
JP5533494B2 (ja) 車両用クラッチ装置
JP5948109B2 (ja) 車両用駆動装置
EP3922522B1 (en) Control device for vehicle drive device
CN111251871B (zh) 混合动力驱动系统及车辆
JP2003042191A (ja) 電磁クラッチ装置
KR101828987B1 (ko) 하이브리드 드라이브 라인의 연소 엔진 시동 방법
JP2013184500A (ja) 車両用駆動装置及び車両用駆動装置の制御方法
JP2012062911A (ja) 車両用クラッチ装置
JP2009001128A (ja) ハイブリッド駆動装置
JP6694314B2 (ja) 車両用駆動装置
JP2005121089A (ja) ハイブリッド変速機のエンジンクラッチ保護制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13878212

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015505241

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14764995

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/011413

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201506263

Country of ref document: ID

REEP Request for entry into the european phase

Ref document number: 2013878212

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013878212

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015143050

Country of ref document: RU

Kind code of ref document: A