WO2014141516A1 - 光分析装置の評価方法およびファントムサンプル - Google Patents
光分析装置の評価方法およびファントムサンプル Download PDFInfo
- Publication number
- WO2014141516A1 WO2014141516A1 PCT/JP2013/076801 JP2013076801W WO2014141516A1 WO 2014141516 A1 WO2014141516 A1 WO 2014141516A1 JP 2013076801 W JP2013076801 W JP 2013076801W WO 2014141516 A1 WO2014141516 A1 WO 2014141516A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical system
- evaluating
- optical
- phantom sample
- solid
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/27—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
- G01N21/274—Calibration, base line adjustment, drift correction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/645—Specially adapted constructive features of fluorimeters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
- G01M11/02—Testing optical properties
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/27—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
- G01N21/274—Calibration, base line adjustment, drift correction
- G01N21/276—Calibration, base line adjustment, drift correction with alternation of sample and standard in optical path
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/645—Specially adapted constructive features of fluorimeters
- G01N21/6456—Spatial resolved fluorescence measurements; Imaging
- G01N21/6458—Fluorescence microscopy
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/0004—Microscopes specially adapted for specific applications
- G02B21/002—Scanning microscopes
- G02B21/0024—Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
- G02B21/0052—Optical details of the image generation
- G02B21/0076—Optical details of the image generation arrangements using fluorescence or luminescence
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/0004—Microscopes specially adapted for specific applications
- G02B21/002—Scanning microscopes
- G02B21/0024—Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
- G02B21/008—Details of detection or image processing, including general computer control
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/34—Microscope slides, e.g. mounting specimens on microscope slides
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/27—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
- G01N21/274—Calibration, base line adjustment, drift correction
- G01N21/278—Constitution of standards
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/06—Illumination; Optics
- G01N2201/061—Sources
- G01N2201/06113—Coherent sources; lasers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/12—Circuits of general importance; Signal processing
- G01N2201/127—Calibration; base line adjustment; drift compensation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/12—Circuits of general importance; Signal processing
- G01N2201/13—Standards, constitution
Definitions
- the present invention relates to an optical analyzer evaluation method and a phantom sample.
- This optical analyzer uses an optical system capable of detecting light from a confocal volume in an aqueous solution, such as a confocal microscope or a multiphoton excitation microscope. Then, when the position of the confocal volume is moved in the aqueous solution, that is, while the inside of the aqueous solution is scanned by the confocal volume, the luminous particles dispersed in the aqueous solution and moving randomly are included in the confocal volume. In addition, light emitted from the luminescent particles is detected.
- This optical analyzer basically measures the concentration of luminescent particles dispersed sufficiently in an aqueous solution with respect to the size of the confocal volume.
- the pulse train of fluorescence intensity (photon) obtained when the confocal volume scanned at a speed larger than the speed of diffusion by Brownian motion passes through the particle reflects the bell shape that is the intensity distribution of the confocal volume. From this characteristic shape, it is based on the very clear and simple principle of judging this as one particle.
- the passage of one particle is counted as one continuous bell-shaped peak (peak), and the sum of the number of peaks during a certain scanning time is proportional to the concentration of the particles in the aqueous solution.
- the target particle is set to a known concentration in advance, and the number of peaks is measured while scanning for a fixed time. If this is performed on a series of aqueous solutions, the concentration and number of peaks are calibrated. can do. As a result, the concentration can be measured by measuring an aqueous solution having an unknown concentration and obtaining the number of peaks.
- aqueous solutions of a plurality of types of fluorescent dye molecules having different known concentrations are actually prepared, and the confocal volume is scanned over a predetermined time in each aqueous solution.
- the operation of calibrating the relationship between the number of peaks and the concentration is performed by making the number of fluorescent peaks sometimes obtained correspond to the concentration.
- the factors that determine the state are the size of the confocal volume configured in the aqueous solution, the height of the confocal volume (focal position) from the bottom plate surface, which is the transparent body of the container holding the aqueous solution, and scanning. Speed, detector sensitivity, and optical axis misalignment.
- an aqueous solution of a plurality of types of fluorescent dye molecules having different known concentrations is accurately prepared in a very thin concentration region, for example, 1 nM, 100 pM, 10 pM, 1 pM, 100 fM, 10 fM, 1 fM, Adjustment with a series such as 100aM requires labor and may cause human error during adjustment.
- the concentration is extremely thin, there is a possibility that the concentration may change drastically even by evaporation of some water, and further, deterioration such as fading of fluorescent dye molecules may occur, resulting in lack of storage stability. For this reason, it is not easy to correctly evaluate the optical system of the optical analyzer using a sample of an actual aqueous solution.
- the present invention has been made in view of the above-described circumstances, and an object thereof is to provide an optical analyzer evaluation method and a phantom sample that can easily and accurately evaluate an optical system of an optical analyzer. Yes.
- One embodiment of the present invention is an evaluation method for an optical analysis apparatus including an optical system that can collect excitation light and form a confocal volume at a focal position, and includes a plurality of two or more kinds of fluorescent substances having different concentrations
- the phantom sample and the confocal volume formed by the optical system are arranged in the arrangement direction of the solid member in the arrangement direction of the solid member in a state where the focal position of the optical system of the optical analyzer is matched with the solid member.
- the detected fluorescence intensity can be changed in a step-like manner by moving it relative to the.
- the fluorescence intensity changes abruptly at the boundary position of the solid member, but when the focal position does not coincide, the change in the fluorescence intensity is gentle. Therefore, it is possible to easily evaluate whether or not the focal position is appropriate by obtaining the inclination of the fluorescence intensity change at this position.
- the confocal volume is formed in an appropriate size, the detected fluorescence intensity is high, but when the confocal volume is small, the detected fluorescence intensity is low. It is possible to easily evaluate whether the size of the volume or the sensitivity of the detector is appropriate.
- the phantom sample may be configured by alternately arranging first solid members containing a predetermined concentration of fluorescent material and second solid members not containing the fluorescent material.
- the said solid member may be arranged with a fixed period.
- the solid members may be arranged in a straight line direction.
- the said evaluation can be performed only by moving the confocal volume and solid member which are formed with an optical system in the straight line form in the sequence direction of a solid member.
- the said solid member may be arranged in the circumferential direction.
- the step of evaluating the optical system may evaluate whether or not the focal position of the optical system is appropriate based on the inclination of the fluorescence intensity change at the adjacent position of the different solid member. Good.
- the focal position of the optical system is accurately matched to the phantom sample, the intensity of the detected fluorescence changes stepwise at the adjacent position of the solid fluorescent plate, so the inclination is extremely large.
- the inclination of the fluorescence intensity change becomes small. Therefore, it is possible to easily evaluate whether or not the focus position of the optical system is appropriate by detecting the inclination of the intensity change.
- the step of evaluating the optical system may evaluate whether the size of the confocal volume or the sensitivity of the detector is appropriate based on the intensity of the detected fluorescence. If the size of the confocal volume or the sensitivity of the detector is appropriate, a predetermined fluorescence intensity can be obtained, and if it is not appropriate, a lower fluorescence intensity can be obtained. Can be evaluated.
- the step which evaluates the said optical system determines whether the scanning speed of the excitation light by the said optical system is appropriate based on the time interval of the fluorescence intensity change in the adjacent position of a different said solid member. You may evaluate. By doing so, the amount of fluorescence generated in the solid member changes stepwise at the boundary between the adjacent solid members. By checking the time interval of the change, the scanning speed of the excitation light by the optical system can be increased. It is possible to easily evaluate whether or not it is appropriate.
- the other aspect of this invention provides the phantom sample used for the evaluation method of one of the said optical analyzers.
- the labor for adjustment with a conventional aqueous solution is not required, so that an artificial error does not occur at the time of adjustment, and even if the concentration is very thin, concentration fluctuations due to evaporation of moisture etc. Does not occur.
- deterioration such as fading of fluorescent dye molecules hardly occurs, and the storage stability is excellent. Therefore, the optical system of the optical analyzer can be evaluated easily and accurately.
- FIG. 2 is a waveform showing a temporal change in fluorescence intensity detected by a photodetector when the focal position of the optical system of the optical analyzer coincides with the phantom sample of FIG. 2 is a waveform showing a temporal change in fluorescence intensity detected by a photodetector when the focal position of the optical system of the optical analyzer does not match the phantom sample of FIG. 1.
- FIG. 1 It is a perspective view which shows the modification of the phantom sample of FIG.
- the phantom sample 1 according to the present embodiment is formed in a flat plate shape by alternately arranging a plurality of two types of solid members 2 and 3 having different concentrations of fluorescent substances. .
- One solid member 2 contains a fluorescent substance having a predetermined fluorescence concentration.
- the other solid member 3 does not contain a fluorescent material (contains a fluorescent material with a zero fluorescence concentration).
- These solid members 2 and 3 are formed to be sufficiently thin, and the width dimension is set to be the same width dimension with high accuracy.
- a method for evaluating an optical analyzer using the phantom sample 1 according to this embodiment configured as described above will be described below.
- the optical system A of the optical analyzer is adjusted as shown in FIG. Then, the focal position is arranged so as to coincide with the phantom sample 1.
- the phantom sample 1 is irradiated with the excitation light B propagated through the optical system A.
- the confocal volume C formed at the focal position of the optical system A coincides with the phantom sample 1, and the fluorescent substance in the confocal volume C is excited to generate fluorescence.
- the scanning means (not shown) of the optical analyzer is operated to move the confocal volume C in a direction (in the direction of arrow D) that intersects the optical axis and coincides with the arrangement direction of the solid members 2 and 3. Let Thereby, the confocal volume C is moved relative to the solid members 2 and 3.
- the fluorescence generated in the solid members 2 and 3 is collected by the optical system A of the optical analyzer and detected by a photodetector (not shown). That is, while the confocal volume C coincides with the one solid member 2 containing the fluorescent material, fluorescence is generated in the solid member 2 and a signal having a predetermined intensity is generated from the photodetector. Is coincident with the other solid member 3 containing no fluorescent material, no signal is generated from the photodetector (or a signal of dark noise level is generated). Therefore, while the confocal volume C and the solid members 2 and 3 move relatively, the signal detected by the photodetector changes in a rectangular wave shape.
- the solid members 2 and 3 are arranged so as to cross the position where the confocal volume C converges most narrowly. Therefore, as shown in FIG. 3, the signal from the photodetector changes stepwise from zero to a finite value or from a finite value to zero at the boundary position between the two types of solid members. Therefore, the slope of the time change of the signal at the boundary position between the solid members 2 and 3 is close to infinity.
- the solid members 2 and 3 are arranged so as to cross the position where the confocal volume C expands. Therefore, as shown in FIG. 4, the signal from the photodetector at the boundary position between the two types of solid members 2 and 3 changes gently. Therefore, the gradient of the time change of the signal at the boundary position between the solid members 2 and 3 becomes small.
- the phantom sample 1 it is determined whether or not the focal position of the optical system A correctly matches the phantom sample 1 due to the temporal change of the fluorescence intensity signal detected by the optical analyzer. There is an advantage that it can be easily evaluated.
- the intensity of fluorescence generated by irradiating excitation light with a predetermined intensity is known in advance. . Therefore, as described above, even when it can be evaluated that the focal position of the optical system A is correctly coincident with the phantom sample 1, the maximum intensity of the signal detected by the photodetector is determined in advance. If it is low, it is possible to easily evaluate whether there is a problem with the light source that generates the excitation light B, whether the size of the confocal volume C is too small, or the sensitivity of the photodetector is reduced. it can.
- the relative movement speed between the confocal volume C and the solid members 2 and 3 is the same. Is constant, the signal generated by the photodetector changes correctly and periodically. Therefore, by detecting this period, it is possible to easily evaluate whether or not the relative movement speed between the confocal volume C and the solid members 2 and 3, that is, the scanning speed of the excitation light B is constant.
- the solid members 2 having a predetermined concentration and the solid members 3 having a zero concentration are alternately arranged.
- the solid members each contain a fluorescent material and the concentrations thereof are clearly different. May be arranged alternately. Further, three or more kinds of solid members having different concentrations may be arranged. Moreover, you may decide to replace the phantom sample 1 which has a solid member containing a different fluorescent substance according to the kind of excitation light to irradiate.
- the phantom sample 1 in which the solid members 2 and 3 are arranged in one linear direction is illustrated, but instead of this, as shown in FIG.
- a phantom sample 1 formed in a disk shape by alternately arranging 2 and 3 in the circumferential direction may be adopted.
- the present invention since the solid members 2 and 3 having exactly the same width are arranged, a periodic output waveform can be obtained at any position as long as they are relatively moved at a constant speed.
- the present invention is not limited to this. That is, if only the signal change at the boundary position between the adjacent solid members 2 and 3 is taken into consideration, the periodicity is not necessary and the width dimensions may not be the same.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Description
本発明の一態様は、励起光を集光して焦点位置にコンフォーカルボリュームを形成可能な光学系を備える光分析装置の評価方法であって、蛍光物質の濃度の異なる2種以上の複数の固体部材を隣接して配列してなるファントムサンプルを前記光学系の焦点位置に配置するステップと、前記光学系により形成されるコンフォーカルボリュームと前記ファントムサンプルとを前記固体部材の配列方向に相対的に移動させつつ、前記光学系を介して前記ファントムサンプルに励起光を照射するステップと、前記コンフォーカルボリューム内に配置された固体部材において発生した蛍光を検出するステップと、検出された蛍光に基づいて前記光学系を評価するステップとを含む光分析装置の評価方法を提供する。
このようにすることで、隣接する固体部材の境界において発生する蛍光の強度差を顕著にすることができる。
このようにすることで、光学系により形成されるコンフォーカルボリュームと固体部材との相対移動に際し、一定の相対速度で相対移動させることにより、得られる蛍光強度を一定の周期で変化させることができる。その結果、蛍光強度の周期性から、相対移動速度、すなわち、走査速度の一定性を評価することができる。
このようにすることで、光学系により形成されるコンフォーカルボリュームと固体部材とを固体部材の配列方向に一直線状に移動させるだけで、上記評価を行うことができる。
このようにすることで、光学系により形成されるコンフォーカルボリュームと固体部材とを、固体部材の配列中心回りに回転させるだけで、上記評価を行うことができる。
光学系の焦点位置がファントムサンプルに精度よく一致している場合には、検出される蛍光の強度は、固体蛍光板の隣接位置においてステップ状に変化するため、その傾きは限りなく大きいが、焦点位置がズレている場合には、蛍光の強度変化の傾きは小さくなる。したがって、強度変化の傾きを検出することにより光学系の焦点位置が適正であるか否かを簡易に評価することができる。
コンフォーカルボリュームのサイズあるいは検出器の感度が適正である場合には、所定の蛍光強度を得ることができ、不適正な場合には、それよりも低い蛍光強度が得られるので、これらを簡易に評価することができる。
このようにすることで、固体部材において発生する蛍光量は、隣接する固体部材の境界においてステップ状に変化するので、その変化の時間間隔を確認することで、光学系による励起光の走査速度が適正であるか否かを簡易に評価することができる。
本態様によれば、従来のような水溶液によって調整する労力が不要であり、したがって調整時に人為的なエラーが発生せず、また、極めて薄い濃度であっても、水分の蒸発等による濃度変動も発生しない。また、蛍光色素分子の退色などの劣化も起こり難く、保存性にも優れている。このため光分析装置の光学系を簡易にかつ精度よく評価することができる。
本実施形態に係るファントムサンプル1は、図1に示されるように、蛍光物質の濃度の異なる2種類の固体部材2,3を交互に隣接して複数配列することにより平板状に構成されている。
本実施形態に係るファントムサンプル1を用いて、共焦点光学系あるいは多光子励起光学系を含む光分析装置を評価するには、図2に示されるように、光分析装置の光学系Aを調節してその焦点位置がファントムサンプル1に一致するように配置する。
すなわち、コンフォーカルボリュームCが蛍光物質を含む一方の固体部材2に一致している間は、固体部材2において蛍光が発生し光検出器から所定の強度の信号が発生する一方、コンフォーカルボリュームCが蛍光物質を含まない他方の固体部材3に一致している間は、光検出器からは信号が発生しない(あるいは、暗ノイズレベルの信号が発生する。)。したがって、コンフォーカルボリュームCと固体部材2,3とが相対的に移動する間に、光検出器により検出される信号は、矩形波状に変化する。
2,3 固体部材
A 光学系
B 励起光
C コンフォーカルボリューム
Claims (9)
- 励起光を集光して焦点位置にコンフォーカルボリュームを形成可能な光学系を備える光分析装置の評価方法であって、
蛍光物質の濃度の異なる2種以上の複数の固体部材を隣接して配列してなるファントムサンプルを前記光学系の焦点位置に配置するステップと、
前記光学系により形成されるコンフォーカルボリュームと前記ファントムサンプルとを前記固体部材の配列方向に相対的に移動させつつ、前記光学系を介して前記ファントムサンプルに励起光を照射するステップと、
前記コンフォーカルボリューム内に配置された固体部材において発生した蛍光を検出するステップと、
検出された蛍光に基づいて前記光学系を評価するステップとを含む光分析装置の評価方法。 - 前記ファントムサンプルが、所定濃度の蛍光物質を含有する第1の固体部材と、蛍光物質を含まない第2の固体部材とを交互に配列してなる請求項1に記載の光分析装置の評価方法。
- 前記固体部材が、一定周期で配列されている請求項1または請求項2に記載の光分析装置の評価方法。
- 前記固体部材が、一直線方向に配列されている請求項1から請求項3のいずれかに記載の光分析装置の評価方法。
- 前記固体部材が、周方向に配列されている請求項1から請求項3のいずれかに記載の光分析装置の評価方法。
- 前記光学系を評価するステップが、異なる前記固体部材の隣接位置における蛍光の強度変化の傾きに基づいて、前記光学系の焦点位置が適正であるか否かを評価する請求項1から請求項5のいずれかに記載の光分析装置の評価方法。
- 前記光学系を評価するステップが、検出された蛍光の強度に基づいて、コンフォーカルボリュームのサイズあるいは検出器の感度が適正であるか否かを評価する請求項1から請求項5のいずれかに記載の光分析装置の評価方法。
- 前記光学系を評価するステップが、異なる前記固体部材の隣接位置における蛍光の強度変化の時間間隔に基づいて、前記光学系による励起光の走査速度が適正であるか否かを評価する請求項1から請求項5のいずれかに記載の光分析装置の評価方法。
- 請求項1から請求項8のいずれかに記載の光分析装置の評価方法に用いられるファントムサンプル。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015505222A JP6363991B2 (ja) | 2013-03-13 | 2013-10-02 | 光分析装置の評価方法 |
EP13878233.9A EP2977749A4 (en) | 2013-03-13 | 2013-10-02 | METHOD FOR ASSESSING A LIGHT ANALYSIS DEVICE AND PHANTOM TEST |
CN201380071944.1A CN104956207B (zh) | 2013-03-13 | 2013-10-02 | 光分析装置的评价方法和幻影样本 |
US14/738,134 US9797839B2 (en) | 2013-03-13 | 2015-06-12 | System for applying phantom sample to evaluate optical analysis device, storage device storing instructions, method and phantom sample |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013050775 | 2013-03-13 | ||
JP2013-050775 | 2013-03-13 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/738,134 Continuation US9797839B2 (en) | 2013-03-13 | 2015-06-12 | System for applying phantom sample to evaluate optical analysis device, storage device storing instructions, method and phantom sample |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014141516A1 true WO2014141516A1 (ja) | 2014-09-18 |
Family
ID=51536203
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/076801 WO2014141516A1 (ja) | 2013-03-13 | 2013-10-02 | 光分析装置の評価方法およびファントムサンプル |
Country Status (5)
Country | Link |
---|---|
US (1) | US9797839B2 (ja) |
EP (1) | EP2977749A4 (ja) |
JP (1) | JP6363991B2 (ja) |
CN (1) | CN104956207B (ja) |
WO (1) | WO2014141516A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3706367B2 (ja) * | 2000-06-07 | 2005-10-12 | エフ.ホフマン−ラ ロシュ アーゲー | 共焦点レーザー走査顕微鏡の性能を評価するための基準デバイス、およびその評価を行うための方法およびシステム |
JP4091437B2 (ja) * | 2001-03-28 | 2008-05-28 | クロンディアグ チップ テヒノロギーズ ゲーエムベーハー | 蛍光信号参照デバイス |
JP2010512545A (ja) * | 2006-12-11 | 2010-04-22 | サイテック コーポレイション | 画像焦点の質を評価するための方法 |
WO2011108369A1 (ja) | 2010-03-01 | 2011-09-09 | オリンパス株式会社 | 光分析装置、光分析方法並びに光分析用コンピュータプログラム |
JP2012189322A (ja) * | 2011-03-08 | 2012-10-04 | Olympus Corp | 液状生体ファントム及び液状生体ファントムの作製方法 |
JP2012226055A (ja) * | 2011-04-18 | 2012-11-15 | Japan Science & Technology Agency | 蛍光顕微鏡用解像度評価チャートおよびその製造方法 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1194596A (ja) * | 1997-09-19 | 1999-04-09 | Yaskawa Electric Corp | 回転角度検出装置 |
US6794424B2 (en) * | 2001-12-04 | 2004-09-21 | Agilent Technologies, Inc. | Devices for calibrating optical scanners and methods of using the same |
US7689022B2 (en) * | 2002-03-15 | 2010-03-30 | Affymetrix, Inc. | System, method, and product for scanning of biological materials |
US20050030601A1 (en) * | 2003-06-12 | 2005-02-10 | Affymetrix, Inc. | System and method for scanner instrument calibration using a calibration standard |
JP2005098876A (ja) | 2003-09-25 | 2005-04-14 | Institute Of Physical & Chemical Research | 2成分相互作用分析方法 |
DE102004008539A1 (de) * | 2004-02-19 | 2005-09-01 | Prionics Ag | Vorrichtung und Verfahren zur optischen Auswertung von Teststreifen |
DE102005049364B4 (de) * | 2005-03-18 | 2023-05-25 | BAM Bundesanstalt für Materialforschung und -prüfung | Multifunktionelle Kalibriereinrichtung und Kit sowie ihre Verwendungen zur Charakterisierung von Lumineszenzmesssystemen |
JP4887494B2 (ja) | 2006-06-29 | 2012-02-29 | 国立大学法人静岡大学 | 蛍光目盛り基盤、蛍光目盛り付き顕微鏡基盤及び蛍光目盛り付き顕微鏡用試料容器 |
DE102008007178A1 (de) * | 2008-01-30 | 2009-08-06 | Carl Zeiss Microimaging Gmbh | Kalibriervorrichtung und Laser-Scanning-Mikroskop mit einer derartigen Kalibriervorrichtung |
JP2009231227A (ja) * | 2008-03-25 | 2009-10-08 | C I Kasei Co Ltd | 照明器具 |
JP2011145645A (ja) * | 2009-12-18 | 2011-07-28 | Ihi Corp | 顕微鏡装置及び標本撮影方法 |
JP2012123180A (ja) * | 2010-12-08 | 2012-06-28 | Seiko Epson Corp | 光源装置およびプロジェクター |
JP5859232B2 (ja) * | 2011-07-08 | 2016-02-10 | 国立大学法人東北大学 | 評価用補助具および評価用装置 |
-
2013
- 2013-10-02 JP JP2015505222A patent/JP6363991B2/ja active Active
- 2013-10-02 WO PCT/JP2013/076801 patent/WO2014141516A1/ja active Application Filing
- 2013-10-02 EP EP13878233.9A patent/EP2977749A4/en not_active Withdrawn
- 2013-10-02 CN CN201380071944.1A patent/CN104956207B/zh not_active Expired - Fee Related
-
2015
- 2015-06-12 US US14/738,134 patent/US9797839B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3706367B2 (ja) * | 2000-06-07 | 2005-10-12 | エフ.ホフマン−ラ ロシュ アーゲー | 共焦点レーザー走査顕微鏡の性能を評価するための基準デバイス、およびその評価を行うための方法およびシステム |
JP4091437B2 (ja) * | 2001-03-28 | 2008-05-28 | クロンディアグ チップ テヒノロギーズ ゲーエムベーハー | 蛍光信号参照デバイス |
JP2010512545A (ja) * | 2006-12-11 | 2010-04-22 | サイテック コーポレイション | 画像焦点の質を評価するための方法 |
WO2011108369A1 (ja) | 2010-03-01 | 2011-09-09 | オリンパス株式会社 | 光分析装置、光分析方法並びに光分析用コンピュータプログラム |
JP2012189322A (ja) * | 2011-03-08 | 2012-10-04 | Olympus Corp | 液状生体ファントム及び液状生体ファントムの作製方法 |
JP2012226055A (ja) * | 2011-04-18 | 2012-11-15 | Japan Science & Technology Agency | 蛍光顕微鏡用解像度評価チャートおよびその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2977749A4 |
Also Published As
Publication number | Publication date |
---|---|
JP6363991B2 (ja) | 2018-07-25 |
JPWO2014141516A1 (ja) | 2017-02-16 |
EP2977749A1 (en) | 2016-01-27 |
EP2977749A4 (en) | 2016-11-09 |
US9797839B2 (en) | 2017-10-24 |
US20150355092A1 (en) | 2015-12-10 |
CN104956207A (zh) | 2015-09-30 |
CN104956207B (zh) | 2018-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5802653B2 (ja) | 光分析装置、光分析方法並びに光分析用コンピュータプログラム | |
CN101939633B (zh) | 荧光检测装置和荧光检测方法 | |
JP5381741B2 (ja) | 光学的測定装置及び光学的測定方法 | |
US9958395B2 (en) | Laser induced breakdown spectroscopy (LIBS) apparatus for the detection of mineral and metal contamination in liquid samples | |
JP4640797B2 (ja) | 生体分子相互作用測定装置及び測定方法 | |
JP6120858B2 (ja) | 共焦点顕微鏡又は多光子顕微鏡の光学系を用いた光分析装置、光分析方法及び光分析用コンピュータプログラム | |
JP5020118B2 (ja) | 蛍光解析装置及び解析方法 | |
KR20170052256A (ko) | 라만 산란을 이용한 물질의 농도 측정 장치 및 방법 | |
JP6363991B2 (ja) | 光分析装置の評価方法 | |
KR20160004731A (ko) | 흡광신호 및 형광신호를 이용한 미세입자 측정장치 및 데이터 보정방법 | |
CN105606586A (zh) | 高稳定性的表面增强拉曼光谱的液相检测装置及检测方法 | |
JP6729894B2 (ja) | 魚類の受精卵検査方法および受精卵検査装置 | |
US10989677B2 (en) | Sample collecting device, sample collecting method, and fluorescent x-ray analysis apparatus using the same | |
CN107402196B (zh) | X射线荧光分析仪器及用于其的样品容器 | |
JP2016080497A (ja) | 検出対象物の検出方法 | |
JP6564661B2 (ja) | 装置応答関数測定方法、蛍光測定方法および装置応答関数測定用部材 | |
JP4580976B2 (ja) | 精度管理機能を備えた生体試料分析装置および精度管理測定結果の表示方法 | |
JP2019117140A (ja) | センサ基板及び計測装置 | |
JP6422414B2 (ja) | 検体の比濁分析決定(nephelometricdetermination)を行う方法 | |
JP4379318B2 (ja) | 光学的測定装置および光学的測定方法 | |
JP7505513B2 (ja) | 光放射誘起ルミネセンスを用いた溶存酸素の測定 | |
JP2005233670A (ja) | X線分析装置 | |
JP5220481B2 (ja) | レーザ誘起プラズマ発光分析による木材密度の測定方法 | |
JP2004527767A (ja) | 濃縮媒質に含まれる化学種の光学検出方法 | |
JP2016004042A (ja) | 測定セル用のレセプタクル装置を含む散乱光測定システムおよびその操作方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13878233 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015505222 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2013878233 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013878233 Country of ref document: EP |