JP4887494B2 - 蛍光目盛り基盤、蛍光目盛り付き顕微鏡基盤及び蛍光目盛り付き顕微鏡用試料容器 - Google Patents

蛍光目盛り基盤、蛍光目盛り付き顕微鏡基盤及び蛍光目盛り付き顕微鏡用試料容器 Download PDF

Info

Publication number
JP4887494B2
JP4887494B2 JP2006180312A JP2006180312A JP4887494B2 JP 4887494 B2 JP4887494 B2 JP 4887494B2 JP 2006180312 A JP2006180312 A JP 2006180312A JP 2006180312 A JP2006180312 A JP 2006180312A JP 4887494 B2 JP4887494 B2 JP 4887494B2
Authority
JP
Japan
Prior art keywords
fluorescent
emitting layer
scale
microscope
main surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006180312A
Other languages
English (en)
Other versions
JP2008009184A (ja
Inventor
皆方  誠
賢史 米山
達彦 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka University NUC
Original Assignee
Shizuoka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka University NUC filed Critical Shizuoka University NUC
Priority to JP2006180312A priority Critical patent/JP4887494B2/ja
Publication of JP2008009184A publication Critical patent/JP2008009184A/ja
Application granted granted Critical
Publication of JP4887494B2 publication Critical patent/JP4887494B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Microscoopes, Condenser (AREA)

Description

本発明は、主に蛍光顕微鏡観察に用いられる蛍光目盛り基盤、蛍光目盛り付き顕微鏡基盤及びこれを用いた蛍光目盛り付き顕微鏡用試料容器に関する。
バイオテクノロジー技術の急速な進展に伴い、生体にダメージを与えることなく、より微小な領域を観察できる手法の開発が強く望まれている。生体観察という観点から、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)は真空を必要とするために、生きたままの観察には不向きであり、走査型トンネル顕微鏡(STM)や原子間力顕微鏡(AFM)は走査速度の関係で、動きの速い生体観察には不向きであるので、生物に与えるダメージが少なく生きたまま溶液中で観察できる光学顕微鏡が、バイオテクノロジー用ツールとして好ましい。なかでも、蛍光顕微鏡が生体観察に多く用いられている。現在、より小さな領域を観察したいという要求から、分解能を高め、より微細な生体組織の解析を目指した共焦点顕微鏡などの蛍光顕微鏡の開発が精力的に進められている。
従来、高分解能蛍光顕微鏡の分解能の評価には、蛍光ビーズを散布する方法が用いられていたが、ビーズの散布状況が不明で、分解能を定量的に評価することは不可能であった。このため蛍光顕微鏡の分野において、分解能を簡便に且つ定量的に測定できる「分解能評価チャート」が強く求められている。
又近年、2光子吸収顕微鏡などの非線形顕微鏡が生体の観察に使われ始め、被測定物の観察と同時に直接寸法を測定可能な「蛍光目盛り付き顕微鏡基盤」に対する需要が高まっている。特に、観察試料中に含まれる微生物の個体数の計測を行っている研究分野においては、この様な蛍光目盛り付き顕微鏡基盤があれば評価時間の大幅な短縮化が期待されるので、その実現が強く望まれているが、この様な蛍光目盛り付き顕微鏡基盤は、従来存在しない。
以上のように、従来、蛍光顕微鏡において、被測定物の観察と同時に、寸法を直接測定可能な蛍光目盛り付き顕微鏡基盤は存在していない。このため、明視野方式と光学系を同一とする蛍光顕微鏡における寸法測定は、明視野方式でスケールを別途観察しておき、同倍率で観察した蛍光顕微鏡像を明視野で測定したスケールと比較することで行われている。しかしながら、近年多く用いられるようになってきている共焦点レーザ走査型蛍光顕微鏡などは、明視野顕微鏡とは光学系が異なるために、上述のような測定を用いることができない。従って、観察と同時に寸法を測定可能な蛍光目盛り付き顕微鏡基盤は極めて重要であり、作製・取扱の容易な蛍光目盛り付き顕微鏡基盤が求められているが、この様な蛍光目盛り付き顕微鏡基盤は、従来存在しない。
本発明は、1μm以下の2点分解能が実現でき、被測定物の顕微鏡観察時に同時に寸法測定可能な発光強度と、高いコントラストを有し、耐退色性に優れた蛍光目盛り基盤、蛍光目盛り付き顕微鏡基盤及びこれを用いた蛍光目盛り付き顕微鏡用試料容器を提供することを目的とする。
上記目的を達成するために、本発明の第1の態様は、(イ)励起光が入射する第1主面、この第1主面に対向する第2主面を有する透明基板と、(ロ)第2主面に接して配置され、第2主面を露出する開口部が目盛り状パターンをなす遮光層と、(ハ)開口部に、第2主面に接するように埋め込まれ、励起光により蛍光を発光する蛍光発光層と、(ニ)この蛍光発光層の裏面を被覆し、蛍光発光層で発光した蛍光を第1主面方向に反射するバックコート層とを備える蛍光目盛り基盤であることを要旨とする。
本発明の第2の態様は、(イ)透明基板と、(ロ)この透明基板に接して配置され、透明基板を露出する開口部が目盛り状パターンをなす遮光層と、(ハ)開口部に、透明基板に接するように埋め込まれ、励起光により蛍光を発光する蛍光発光層と、(ニ)透明基板、遮光層及び蛍光発光層を含む積層体を、搭載面に形成された凹部に、積層体の少なくとも一部を密閉状態で収納して搭載する支持基板とを備える蛍光目盛り付き顕微鏡基盤であることを要旨とする。
本発明の第3の態様は、(イ)第1透明基板と、(ロ)第1透明基板に接して配置され、第1透明基板を露出する開口部が目盛り状パターンをなす非蛍光発光層と、(ハ)開口部に、非蛍光発光層と同一厚さで埋め込まれ、励起光により蛍光を発光する蛍光発光層と、(ニ)非蛍光発光層と蛍光発光層とに接し、第1透明基板とともに非蛍光発光層と蛍光発光層とを挟む第2透明基板とを備える蛍光目盛り付き顕微鏡基盤であることを要旨とする。
本発明の第4の態様は、(イ)第1主面、この第1主面に対向する第2主面を有する透明基板と、(ロ)第2主面に接して配置され、第2主面を露出する開口部が目盛り状パターンをなす遮光層と、(ハ)開口部に、第2主面に接するように埋め込まれ、励起光により蛍光を発光する蛍光発光層と、(ニ)透明基板、遮光層及び蛍光発光層を含む積層体を、搭載面に形成された凹部に、積層体の少なくとも一部を密閉状態で収納して搭載する支持基板と、(ホ)透明基板の第1主面側に接して配置された、被観察試料を収納する試料収納部とを備える蛍光目盛り付き顕微鏡用試料容器であることを要旨とする。
本発明によれば、1μm以下の2点分解能が実現でき、被測定物の顕微鏡観察時に同時に寸法測定可能な発光強度と、高いコントラストを有し、耐退色性に優れた蛍光目盛り基盤、蛍光目盛り付き顕微鏡基盤及びこれを用いた蛍光目盛り付き顕微鏡用試料容器を提供できる。
次に、図面を参照して、本発明の第1〜第3の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。但し、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は、光学的な焦点等の設計事項や以下の説明を参酌して判断すべきものである。又、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
又、以下に示す第1〜第3の実施の形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることができる。
(第1の実施の形態)
本発明の第1の実施の形態に係る蛍光目盛り基盤は、図1に示すように、励起光が入射する第1主面、この第1主面に対向する第2主面を有する透明基板21と、第2主面に接して配置され、第2主面を露出する開口部が目盛り状パターンをなす遮光層23と、開口部に、第2主面に接するように埋め込まれ、励起光により蛍光を発光する蛍光発光層25と、この蛍光発光層25の裏面を被覆し、蛍光発光層25で発光した蛍光を第1主面方向に反射するバックコート層26とを備える。この蛍光目盛り基盤は、更に、透明基板21、遮光層23、蛍光発光層25、バックコート層26の積層体(21,23,25,26)を搭載する支持基板11aを備える。図1に示すように、支持基板11aの積層体(21,23,25,26)の搭載面には、凹部27が設けられ、この凹部27に、積層体(21,23,25,26)の一部が収納されている。
本発明の第1の実施の形態に係る蛍光目盛り基盤は、支持基板11aが凹部27を備え、この凹部27の内部に、透明基板21、遮光層23、蛍光発光層25、バックコート層26の積層体(21,23,25,26)の一部、即ち、蛍光発光層25及びバックコート層26からなる凸部を収納し、この凸部を密閉状態でシールしているので、蛍光発光層25がダメージを受けないという、実用上非常に有利な効果を奏する。
透明基板21は、励起光の波長を透過する光学材料であれば、種々の材料が使用可能で、例えば、励起光の波長に応じて、ソーダガラス(ソーダ石灰ガラス)、ホウケイ酸ガラス、石英ガラス等のガラス材料が選択可能である。顕微鏡観察に用いる蛍光目盛り基盤であれば、ホウケイ酸ガラスの一種である理化学用硬質ガラスや顕微鏡用カバーガラスを用いても良い。顕微鏡に使用されるカバーガラスは、日本工業規格(JIS)によりその規格が定められていて厚さは、120〜170μm又は150〜180μmである。なお、透明基板21の「第1主面」とは、実質的に平板形状の透明基板21の一方の主面(面積が最大若しくは2番目に大きな面)である。「第2主面」は、透明基板21の「第1主面」に対向した主面である。即ち、第1及び第2主面のいずれか一方が「表面」、他方が「裏面」と解釈できる関係にある対向した2つの面を定義している。
遮光層23としては、微細加工が容易で、励起光の波長に対して光学的に不透明な膜なら種々の薄膜が採用可能であり、例えば、クロム(Cr)膜等の金属膜を採用可能である。或いは、Cr膜と酸化クロム(Cr23)膜との複合膜等の多層膜でも良い。遮光層23の厚さは、例えば200nm〜500nm程度の範囲で、加工の容易性を鑑みて選択可能である。
蛍光発光層25としては、透明な材料に蛍光材料を分散したものが採用可能である。透明な材料としてはシリコン酸化膜(SiO2)、ガラス、若しくは高分子材料が使用可能である。蛍光発光層25の厚さは、例えば、300nm〜1μmの範囲に選べば良い。蛍光材料を分散させる媒体として透明な高分子材料の好適な例は、高解像レジストとして微細加工に使われているポリメチルメタクリレート(PMMA)である。PMMAの分子構造は、(CH2C−CH3−COOCH3)n(nは重合度)で示されるが、例えば、分子量7.0〜7.5×105の程度のPMMAが使用できる。PMMAは、他の高分子樹脂に比べて、透明度が高く、光学特性に優れている。更には、耐候性や加工性が良いなどの特徴を持った材料で、コンタクトレンズ、テーブルランプカバー、看板などの日用品から機械、電気、土木などの工業部品雑貨まで、様々なところに用いられている。透明な材料に分散させる蛍光材料としては、ローダミン系、クマリン系などの有機蛍光色素、Y3Al512:Ce3+(YAG:Ce3+)等の無機蛍光材料や半導体微粒子等が好適である。ローダミン系の蛍光色素は、融点が200℃を越し、メタノール等の有機溶媒に容易に溶け、緑色の光をあてるとオレンジ色の蛍光を発する分子である。例えば、分子量543.1のローダミン590が使用できる。
バックコート層26は、蛍光発光層25で発光した蛍光を透明基板21の第1主面方向に反射する層であれば、種々の材料からなる層が採用可能で、金属反射膜や誘電体多層膜によるブラッグ反射膜等でも構わない。金属反射膜をバックコート層26として用いる場合は、例えば、金(Au)膜やアルミニウム(Al)膜が使用可能である。Au膜の場合は、膜厚80nmでほぼ100%の反射率がある。蛍光発光層25の保護の観点からは、膜厚50〜60nm程度以上あれば良いが、反射率を考慮すると、Au膜の場合は、膜厚80〜100nm程度が好ましい。Al膜の場合も同様な理由から膜厚100nm程度が必要である。バックコート層26はコントラストを高めるのに有効な方法である。ここでコントラストCRは、明部蛍光強度をImax,暗部蛍光強度をIminとすれば:
CR=Imax/Imin …(1)
で定義される。例えば、ローダミン濃度0.05wt%、膜厚1.2μmの2本のライン状の蛍光発光層25からのコントラストCR=6.0であるが、Au膜のバックコート層26を用いることにより、コントラストCR=8.3に増大する。バックコート層26により、蛍光色素からの発光を効率良く取り出すことができるためと考えられる。
なお、透明基板21、遮光層23、蛍光発光層25、バックコート層26を備える積層体(21,23,25,26)と、支持基板11aとの接着が完全であれば必ずしも、バックコート層26を必要としない。又、支持基板11a側の裏面から励起光を蛍光発光層25に対して上方に照射したい場合にはバックコート層26は不要である。
透明基板21、遮光層23、蛍光発光層25、バックコート層26の積層体(21,23,25,26)を搭載する支持基板11aは、特に透明基板である必要はないが、透明基板であっても良い。簡便には、76mm×26mm、厚さ1mm程度の顕微鏡用スライドガラスを、更に、例えば、11×13mm程度の寸法に切り出したものを支持基板11aとして使用しても良い。支持基板11aの積層体(21,23,25,26)の搭載面となる一方の主面に設けられる凹部27の深さは、蛍光発光層25及びバックコート層26の厚さを考慮して決定すれば良く、例えば、蛍光発光層25の厚さが約1μm、バックコート層26の厚さが100nm程度であれば、凹部27の深さは3〜5μm程度に選択すれば良い。
遮光層23に設けられた開口部がなす目盛り状パターンは、図2(a)に例示するような1次元目盛り、図2(b)に例示するような格子状パターン、図2(c)に例示するようなくさび状パターン等、観察の目的や使用者の要求により、種々の形状が選択可能であり、それぞれにより異なる。図2に例示したような、蛍光発光スケールは、これまでに存在しておらず、蛍光顕微鏡による細胞等の観察の際に非常に有効なものである。
図2(b)に示す格子状パターンは、例えば、主格子10μm程度、副格子5μm程度で設計する場合には、主格子の線幅は1μm程度、副格子の線幅は0.5μm程度に選定すれば良い。格子状パターンは、例えば、細胞観察時に使用するフィルター上に作製することにより、特定領域内の数量計測に有用である。現在、蛍光顕微鏡での細菌計数にされている計数用グリッドは、一辺が100μmの10×10の正方形メッシュが用いられている。実験者の練度により若干の計数値の違いが生じるが、計数している行を間違うことなどがミスの一例として挙げられる。これらのミスは、図2(b)に示す計数用グリッド外枠の欄外に、行列に対応した数字やアルファベット等の印を、図1に示す構造を採用して蛍光発光層25をパターニングして表示すれば、容易に防げる。
図2(c)に示すくさび状パターンは、中心から放射状に8方向に伸びた2本のラインペアを例示しているが、例えば、放射状に伸びる2本のラインの中心線間隔を2μm程度まで広がったパターンとすることができる。くさび状パターンは、蛍光顕微鏡の分解能評価と光軸の等方性を評価することが可能なため、顕微鏡光学系校正用等に有用である。
図3は、共焦点落射蛍光顕微鏡に図1に示した蛍光目盛り基盤を「蛍光目盛り付き顕微鏡基盤51」として用いた場合の模式図である。即ち、図3に示すように、蛍光目盛り付き顕微鏡基盤51の上に細胞標本等の被観察試料(以下において単に「試料」と略記する。)52が搭載され、被観察試料52の上方に配置された対物レンズ53を介して、光源54からの励起光が試料52を照射し、試料52を蛍光発光させると同時に、試料52を透過した励起光が、図1に示す蛍光発光層25を発光させる。そして、蛍光発光層25で発光した蛍光した蛍光が、図1に示すバックコート層26により試料52方向に反射され、更に試料52を透過した蛍光が、共焦点位置に配置されたピンホール56を介して検出器57に到達する。
図3に示すように、光源54からの励起光は、ピンホール56と対物レンズ53との間に配置されたダイクロイックミラー55により反射され、対物レンズ53に導かれる。一方、対物レンズ53には、その下方の試料52からの蛍光、更には、その下方の蛍光目盛り付き顕微鏡基盤51の目盛りをなす蛍光発光層25からの蛍光が上方に導かれる。対物レンズ53を下方から上方に透過した蛍光は、ハーフミラーとして機能するダイクロイックミラー55を透過後、ピンホール56を介して検出器57に到達する。図3に示す共焦点落射蛍光顕微鏡は、光源54にレーザを用いれば、共焦点レーザ走査型顕微鏡となる。共焦点レーザ走査型顕微鏡は、現在、生体観察用として使用頻度の高い蛍光顕微鏡であるが、図3では、便宜上、試料52の中央に焦点Aが存在するものとして、模式的に示している。
図3に示す光学系において、励起光の焦点を外れた点Bの像は共焦点位置のピンホール56を通り抜けられないから実際の結像に寄与せず、消えてしまう。つまり、ピント外れの像はぼけることなく消失する。検出器57に届く光も焦点Aからのものだけに限られる。焦点Aを外れた試料52上の観測点は、従来の顕微鏡の光学系では、ぼけはするが消えてしまうことなく画面に重なってくるために、全体としてコントラストが悪くなり、光の量もジャストピントの像からだけくるものよりずっと多くなるが、共焦点落射蛍光顕微鏡では、これを防ぐことができる。この様に、共焦点落射蛍光顕微鏡では、試料52中に設定される焦点あとの共焦点面にピンホール56を配置しているため、一切の迷光を排除し高解像度、高コントラストとともに光軸方向の分解能が非常に高い。
図4は、蛍光発光層25の膜厚が0.3μmの場合における、PMMAに対するローダミンの重量濃度(以下、「ローダミン濃度」と略称する。)の変化に対する蛍光強度の変化を示す図である。図4において、励起光の強度は69.6mWで、励起波長は、510nm〜560nmである。そして、蛍光波長:590nmをNA0.5の20倍の観察レンズを用い、フィルターで選択して、蛍光強度を測定している。ローダミン濃度を0.05wt%から5倍にすると約3.5倍、10倍にすると約4倍、20倍にすると約4.5倍の蛍光強度が得られ、更に、ローダミン濃度を濃くしていくと蛍光強度が飽和傾向にある。ローダミン濃度が、6wt%を越えると、PMMA混合溶液中に沈殿が見られるため、図4では、ローダミン濃度の限界濃度を6wt%としてプロットしている。図4において、2wt%以上のローダミン濃度で蛍光強度の減少が見られるが、これは観察倍率からは分からない、ナノレベルで分子の凝集状態(濃度消光)によるものと推定しているが、詳細は不明である。
図4では160℃、30分の熱処理(アニーリング)をした場合の蛍光強度のローダミン濃度依存性を実線で、熱処理をしない場合の蛍光強度のローダミン濃度依存性を破線で示しているが、膜の均一性を優先して、熱処理(アニーリング)をすることにより、蛍光分子の凝集状態の変化及び熱分解が生じ、蛍光強度が熱処理をしない場合よりも減少することが分かる。
なお、特に図示はしないが、蛍光強度の膜厚依存性は小さい。例えば、ローダミン濃度0.05wt%の試料で、膜厚を1.2μmから7.9μmへと約7倍にしても、蛍光強度の増大は約3倍であり、膜厚を厚くしてもそれに比例して蛍光強度は増大しない。対物レンズの倍率が上がりレンズのNAが高くなると、焦点深度が浅くなるために焦点が合う範囲は狭くなる。しかし、焦点以外の膜厚方向の蛍光も多く拾ってしまうために観察像が滲んでしまう。そこで、膜厚を薄くすると、蛍光色素量は減少する。膜厚を0.3μm(PMMA濃度は0.29mol/l)と薄くし、ローダミン濃度を2.0wt%と増加させた蛍光強度に対し、膜厚を0.12μmへと薄膜化すると、蛍光強度が減少して、パターンの認識が困難になる。そこで、ローダミン濃度を6.0wt%へと増加させると、逆に膜全体に蛍光強度のむらが観察されるようになる。これらの結果から、蛍光目盛り付き顕微鏡基盤の作製には、膜厚0.3μm、ローダミン濃度2.0wt%の条件が適当であると考えられる。
図5(a)の上段は、第1の半導体(CdSe)からなるコア61aと、このコア61aを覆う第1の半導体(CdSe)より禁制帯幅の広い第2の半導体(ZnS)からなるシェル62aを備える半導体微粒子の断面構造を模式的に示す。半導体微粒子(サイズが小さい場合には量子ドットに相当する)は、光励起により生じた電子や正孔が3次元的に強い閉じ込めを受けるために、量子のサイズによって光学特性が決定される。又、表面や界面の影響や微粒子の周りの各種物質によっても特性が変わる。更に、半導体微粒子のサイズを一定の大きさにそろえると、半導体微粒子が発する光の色を非常に純粋な色として取り出すこともできる。コア61aの直径Lは、例えば、1〜30nm程度、好ましくは1.5〜20nm程度、より好ましくは2〜10nm程度の量子ドットとなる寸法を採用可能であり、コア61aの直径が発光波長を決定する。そして、図5(a)に示すように、コア61aをシェル62aで覆うことにより、半導体微粒子の光安定性を高め、高輝度発光の微粒子となる。
図5(a)の下段には、CdSe/ZnS半導体微粒子のエネルギーバンド構造を示す。1次元で考えた場合、半導体微粒子のコア61aの直径を量子井戸の幅Lに対応して考えることができる。Lが電子のド・ブロイ波長程度の約20nm以下になると、井戸内の電子は量子化されて井戸層内に新たなエネルギー準位を形成する。このエネルギー準位はサブバンドと呼ばれる。サブバンドはより井戸層の厚さLを変化させることによって、任意の準位を作ることができる。正孔も同様である。キャリア(ここでは電子)はその人工的に作られたバンド間を遷移するため、井戸の厚さLは、図5(a)に示すコア61aの直径Lを、図5(b)に示すコア61bの直径L'に変化させることにより、遷移するエネルギーEを変化させることができる。
次に、CdSe微粒子からの発光の発光波長の粒径依存性を計算する。
0KにおけるバルクCdSeのバンドギャップECdSeは1.84eVで、バルクZnSのバンドギャップEZnSは3.91eVである。CdSeの電子及び正孔のエネルギー順位εne、εnhはそれぞれ:
εne=(h2/2me)(π/L)22 …(2a)
εnh=(h2/2mh)(π/L)22 …(2b)
となる。ここで、me、mhはそれぞれ電子、正孔の有効質量で、me=5.422×10-32kg、mh=4.037×10-31kgである。CdSe微粒子のバンドギャップEは:
=ECdSe+εne+εnh …(3)
で表されるため、アインシュタインの関係式を用いると、発光波長λは:
λ=hc/Eg=hc/(ECdSe+(1/2)(1/me+1/mh)(hπn/L)2) …(4)
となる。n=1のときの、コア61aの直径Lと発光波長λの関係を図7に示す。Lが大きいとき、例えば無限大のときは式(4)の分母の第2項は0となるので、λはバルクのCdSeからの発光波長となる。Lが小さくなるに従い、Lに比例するような形でλが小さくなることが分かる。この様に、粒径が異なると発光波長が異なり、粒径が小さくなるに従ってブルーシフトすることが分かる。室温(300K)での発光を考えると、0Kのときより格子のブラウン運動が激しくなることから、発光スペクトルはブロードになることが考えられる。具体的に粒径と発光波長の関係を示すと、赤色(λ=600nm)において粒径5.6nm、緑色(λ=550nm)において粒径4.2nm、青色(λ=450nm)において粒径2.8nm程度と算定される。
CdSe/ZnS半導体微粒子では、図6に示すようなシェル62u,62vの厚さによる影響も考慮する必要がある。井戸型ポテンシャルを有限の値として扱うと、量子井戸による電子の締め付けが弱くなるために波動関数がしみだし、無限大のポテンシャルの場合と比較してサブバンドによるバンドギャップが小さくなると考えられることから、発光波長は計算値よりレッドシフトすることが考えられる。又、図6(b)に示すように、シェル62vの厚さを、図6(a)に示すシェル62uの厚さよりも、薄くなると、波動関数の滲みだしが少なくなることから発光波長は、ブルーシフトすると考えられる。
又、電子の閉じ込め次元が高くなるにつれて励起子の動き回る範囲が制限されるため束縛エネルギーが大きくなることから、発光波長はレッドシフトすることが考えられる。この様な励起子の束縛エネルギーによる影響の他、結晶の異方性等の影響も発光波長λを変化させると考えられるので、実際の発光波長と量子ドットの寸法の関係は、図7に示す算定結果とは多少異なることになるが、おおよその傾向としては、図7に示すように、半導体微粒子はその粒径を変えることにより発光波長を変化させることができる。このため、半導体微粒子を用いて蛍光目盛り付き顕微鏡基盤を作製することによりスケールの色の多様性に対応可能である。例えば図2(a)の上段に示した1次元目盛り41aと、図2(a)の下段に示した1次元目盛り41bとの色を変えることが可能である。
一般的に、蛍光色素は強い光照射により退色するという問題があるが、CdSe/ZnS半導体微粒子では、コア61a,61b,61u,61vを、シェル62a,62b,62u,62vで覆うことにより、光劣化の少ない特性を示す。この理由は、コア61a,61b,61u,61v表面のダングリングボンドや歪みに由来する表面順位が、シェル62a,62b,62u,62v層を被せることにより劇的に減少するためと考えられる。このためには、コア61a,61b,61u,61vの直径と、シェル62a,62b,62u,62vの厚さを同程度にすることが好ましい。このため、半導体微粒子を用いることにより、退色の少ない蛍光目盛り付き顕微鏡基盤が実現できる。この様に、半導体微粒子は耐光性に優れ、発光強度が高く、且つ、発光波長を任意に選択可能であるので、目盛りのカラー化が可能である。
例えば、図2(b)に示す計数用グリッド外枠の欄外に、行列に対応した数字やアルファベット等の印を入れることで防げることは前述したとおりであるが、半導体微粒子はその粒径を変えることにより発光波長を変化させることができるので、計数用グリッド外枠の欄外に文字だけでなく、線の色を変化させた多色刷りの行列を構成すれば、計数している行を間違う危険性が更に減少する。半導体微粒子は退色もないので、線の色を変化させた行列で、図2(b)に示す格子状パターンを構成すれば信頼性の高い蛍光顕微鏡での細菌計数が可能になる。
本発明の第1の実施の形態に係る蛍光目盛り付き顕微鏡基盤によれば、図1に示した蛍光発光層25のパターン部分のみが蛍光発光するので、分解能チェックに有効であり、顕微鏡のセッティング時の確認用途として活用可能である。又、第1の実施の形態に係る蛍光目盛り付き顕微鏡基盤は、毎回蛍光試薬を調整する必要がない固定されたパターンを蛍光発光層25が構成しているので安定性や便利性に優れている。
更に、従来の蛍光ビーズでは実現できなかった、2次元空間での多種類のパターンによる確認が可能であるという顕著な効果を奏することができる。特に、半導体微粒子はその粒径を変えることにより図7に示すように、発光波長を変化させることができるので、半導体微粒子を分散した蛍光発光層25を採用することにより、多様な測定を正確に実行することが可能になる。
図8及び図9を用いて、本発明の第1の実施の形態に係る蛍光目盛り付き顕微鏡基盤の製造方法を説明する。なお、以下に述べる蛍光目盛り付き顕微鏡基盤の製造方法は、一例であり、この変形例を含めて、これ以外の種々の製造方法により、実現可能であることは勿論である。
(イ)先ず、例えば、第1主面と第1主面に対向する第2主面とを有し、厚さ120〜180μm程度の透明基板21の第2主面上に電子ビーム露光(以下において「EB露光」という。)用フォトレジスト22を、厚さ150nm〜300nm程度、好ましくは180nm〜250nm程度で、全面に塗布後、EB露光によりEB露光用フォトレジスト22を図8(a)に示すようにパターニングする。透明基板21には、ソーダガラス(ソーダ石灰ガラス)、ホウケイ酸ガラス、石英ガラス等のガラス材料が選択可能であるが、例えば、厚さ150μm程度の顕微鏡用カバーガラスを用いても良い。透明基板21としては、カバーガラスを用いた場合は、カバーガラスを中性洗剤中で綿棒を用いて表面を洗浄後、メタノール、及びアセトン中で超音波洗浄し瞬間的に蒸発乾燥させて清浄な表面を得た後、EB露光用フォトレジスト22を全面に塗布すれば良い。EB露光により、例えば図2(a)に示したような1次元目盛りのパターンを形成する。図2(a)に示したような1次元目盛りのパターンでは、例えば、線幅100nm〜2μm、スペース幅100nm〜2μmのラインアンドスペースパターンを形成するようにすれば良い。なお、顕微鏡観察の目的によっては、線幅100nm以下、スペース幅100nm以下の微細パターンでも良い。
(ロ)次に、図8(b)に示すように、EB露光用フォトレジスト22の上に遮光層23を形成する。前述したように、遮光層23としては、微細加工が容易で、蛍光顕微鏡の励起光の波長に対して光学的に不透明な膜なら種々の薄膜が採用可能であるが、ここではCr膜を、例えば厚さt2=250nm〜350nm程度となるように、真空蒸着法、若しくはスパッタリング法等周知の方法で堆積する。図8(a)に示すEB露光用フォトレジスト22のライン幅400nmであれば、厚さt2=300nmのCr膜を堆積すれば、図8(b)に示すライン幅d=400nm+300nm+300nm=1μmとなるが、これに限定されないことは勿論である。
(ハ)この後、EB露光用フォトレジスト22を剥離する所謂「リフトオフ法」を用いて、図8(c)に示すような遮光層23のパターンを形成する。平面図の図示を省略しているが、図8(c)に示す状態の平面図は、例えば図2(a)に示したような1次元目盛りのパターンの白黒反転パターンに対応する。なお、Cr膜を、遮光層23として用いるのであれば、リフトオフ法を採用せず、フォトレジスト(EB露光用フォトレジスト)をマスクとした選択エッチングでも可能であり、例えばウェットエッチングするのであれば、硝酸セリウムアンモニウムと過塩素酸溶液等のCrエッチング液でパターニング可能である。
(ニ)次に、透明な高分子材料に蛍光材料を混ぜた溶媒24を用意する。例えば、PMMA及びローダミンを溶媒としてのクロロホルムに溶解させる。クロロホルムに対するPMMAの濃度は、例えば、0.14mol/l、PMMAに対するローダミンの濃度は、例えば、2wt%程度とすれば良い。半導体微粒子の場合も、高分子材料と溶媒としてのクロロホルム中で混合すれば良い。そして、図9(d)に示すように、図8(c)に示す状態の遮光層23のパターンの上に、高分子材料に蛍光材料を混ぜた溶媒24をスピンコート法にて滴下し、薄膜化する。その後、高分子材料のガラス転移点以上のアニール温度で熱処理し、図9(e)に示すような遮光層23の開口部において、第2主面に接するように埋め込まれた蛍光発光層25を形成する。アニール温度は、高分子材料のガラス転移点に依存するので、高分子材料の材料毎に異なるが、概ね約130〜160℃である。例えば、高分子材料のガラス転移点が120℃であれば、ガラス転移点より10〜40℃上の130〜160℃が好ましい条件となる。ガラス転移点が120℃の場合、アニール温度が130℃以下では、材料の流動性が不十分なため好ましくなく、アニール温度が160℃以上になると、逆に高分子及び蛍光分子の熱分解温度に近づくため、好ましくない。アニール条件は有機色素の場合も半導体微粒子の場合も、同条件で良い。なお、図9(d)に示す、高分子材料に蛍光材料を混ぜた溶媒24の滴下は、スピンコート法に限定されるものでなく、キャスト法でも良い。キャスト法で、高分子材料と混ぜた溶媒を滴下する場合は、溶媒飽和雰囲気下で、室温(20〜25℃)で、半日〜1日放置することにより、薄膜化できる。溶媒飽和雰囲気は、簡便な方法としては、図10に示すような、ビーカーやシャーレ等容器91中に、透明基板21と同時に、溶媒を浸した脱脂綿93等を置き、蓋92を被せて、溶媒雰囲気で飽和させた状態を実現すれば良い(勿論、図10に示す方法は例示的に示す簡便法であり、これに限定されるものではない。)。キャスト法の場合も、その後、高分子材料のガラス転移点以上のアニール温度で、10〜30分の熱処理を行えば、図9(e)に示すような蛍光発光層25が形成できる。熱処理後の膜厚t4=300nm〜1μmの範囲が好ましい。熱処理で膜中の残留溶媒(クロロホルム)は揮発するが、元の膜厚t3そのものを大きく変化させず、熱処理前の膜厚t3と熱処理後の膜厚t4との変化分は、測定上、ほぼ無視できる範囲内である。
(ホ)その後、図9(f)に示すように、蛍光発光層25を被覆するように、バックコート層26を真空蒸着法、若しくはスパッタリング法等周知の方法で堆積すれば、透明基板21、遮光層23、蛍光発光層25、バックコート層26を含む積層体(21,23,25,26)が完成する。バックコート層26には、種々の層が採用可能であるが、例えば、Au膜の場合は、膜厚t5=80〜100nm程度、Al膜の場合も膜厚t5=100nm程度にすれば良い。
(ヘ)そして、図1に示すような、一方の主面に、例えば深さ3〜5μmの凹部27を備えた支持基板11aを用意する。支持基板11aの一方の主面に凹部27を形成するには、サンドブラスト、超音波加工等を用いれば良く、イオンエッチング等のドライエッチングでも構わない。そして、透明基板21、遮光層23、蛍光発光層25、バックコート層26を含む積層体(21,23,25,26)を、バックコート層26が下側に来るように、図9(f)に示す状態とは上下逆にし、図1に示すように、凹部27の内部に、蛍光発光層25とバックコート層26からなる凸部を収納する。そして、図示を省略した紫外線硬化樹脂等の接着剤により、積層体(21,23,25,26)と、支持基板11aとを接着すれば、本発明の第1の実施の形態に係る蛍光目盛り付き顕微鏡基盤が完成する。積層体(21,23,25,26)と、支持基板11aとを接着する接着剤は、紫外線硬化樹脂に限定されるものではないが、蛍光材料の耐熱性等を考慮して、適当な材料を選べば良い。例えば、ローダミン590を用いる場合は、160℃以下で接着可能な接着剤が望ましい。又、顕微鏡観察を考慮すれば、接着剤は顕微鏡観察試料の溶媒によるダメージを受けないものが望ましい。積層体(21,23,25,26)と、支持基板11aとの接着は、レーザ融着による直接接着を行っても良い。なお、図1では積層体(21,23,25,26)のバックコート層26が支持基板11aの上面に接しているが、支持基板11aの上面に位置するバックコート層26及び遮光層23を、透明基板21の第2主面が露出するようにパターニングし、支持基板11aの上面と透明基板21の第2主面とが直接接するようにして接着剤で接着若しくは、レーザ融着による直接接着を行っても良い。
<第1の実施の形態の変形例>
第1の実施の形態の冒頭で説明したように、図1に示した第1の実施の形態に係る蛍光目盛り基盤(蛍光目盛り付き顕微鏡基盤)は、支持基板11aがバスタブ型の凹部27を備え、この凹部27の内部に、透明基板21、遮光層23、蛍光発光層25、バックコート層26の積層体(21,23,25,26)の一部、即ち、蛍光発光層25及びバックコート層26からなる凸部を収納し、この凸部を密閉状態でシールしているので、蛍光発光層25がダメージを受けないという、実用上非常に有利な効果を奏する。
これに対し、本発明の第1の実施の形態の変形例に係る蛍光目盛り基盤(蛍光目盛り付き顕微鏡基盤)では、図11に例示するように、支持基板11bに形成される凹部27が、2段形状の凹部である。そして、積層体(21,23,25,26)のすべてが、この2段形状の凹部27の内部に収容されている点が、図1に例示した第1の実施の形態に係る蛍光目盛り基盤(蛍光目盛り付き顕微鏡基盤)とは異なる。凹部27の浅い方の段差部の深さは、透明基板21、遮光層23及びバックコート層26の厚さの総和に等しいように設定され、更に深い2段目の段差部に、蛍光発光層25及びバックコート層26からなる凸部が収納される構造である。
図11において、図示を省略しているが、積層体(21,23,25,26)と、支持基板11aとは、紫外線硬化樹脂等の接着剤により密閉状態を構成するように接着しても良く、レーザ融着による直接接着でも良い。なお、図11では積層体(21,23,25,26)のバックコート層26が支持基板11aの凹部27の浅い方の段差部がなす肩(上面)に接しているが、段差部の肩に位置するバックコート層26及び遮光層23を、透明基板21の第2主面が露出するようにパターニングし、支持基板11aの段差部の肩と透明基板21の第2主面とが直接接するようにして接着剤で接着若しくは、レーザ融着による直接接着を行っても良い。図11に示すように、2段形状の凹部27の内部に、積層体(21,23,25,26)のすべてが収容され、且つ、支持基板11bと積層体(21,23,25,26)とが密閉状態でシールされているので、図1に示した第1の実施の形態に係る蛍光目盛り基盤(蛍光目盛り付き顕微鏡基盤)に比し、更に確実且つ有効に、蛍光発光層25がダメージを受けることを防止でき、実用上極めて有効である。
なお、図11から分かるように、第1の実施の形態の変形例に係る蛍光目盛り基盤(蛍光目盛り付き顕微鏡基盤)が、励起光が入射する第1主面、この第1主面に対向する第2主面を有する透明基板21と、第2主面に接して配置され、第2主面を露出する開口部が目盛り状パターンをなす遮光層23と、開口部に、第2主面に接するように埋め込まれ、励起光により蛍光を発光する蛍光発光層25と、この蛍光発光層25の裏面を被覆し、蛍光発光層25で発光した蛍光を第1主面方向に反射するバックコート層26とを備える点では、図1に示した第1の実施の形態に係る蛍光目盛り基盤(蛍光目盛り付き顕微鏡基盤)と同様であり、重複した説明を省略する。
(第2の実施の形態)
第1の実施の形態の変形例に係る蛍光目盛り基盤(蛍光目盛り付き顕微鏡基盤)では、図11を用いて、積層体(21,23,25,26)が、2段形状の凹部27の内部に密閉状態で収容される構造を示したが、本発明の第2の実施の形態に係る蛍光目盛り基盤(蛍光目盛り付き顕微鏡基盤)は、図12に例示するように、支持基板11bに形成される凹部27が、平坦な底部を持つ直方体の箱状の凹部である。そして、積層体(21,25,28,29)のすべてが、この箱状の凹部の内部に埋め込まれている。
更に、箱状の凹部の内部に密閉状態で埋め込み可能なように、積層体(21,25,28,29)の外部形状が直方体(矩形の平行平板)形状をなしている点が、図11に示した第1の実施の形態の変形例に係る蛍光目盛り基盤(蛍光目盛り付き顕微鏡基盤)とは異なる。
このため、第2の実施の形態に係る蛍光目盛り基盤(蛍光目盛り付き顕微鏡基盤)の積層体(21,25,28,29)は、励起光が入射する第1主面、この第1主面に対向する第2主面を有する透明基板21と、第2主面に接して配置され、第2主面を露出する開口部が目盛り状パターンをなす遮光層28を有する点では、第1の実施の形態に係る蛍光目盛り基盤(蛍光目盛り付き顕微鏡基盤)と同様であるが、励起光により蛍光を発光する蛍光発光層25が、図12に示すように遮光層28の開口部の内部のみに、完全に埋め込まれている点が、第1の実施の形態に係る蛍光目盛り基盤(蛍光目盛り付き顕微鏡基盤)とは、異なる。即ち、図12において、遮光層28の下面と蛍光発光層25の下面とが同一水平レベルを構成している。したがって、蛍光発光層25で発光した蛍光を第1主面方向に反射するバックコート層29は、遮光層28の下面と蛍光発光層25の下面の両方に接する平坦な層として構成されている点が、第1の実施の形態に係る蛍光目盛り基盤(蛍光目盛り付き顕微鏡基盤)とは異なる。
箱状の凹部の深さは、透明基板21、遮光層28及びバックコート層29の厚さの総和に等しいように設定されている。図12において、図示を省略しているが、平行平板状の積層体(21,25,28,29)と、支持基板11aとは、紫外線硬化樹脂等の接着剤により密閉状態を構成するように接着しても良く、レーザ融着による直接接着でも良い。図12に示すように、箱状の凹部の内部に、平行平板状の積層体(21,25,28,29)のすべてが収容され、且つ、支持基板11bと平行平板状の積層体(21,25,28,29)とが密閉状態でシールされているので、図1に示した第1の実施の形態に係る蛍光目盛り基盤(蛍光目盛り付き顕微鏡基盤)に比し、更に確実且つ有効に、蛍光発光層25がダメージを受けることを防止でき、実用上極めて有効である。
図13及び図14を用いて、本発明の第2の実施の形態に係る蛍光目盛り付き顕微鏡基盤の製造方法を説明する。なお、以下に述べる蛍光目盛り付き顕微鏡基盤の製造方法は、一例であり、この変形例を含めて、これ以外の種々の製造方法により、実現可能であることは勿論である。
(イ)先ず、例えば、第1主面と第1主面に対向する第2主面とを有し、厚さ120〜180μm程度の透明基板21を用意する。透明基板21には、ソーダガラス(ソーダ石灰ガラス)、ホウケイ酸ガラス、石英ガラス等のガラス材料が選択可能であるが、例えば、厚さ150μm程度の顕微鏡用カバーガラスを用いても良い。そして、透明基板21の第2主面上に厚さ250nm〜1.5μm、好ましくは、300nm〜800nm程度の遮光層28を形成する。遮光層28としては、微細加工が容易で、蛍光顕微鏡の励起光の波長に対して光学的に不透明な膜なら種々の薄膜が採用可能であり、第1の実施の形態と同様に、Cr膜を、真空蒸着法、若しくはスパッタリング法等で透明基板21の第2主面上に堆積しても良い。そして、遮光層28の上にEB露光用EB露光用フォトレジスト31を、厚さ150nm〜300nm程度、好ましくは180nm〜250nm程度で、全面に塗布後、EB露光によりEB露光用フォトレジスト31を図13(a)に示すようにパターニングする。EB露光により、例えば図2(a)に示したような1次元目盛りのパターンを形成する。図2(a)に示したような1次元目盛りのパターンでは、例えば、線幅100nm〜2μm、スペース幅100nm〜2μmのラインアンドスペースパターンを形成するようにすれば良い。なお、顕微鏡観察の目的によっては、線幅100nm以下、スペース幅100nm以下の微細パターンでも良い。
(ロ)次に、EB露光用フォトレジスト31をマスクとした選択エッチングで、遮光層28パターニングする。例えば、Cr膜を遮光層28として用いるのであれば、硝酸セリウムアンモニウムと過塩素酸溶液等のCrエッチング液でCr膜をパターニングしても良く、塩素(Cl2)や四塩化炭素(CCl4)等の塩素系のガスを用いた反応性イオンエッチング(RIE)等のドライエッチングでCr膜をパターニングしても良い。その後、EB露光用フォトレジスト31を剥離すれば、図13(b)に示すような遮光層28のパターンが形成される(なお、第1の実施の形態と同様に、リフトオフ法を用いて、図13(b)に示すような遮光層28のパターンを形成しても良い。)。図示を省略しているが、図13(b)に示す状態の平面図は、例えば図2(a)に示したような1次元目盛りのパターンの白黒反転パターンに対応する。
(ハ)次に、ポリシロキサンポリマー等の樹脂ガラスに蛍光材料を混ぜた溶媒24を用意する。例えば、ローダミン又は半導体微粒子をアセトン、プロパノール、プロピレングリコールメチルエーテルアセテート(PGMEA)等の溶剤を用いて、樹脂ガラスに溶解させる。例えば60℃に加熱したテトラメトキシシラン(TMOS)の1−プロキシ−2−プロパノール(PGPE)溶液にマレイン酸水溶液を滴下しこれに、ローダミン又は半導体微粒子を混合して、60℃で4時間加熱攪拌した後、減圧濃縮すれば、蛍光材料を含むシロキサン樹脂溶液が得られる。樹脂ガラスとしては、100nm世代以降の半導体装置のSTI溝に素子分離絶縁膜を埋め込む塗布型溶液:SOG(スピン・オン・グラス)溶液として注目されている過水素化シラザン重合体溶液を用いても良い。樹脂ガラスに対するローダミン又は半導体微粒子の濃度は、例えば、2wt%程度とすれば良い。そして、図13(c)に示すように、図13(b)に示す状態の遮光層28のパターンの上に、樹脂ガラスに蛍光材料を混ぜた溶媒24をスピンコート法にて滴下し、薄膜化する。その後、ホットプレート等を用い、大気中若しくは酸素(O2)雰囲気で、60〜100℃程度で、1〜45分加熱(ベーキング)し、溶剤を取り除く。過水素化シラザン重合体溶液の場合は、150℃で3分程度のベーキングにより蛍光材料を含むポリシラザン(PSZ)膜ができる。蛍光材料として、CdSe/ZnS半導体微粒子を用いる場合は、その後、200℃より高く600℃以下の温度で水蒸気を含んだ雰囲気で酸化処理を行えば、緻密度の高い蛍光材料を含む樹脂ガラス膜(シリコン酸化膜)ができる。なお、第1の実施の形態と同様に、透明な高分子材料に蛍光材料を混ぜた溶媒24を用意しても良い。この場合も、PMMAに対するローダミンの濃度は、例えば、2wt%程度が好ましい。そして、図13(c)に示すように、遮光層28のパターンの上に、高分子材料に蛍光材料を混ぜた溶媒24をスピンコート法又キャスト法にて滴下し、薄膜化すれば良い。高分子材料としてPMMAを用いる場合は、第1の実施の形態で説明したように、その後、大気中又は溶媒飽和雰囲気下で、20〜25℃程度の室温で、2〜3分放置する。その後、高分子材料のガラス転移点以上のアニール温度で熱処理する。
(ニ)その後、化学的機械研磨(CMP)等の手法を用いて、遮光層28が露出するまで平坦化を行い、蛍光材料を含む樹脂ガラス(若しくは高分子材料)からなる蛍光発光層25を、図14(d)に示すように、遮光層28の開口部の内部のみに、完全に埋め込まれる。即ち、図14(d)に示すように、遮光層28の上面と蛍光発光層25の上面とが、同一水平レベルをなす平坦面を構成する。その後、蛍光発光層25と遮光層28の上面を被覆するように、バックコート層29を真空蒸着法、若しくはスパッタリング法等で堆積すれば、図14(e)に示すような透明基板21、遮光層28、蛍光発光層25、バックコート層29を含む積層体(21,25,28,29)が完成する。バックコート層29には、種々の層が採用可能であるが、第1の実施の形態と同様に、Au膜を用いる場合は、膜厚80〜100nm程度、Al膜を用いる場合は膜厚100nm程度にすれば良い。図14(e)に示すように、バックコート層29が、遮光層28の上面と蛍光発光層25の上面の両方に接する平坦な層として構成されている点が、第1の実施の形態とは異なる。
(ホ)そして、図12に示すような、一方の主面に、例えば深さ450nm〜1.8μmの箱状の凹部を備えた支持基板11cを用意する。箱状の凹部の深さは、透明基板21、遮光層28及びバックコート層29の厚さの総和に等しいように設定されば良い。組み立ての容易性を考えれば、箱状の凹部の深さを、透明基板21、遮光層28及びバックコート層29の厚さの総和より少し大きめに設定しても良い。支持基板11cの一方の主面に箱状の凹部を形成するには、サンドブラスト、超音波加工等を用いれば良く、イオンエッチング等のドライエッチングでも構わない。そして、透明基板21、遮光層28、蛍光発光層25、バックコート層29を含む平行平板状の積層体(21,25,28,29)を、バックコート層29が下側に来るように、図14(e)に示す状態とは上下逆にし、図12に示すように、箱状の凹部の内部に、蛍光発光層25とバックコート層29からなる凸部を収納する。そして、図示を省略した紫外線硬化樹脂等の接着剤により、平行平板状の積層体(21,25,28,29)と、支持基板11cとを接着すれば、本発明の第2の実施の形態に係る蛍光目盛り付き顕微鏡基盤が完成する。平行平板状の積層体(21,25,28,29)と、支持基板11cとを接着する接着剤は、紫外線硬化樹脂に限定されるものではなく、又、平行平板状の積層体(21,25,28,29)と、支持基板11cとの接着は、レーザ融着による直接接着を行っても良い。直接接着では、透明基板21の第1主面及び第2主面に直交する端面と、箱状の凹部の垂直側壁との間をレーザ融着すれば良い。
(第3の実施の形態)
本発明の第3の実施の形態に係る蛍光目盛り基盤は、図15に断面図に示すように、多孔質材料基板71の一方の主面側の上部に、深さ0.3〜1.5μmで、複数の凹部が周期的に形成され、その複数の凹部の間に定義される凸部として、主格子71mと副格子71sとが、交互に周期的に形成されている。図15の断面図に対応する平面図は、図2(b)に示したような格子状パターンである。図2(b)の格子状パターンが、例えば、主格子の一辺の長さ10μm程度、副格子の一辺の長さ5μm程度であれば、図15の断面図に示す主格子71mの線幅は1μm程度、副格子71sの線幅は0.5μm程度に選定できる。図15(a)のA部の拡大部が図15(b)であるが、主格子71mをなす凸部の頂部に蛍光発光層72mが、副格子71sをなす凸部の頂部に蛍光発光層72sがそれぞれ選択的に形成されている。したがって、蛍光発光層72m及び蛍光発光層72sに励起光が照射されることにより、図2(b)の格子状パターンの形状に蛍光が発光する。
多孔質材料基板71には、延伸法等で作られるポリスルホン、ポリビニルデンジフルオライド、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン、酢酸セルロース+ニトロセルロース混合膜等の材料が使用可能である。しかし、微細加工性を考慮すると、多孔質材料基板71としてポリカーボネート膜(基板)にイオンビームエッチングにより孔を開けた後、薬品でエッチング処理したトッラック・エッチング基板が好適である。この様なトッラック・エッチング基板として公称孔径0.2−0.4μmの日本ミリポア株式会社のアイソポア膜(登録商標)が使用可能である。トッラック・エッチング基板は、製法上、膜の多孔度は5%以下である。延伸法で作られる多孔質膜はスダレ状の多孔質構造であるが、トッラック・エッチング基板は、イオンビームエッチングを採用しているので、1μm以下の、均一な孔径の孔を垂直に貫通している。
蛍光発光層72m及び蛍光発光層72sとしては、透明な高分子材料に蛍光材料を分散したものが採用可能である。透明な高分子材料の好適な例は、第1の実施の形態で説明したPMMAである。透明な材料に分散させる蛍光材料も、第1の実施の形態で説明したローダミン系、クマリン系などの有機蛍光色素、YAG等の無機蛍光材料や半導体微粒子等が好適である。
図16を用いて、本発明の第3の実施の形態に係る蛍光目盛り付き顕微鏡基盤の製造方法を説明する。なお、以下に述べる蛍光目盛り付き顕微鏡基盤の製造方法は、一例であり、この変形例を含めて、これ以外の種々の製造方法により、実現可能であることは勿論である。
(イ)先ず、例えば、厚さ10〜60μm程度の多孔質材料基板71を用意する。多孔質材料基板71が薄いので、実際には他の支持基板(図示省略)の上に多孔質材料基板71固定すれば良い。多孔質材料基板71としては、例えば、ポリカーボネート膜(基板)のトッラック・エッチング基板を用いれば良い。そして、多孔質材料基板71の一方の主面の上にEB露光用フォトレジストを、厚さ150nm〜300nm程度、好ましくは180nm〜250nm程度で、全面に塗布する。そして、EB露光によりEB露光用フォトレジストを、例えば図2(b)に示したような格子状パターンを形成する。次に、EB露光用フォトレジストをマスクとしたイオンビームエッチングで、多孔質材料基板71の上部を、図16(a)の断面図に示すように、深さ0.3〜1.5μmでエッチングし、パターニングする。格子状パターンの主格子の一辺の長さ10μm程度、副格子の一辺の長さ5μm程度であれば、図16(a)の断面図に示す主格子71mの線幅は1μm程度、副格子71sの線幅は0.5μm程度に選定すれば良い。
(ロ)次に、第1の実施の形態と同様に、透明な高分子材料に蛍光材料を混ぜた溶媒73を容器74の内部に収納する。この場合も、第1の実施の形態と同様にPMMAに対するローダミンの濃度は、例えば、2wt%程度が好ましい。そして、図16(b)に示すように、イオンビームエッチングで加工された面が下側に来るように、図16(a)に示す状態とは上下逆にし、多孔質材料基板71の格子状パターンの形成された面を、スタンプのように、蛍光材料溶媒73にディップする。
(ハ)その後、図16(c)に示すように、多孔質材料基板71の下側から、多孔質材料基板71に形成された孔を介して、空気75を送り、格子状パターンの目となる凹部に入り込んだ余分な蛍光材料溶媒73を吹き飛ばせば、主格子71mをなす凸部の頂部及び副格子71sをなす凸部の頂部に蛍光材料溶媒73がそれぞれ選択的に残留する。その後、蛍光材料溶媒73を乾燥させれば、主格子71mをなす凸部の頂部に蛍光発光層72mが、副格子71sをなす凸部の頂部に蛍光発光層72sがそれぞれ選択的に形成され、図15に示す第3の実施の形態に係る蛍光目盛り基盤が完成する。
(その他の実施の形態)
上記のように、本発明は第1〜第3の実施の形態によって記載したが、この開示の一部をなす論述及び図面は本発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
細胞・組織内の蛍光性物質に紫外線などの励起光をあて発する蛍光を観察する蛍光顕微鏡は、クロロフィル・脂質・ビタミンなど天然の蛍光性物質を含んだもの(自己蛍光)のほか、アクリジンオレンジや4,6−ジアミジン−2−フェニールインドール(DAPI)等の細胞染色蛍光色素を添加したときの二次蛍光、蛍光抗体法など広く生物学各分野で利用されている。そして、本発明の蛍光目盛り基盤(蛍光目盛り付き顕微鏡基盤)は、この様な蛍光顕微鏡観察等において使用されるプラスチックシャーレ、マイクロウェルプレート、ガラスボトムディッシュ等の蛍光目盛り付き顕微鏡用試料容器においても同様に適応可能である。
図17は本発明の他の実施の形態に係る蛍光目盛り付きマイクロウェルプレート(蛍光目盛り付き顕微鏡用試料容器)の平面図であり、図18は図17のA−A方向から見た、他の実施の形態に係る蛍光目盛り付きマイクロウェルプレートの断面図である。図17及び図18に示すように、他の実施の形態に係る蛍光目盛り付きマイクロウェルプレートは外形が略長方形状の基部81と上部が開口した円筒形状のウェル(試料収納部)82ij-1,82ij,82ij+1,…とを有する。
ウェル(試料収納部)82ij-1,82ij,82ij+1,…は、図18の断面図に示すような垂直の内壁を有し、この内部に試料を収容可能としている。基部81は、図17に示すように、行及び列方向に一定間隔で配列した多数のウェル(試料収納部)82ij-1,82ij,82ij+1,…により、マイクロウェルプレートを構成している。隣接するウェル(試料収納部)82ij-1,82ij,82ij+1,…の行及び列方向の中心間距離は、9mmに標準化され、1枚のマイクロウェルプレートが有するウェル(試料収納部)82ij-1,82ij,82ij+1,…の数は8行×12列(96個)、3行×8列(24個)等が一般的である。ウェル(試料収納部)82ij-1,82ij,82ij+1,…のそれぞれの上端近傍の基部81は、基部81の上面から円筒状に僅かに突出したリム構造84を有する。リム構造84は、試験中に試料の蒸発及び各ウェル(試料収納部)82ij-1,82ij,82ij+1,…間での試料の混合(クロスコンタミネーション)を防止するために粘着性フィルムを貼り付ける場合があり、その際の密着性向上のためである。
通常のマイクロウェルプレートのウェルの下端は円錐状に細くなり先端が半球状に閉じた形状や、円筒状で先端が平坦に閉じた形状等が用途に応じて使用されるが、図18の断面図に示すように、本発明の他の実施の形態に係る蛍光目盛り付きマイクロウェルプレートでは、ウェル(試料収納部)82ij-1,82ij,82ij+1,…の下端は平坦である。そして、ウェル(試料収納部)82ij-1の直下に、図11を用いて説明した第1の実施の形態の変形例に係る蛍光目盛り基盤(21ij-1、23ij-1,25ij-1,26ij-1)が、ウェル(試料収納部)82ijの直下に、蛍光目盛り基盤(21ij、23ij,25ij,26ij)が、ウェル(試料収納部)82ij+1の直下に、蛍光目盛り基盤(21ij+1、23ij+1,25ij+1,26ij+1)が、それぞれ配置されている。ここで、蛍光目盛り基盤(21ij-1、23ij-1,25ij-1,26ij-1)は、励起光が入射する第1主面、この第1主面に対向する第2主面を有する透明基板21ij-1と、第2主面に接して配置され、第2主面を露出する開口部が目盛り状パターンをなす遮光層23ij-1と、開口部に、第2主面に接するように埋め込まれ、励起光により蛍光を発光する蛍光発光層25ij-1と、この蛍光発光層25ij-1の裏面を被覆し、蛍光発光層25ij-1で発光した蛍光を第1主面方向に反射するバックコート層26ij-1とを備える。又、蛍光目盛り基盤(21ij、23ij,25ij,26ij)は、励起光が入射する第1主面、この第1主面に対向する第2主面を有する透明基板21ijと、第2主面に接して配置され、第2主面を露出する開口部が目盛り状パターンをなす遮光層23ijと、開口部に、第2主面に接するように埋め込まれ、励起光により蛍光を発光する蛍光発光層25ijと、この蛍光発光層25ijの裏面を被覆し、蛍光発光層25ijで発光した蛍光を第1主面方向に反射するバックコート層26ijとを備える。同様に、蛍光目盛り基盤(21ij+1、23ij+1,25ij+1,26ij+1)は、励起光が入射する第1主面、この第1主面に対向する第2主面を有する透明基板21ij+1と、第2主面に接して配置され、第2主面を露出する開口部が目盛り状パターンをなす遮光層23ij+1と、開口部に、第2主面に接するように埋め込まれ、励起光により蛍光を発光する蛍光発光層25ij+1と、この蛍光発光層25ij+1の裏面を被覆し、蛍光発光層25ij+1で発光した蛍光を第1主面方向に反射するバックコート層26ij+1とを備える。図18のような構造に、他の実施の形態に係る蛍光目盛り付きマイクロウェルプレートを構成しておくことにより、マイクロウェルプレートで臨床検査、DNA分析等の検査をする場合、蛍光目盛り基盤を用いて、DNAの寸法等のスケールを簡単に測定できる。
本発明の他の実施の形態に係る蛍光目盛り基盤(蛍光目盛り付き顕微鏡基盤)では、図19に例示するように、支持基板11dに形成される凹部が、2段形状の凹部であり、蛍光目盛り基盤(21ij-1、23ij-1,25ij-1,26ij-1)、蛍光目盛り基盤(21ij、23ij,25ij,26ij)及び蛍光目盛り基盤(21ij+1、23ij+1,25ij+1,26ij+1)のそれぞれが、その積層構造のすべてが凹部の内部に収容されている。2段形状の凹部の内部に、蛍光目盛り基盤(21ij-1、23ij-1,25ij-1,26ij-1)、蛍光目盛り基盤(21ij、23ij,25ij,26ij)及び蛍光目盛り基盤(21ij+1、23ij+1,25ij+1,26ij+1)のそれぞれが完全に収容され、且つ、支持基板11dと蛍光目盛り基盤(21ij-1、23ij-1,25ij-1,26ij-1)、蛍光目盛り基盤(21ij、23ij,25ij,26ij)及び蛍光目盛り基盤(21ij+1、23ij+1,25ij+1,26ij+1)とがそれぞれ密閉状態でシールされているので、蛍光発光層(25ij-1,25ij,25ij+1,)がダメージを受けることを防止でき、実用上極めて有効である。
なお、図18の断面図では、説明の便宜上、蛍光発光層(25ij-1,25ij,25ij+1,)のパターンを各ウェル(試料収納部)82ij-1,82ij,82ij+1,…の直径と比較できる程度に拡大して図示しているが、現実には、蛍光発光層(25ij-1,25ij,25ij+1,)のパターンは1μm若しくはサブμmレベルのランイ・アンド・スペス・パターンであるので、各ウェル(試料収納部)82ij-1,82ij,82ij+1,…の底部の極一部に形成されることになる。又、図2(a)に示す1次元目盛り、図2(b)に示す格子状パターンや、図2(b)に示すくさび状パターンのいずれでも構わない。
又、図18では、マイクロウェルプレートの各ウェルの底部に、図11を用いて説明した第1の実施の形態の変形例に係る蛍光目盛り基盤を配置する例を示したが、これに限定されず、図1、図12、図15に例示するような、第1〜第3の実施の形態で説した蛍光目盛り基盤を配置しても良いことは勿論である。
図19は、図17のA−A方向から見た断面図に対応する、本発明の更に他の実施の形態に係る蛍光目盛り付きマイクロウェルプレート(蛍光目盛り付き顕微鏡用試料容器)の断面図である。図18に示したマイクロウェルプレートでは、基部81に対し井戸型に下方に向かって掘り込まれた凹部として、ウェル(試料収納部)82ij-1,82ij,82ij+1,…が構成された例を示したが、図19では試験菅と同様な、所定の厚さの円筒状の側壁で囲まれてウェル(試料収納部)82ij-1,82ij,82ij+1,…が構成されている点が異なる。他は、図18に示したマイクロウェルプレートと実質的に同様であるので、重複した説明を省略する。図19に示す本発明の更に他の実施の形態に係る蛍光目盛り付きマイクロウェルプレートにおいても、支持基板11dに形成された2段形状の凹部の内部に、蛍光目盛り基盤(21ij-1、23ij-1,25ij-1,26ij-1)、蛍光目盛り基盤(21ij、23ij,25ij,26ij)及び蛍光目盛り基盤(21ij+1、23ij+1,25ij+1,26ij+1)のそれぞれが完全に収容され、且つ、支持基板11dと蛍光目盛り基盤(21ij-1、23ij-1,25ij-1,26ij-1)、蛍光目盛り基盤(21ij、23ij,25ij,26ij)及び蛍光目盛り基盤(21ij+1、23ij+1,25ij+1,26ij+1)とがそれぞれ密閉状態でシールされているので、蛍光発光層(25ij-1,25ij,25ij+1,)がダメージを受けることを防止でき、実用上極めて有効である。図19でも、マイクロウェルプレートの各ウェルの底部に、図11を用いて説明した第1の実施の形態の変形例に係る蛍光目盛り基盤を配置する例を示したが、これに限定されないことは図18の場合と同様であり、図1、図12、図15に例示するような、第1〜第3の実施の形態で説した蛍光目盛り基盤を配置しても良い。
図20は本発明の更に他の実施の形態に係る蛍光目盛り付きガラスボトムディッシュ(蛍光目盛り付き顕微鏡用試料容器)の鳥瞰図であり、図21は、この更に他の実施の形態に係る蛍光目盛り付きガラスボトムディッシュの断面図である。図20に示すように、更に他の実施の形態に係る蛍光目盛り付きガラスボトムディッシュは、ディッシュ40の中央部に細胞培養等を行う試料収納部(ホール部)43が形成されている。細胞培養時は、図20に示したディッシュ蓋部42をディッシュ40に被せる。本発明の更に他の実施の形態に係る蛍光目盛り付きガラスボトムディッシュにおいては、試料収納部(ホール部)43の底部の直下に図2(a)に例示した1次元目盛り41が形成されている。
試料収納部(ホール部)43の底部の直下に配置される蛍光目盛り基盤(21,25,88)は、図11を用いて説明した第2の実施の形態に係る蛍光目盛り基盤と同様に、励起光が入射する第1主面、この第1主面に対向する第2主面を有する透明基板21と、第2主面に接して配置され、第2主面を露出する開口部が目盛り状パターンをなす透明な非蛍光発光層88と、開口部の内部のみに完全に埋め込まれ、励起光により蛍光を発光する蛍光発光層25とを備える。「透明な非蛍光発光層88」としては、スパッタリング法やCVD法で形成したシリコン酸化膜若しくはシリコン窒化膜、ポリシロキサンポリマー等の樹脂ガラス、PMMA等の透明な高分子材料が採用可能である。更に、図21に例示するように、支持基板11eに形成される凹部が、箱形の凹部であり、蛍光目盛り基盤(21,25,88)が、その積層構造のすべてが凹部の内部に収容されている。箱形の凹部の内部に、蛍光目盛り基盤(21,25,88)が完全に収容され、且つ、支持基板11eと蛍光目盛り基盤(21,25,88)が密閉状態でシールされているので、蛍光発光層(25,25,25,)がダメージを受けることを防止でき、実用上極めて有効である。図21のような構造に、ガラスボトムディッシュを構成しておくことにより、ガラスボトムディッシュの試料収納部(ホール部)43で培養した細胞を蛍光観察する場合、底部の蛍光目盛り基盤を用いて、細胞の寸法等のスケールを簡単に測定できる。
なお、図20では、説明の便宜上、1次元目盛り41のパターンを試料収納部(ホール部)43の直径と比較できる程度に拡大して図示しているが、現実には、1次元目盛り41のパターンは1μm若しくはサブμmレベルのランイ・アンド・スペス・パターンであるので、試料収納部(ホール部)43の底部の極一部に形成されることになる。又、図2(b)に示す格子状パターンや、図2(b)に示すくさび状パターンを試料収納部(ホール部)43の底部に形成しても構わない。
一般に、ガラスボトムディッシュでは、試料収納部(ホール部)43の裏面側(図21において下方)に対物レンズ53をおいて培養した細胞等の試料52をガラスボトムディッシュの裏面側から蛍光観察するので、この場合は、蛍光目盛り基盤(21,25,88)の第1及び第2の実施の形態で説明したバックコート層26は省略する必要がある。又、高倍率の対物レンズ53による観察をするためには、支持基板11e、蛍光目盛り基盤(21,25,88)及び試料収納部(ホール部)43の底部を含めた全体の厚さt8が、JISに規定されるNo.0(厚み120〜170μm)、No.1S(厚み150〜180μm)の厚さのカバーグラスと同等になるように設計すれば良い。又、図21では、ガラスボトムディッシュの各ウェルの底部に、図12を用いて説明した第2の実施の形態に係る蛍光目盛り基盤を配置する例を示したが、これに限定されず、図1、図11、図15に例示するような、第1の実施の形態、第1の実施の形態の変形例、或いは第3の実施の形態で説明した蛍光目盛り基盤を配置しても良いことは勿論である(但し、試料収納部(ホール部)43の裏面側に対物レンズ53をおいて試料52をガラスボトムディッシュの裏面側から蛍光観察する場合は、バックコート層26は省略する必要がある。)。
1次元目盛り41のパターンの存在により、ガラスボトムディッシュの裏面側から蛍光観察する場合は屈折率の違い等で、試料52の像が歪む可能性があるが、上述したように、1次元目盛り41のパターンは1μm若しくはサブμmレベルのランイ・アンド・スペス・パターンであるので、試料収納部(ホール部)43の底部の極一部に形成されるため、その影響は十分小さくすることが可能である。
本発明の更に他の実施の形態に係る蛍光目盛り付き顕微鏡基盤(21,25,87,88)は、図22に示すように、第1透明基板21と、第1透明基板21に接して配置され、第1透明基板21を露出する開口部が目盛り状パターンをなす非蛍光発光層88と、非蛍光発光層88の開口部の内部のみに完全に埋め込まれている蛍光発光層25と、非蛍光発光層88の上面と蛍光発光層25の上面の両方に接する平坦な第2透明基板87を備える。「透明な非蛍光発光層88」としては、スパッタリング法やCVD法で形成したシリコン酸化膜若しくはシリコン窒化膜、ポリシロキサンポリマー等の樹脂ガラス、PMMA等の透明な高分子材料が採用可能であるが、非蛍光発光層88をCr膜のような金属膜で構成すれば遮光層となる。図22に示す蛍光目盛り付き顕微鏡基盤(21,25,87,88)は、バックコート層を有しないので、図21に示すガラスボトムディッシュの試料収納部(ホール部)43に収納された培養細胞等の試料52を、試料収納部(ホール部)43の裏面側(図21において下方)から蛍光観察する場合の蛍光目盛りに好適であるが、図22に示すように、第2透明基板87の上に、試料52を搭載することも可能である。第2の実施の形態で説明したように、図22に示す蛍光目盛り付き顕微鏡基盤(21,25,87,88)の蛍光発光層25は、ポリシロキサンポリマー等の樹脂ガラスに蛍光材料を混ぜた層でも良く、PMMA等の透明な高分子材料に蛍光材料を混ぜた層でも良い。そして、蛍光材料としては、第1の実施の形態で説明したローダミン又は半導体微粒子等が採用可能である。図22に示す本発明の更に他の実施の形態に係る蛍光目盛り付き顕微鏡基盤の製造方法は、図13及び図14を用いて説明した第2の実施の形態に係る蛍光目盛り付き顕微鏡基盤の製造方法とほぼ同様である。即ち、第2の実施の形態の説明の図14(d)に示すように、非蛍光発光層88の上面と蛍光発光層25の上面とが、同一水平レベルをなす平坦面を構成するまでは、第2の実施の形態に係る蛍光目盛り付き顕微鏡基盤の製造方法と全く同一で良い(但し、非蛍光発光層88として、第2の実施の形態での金属膜等の遮光層の代わりに、EB露光用フォトレジスト等の透明材料を用い、この透明材料のパターンの内部に蛍光発光層25を埋め込む。)。第2の実施の形態に係る蛍光目盛り付き顕微鏡基盤の製造方法では、その後、蛍光発光層25と非蛍光発光層88の上面を被覆するように、バックコート層29を真空蒸着法、若しくはスパッタリング法等で堆積しているが、図22に示す構造では、バックコート層29の代わりに、第2透明基板87を形成している点が第2の実施の形態に係る蛍光目盛り付き顕微鏡基盤の製造方法とは異なる。
図22に示す本発明の更に他の実施の形態に係る蛍光目盛り付き顕微鏡基盤の製造方法において、蛍光発光層25と非蛍光発光層88の上面を被覆するように、第2透明基板87を形成する方法は、別途用意した第2透明基板87を、紫外線硬化樹脂等の接着剤により、蛍光発光層25と非蛍光発光層88の上面に接着しても良く、直接接合法で第2透明基板87と非蛍光発光層88の上面とを接合しても良い。直接接合法で第2透明基板87と非蛍光発光層88の上面とを接合するには、別途用意した第2透明基板87の表面と、蛍光発光層25と非蛍光発光層88の上面をそれぞれ、鏡面になるまで研磨して、互いに接合すれば良い。一方、樹脂ガラスにCdSe/ZnS半導体微粒子を分散させた蛍光発光層25の場合は耐熱性が高いので、図22に示す本発明の更に他の実施の形態に係る蛍光目盛り付き顕微鏡基盤の製造方法では、蛍光発光層25と非蛍光発光層88の上面の上に、シリコン酸化膜、シリコン窒化膜等の第2透明基板87をプラズマCVDや光CVDで堆積しても良い。例えば、テトラエトキシシラン(TEOS)/O2プラズマやTEOS/O3反応などを用いれば低温でCVDできる。又、SOGの手法で、蛍光材料を含まないシロキサン樹脂溶液を塗布しても、蛍光発光層25と非蛍光発光層88の上面に第2透明基板87を形成することができる。又、非蛍光発光層88の代わりにEB露光用フォトレジストで非蛍光発光層88と同様なパターンを形成し、EB露光用フォトレジストのパターンの内部に蛍光発光層25を埋め込んだ構造等の、高温の処理を厭う構造の場合は、蛍光材料を含まないPMMA等の高分子材料や、蛍光材料を含まない紫外線硬化樹脂によって、第2透明基板87を形成しても良い。
この様に、本発明はここでは記載していない様々な実施の形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
本発明の第1の実施の形態に係る蛍光目盛り付き顕微鏡基盤を説明する模式的断面図である。 本発明の第1の実施の形態に係る蛍光目盛り付き顕微鏡基盤の蛍光発光層のパターンの具体例を説明する概略的な平面図である。 共焦点落射蛍光顕微鏡に本発明の第1の実施の形態に係る蛍光目盛り付き顕微鏡基盤を用いる場合の構成の一例を示す模式図である。 蛍光発光層25の膜厚が0.3μmの場合における、PMMAに対するローダミンの重量濃度の変化に対する蛍光強度の変化を示す図である。 CdSe/ZnS半導体微粒子の物理的構造と対応するエネルギーバンド構造を示す模式図である。 CdSe/ZnS半導体微粒子におけるシェルの厚さによる影響を説明する模式図である。 半導体微粒子の発光波長のコア径依存性を説明する図である。 本発明の第1の実施の形態に係る蛍光目盛り付き顕微鏡基盤の製造方法を説明する工程断面図である(その1)。 本発明の第1の実施の形態に係る蛍光目盛り付き顕微鏡基盤の製造方法を説明する工程断面図である(その2)。 本発明の第1の実施の形態に係る蛍光目盛り付き顕微鏡基盤の製造方法において、高分子材料に蛍光材料を混ぜた溶媒滴下した透明基板を、溶媒飽和雰囲気下で処理する具体的方法を説明する模式図である。 本発明の第1の実施の形態の変形例に係る蛍光目盛り付き顕微鏡基盤を説明する模式的断面図である。 本発明の第2の実施の形態に係る蛍光目盛り付き顕微鏡基盤を説明する模式的断面図である。 本発明の第2の実施の形態に係る蛍光目盛り付き顕微鏡基盤の製造方法を説明する工程断面図である(その1)。 本発明の第2の実施の形態に係る蛍光目盛り付き顕微鏡基盤の製造方法を説明する工程断面図である(その2)。 本発明の第3の実施の形態に係る蛍光目盛り基盤を説明する模式的断面図である。 本発明の第2の実施の形態に係る蛍光目盛り基盤の製造方法を説明する工程断面図である。 本発明の他の実施の形態に係る蛍光目盛り付きマイクロウェルプレート(蛍光目盛り付き顕微鏡用試料容器)を説明する模式的平面図である。 図17のA−A方向から見た本発明の他の実施の形態に係る蛍光目盛り付きマイクロウェルプレートを説明する模式的断面図である。 本発明の更に他の実施の形態に係る蛍光目盛り付きマイクロウェルプレート(蛍光目盛り付き顕微鏡用試料容器)を説明する模式的断面図である。 本発明の更に他の実施の形態に係る蛍光目盛り付きガラスボトムディッシュ(蛍光目盛り付き顕微鏡用試料容器)を説明する鳥瞰図である。 図20に示した本発明の更に他の実施の形態に係る蛍光目盛り付きガラスボトムディッシュを説明する模式的断面図である。 本発明の更に他の実施の形態に係る蛍光目盛り付き顕微鏡基盤を説明する模式的断面図である。
符号の説明
11a,11b,11c,11d,11e…支持基板
21,21ij…透明基板(第1透明基板)
22,31…EB露光用フォトレジスト
23,23ij…遮光層
24…溶媒
25,25ij…蛍光発光層
26,26ij…バックコート層
27…凹部
28…遮光層
29…バックコート層
40…ディッシュ
42…ディッシュ蓋部
43…試料収納部(ホール部)
51…蛍光目盛り付き顕微鏡基盤
52…被観察試料
52…試料
53…対物レンズ
54…光源
55…ダイクロイックミラー
56…ピンホール
57…検出器
61a,61b,61u,61v…コア
62a,62b,62u,62v…シェル
71…多孔質材料基板
71m…主格子
71s…副格子
72m,72s…蛍光発光層
73…溶媒
74…容器
75…空気
81…基部
82ij…ウェル
84…リム構造
87…第2透明基板
88…非蛍光発光層
91…容器
92…蓋
93…脱脂綿

Claims (10)

  1. 励起光が入射する第1主面、該第1主面に対向する第2主面を有する透明基板と、
    前記第2主面に接して配置され、前記第2主面を露出する開口部が目盛り状パターンをなす遮光層と、
    前記開口部に、前記第2主面に接するように埋め込まれ、前記励起光により蛍光を発光する蛍光発光層と、
    該蛍光発光層の裏面を被覆し、前記蛍光発光層で発光した蛍光を前記第1主面方向に反射するバックコート層
    とを備えることを特徴とする蛍光目盛り基盤。
  2. 前記蛍光発光層が、直径1〜30nmの第1の半導体からなるコアと、該コアを覆い、前記第1の半導体より禁制帯幅の広い第2の半導体からなり、厚さ1〜30nmのシェルからなる蛍光材料を含むことを特徴とする請求項1に記載の蛍光目盛り基盤。
  3. 透明基板と、
    該透明基板に接して配置され、前記透明基板を露出する開口部が目盛り状パターンをなす遮光層と、
    前記開口部に、前記透明基板に接するように埋め込まれ、励起光により蛍光を発光する蛍光発光層と、
    前記透明基板、前記遮光層及び前記蛍光発光層を含む積層体を、搭載面に形成された凹部に、前記積層体の少なくとも一部を密閉状態で収納して搭載する支持基板
    とを備えることを特徴とする蛍光目盛り付き顕微鏡基盤。
  4. 前記蛍光発光層の裏面を被覆し、前記蛍光発光層で発光した蛍光を前記透明基板方向に反射するバックコート層を更に備えることを特徴とする請求項3に記載の蛍光目盛り付き顕微鏡基盤。
  5. 第1透明基板と、
    前記第1透明基板に接して配置され、前記第1透明基板を露出する開口部が目盛り状パターンをなす非蛍光発光層と、
    前記開口部に、前記非蛍光発光層と同一厚さで埋め込まれ、励起光により蛍光を発光する蛍光発光層と、
    前記非蛍光発光層と前記蛍光発光層とに接し、前記第1透明基板とともに前記非蛍光発光層と前記蛍光発光層とを挟む第2透明基板
    とを備えることを特徴とする蛍光目盛り付き顕微鏡基盤。
  6. 前記非蛍光発光層は、前記蛍光が光学的に透過しない遮光層であることを特徴とする請求項5に記載の蛍光目盛り付き顕微鏡基盤。
  7. 前記蛍光発光層が、直径1〜30nmの第1の半導体からなるコアと、該コアを覆い、前記第1の半導体より禁制帯幅の広い第2の半導体からなり、厚さ1〜30nmのシェルからなる蛍光材料を含むことを特徴とする請求項3〜6のいずれか1項記載の蛍光目盛り付き顕微鏡基盤。
  8. 第1主面、該第1主面に対向する第2主面を有する透明基板と、
    前記第2主面に接して配置され、前記第2主面を露出する開口部が目盛り状パターンをなす遮光層と、
    前記開口部に、前記第2主面に接するように埋め込まれ、励起光により蛍光を発光する蛍光発光層と、
    前記透明基板、前記遮光層及び前記蛍光発光層を含む積層体を、搭載面に形成された凹部に、前記積層体の少なくとも一部を密閉状態で収納して搭載する支持基板と、
    前記透明基板の前記第1主面側に接して配置された、被観察試料を収納する試料収納部
    とを備えることを特徴とする蛍光目盛り付き顕微鏡用試料容器。
  9. 前記蛍光発光層の裏面を被覆し、前記蛍光発光層で発光した蛍光を前記透明基板方向に反射するバックコート層を更に備えることを特徴とする請求項8に記載の蛍光目盛り付き顕微鏡用試料容器。
  10. 前記蛍光発光層が、直径1〜30nmの第1の半導体からなるコアと、該コアを覆い、前記第1の半導体より禁制帯幅の広い第2の半導体からなり、厚さ1〜30nmのシェルからなる蛍光材料を含むことを特徴とする請求項8又は9に記載の蛍光目盛り付き顕微鏡用試料容器。



JP2006180312A 2006-06-29 2006-06-29 蛍光目盛り基盤、蛍光目盛り付き顕微鏡基盤及び蛍光目盛り付き顕微鏡用試料容器 Active JP4887494B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006180312A JP4887494B2 (ja) 2006-06-29 2006-06-29 蛍光目盛り基盤、蛍光目盛り付き顕微鏡基盤及び蛍光目盛り付き顕微鏡用試料容器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006180312A JP4887494B2 (ja) 2006-06-29 2006-06-29 蛍光目盛り基盤、蛍光目盛り付き顕微鏡基盤及び蛍光目盛り付き顕微鏡用試料容器

Publications (2)

Publication Number Publication Date
JP2008009184A JP2008009184A (ja) 2008-01-17
JP4887494B2 true JP4887494B2 (ja) 2012-02-29

Family

ID=39067463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006180312A Active JP4887494B2 (ja) 2006-06-29 2006-06-29 蛍光目盛り基盤、蛍光目盛り付き顕微鏡基盤及び蛍光目盛り付き顕微鏡用試料容器

Country Status (1)

Country Link
JP (1) JP4887494B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9797839B2 (en) 2013-03-13 2017-10-24 Olympus Corporation System for applying phantom sample to evaluate optical analysis device, storage device storing instructions, method and phantom sample

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITBO20070646A1 (it) * 2007-09-24 2009-03-25 Silicon Biosystems Spa Camera di conteggio per l'analisi di campioni
DE102008007178A1 (de) * 2008-01-30 2009-08-06 Carl Zeiss Microimaging Gmbh Kalibriervorrichtung und Laser-Scanning-Mikroskop mit einer derartigen Kalibriervorrichtung
EP2622397B1 (en) 2010-09-29 2020-04-22 Global Life Sciences Solutions USA LLC Calibration targets for microscope imaging
JP6280770B2 (ja) * 2013-03-27 2018-02-14 オリンパス株式会社 測定装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9797839B2 (en) 2013-03-13 2017-10-24 Olympus Corporation System for applying phantom sample to evaluate optical analysis device, storage device storing instructions, method and phantom sample

Also Published As

Publication number Publication date
JP2008009184A (ja) 2008-01-17

Similar Documents

Publication Publication Date Title
Sugioka Hybrid femtosecond laser three-dimensional micro-and nanoprocessing: a review
Burgess et al. Wetting in color: colorimetric differentiation of organic liquids with high selectivity
US11408821B2 (en) Fluorescence calibration slide
Okada et al. Optical microresonator arrays of fluorescence-switchable diarylethenes with unreplicable spectral fingerprints
JP5117679B2 (ja) 多光子吸収材料を用いた色素材料、色素材料の製造方法、多光子吸収反応材料、多光子吸収反応材料の反応生成物、多光子吸収反応助剤、および色素溶液
JP4887494B2 (ja) 蛍光目盛り基盤、蛍光目盛り付き顕微鏡基盤及び蛍光目盛り付き顕微鏡用試料容器
US7648834B2 (en) Plasmon fluorescence augmentation for chemical and biological testing apparatus
Viola et al. Random laser emission from a paper-based device
Zhang et al. Fluorescence enhancement based on cooperative effects of a photonic nanojet and plasmon resonance
JP2011504421A (ja) ナノコンタクトインプリンティングによる絹フィブロインフォトニック構造の作製
CN109001900A (zh) 一种明场和荧光双模态的显微成像系统及方法
Pi et al. Dual-layer nanofilms via mussel-inspiration and silication for non-iridescent structural color spectrum in flexible displays
Lim et al. Augmenting mask-based lithography with direct laser writing to increase resolution and speed
Mariani et al. Moldless printing of silicone lenses with embedded nanostructured optical filters
Christiansen et al. Polymer photonic crystal dye lasers as optofluidic cell sensors
KR101113035B1 (ko) 다양한 기재 위에 형성한 미세입자의 임의 분산 패턴을 이용한 복제방지 라벨의 제조 및 진위 판별방법
JP5317133B2 (ja) 光学顕微鏡
JP7050079B2 (ja) 少なくとも1つの脆弱なナノ構造を含むサンプルに適した電子ビームリソグラフィプロセス
Que et al. Space-selective creation of photonics functions in a new organic material: Femtosecond laser direct writing in Zeonex glass of refractive index change and photoluminescence
KR102123948B1 (ko) 2차원 비정질 광결정 구조체의 제조 방법 및 이에 의해 제조된 2차원 비정질 광결정 구조체
US11047799B2 (en) Device and method for providing illumination for total-internal-reflection fluorescence microscopy using opaque mask
Liu et al. Photonic crystals fabricated via facile methods and their applications
US9597688B2 (en) Polymer substrate with fluorescent structure, method for the production thereof and the use thereof
Chakraborty Core-shell nanoparticles as fluorescent probes and nanoparticles in microfluidic applications
Christiansen et al. Polymer photonic crystal dye lasers as label free evanescent cell sensors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150