WO2014141318A1 - 磁性部品とそれに用いられる軟磁性金属粉末およびその製造方法 - Google Patents

磁性部品とそれに用いられる軟磁性金属粉末およびその製造方法 Download PDF

Info

Publication number
WO2014141318A1
WO2014141318A1 PCT/JP2013/001638 JP2013001638W WO2014141318A1 WO 2014141318 A1 WO2014141318 A1 WO 2014141318A1 JP 2013001638 W JP2013001638 W JP 2013001638W WO 2014141318 A1 WO2014141318 A1 WO 2014141318A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal powder
soft magnetic
magnetic metal
precursor
iron
Prior art date
Application number
PCT/JP2013/001638
Other languages
English (en)
French (fr)
Inventor
和正 碇
後藤 昌大
吉田 貴行
Original Assignee
Dowaエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowaエレクトロニクス株式会社 filed Critical Dowaエレクトロニクス株式会社
Priority to KR1020147008494A priority Critical patent/KR101496626B1/ko
Priority to EP13848104.9A priority patent/EP2801424B1/en
Priority to CN201380003390.1A priority patent/CN103999170B/zh
Priority to US14/372,342 priority patent/US20150104664A1/en
Priority to PCT/JP2013/001638 priority patent/WO2014141318A1/ja
Priority to TW102112474A priority patent/TWI471876B/zh
Publication of WO2014141318A1 publication Critical patent/WO2014141318A1/ja
Priority to US14/850,109 priority patent/US20160001371A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/33Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials mixtures of metallic and non-metallic particles; metallic particles having oxide skin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • H01Q17/005Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems using woven or wound filaments; impregnated nets or clothes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder

Definitions

  • the present invention relates to a magnetic component used in a high frequency band, a soft magnetic metal powder constituting the magnetic component, and a method for producing the soft magnetic metal powder.
  • these devices are being reduced in size and power consumption for the purpose of being used as mobile devices. Therefore, individual components are required to have characteristics in the high frequency band and low loss. However, among the components that make up equipment, the characteristics of passive elements are often determined based on the physical properties of the material, and it is not easy to improve the characteristics in the high frequency band.
  • the product characteristics of magnetic parts such as inductors and antennas are determined by physical characteristics such as permittivity and permeability.
  • An inductor is a component that uses magnetic flux flowing in the body of the component. In order to obtain an inductor that can be used in a high frequency band, it is necessary to develop a magnetic material that not only possesses magnetic permeability in the high frequency region but also has a small loss in the high frequency region.
  • the antenna length for receiving a predetermined frequency may be a length inversely proportional to the 1/2 power of the product of the real part of the magnetic permeability and the real part of the dielectric constant. That is, in order to shorten the antenna length, a magnetic material having high permeability in the frequency range to be used must be developed. Furthermore, since it is most important that the antenna has a small loss, a magnetic material having a small loss in the high frequency region is required.
  • conventional magnetic materials magnetic iron oxides typified by ferrite, metal magnetic materials centered on iron and their alloys (hereinafter referred to as “conventional magnetic materials”) are used as magnetic materials used in such inductors and antennas.
  • the loss due to these magnetic materials increases, so that it cannot be suitably used.
  • the cause is that the particle diameter is larger than the magnetic domain size, which causes the domain wall to move when the magnetization is reversed, resulting in a large hysteresis loss, and the large eddy current loss due to the particle diameter being larger than the skin size. This is thought to be due to the occurrence of
  • Patent Document 1 proposes nano-order flat particles as metal magnetic particles used for an antenna.
  • nano-order magnetic particles for magnetic components used in the high frequency band is intended to reduce hysteresis loss associated with the movement of the domain wall by reversing the magnetization in smaller units where the domain wall is formed. Furthermore, the eddy current loss is also reduced by making the magnetic particles smaller than the skin size. In other words, it is considered that nano-order magnetic particles may be able to obtain a low-loss magnetic component in the high frequency band.
  • an object of the present invention is to provide a magnetic component having a sufficiently low loss, a nano-order soft magnetic metal powder for obtaining the magnetic component, and a manufacturing method thereof.
  • the above problem can be solved by forming a magnetic part using soft magnetic metal powder having a specific configuration.
  • the soft magnetic metal powder is Iron as the main component, An average particle size of 300 nm or less,
  • the coercive force (Hc) is 16 to 119 kA / m (200 to 1500 Oe),
  • the saturation magnetization is 90 Am 2 / kg or more,
  • the volume resistivity measured by a four-point probe method is 1.0 ⁇ 10 1 ⁇ ⁇ cm or more.
  • the soft magnetic metal powder is further The soft magnetic metal powder forms a core / shell structure, the core contains iron or iron-cobalt alloy, the shell contains at least one of iron, cobalt, aluminum, silicon, rare earth elements (including Y), and magnesium. It is a complex oxide.
  • the soft magnetic metal powder is
  • the soft magnetic metal powder is When the soft magnetic metal powder and the epoxy resin are mixed at a mass ratio of 80:20 and pressure-molded,
  • the real part of the complex permeability is ⁇ ′
  • the imaginary part is ⁇ ′′
  • the present invention also provides an inductor and an antenna using the soft magnetic metal powder.
  • the method for producing the soft magnetic metal powder of the present invention comprises: While blowing an oxygen-containing gas into a solution containing iron ions, at least one aqueous solution of aluminum, silicon, rare earth elements (including Y), and magnesium is added, and aluminum, silicon, rare earth elements (including Y) are added.
  • a precursor forming step of forming a precursor containing at least one kind of magnesium A precursor reduction step of reducing the precursor to form a metal powder; And a gradual oxidation step in which oxygen is further applied to the metal powder obtained in the precursor reduction step to form an oxide film on the surface of the metal powder.
  • the solution containing iron ions is an aqueous solution of an iron compound and a cobalt compound.
  • the precursor obtained in the precursor forming step exhibits a spinel crystal structure by a powder X-ray diffraction method.
  • the precursor reduction step is characterized in that the precursor is exposed to a reducing gas at a temperature of 250 ° C. to 650 ° C.
  • the gradual oxidation step is a step of exposing the metal powder to a gas containing oxygen in an inert gas at a temperature of 20 ° C. to 150 ° C.
  • the soft magnetic metal powder of the present invention it is possible to obtain a low-loss magnetic component in which ⁇ ′, which is the real part of the magnetic permeability at 1 GHz, is 1.5 or more and the loss coefficient is 0.15 or less.
  • the magnetic component of the present invention the soft magnetic metal powder used for the magnetic component, and the manufacturing method thereof will be described.
  • this embodiment exemplifies one embodiment of the present invention, and the following contents can be changed without departing from the gist of the present invention.
  • the magnetic component of the present invention is constituted by a molded body obtained by compression molding the soft magnetic metal powder of the present invention.
  • examples of the magnetic component include an antenna and a coil component.
  • FIG. 1 is a diagram showing an example of an antenna to which a high-frequency magnetic material is applied.
  • the illustrated antenna 10 includes a radiation plate 4 disposed on a conductor plate 1, and includes a feeding point 2 and a short-circuit plate 3 for feeding power to the radiation plate 4, and the antenna 10 is soft between the conductor plate 1 and the radiation plate 4. It has a structure in which the compact 5 made of magnetic metal powder is sandwiched. By providing such a structure, the wavelength can be shortened and the antenna 10 can be downsized.
  • FIG. 2 is a diagram showing an example of a coil component configured using a high-frequency magnetic material.
  • the illustrated coil component 12 includes an electrode 6, a flange 7, a winding 8, and a winding core 9.
  • the core 9 that is a compact of the soft magnetic metal powder is an elongated columnar rectangular parallelepiped, and the cross section in the minor axis direction of the rectangular parallelepiped has a rectangular cross section.
  • the flange 7 has a rectangular cross section larger than the rectangular cross section of the core 9, and has a rectangular parallelepiped structure with a small thickness in the major axis direction of the core 9.
  • the collar 7 may also be formed of a soft magnetic metal powder compact.
  • the soft magnetic metal powder of the present invention includes at least Fe (iron), Fe and Co (cobalt), Al (aluminum), Si (silicon), rare earth elements (including Y (yttrium)), and Mg (magnesium).
  • Fe iron
  • Fe and Co cobalt
  • Al aluminum
  • Si silicon
  • rare earth elements including Y (yttrium)
  • Mg magnesium
  • Al etc. One kind (hereinafter referred to as “Al etc.”) is included.
  • the content of Al, etc. with respect to the total of Fe and Co is within a range of 20 at% or less.
  • Al or the like is dissolved in Fe or Fe and Co, and the precursor is then reduced to form a metal powder.
  • the reduced metal powder contains a large amount of Fe and Co that are easily reduced inside the particle, and a large amount of aluminum oxide that is not reduced exists on the surface of the particle.
  • an insulating film containing Al or the like is formed by oxidizing the surface of the metal powder.
  • the electric resistance of the particles constituting the metal powder is increased, and the loss based on eddy current loss or the like is improved when the magnetic component is formed.
  • an oxide film containing a large amount of Al can be formed on the surface layer, and since the electrical resistance of the particles is increased, eddy current loss can be reduced and tan ⁇ is reduced.
  • not only Al etc. but Fe or Fe and Co may remain on the surface.
  • the Co content is 0 to 60 at% in terms of atomic ratio of Co to Fe (hereinafter referred to as “Co / Fe atomic ratio”). More preferably, the Co / Fe atomic ratio is 5 to 55 at%, more preferably 10 to 50 at%. Within such a range, the soft magnetic metal powder has a high saturation magnetization and can easily obtain stable magnetic characteristics.
  • Al and the like also have a sintering preventing effect, and suppress the coarsening of particles due to sintering during heat treatment.
  • Al and the like are treated as one of “sintering prevention elements”.
  • Al or the like is a non-magnetic component, and if it is contained too much, the magnetic properties are diluted, which is not preferable.
  • the content of Al or the like with respect to the total of Fe and Co is preferably 1 at% to 20 at%, more preferably 3 at% to 18 at%, and even more preferably 5 at% to 15 at%.
  • the method for producing a soft magnetic metal powder of the present invention includes a precursor forming step for forming a precursor and a precursor reducing step for reducing the obtained precursor to form a soft magnetic metal powder. Further, after the precursor reduction step, a gradual oxidation step in which an oxide film is slightly formed on the surface of the soft magnetic metal powder may be added for easy handling.
  • the precursor formation process is a wet process, and the precursor reduction process and the gradual oxidation process are dry processes.
  • the precursor forming step is a step of obtaining particles (precursor) composed of the element as a raw material by oxidizing the aqueous solution containing the element as the raw material to cause an oxidation reaction.
  • the precursor reduction step is a step of reducing the precursor to remove oxygen contained in the precursor formation step to obtain a soft magnetic metal powder made of the element as a raw material.
  • the gradual oxidation step is a step of forming a slight oxide film on the surface of the obtained soft magnetic metal powder.
  • Nano-order (soft magnetic) metal powder has high activity and is easily oxidized at room temperature. When an oxide film is formed on the surface, it can be stably present even in air.
  • a water-soluble iron compound is preferably used as a raw material.
  • the water-soluble iron compound iron sulfate, iron nitrate, iron chloride and the like can be preferably used, and iron sulfate is more preferably used.
  • the reaction is carried out by forming an iron oxide by passing a gas containing oxygen through an aqueous solution of an iron compound or adding an aqueous solution of an oxidizing agent such as hydrogen peroxide.
  • the oxidation reaction is preferably performed in an environment in which divalent iron (Fe 2+ ) and trivalent iron (Fe 3+ ) coexist.
  • divalent iron Fe 2+
  • trivalent iron Fe 3+
  • the abundance ratio of divalent iron and trivalent iron is important for controlling the particle size of the final precursor, and Fe 2+ / Fe 3+ is preferably in a range of 1 to 300 in terms of molar ratio, preferably Is in the range of 10 to 150, more preferably in the range of 15 to 100.
  • Trivalent iron may be produced by adding a trivalent iron compound or by oxidizing divalent iron.
  • cobalt may be added to iron.
  • a water-soluble cobalt compound is preferably used. This is because the reaction is performed wet.
  • water-soluble cobalt cobalt sulfate, cobalt nitrate, cobalt chloride and the like can be preferably used, and cobalt sulfate is more preferably used.
  • Cobalt is preferably added before nucleation, and more preferably at the same time as the iron raw material. In addition, it can also be added and deposited after completion of the oxidation reaction.
  • the oxidation for growing the nuclei it is preferable to blow air or oxygen into the aqueous solution. This is because the flow rate and flow velocity can be easily adjusted, and even if the manufacturing apparatus is enlarged, the solution can be uniformly oxidized by adding the outlets. In addition, it can also oxidize by the method of adding an oxidizing agent.
  • elements such as aluminum, silicon, rare earth elements (including Y), and magnesium may be added to the raw materials. These elements are also preferably water-soluble compounds. These elements are preferably added after iron or iron and cobalt are added to the reaction vessel, and can be added in the middle of the oxidation reaction to be dissolved in the precursor, or added after the end of the oxidation reaction. It may be deposited.
  • the addition method may be one-time addition or continuous addition.
  • ⁇ Precursor reduction process> The precursor obtained through the wet process as described above is continuously processed in the dry process.
  • the precursor is exposed to a reducing gas such as carbon monoxide, acetylene, or hydrogen at a temperature of 250 ° C. to 650 ° C. to perform a heat reduction treatment.
  • a reducing gas such as carbon monoxide, acetylene, or hydrogen
  • multistage reduction refers to performing a reduction process of holding an object to be processed at a predetermined temperature for a predetermined time a plurality of times while changing the temperature. By appropriately controlling the holding temperature and time, it is possible to control the properties of the finished metal magnetic powder.
  • a reducing gas added with water vapor As an atmosphere for this reduction treatment, it is also preferable to use a reducing gas added with water vapor.
  • the gradual oxidation step is a step of forming an oxide layer on the particle surface by treating the inert gas at a temperature of 20 to 300 ° C. for a predetermined time while gradually increasing the amount of oxidizing gas.
  • the powder after the reduction is cooled to a temperature at which this gradual oxidation step is performed, and gradual oxidation is preferably performed at that temperature, and the surface of the particles is oxidized by a weak oxidizing gas at this temperature.
  • a physical layer It is preferable to form a physical layer and perform a stabilization treatment.
  • a weakly oxidizing gas with a slow oxidation treatment added with water vapor may be used, and the addition of water vapor is preferable because a denser film can be formed. .
  • the powder characteristics and composition of the soft magnetic metal powder obtained after the slow oxidation step thus obtained were examined by the following method.
  • the average particle diameter is an image obtained by observing the metal magnetic powder in a bright field at a accelerating voltage of 100 kV using a transmission electron microscope (JEM-100CXMark-II type manufactured by JEOL Ltd.) (for example, 58000 times magnification) ) And taking a picture (for example, the vertical and horizontal magnification is 9 times), randomly selecting 300 monodisperse particles from a plurality of photographs, measuring the particle size of each particle, Obtained from the average value.
  • JEM-100CXMark-II type manufactured by JEOL Ltd. for example, 58000 times magnification
  • a picture for example, the vertical and horizontal magnification is 9 times
  • ⁇ Evaluation of magnetic properties and weather resistance of soft magnetic metal powder As the magnetic properties (bulk properties) of the obtained soft magnetic metal powder, a VSM device (VSM-7P) manufactured by Toei Kogyo Co., Ltd. was used, with an external magnetic field of 10 kOe (795.8 kA / m) and a coercive force Hc. (Oe and kA / m), saturation magnetization ⁇ s (Am 2 / kg), and squareness ratio SQ were measured. Further, as an index ( ⁇ s) for evaluating the weather resistance of the soft magnetic metal powder, the soft magnetic metal powder is kept in a constant temperature and humidity container at a set temperature of 60 ° C. and a relative humidity of 90% for one week, and the constant temperature and humidity are maintained. The saturation magnetization ⁇ s before and after holding was measured and determined according to ( ⁇ before storage ⁇ after storage) / ⁇ s before storage ⁇ 100 (%).
  • composition of the soft magnetic metal powder particles was determined by mass analysis of the entire particle including the metal magnetic phase and the oxide film.
  • Co, Al, Y, Mg, and Si were quantified using a high frequency induction plasma emission analyzer ICP (IRIS / AP) manufactured by Nippon Jarrell Ash.
  • ICP IRIS / AP
  • a Hiranuma automatic titration apparatus (COMTIME-980) manufactured by Hiranuma Sangyo Co., Ltd. was used.
  • oxygen was quantified using NITRROGEN / OXYGEN DETERMETER (TC-436 type) manufactured by LECO Corporation. Since these quantitative results are given as mass%, the Co / Fe atomic ratio and Al / (Fe + Co) atomic ratio were determined by appropriately converting to atomic% (at%).
  • volume resistivity of soft magnetic metal powder is measured using a powder resistance measurement unit (MCP-PD51) manufactured by Mitsubishi Chemical Analytech Co., Ltd. and a low resistance powder measurement system software (MCP-PDLGPWIN) manufactured by Mitsubishi Chemical Analytech Co., Ltd. Then, 1.0 g of powder was measured by a four-probe method in a state where the powder was vertically pressurized at 64 MPa (20 kN).
  • MCP-PD51 powder resistance measurement unit
  • MCP-PDLGPWIN low resistance powder measurement system software
  • thermosetting resin can be selected from phenol resin, epoxy resin, unsaturated polyester resin, isocyanate compound, melamine resin, urea resin, silicone resin and the like.
  • epoxy resin either a monoepoxy compound, a polyvalent epoxy compound, or a mixture thereof is used.
  • Examples of the monoepoxy compound include butyl glycidyl ether, hexyl glycidyl ether, phenyl glycidyl ether, allyl glycidyl ether, para-tert-butylphenyl glycidyl ether, ethylene oxide, propylene oxide, paraxyl glycidyl ether, glycidyl acetate, glycidyl butyrate Glycidyl hexoate, glycidyl benzoate and the like.
  • polyvalent epoxy compound examples include bisphenol A, bisphenol F, bisphenol AD, bisphenol S, tetramethyl bisphenol A, tetramethyl bisphenol F, tetramethyl bisphenol AD, tetramethyl bisphenol S, tetrabromobisphenol A, and tetrachlorobisphenol A.
  • Bisphenol-type epoxy resin obtained by glycidylation of bisphenols such as tetrafluorobisphenol A; epoxy resin obtained by glycidylation of other dihydric phenols such as biphenol, dihydroxynaphthalene and 9,9-bis (4-hydroxyphenyl) fluorene; 1,1,1-tris (4-hydroxyphenyl) methane, 4,4- (1- (4- (1- (4-hydroxyphenyl) -1-methylethyl) fe E) Ethylidene) Epoxy resins glycidylated with trisphenols such as bisphenol; Epoxy resins glycidylated with tetrakisphenols such as 1,1,2,2, -tetrakis (4-hydroxyphenyl) ethane; Phenol novolac, Cresol Novolak type epoxy resin obtained by glycidylation of novolaks such as novolak, bisphenol A novolak, brominated phenol novolak, brominated bisphenol
  • a polyvalent epoxy compound is preferable from the viewpoint of enhancing storage stability.
  • productivity is overwhelmingly high, so glycidyl-type epoxy resins are preferable, and more preferably epoxy obtained by glycidylation of polyhydric phenols because of excellent adhesion and heat resistance of cured products. It is preferable to use a resin.
  • a bisphenol type epoxy resin is more preferable, and an epoxy resin obtained by glycidylating bisphenol A and an epoxy resin obtained by glycidylating bisphenol F are particularly preferable.
  • the resin is preferably in a liquid form.
  • the epoxy equivalent is preferably 300 or more.
  • the mixing ratio of the soft magnetic metal powder and the epoxy resin is preferably 30/70 to 99/1, more preferably 50/50 to 95/5, and even more preferably 70 in terms of mass ratio when expressed in terms of metal / resin. / 30 to 90/10. This is because if the amount of the resin is too small, a molded body is not obtained, and if the amount is too large, desired magnetic properties cannot be obtained.
  • the soft magnetic metal powder of the present invention can be formed into an arbitrary shape by compression molding. What is supplied in practical use is the shape illustrated in FIGS. 1 and 2. However, in the following examples, it was molded into a donut shape, and the characteristics as a magnetic part were evaluated.
  • the soft magnetic metal powder and the epoxy resin were weighed at a weight ratio of 80:20, and dispersed in an epoxy resin using a vacuum agitation / defoaming mixer (V-mini300) manufactured by EME Co., Ltd. to obtain a paste.
  • This paste was dried on a hot plate at 60 ° C. for 2 hours to obtain a soft magnetic metal powder-resin composite.
  • This composite is pulverized to prepare a composite powder. 0.2 g of this composite powder is placed in a donut-shaped container, and a load of 1 t is applied by a hand press machine. A 3 mm toroidal shaped body was obtained.
  • precursor particles in which Al was dissolved in Fe were obtained.
  • the precursor was filtered and washed with water by a conventional method, and then dried at 110 ° C. to obtain a precursor dry solid (also referred to as precursor powder).
  • a precursor reduction step was performed.
  • the precursor powder in which Al is dissolved in Fe is put into a bucket that can be ventilated, the bucket is placed in a penetration type reduction furnace, and reduction treatment is performed at 500 ° C. for 60 minutes while ventilating hydrogen gas. gave. After the reduction treatment, metallic iron powder (soft magnetic metal powder) was obtained.
  • the atmosphere in the furnace was converted from hydrogen to nitrogen, and the temperature in the furnace was lowered to 80 ° C. at a temperature lowering rate of 20 ° C./min in a state where nitrogen was passed.
  • a gas mixed with an air amount of 1/125 with respect to N 2 is added into the furnace so that the metal iron powder is not rapidly oxidized, and oxygen / nitrogen is added.
  • the oxygen concentration in the atmosphere was increased by forming an oxide film in the mixed atmosphere and gradually increasing the supply amount of air.
  • the final soft magnetic metal powder (having a surface oxide film) was obtained.
  • Various physical properties and bulk characteristics of the obtained soft magnetic metal powder are shown in Table 2, and high frequency characteristics of a molded body using the soft magnetic metal powder are shown in Table 3.
  • the conditions of the composition and the precursor reduction step and the gradual oxidation step are shown in Table 1 including other examples.
  • a 1 mol / L ferrous sulfate (special grade reagent) aqueous solution and a 1 mol / L cobalt sulfate (special grade reagent) solution were mixed at
  • Example 2 Thereafter, the same procedure as in Example 1 was repeated to obtain a soft magnetic metal powder (a part of Fe having a surface oxide film substituted with Co). Various physical properties and bulk characteristics of the obtained soft magnetic metal powder are shown in Table 2, and high frequency characteristics of a molded body using the soft magnetic metal powder are shown in Table 3.
  • Example 3 In Example 2, the same procedure as in Example 2 was repeated except that the mixing ratio of the 1 mol / L ferrous sulfate (special grade reagent) aqueous solution and the 1 mol / L cobalt sulfate (special grade reagent) solution was changed to 8: 5. It was. Various physical properties and bulk characteristics of the obtained soft magnetic metal powder are shown in Table 2, and high frequency characteristics of a molded body using the soft magnetic metal powder are shown in Table 3.
  • Examples 1 to 3 are considered. Compared with Example 1 containing no Co, Examples 2 and 3 containing Co resulted in higher ⁇ ′. It can be considered that by containing Co and making an FeCo alloy, the magnetic moment is increased and the saturation magnetization is increased, thereby increasing the magnetic permeability. In other words, the inclusion of Co has the effect of increasing ⁇ ′.
  • Table 2 Various physical properties and bulk characteristics of the obtained soft magnetic metal powder are shown in Table 2, and high frequency characteristics of a molded body using the soft magnetic metal powder are shown in Table 3.
  • Example 5 to 8 For Examples 5 to 8, the same procedure as in Example 4 was repeated except that the amount of aluminum sulfate in Example 4 was changed to the amount shown in Table 1. Various physical properties and bulk characteristics of the obtained soft magnetic metal powder are shown in Table 2, and high frequency characteristics of a molded body using the soft magnetic metal powder are shown in Table 3.
  • Examples 4 to 8 are considered. It has been found that increasing the amount of Al contained has the effect of reducing tan ⁇ .
  • a precursor containing Fe, Co, and Al when a precursor containing Fe, Co, and Al is reduced, Fe and Co that are easily reduced are present inside the particle, and aluminum oxide that is not easily reduced is present on the particle surface. An oxide film containing Al is formed. For this reason, when the amount of Al to be included is increased, an oxide film containing more aluminum oxide is formed on the particle surface, so that the volume resistivity of the particles is increased, eddy current loss is reduced, and tan ⁇ is It seems to have become smaller.
  • Example 7 a TEM photograph of the powder obtained in Example 7 is shown in FIG.
  • This TEM image was taken with an acceleration voltage of 100 kV, and the contrast was adjusted so that the core portion appeared black.
  • FIG. 3 shown as a confirmed example there is a spherical portion that appears dark at the center of the substantially spherical particle, and a portion that appears thin and substantially transparent appears in the periphery.
  • the soft magnetic metal powder obtained by the present invention is formed of a core portion made of metal and a shell portion made of an oxide film.
  • composition analysis of the core / shell particles examples include ICP emission analysis, ESCA, TEM-EDX, XPS, SIMS, and the like.
  • ESCA a change in composition from the particle surface in the depth direction can be confirmed, and a core portion formed of metal and a shell portion formed of oxide can be distinguished.
  • TEM-EDX the particle is focused to irradiate EDX and semi-quantitatively to confirm the rough composition of the particle.
  • the core part formed of metal and the shell formed of oxide The part can be discriminated (for example, refer to paragraph [0078] of JP-A-2006-128535).
  • Example 9 to 10 For Examples 9 to 10, the same procedure as in Example 8 was repeated except that the reduction temperature in Example 8 was changed to the temperature described in Table 1. Various physical properties and bulk characteristics of the obtained soft magnetic metal powder are shown in Table 2, and high frequency characteristics of a molded body using the soft magnetic metal powder are shown in Table 3.
  • Example 11 In Example 2, the same procedure as in Example 2 was repeated except that the reduction temperature with hydrogen gas in the through-type reduction furnace was changed to 600 ° C. Various physical properties and bulk characteristics of the obtained soft magnetic metal powder are shown in Table 2, and high frequency characteristics of a molded body using the soft magnetic metal powder are shown in Table 3.
  • Table 2 Various physical properties and bulk characteristics of the obtained soft magnetic metal powder are shown in Table 2, high frequency characteristics of a molded body using the soft magnetic metal powder are shown in Table 3, and a TEM photograph of the obtained powder is shown in FIG. Also from this photograph, it can be seen that the soft magnetic metal powder obtained in the present invention is formed of a core portion formed of metal and a shell portion formed of an oxide film.
  • Comparative Example 1 As the soft magnetic metal powder of Comparative Example 1, a commercially available Mn—Zn ferrite powder was used. Table 2 shows various physical properties and bulk characteristics of the soft magnetic metal powder, and Table 3 shows high-frequency characteristics of a molded body using the soft magnetic metal powder.
  • Comparative Example 2 As the soft magnetic metal powder of Comparative Example 2, a commercially available Fe—Cr—Si powder was used. Table 2 shows various physical properties and bulk characteristics of the soft magnetic metal powder, and Table 3 shows high-frequency characteristics of a molded body using the soft magnetic metal powder.
  • the soft magnetic metal powder of the present invention is used not only for inductors and antennas but also for soft magnetic applications such as magnetic heads, lower layers of magnetic recording media, iron cores of electromagnets, transformer cores, antennas, electromagnetic shielding materials, and radio wave absorbers. be able to.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

 金属磁性粉末を用いたインダクタやアンテナ等の磁性部品は、GHz帯での損失である透磁率の複素数成分が高かった。 鉄を主成分とする軟磁性金属粉末であり、平均粒子径が300nm以下、保磁力(Hc)が16~119kA/m(200~1500Oe)、飽和磁化90Am/kg以上であり、前記金属粉末1.0gを64MPa(20kN)で垂直に加圧して形成させた成形体を、四探針方式で測定した体積抵抗率が1.0×10Ω・cm以上であることを特徴とする軟磁性金属粉末を成形した磁性部品は、GHz帯での損失係数を低く抑える事ができる。

Description

磁性部品とそれに用いられる軟磁性金属粉末およびその製造方法
 本発明は、高周波帯で使用される磁性部品と、それを構成する軟磁性金属粉末およびその軟磁性金属粉末の製造方法に関する。
 近年、携帯電話やノートPC、液晶テレビなどの電子機器で使用される信号は、高周波化が進められている。すでに現在はGHz帯の信号も実用化に入っており、将来的には、10GHzを超える周波数帯域の利用も予想されている。このような機器の高周波化に伴い、電子回路やその他の受動素子といった個別の部品についても高周波領域での性能向上が求められている。
 また、これらの機器はモバイルとして使用されることを目的として、小型化および低消費電力化が進んでいる。したがって、個別の部品には、高周波帯域での特性、低損失化が求められる。しかし、機器を構成する部品の中でも、受動素子は、材料の物性に基づいて特性が決まる場合が多く、高周波帯域での特性向上は容易ではない。
 例えば、インダクタやアンテナ等の磁性部品は、誘電率および透磁率という物理特性によって製品特性が決まるといってよい。インダクタは、部品の本体中に流れる磁束を利用する部品である。高周波帯域で使用できるインダクタを得るには、高周波領域で透磁率を保有するだけでなく、高周波領域でも損失が小さい磁性材料を開発しなければならない。
 また、アンテナの場合では、通信方式あるいは技術の進歩に伴って複数の周波数帯に対応したアンテナの搭載が必要となってきている。しかも電子機器内におけるアンテナの占有面積はできるだけ小さくすることが望まれている。所定の周波数を受信する際のアンテナ長は、透磁率の実数部と誘電率の実数部の積の1/2乗に反比例する長さでよいことが知られている。つまり、アンテナ長を短くするには、使用される周波数域で透磁率が高い磁性材料を開発しなければならない。さらに、アンテナは損失が小さいことが最も重要であるため、高周波領域で損失が小さい磁性体が必要とされる。
 現在、こうしたインダクタやアンテナに用いられる磁性材料としては、フェライトに代表される磁性酸化鉄、鉄やそれらの合金を中心とした金属磁性材料(以後「従来の磁性材料」と呼ぶ)が使用される。しかし、数100MHz以上の高周波域では、これらの磁性材料に起因する損失が増大するため好適に使用できないという問題がある。その原因は、粒子径が磁区サイズよりも大きいため、磁化が反転する際に磁壁の移動を伴い、大きなヒステリシス損失が発生することと、粒子径が表皮サイズ以上であることにより、大きな渦電流損失が発生することによるものと考えられる。
 そのような背景の中、特許文献1においてはアンテナに使用される金属磁性粒子としてナノオーダーの扁平粒子が提案されている。
特開2010-103427号公報
 高周波帯で用いる磁性部品にナノオーダーの磁性粒子を用いるのは、磁壁が形成されるより小さな単位で磁化を反転させることで、磁壁の移動に伴うヒステリシス損失を低減しようとするものである。さらに磁性粒子を表皮サイズ以下にすることで渦電流損失も低減しようとするものである。つまりナノオーダーの磁性粒子は、高周波帯で低損失の磁性部品を得ることができる可能性があると考えられる。
 ところが、特許文献1の金属磁性粒子を用いた磁性部品は、従来の磁性材料より損失は少ないものの、1GHzにおける損失を示すtanδの値が段落0104の記載によれば0.18であり、さらなる低損失の物質とすることが望まれる。
 そこで、本発明では、損失が十分に低い磁性部品と、それを得るためのナノオーダーの軟磁性金属粉末およびその製造方法を提供することを目的とする。
 上記の課題は、特定の構成からなる軟磁性金属粉末を用いて磁性部品を形成することで解決することができる。
 より具体的には、その軟磁性金属粉末は、
鉄を主成分とし、
平均粒子径が300nm以下、
保磁力(Hc)が16~119kA/m(200~1500Oe)、
飽和磁化90Am/kg以上であり、
前記軟磁性金属粉末1.0gを64MPa(20kN)で垂直に加圧した状態で、
四探針方式で測定した体積抵抗率が1.0×10Ω・cm以上である性質を有すること
を特徴とする。
 また、上記の軟磁性金属粉末は、さらに、
前記軟磁性金属粉末はコア/シェル構造を形成しており、コアが鉄又は鉄-コバルト合金、シェルが鉄、コバルト、アルミニウム、ケイ素、希土類元素(Yを含む)、マグネシウムの少なくとも一種を含んだ複合酸化物である。
 また、上記の軟磁性金属粉末は、
前記鉄-コバルト合金における鉄-コバルト比は、原子比でCo/Fe=0.0~0.6である。
 また、上記の軟磁性金属粉末には、アルミニウムが含まれ、FeとCoの総和との原子比が、Al/FeとCoの総和の合計=0.01~0.30である。
 また、上記の軟磁性金属粉末は、
 前記軟磁性金属粉末とエポキシ樹脂を80:20の質量割合で混合し、加圧成形したときに、
複素透磁率の実数部をμ’、虚数部をμ”、損失係数をtanδ(=μ”/μ’)として、
1GHzの周波数においてμ’>1.5かつμ”<0.5、tanδ<0.15であり、かつ2GHzの周波数においてμ’>1.5かつμ”<1.5、tanδ<0.5であることを特徴とする。
 また本発明は、上記の軟磁性金属粉末を用いたインダクタおよびアンテナを提供するものである。
 また、本発明の軟磁性金属粉末の製造方法は、
 鉄イオンを含む溶液中に酸素を含有する気体を吹き込みながら、アルミニウム、ケイ素、希土類元素(Yを含む)、マグネシウムの少なくとも一種の水溶液を添加して、アルミニウム、ケイ素、希土類元素(Yを含む)、マグネシウムの少なくとも一種を含む前駆体を形成する前駆体形成工程と、
前記前駆体を還元して金属粉末とする前駆体還元工程と、
前記前駆体還元工程で得られた前記金属粉末にさらに酸素を作用させ前記金属粉末表面に酸化膜を形成させる徐酸化工程と
を有することを特徴とする。
 また、上記製造方法では、前記鉄イオンを含む溶液が鉄化合物とコバルト化合物の水溶液であることを特徴とする。
 また、上記製造方法では、前記前駆体形成工程で得られる前記前駆体は、粉末X線回折法によりスピネル型結晶構造を示すことを特徴とする。
 また、上記製造方法では、前記前駆体還元工程は、前記前駆体を250℃~650℃の温度下で還元性ガスに曝すことを特徴とする。
 また、上記製造方法では、前記徐酸化工程は、前記金属粉末を20℃~150℃の温度下で、不活性ガスに酸素が含有されたガスに曝す工程であることを特徴とする。
 本発明の軟磁性金属粉末によれば、1GHzでの透磁率の実数部であるμ’が1.5以上でなおかつ損失係数が0.15以下となる低損失の磁性部品を得る事ができる。
本発明の磁性部品であるアンテナの構成を例示する図である。 本発明の磁性部品であるコイル部品の構成を例示する図である。 本発明に係る軟磁性粉末のTEM写真である。 本発明に係る軟磁性粉末のTEM写真である。
 以下本発明の磁性部品およびそれらに用いられる軟磁性金属粉末とその製造方法について説明を行う。ただし、本実施の形態は本発明の一実施形態を例示するのであり、本発明の趣旨を逸脱しない限りにおいて、以下の内容を変更することができる。
 本発明の磁性部品は、本発明の軟磁性金属粉末を圧縮成形した成形体によって構成される。特に、磁性部品としては、アンテナとコイル部品を例示する。
 図1は、高周波用磁性材料を適用したアンテナの一例を示した図である。図示したアンテナ10は、導体板1の上に放射板4を配置し、放射板4に給電するために給電点2と短絡板3を備えており、導体板1と放射板4の間に軟磁性金属粉末による成形体5を挟持した構造を有する。このような構造を備えることで、波長短縮が図られ、アンテナ10の小型化を実現することができる。
 図2は、高周波用磁性材料を用いて構成されるコイル部品の一例を示した図である。図示したコイル部品12は、電極6と、鍔7と、巻線8と、巻芯9と、を備えて構成されている。軟磁性金属粉末の成形体である巻芯9は細長い柱状の直方体であり直方体の短軸方向の断面が長方形断面を有している。鍔7は巻芯9の長方形断面よりも大きな長方形断面を有し、巻芯9の長軸方向に厚みの薄い直方体の構造を有している。鍔7も軟磁性金属粉末の成形体で形成してもよい。
 次に本発明の軟磁性金属粉末について詳説する。
 <軟磁性金属粉末の組成>
 本発明の軟磁性金属粉末は、Fe(鉄)若しくは、FeとCo(コバルト)に、Al(アルミニウム)、Si(ケイ素)、希土類元素(Y(イットリウム)を含む)、Mg(マグネシウム)の少なくとも一種(以後「Al等」と呼ぶ。)が含まれる。
 Al等含有量に関しては、FeとCoの総和に対するAl等の含有量が20at%以下となる範囲とする。還元処理を行う前の前駆体の状態では、Fe若しくはFeとCoにAl等を固溶し、次にその前駆体を還元することで金属粉末にする。還元された金属粉末は、還元されやすいFe、Coが粒子の内部に多く存在し、還元されない酸化アルミニウム等は粒子の表面に多く存在している。
 その後に、金属粉末の表面を酸化させることでAl等を含む絶縁膜が形成される。これによって、金属粉末を構成する粒子の電気抵抗が高くなり、磁性部品にした際に、渦電流損失等に基づく損失が改善される。また、含有させるAl量を多くすることで、表層にAlを多く含んだ酸化膜を形成させることができ、粒子の電気抵抗が高くなるため渦電流損失を低減することができtanδは小さくなる。なお、表面にはAl等だけでなく、Fe若しくはFeとCoが残留する場合もある。
 Coを含む場合に、Co含有量に関しては、原子割合でFeに対するCoの割合(以下「Co/Fe原子比」という)で0~60at%を含有させる。Co/Fe原子比が5~55at%のものがより好ましく、10~50at%のものが一層好ましい。このような範囲において軟磁性金属粉末は、飽和磁化が高く、かつ安定した磁気特性が得られやすい。
 また、Al等は焼結防止効果も有しており、熱処理時の焼結による粒子の粗大化を抑制している。本明細書ではAl等は「焼結防止元素」の1つとして扱っている。ただし、Al等は非磁性成分であり、あまりに多く含有させると磁気特性が希釈されるため好ましくない。FeとCoの総和に対するAl等含有量は1at%~20at%とすることが望ましく、3at%~18at%がより好ましく、5at%~15at%が一層好ましい。
 <製法>
 本発明の軟磁性金属粉末の製法は、前駆体を形成する前駆体形成工程と、得られた前駆体を還元して軟磁性金属粉末とする前駆体還元工程を含む。また、前駆体還元工程後、取扱を容易にするために軟磁性金属粉末の表面にわずかに酸化膜を形成させる徐酸化工程を追加してもよい。前駆体形成工程は、湿式での工程であり、前駆体還元工程および徐酸化工程は乾式での工程である。
 前駆体形成工程は、原材料となる元素を含む水溶液中を酸化することで、酸化反応を行わせ、その結果原材料となる元素からなる粒子(前駆体)を得る工程である。
 前駆体還元工程は、前駆体を還元することで、前駆体形成工程で含有される酸素を除去し、原材料となる元素からなる軟磁性金属粉末を得る工程である。徐酸化工程は、得られた軟磁性金属粉末の表面に若干の酸化膜を形成させる工程である。ナノオーダーの(軟磁性)金属粉末は活性が高く、常温でも酸化しやすい。表面に酸化膜を形成すると、空気中でも安定して存在させることができるようになる。以下それぞれの工程を詳述する。
 <前駆体形成工程>
 前駆体形成工程では、原材料として水溶性の鉄化合物が好適に用いられる。水溶性の鉄化合物としては、好ましくは硫酸鉄、硝酸鉄、塩化鉄などが使用でき、さらに好ましくは硫酸鉄を用いるのが良い。反応は、鉄化合物の水溶液に対して、酸素を含む気体を通気させるか、過酸化水素などの酸化剤の水溶液を添加することにより、鉄の酸化物を形成させることにより行う。
 酸化反応では、二価の鉄(Fe2+)と三価の鉄(Fe3+)が共存した環境において反応させるのがよい。価数の異なる鉄を共存させることにより、核を形成しやすくなり、適当な大きさの粒子を得られる様になる。ここで、二価鉄と三価鉄の存在割合は、最終的な前駆体の粒子サイズを制御するために重要であり、Fe2+/Fe3+はモル比で1~300の範囲が良く、好ましくは10~150の範囲、さらに好ましくは15~100の範囲である。
 Fe2+/Fe3+が300を超えると粒度分布が悪くなるため好ましくない。また、Fe2+/Fe3+の割合が大きくなると核の数が少なくなり粒子数が少なくなるので粒子サイズは大きくなる。逆に、Fe2+/Fe3+の割合が小さくなると核の数が多くなり粒子数が多くなるので粒子サイズは小さくなる。3価の鉄は3価の鉄化合物を添加しても良いし、2価の鉄を酸化させて生成させても良い。
 原材料としては、鉄にコバルトを加えてもよい。コバルト原料としては、水溶性のコバルト化合物を用いるのがよい。湿式で反応させるからである。水溶性のコバルトとしては、好ましくは硫酸コバルト、硝酸コバルト、塩化コバルトなどが使用でき、さらに好ましくは硫酸コバルトを用いるのが良い。
 コバルトの添加は核を形成させる前に添加した方が好ましく、より好ましくは鉄原料と同時に添加するのがよい。なお、酸化反応終了後に添加して被着させることもできる。
 核を成長させるための酸化は水溶液中に空気若しくは酸素を吹き込むのが好ましい。流量や流速を容易に調整することができ、製造装置が大型化しても、吹出し口を増設することで、溶液に均一に酸化反応を生じさせることができるからである。なお、酸化剤を添加する方法で酸化させることもできる。
 原材料には、鉄若しくは鉄とコバルトに加え、アルミニウム、ケイ素、希土類元素(Yを含む)、マグネシウムといった元素を加えてもよい。これらの元素も水溶性の化合物を用いるのが好ましい。これらの元素は、鉄若しくは鉄とコバルトが反応容器に添加された後に添加するのが良く、酸化反応途中で添加して前駆体中に固溶させることもできるし、酸化反応終了後に添加して被着させても良い。また、添加方法としては一挙添加でも連続添加でも良い。
 <前駆体還元工程>
 以上のように湿式による工程を経て得られた前駆体を乾式の工程で処理を続ける。前駆体還元工程では、この前駆体を250℃~650℃の温度下で、一酸化炭素、アセチレン、水素等の還元ガスに曝すことで、加熱還元処理を行う。この際、多段還元を行ってもよい。多段還元とは、被処理体を所定温度中で所定時間保持する還元処理を、温度を変化させながら複数回行うことをいう。保持する温度と時間を適正に制御することにより、出来上がりの金属磁性粉末の特性を制御することができる。この還元処理の雰囲気として、還元性ガスに水蒸気を添加したものを用いるのも好ましい。
 <徐酸化工程>
 加熱還元後に得られたものは合金磁性粒子粉末となるが、そのまま大気中で扱うと急速に酸化するおそれがあるため、次の徐酸化工程により、酸化物層を形成させる。徐酸化工程とは、不活性ガスに酸化性ガス量を徐々に増やしながら20~300℃の温度で所定時間処理することにより、粒子表面に酸化物層を作成する工程である。実際には、還元が終了したあとの粉体を、この徐酸化工程を行う温度まで冷却し、その温度で徐酸化を行うのが好ましいし、この温度で弱酸化性ガスによって該粒子表面に酸化物層を形成させて安定化処理するのがよい。なお、この工程中においても、徐酸化処理の弱酸化性ガス中に水蒸気を添加したものを用いてもよく、水蒸気を添加することでより緻密な膜を形成することができるようになるので好ましい。
 このようにして得られた徐酸化工程後の軟磁性金属粉末について、以下に示す方法により粉体特性および組成を調べた。
 <平均粒子径>
 平均粒子径は、透過型電子顕微鏡(日本電子株式会社製のJEM-100CXMark-II型)を使用し、100kVの加速電圧で、明視野で金属磁性粉末を観察した像を(例えば、倍率58000倍で)写真撮影して(例えば、縦横の倍率を9倍に)拡大し、複数の写真から単分散している粒子をランダムに300個選択して、各々の粒子について粒子径を測定し、その平均値から求めた。
 <BET比表面積>
 BET比表面積は、ユアサイオニクス株式会社製の4ソーブUSを用いて、BET法により求めた。
 <軟磁性金属粉末の磁気特性および耐候性の評価>
 得られた軟磁性金属粉末の磁気特性(バルク特性)として、東英工業株式会社製のVSM装置(VSM-7P)を使用して、外部磁場10kOe(795.8kA/m)で、保磁力Hc(OeおよびkA/m)、飽和磁化σs(Am/kg)、角形比SQを測定した。また、軟磁性金属粉末の耐候性を評価する指標(Δσs)として、軟磁性金属粉末を設定温度60℃、相対湿度90%の恒温恒湿容器内に1週間保持して、該恒温恒湿下に保持する前と後の飽和磁化σsを測定し、(保存前σs-保存後σs)/保存前σs×100(%)に従って求めた。
 <軟磁性金属粉末粒子の組成分析>
 軟磁性金属粉末粒子の組成は、金属磁性相と酸化膜を含んだ粒子全体の質量分析を行うことによって求めた。Co、Al、Y、Mg、Siの定量は日本ジャーレルアッシュ株式会社製高周波誘導プラズマ発光分析装置ICP(IRIS/AP)を用いた。また、Feの定量は平沼産業株式会社製平沼自動滴定装置(COMTIME-980)を用いた。また、酸素の定量はLECO Corporation製のNITROGEN/OXYGEN DETERMETER(TC-436型)を用いて行った。これらの定量結果は質量%として与えられるので、適宜原子%(at%)に変換することにより、Co/Fe原子比、Al/(Fe+Co)原子比を求めた。
 <軟磁性金属粉末の体積抵抗率の測定>
 軟磁性金属粉末の体積抵抗率の測定は、三菱化学アナリテック株式会社製粉体抵抗測定ユニット(MCP―PD51)と三菱化学アナリテック株式会社製低抵抗粉体測定システムソフトウェア(MCP―PDLGPWIN)を用い、粉末1.0gを64MPa(20kN)で垂直に加圧した状態で、四探針方式で測定することにより求めた。
 <軟磁性金属粉末の成形体の作成>
 得られた軟磁性金属粉末は、樹脂と共に混練を行い、成形体とする。この時に使用される樹脂としては、公知の熱硬化性樹脂のいずれも使用することが出来る。熱硬化性樹脂としては、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、イソシアネート化合物、メラミン樹脂、尿素樹脂、シリコーン樹脂などから選択することができる。エポキシ樹脂としては、モノエポキシ化合物、多価エポキシ化合物のいずれか又はそれらの混合物が用いられる。
 ここでモノエポキシ化合物としては、ブチルグリシジルエーテル、ヘキシルグリシジルエーテル、フェニルグリシジルエーテル、アリルグリシジルエーテル、パラ-tert-ブチルフェニルグリシジルエーテル、エチレンオキシド、プロピレンオキシド、パラキシリルグリシジルエーテル、グリシジルアセテート、グリシジルブチレート、グリシジルヘキソエート、グリシジルベンゾエート等を挙げることができる。
 多価エポキシ化合物としては、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールAD、ビスフェノールS、テトラメチルビスフェノールA、テトラメチルビスフェノールF、テトラメチルビスフェノールAD、テトラメチルビスフェノールS、テトラブロモビスフェノールA、テトラクロロビスフェノールA、テトラフルオロビスフェノールA等のビスフェノール類をグリシジル化したビスフェノール型エポキシ樹脂;ビフェノール、ジヒドロキシナフタレン、9,9-ビス(4-ヒドロキシフェニル)フルオレン等のその他の2価フェノール類をグリシジル化したエポキシ樹脂;1,1,1-トリス(4-ヒドロキシフェニル)メタン、4,4-(1-(4-(1-(4-ヒドロキシフェニル)-1-メチルエチル)フェニル)エチリデン)ビスフェノール等のトリスフェノール類をグリシジル化したエポキシ樹脂;1,1,2,2,-テトラキス(4-ヒドロキシフェニル)エタン等のテトラキスフェノール類をグリシジル化したエポキシ樹脂;フェノールノボラック、クレゾールノボラック、ビスフェノールAノボラック、臭素化フェノールノボラック、臭素化ビスフェノールAノボラック等のノボラック類をグリシジル化したノボラック型エポキシ樹脂等;多価フェノール類をグリシジル化したエポキシ樹脂、グリセリンやポリエチレングリコール等の多価アルコールをグリシジル化した脂肪族エーテル型エポキシ樹脂;p-オキシ安息香酸、β-オキシナフトエ酸等のヒドロキシカルボン酸をグリシジル化したエーテルエステル型エポキシ樹脂;フタル酸、テレフタル酸のようなポリカルボン酸をグリシジル化したエステル型エポキシ樹脂;4,4-ジアミノジフェニルメタンやm-アミノフェノール等のアミン化合物のグリシジル化物やトリグリシジルイソシアヌレート等のアミン型エポキシ樹脂等のグリシジル型エポキシ樹脂と、3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレート等の脂環族エポキサイド等が例示される。
 上述のエポキシ樹脂の中でも、貯蔵安定性を高めるという観点から、多価エポキシ化合物が好ましい。多価エポキシ化合物のなかでも、生産性が圧倒的に高いので、グリシジル型エポキシ樹脂が好ましく、より好ましくは、硬化物の接着性や耐熱性が優れることから、多価フェノール類をグリシジル化したエポキシ樹脂とするのが好ましい。いっそう好ましくはビスフェノール型エポキシ樹脂であるのがよく、とりわけ、ビスフェノールAをグリシジル化したエポキシ樹脂とビスフェノールFをグリシジル化したエポキシ樹脂がよい。
 また、樹脂の形態としては液状を呈しているものが好ましい。なお、組成物を固形に保つ意味で、エポキシ当量としては300以上であることが好ましい。
 軟磁性金属粉末とエポキシ樹脂の混合の割合は、金属/樹脂で表すと、質量比で30/70~99/1が好ましく、より好ましくは50/50~95/5であり、さらに好ましくは70/30~90/10である。樹脂が少なすぎると成形体にならず、多すぎると所望の磁気特性を得られないからである。
 本発明の軟磁性金属粉末は、圧縮成形によって、任意の形状にすることができる。実用として供給されるのは、図1及び図2で例示したような形状になる。しかし以下の実施例では、ドーナツ状に成形し、磁性部品としての特性を評価した。
 軟磁性金属粉末とエポキシ樹脂を80:20の重量割合で秤量し、株式会社EME社製真空攪拌・脱泡ミキサー(V-mini300)を用いて、エポキシ樹脂に分散させペースト状にした。このペーストをホットプレート上で60℃、2時間乾燥させて、軟磁性金属粉末-樹脂の複合体を得た。この複合体を解粒して複合体の粉末を作製し、この複合体粉末0.2gをドーナッツ状の容器内に入れて、ハンドプレス機により1tの荷重をかけることにより、外径7mm、内径3mmのトロイダル形状の成形体を得た。
 <軟磁性金属粉末-樹脂の複合体の高周波特性評価>
 得られた軟磁性金属粉末-樹脂複合体の成形体の高周波特性として、アジレント・テクノロジー株式会社製のネットワーク・アナライザー(E8362C)と株式会社関東電子応用開発製の同軸型Sパラメーター法サンプルホルダーキット(製品型番:CSH2-APC7、試料寸法:φ7.0mm-φ3.04mm×5mm)を用い、0.5~3GHzにおける透磁率の実部(μ’)、透磁率の虚部(μ”)、損失係数を表すtanδを測定した。
 [実施例1]
 前駆体形成工程を次のように行なった。5000mLビーカーに純水3000mLと12mol/Lの水酸化ナトリウム100mlを入れ、温調機で40℃に維持しながら攪拌した。これに2mol/Lの硫酸第二鉄(特級試薬)溶液と1mol/Lの硫酸第一鉄(特級試薬)水溶液をFe2+/Fe3+=20の混合割合にて混合した溶液を900mL添加した。
 その後、90℃まで昇温し、更に200mL/minで空気を通気して酸化を40分間継続した。空気を窒素に切り替えてから10分間熟成した後、0.3mol/Lの硫酸アルミニウム(特級試薬)を80ml添加し、200mL/minで空気を通気して酸化を50分間継続し、酸化を完結させた。このようにして、FeにAlが固溶した前駆体の粒子を得た。この前駆体を常法により濾過、水洗後、110℃で乾燥し、前駆体の乾燥固形物(前駆体粉末ともいう)を得た。
 次に前駆体還元工程を行なった。このFeにAlが固溶した前駆体粉末を、通気可能なバケット内に投入し、該バケットを貫通型還元炉内に装入し、水素ガスを通気しつつ、500℃で60分間還元処理を施した。還元処理終了後、金属鉄の粉末(軟磁性金属粉末)を得た。
 その後、徐酸化工程に移行するために、炉内雰囲気を水素から窒素に変換し、窒素を流した状態で炉内温度を降温レート20℃/minで80℃まで低下させた。徐酸化工程においては、酸化膜形成初期段階は金属鉄の粉末が急速に酸化しないようにNに対する空気量が1/125の混合割合にて混合したガスを炉内に添加し、酸素・窒素の混合雰囲気中にて酸化膜を形成させ、徐々に空気の供給量を増すことによって、雰囲気中における酸素濃度を上昇させた。
 最終的に供給される空気の流量はNに対して1/25の添加量とした。その際、炉内に導入されるガスの総量は窒素の流量を調整することによりほぼ一定に保たれるようにした。この徐酸化処理は、概ね80℃に維持される雰囲気下で実施した。
 このようにして最終的な軟磁性金属粉末(表面酸化膜を有するもの)が得られた。得られた軟磁性金属粉末の諸物性とバルク特性を表2に、これを用いた成形体の高周波特性を表3に示した。また、組成および前駆体還元工程および徐酸化工程の条件については他の実施例も含め表1に示した。
 [実施例2]
 5000mLビーカーに純水3000mLと12mol/Lの水酸化ナトリウム100mlを入れ、温調機で40℃に維持しながら攪拌した。これに1mol/Lの硫酸第一鉄(特級試薬)水溶液と1mol/Lの硫酸コバルト(特級試薬)溶液を4:1の混合割合にて混合した溶液を900mLと、さらに(Fe2++Co2+)/Fe3+=20となる量の2mol/Lの硫酸第二鉄(特級試薬)溶液を同時に添加した。これ以降は、実施例1と同じ手順を繰り返すことにより、軟磁性金属粉末(Feの一部はCoに置換された表面酸化膜を有するも)を得た。得られた軟磁性金属粉末の諸物性とバルク特性を表2に、これを用いた成形体の高周波特性を表3に示した。
 [実施例3]
 実施例2において、1mol/Lの硫酸第一鉄(特級試薬)水溶液と1mol/Lの硫酸コバルト(特級試薬)溶液の混合割合を8:5に変更した以外は実施例2と同じ手順を繰り返した。得られた軟磁性金属粉末の諸物性とバルク特性を表2に、これを用いた成形体の高周波特性を表3に示した。
 ここで、実施例1~3について考察する。Coを含有していない実施例1と比較するとCoを含有している実施例2および3の方が、μ’が高くなる結果であった。Coを含有させ、FeCo合金にすることで磁気モーメントが増加して飽和磁化が高くなり、それにより透磁率が増加したものと考えられる。つまり、Coを含有させるとμ’が増加する効果がある。
 また、通常μ’が上がると共鳴周波数が低周波数側にシフトして、tanδは悪化する(大きくなる)傾向があるのだが、本実施例ではCo量を増加させてμ’を増加させてもtanδは悪化しない(大きくならない)結果となった。この理由としては、Coを含有させることで、より緻密な酸化膜を形成することができたため、粉体の体積抵抗率が上がり、渦電流損失を低減することができたものと思われる。つまり、Coを含有させることで、tanδを悪化(大きく)させることなくμ’を改善する効果があることがわかった。
 [実施例4]
 実施例2において、核晶を形成させるためのFe3+の量を(Fe2++Co2+)/Fe3+=33に変更し、さらに酸化反応途中で添加する0.3mol/Lの硫酸アルミニウム(特級試薬)の量を45mlに変更した以外は、実施例2と同じ手順を繰り返した。得られた軟磁性金属粉末の諸物性とバルク特性を表2に、これを用いた成形体の高周波特性を表3に示した。
 [実施例5~8]
 実施例5~8については、実施例4において硫酸アルミニウムを表1に記載した量に変更した以外は、実施例4と同じ手順を繰り返した。得られた軟磁性金属粉末の諸物性とバルク特性を表2に、これを用いた成形体の高周波特性を表3に示した。
 ここで、実施例4~8について考察する。含有させるAl量を増やすことで、tanδが小さくなる効果があることがわかった。本発明では、Fe、Co、Alを含んだ前駆体を還元すると、還元されやすいFe、Coは粒子の内部に、還元されにくい酸化アルミニウムは粒子の表面に存在するようになるため、粒子表面にAlを含んだ酸化膜が形成される。このため、含有させるAl量を多くすると、粒子表面により多くの酸化アルミニウムを含んだ酸化膜が形成されることになるので、粒子の体積抵抗率は高くなり、渦電流損失が低減され、tanδは小さくなったものと思われる。
 また、実施例7において得られた粉末のTEM写真を図3に示した。このTEM像は100kVの加速電圧をかけ撮影したものであり、コアの部分が黒く見えるようにコントラストを調整している。その結果、確認された例として示した図3には、略球状の粒子の中心部に暗く映っている球状部分があり、その周囲を薄く略透明にも見える部分が映っている。この写真のように、本発明で得られる軟磁性金属粉末は、金属で形成されたコア部分と、酸化膜で形成されたシェル部分で形成される。
 コア/シェル粒子の組成分析は、例えばICP発光分析、ESCA、TEM-EDX、XPS、SIMSなどの方法を挙げることができる。特に、ESCAによれば粒子表面から深さ方向への組成の変化を確認することができ、金属で形成されるコア部分と、酸化物で形成されるシェル部分を判別することができる。また、TEM-EDXによれば粒子にビームを絞ってEDXを照射し、半定量することにより、粒子の大体の組成を確認でき、金属で形成されるコア部分と、酸化物で形成されるシェル部分を判別することができる(例えば、特開2006-128535号[0078]段落など参照)。
 [実施例9~10]
 実施例9~10については、実施例8において還元温度を表1に記載した温度に変更した以外は、実施例8と同じ手順を繰り返した。得られた軟磁性金属粉末の諸物性とバルク特性を表2に、これを用いた成形体の高周波特性を表3に示した。
 ここで、実施例7、9、10は前駆体の還元温度が異なるが、還元温度が高い実施例ほどμ’の値が高くなることがわかった。この理由は、還元温度を高くすることで、還元やFe、Coの合金化が促進されたためと思われる。
 [実施例11]
 実施例2において、貫通型還元炉内での水素ガスによる還元温度を600℃に変更した以外は、実施例2と同じ手順を繰り返した。得られた軟磁性金属粉末の諸物性とバルク特性を表2に、これを用いた成形体の高周波特性を表3に示した。
 [実施例12]
 実施例11において、核晶を形成させるためのFe3+の量を(Fe2++Co2+)/Fe3+=85に変更した以外は、実施例11と同じ手順を繰り返した。得られた軟磁性金属粉末の諸物性とバルク特性を表2に、これを用いた成形体の高周波特性を表3に、得られた粉末のTEM写真を図4に示した。この写真からも、本発明で得られる軟磁性金属粉末は、金属で形成されたコア部分と、酸化膜で形成されたシェル部分で形成されることが分かる。
 [比較例1]
 比較例1の軟磁性金属粉末としては、市販されているMn-Zn系フェライト粉末を用いた。この軟磁性金属粉末の諸物性とバルク特性を表2に、これを用いた成形体の高周波特性を表3に示した。
 [比較例2]
 比較例2の軟磁性金属粉末としては、市販されているFe―Cr―Si粉末を用いた。この軟磁性金属粉末の諸物性とバルク特性を表2に、これを用いた成形体の高周波特性を表3に示した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本発明の軟磁性金属粉末は、インダクタ、アンテナだけでなく、磁気ヘッド、磁気記録媒体の下層材、電磁石の鉄心、トランスコア、アンテナ、電磁気シールド材、電波吸収体といった軟磁性用途にも利用することができる。
 1  導体板
 2  給電点
 3  短絡板
 4  放射板
 5  成形体
 6  電極
 7  鍔
 8  巻線
 9  巻芯
 10  アンテナ
 11  コイル
 12  コイル部品

Claims (12)

  1.  鉄を主成分とする軟磁性金属粉末であり、
    平均粒子径が300nm以下、
    保磁力(Hc)が16~119kA/m(200~1500Oe)、
    飽和磁化90Am/kg以上であり、
    前記軟磁性金属粉末1.0gを64MPa(20kN)で垂直に加圧した状態で、
    四探針方式で測定した体積抵抗率が1.0×10Ω・cm以上である軟磁性金属粉末。
  2.  前記軟磁性金属粉末はコア/シェル構造を形成しており、コアが鉄又は鉄-コバルト合金、シェルが鉄、コバルト、アルミニウム、ケイ素、希土類元素(Yを含む)、マグネシウムの少なくとも一種を含んだ複合酸化物である、請求項1に記載の軟磁性金属粉末。
  3.  前記鉄-コバルト合金における鉄-コバルト比は、原子比でCo/Fe=0.0~0.6である、請求項2に記載の軟磁性金属粉末。
  4.  前記軟磁性金属粉末にはアルミニウムが含まれ、FeとCoの総和との原子比が、Al/FeとCoの総和の合計=0.01~0.30である、請求項1ないし3のいずれかに記載の軟磁性金属粉末。
  5.  前記軟磁性金属粉末とエポキシ樹脂を80:20の質量割合で混合し、加圧成形したときに、
    複素透磁率の実数部をμ’、虚数部をμ”、損失係数をtanδ(=μ”/μ’)として、
    1GHzの周波数においてμ’>1.5かつμ”<0.5、tanδ<0.15であり、かつ2GHzの周波数においてμ’>1.5かつμ”<1.5、tanδ<0.5であることを特徴とする請求項1ないし4のいずれかに記載の軟磁性金属粉末。
  6.  請求項1ないし5のいずれかに記載の軟磁性金属粉末を使用して形成されたインダクタ。
  7.  請求項1ないし5のいずれかに記載の軟磁性金属粉末を使用して形成されたアンテナ。
  8.  鉄イオンを含む溶液中に酸素を含有する気体を吹き込みながら、アルミニウム、ケイ素、希土類元素(Yを含む)、マグネシウムの少なくとも一種の水溶液を添加して、アルミニウム、ケイ素、希土類元素(Yを含む)、マグネシウムの少なくとも一種を含む前駆体を形成する前駆体形成工程と、
    前記前駆体を還元して金属粉末とする前駆体還元工程と、
    前記前駆体還元工程で得られた前記金属粉末にさらに酸素を作用させ前記金属粉末表面に酸化膜を形成させる徐酸化工程と
    を有する軟磁性金属粉末の製造方法。
  9.  前記鉄イオンを含む溶液が鉄化合物とコバルト化合物の水溶液である請求項8に記載の軟磁性金属粉末の製造方法。
  10.  前記前駆体形成工程で得られる前記前駆体は、粉末X線回折法によりスピネル型結晶構造を示す請求項8または9に記載の軟磁性金属粉末の製造方法。
  11.  前記前駆体還元工程は、前記前駆体を250℃~650℃の温度下で還元性ガスに曝す請求項8ないし10のいずれかに記載の軟磁性金属粉末の製造方法。
  12.  前記徐酸化工程は、前記金属粉末を20℃~150℃の温度下で、不活性ガスに酸素が含有されたガスに曝す工程である請求項8ないし11のいずれかに記載の軟磁性金属粉末の製造方法。
PCT/JP2013/001638 2012-01-20 2013-03-13 磁性部品とそれに用いられる軟磁性金属粉末およびその製造方法 WO2014141318A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020147008494A KR101496626B1 (ko) 2013-03-13 2013-03-13 자성 부품과 그것에 이용되는 연자성 금속 분말 및 그 제조 방법
EP13848104.9A EP2801424B1 (en) 2013-03-13 2013-03-13 Magnetic component, soft magnetic metal powder used in same, and method for producing same
CN201380003390.1A CN103999170B (zh) 2013-03-13 2013-03-13 磁性部件和磁性部件所使用的软磁性金属粉末及其制造方法
US14/372,342 US20150104664A1 (en) 2012-01-20 2013-03-13 Magnetic component, and soft magnetic metal powder used therein and manufacturing method thereof
PCT/JP2013/001638 WO2014141318A1 (ja) 2013-03-13 2013-03-13 磁性部品とそれに用いられる軟磁性金属粉末およびその製造方法
TW102112474A TWI471876B (zh) 2013-03-13 2013-04-09 A magnetic part, a soft magnetic metal powder for use, and a method for manufacturing the same
US14/850,109 US20160001371A1 (en) 2012-01-20 2015-09-10 Magnetic component, and soft magnetic metal powder used therein and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/001638 WO2014141318A1 (ja) 2013-03-13 2013-03-13 磁性部品とそれに用いられる軟磁性金属粉末およびその製造方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/372,342 A-371-Of-International US20150104664A1 (en) 2012-01-20 2013-03-13 Magnetic component, and soft magnetic metal powder used therein and manufacturing method thereof
US14/850,109 Division US20160001371A1 (en) 2012-01-20 2015-09-10 Magnetic component, and soft magnetic metal powder used therein and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2014141318A1 true WO2014141318A1 (ja) 2014-09-18

Family

ID=51311856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001638 WO2014141318A1 (ja) 2012-01-20 2013-03-13 磁性部品とそれに用いられる軟磁性金属粉末およびその製造方法

Country Status (5)

Country Link
EP (1) EP2801424B1 (ja)
KR (1) KR101496626B1 (ja)
CN (1) CN103999170B (ja)
TW (1) TWI471876B (ja)
WO (1) WO2014141318A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210050132A1 (en) * 2018-01-17 2021-02-18 Dowa Electronics Materials Co., Ltd. Silicon oxide-coated iron powder, method for producing the same, molded body for inductor using the same, and inductor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107347258B (zh) * 2015-03-19 2022-03-01 罗杰斯公司 磁介电基底、电路材料以及具有其的组合件
JP6963950B2 (ja) * 2017-09-22 2021-11-10 Dowaエレクトロニクス株式会社 鉄粉およびその製造方法並びにインダクタ用成形体およびインダクタ
JP7097702B2 (ja) * 2018-01-17 2022-07-08 Dowaエレクトロニクス株式会社 Fe-Co合金粉並びにそれを用いたインダクタ用成形体およびインダクタ
CN110181036A (zh) * 2019-05-14 2019-08-30 合肥博微田村电气有限公司 一种复合软磁金属粉末、制备方法及一体成型电感
CN116825468B (zh) * 2023-08-04 2024-01-12 广东泛瑞新材料有限公司 一种铁钴磁芯及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006128535A (ja) 2004-11-01 2006-05-18 Dowa Mining Co Ltd 金属磁性粉末およびそれを用いた磁気記録媒体
JP2010095751A (ja) * 2008-10-15 2010-04-30 Toda Kogyo Corp 強磁性金属粒子粉末及びその製造法、並びに磁気記録媒体
JP2010103427A (ja) 2008-10-27 2010-05-06 Tohoku Univ 複合磁性体、それを用いた回路基板、及びそれを用いた電子部品
JP2011246820A (ja) * 2004-02-27 2011-12-08 Hitachi Metals Ltd 鉄系ナノサイズ粒子およびその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4677734B2 (ja) * 2004-04-19 2011-04-27 Dowaエレクトロニクス株式会社 磁気記録媒体用磁性粉末
JP4431769B2 (ja) * 2005-09-15 2010-03-17 Dowaエレクトロニクス株式会社 強磁性粉末ならびにそれを用いた塗料および磁気記録媒体
CN1971718B (zh) * 2005-11-23 2011-04-27 同和电子科技有限公司 用于磁记录介质的铁磁粉,该粉末的制备方法以及使用该粉末的磁记录介质
US20100035087A1 (en) * 2008-08-08 2010-02-11 Toda Kogyo Corporation Process for producing ferromagnetic metal particles and magnetic recording medium
JP5085595B2 (ja) * 2008-09-08 2012-11-28 株式会社東芝 コアシェル型磁性材料、コアシェル型磁性材料の製造方法、デバイス装置、およびアンテナ装置。
JP5130456B2 (ja) * 2011-03-11 2013-01-30 Dowaエレクトロニクス株式会社 強磁性金属粉末及びそれを用いた磁気記録媒体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011246820A (ja) * 2004-02-27 2011-12-08 Hitachi Metals Ltd 鉄系ナノサイズ粒子およびその製造方法
JP2006128535A (ja) 2004-11-01 2006-05-18 Dowa Mining Co Ltd 金属磁性粉末およびそれを用いた磁気記録媒体
JP2010095751A (ja) * 2008-10-15 2010-04-30 Toda Kogyo Corp 強磁性金属粒子粉末及びその製造法、並びに磁気記録媒体
JP2010103427A (ja) 2008-10-27 2010-05-06 Tohoku Univ 複合磁性体、それを用いた回路基板、及びそれを用いた電子部品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2801424A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210050132A1 (en) * 2018-01-17 2021-02-18 Dowa Electronics Materials Co., Ltd. Silicon oxide-coated iron powder, method for producing the same, molded body for inductor using the same, and inductor

Also Published As

Publication number Publication date
CN103999170A (zh) 2014-08-20
TWI471876B (zh) 2015-02-01
KR101496626B1 (ko) 2015-02-26
CN103999170B (zh) 2016-06-15
EP2801424A4 (en) 2015-03-25
TW201426773A (zh) 2014-07-01
EP2801424A1 (en) 2014-11-12
EP2801424B1 (en) 2017-03-08
KR20140121810A (ko) 2014-10-16

Similar Documents

Publication Publication Date Title
JP5548234B2 (ja) 磁性部品とそれに用いられる金属粉末およびその製造方法
JP5373127B2 (ja) 磁性部品とそれに用いられる軟磁性金属粉末およびその製造方法
JP2013236021A5 (ja)
WO2014141318A1 (ja) 磁性部品とそれに用いられる軟磁性金属粉末およびその製造方法
JP2016063170A (ja) 磁性部材、磁性部材の製造方法およびインダクタ素子
JP6632702B2 (ja) Fe−Co合金粉末の製造方法
US20160001371A1 (en) Magnetic component, and soft magnetic metal powder used therein and manufacturing method thereof
JP2011249628A (ja) 電磁干渉抑制体の製造方法
JP6607751B2 (ja) Fe−Co合金粉末およびその製造方法並びにアンテナ、インダクタおよびEMIフィルタ
US11424059B2 (en) Composite magnetic body
US11456097B2 (en) Composite magnetic body
JP7251468B2 (ja) 複合磁性材料、磁心および電子部品
JP2016115824A (ja) 金属磁性粉末およびその製造方法並びにデバイス
WO2024038829A1 (ja) α-Fe含有希土類-鉄-窒素系磁性粉体、その製造方法、磁場増幅用磁性材料、超高周波吸収用磁性材料

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20147008494

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013848104

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013848104

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14372342

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13848104

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP