WO2014137796A1 - Methods for treating a ferrous metal substrate - Google Patents

Methods for treating a ferrous metal substrate Download PDF

Info

Publication number
WO2014137796A1
WO2014137796A1 PCT/US2014/019348 US2014019348W WO2014137796A1 WO 2014137796 A1 WO2014137796 A1 WO 2014137796A1 US 2014019348 W US2014019348 W US 2014019348W WO 2014137796 A1 WO2014137796 A1 WO 2014137796A1
Authority
WO
WIPO (PCT)
Prior art keywords
bath
pretreatment
phosphate
acid
composition
Prior art date
Application number
PCT/US2014/019348
Other languages
English (en)
French (fr)
Inventor
Richard M. Vargas
John F. Mcintyre
Original Assignee
Ppg Industries Ohio, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/786,914 external-priority patent/US9428410B2/en
Priority to BR112015019200-9A priority Critical patent/BR112015019200B1/pt
Priority to RU2015142283A priority patent/RU2653028C2/ru
Priority to KR1020157024178A priority patent/KR101714292B1/ko
Priority to AU2014226289A priority patent/AU2014226289B2/en
Priority to CA2898751A priority patent/CA2898751C/en
Priority to MX2015011382A priority patent/MX2015011382A/es
Priority to PL14713638T priority patent/PL2964806T3/pl
Application filed by Ppg Industries Ohio, Inc. filed Critical Ppg Industries Ohio, Inc.
Priority to SG11201505264XA priority patent/SG11201505264XA/en
Priority to CN201480010256.9A priority patent/CN105026615A/zh
Priority to EP14713638.6A priority patent/EP2964806B1/en
Priority to UAA201509586A priority patent/UA113689C2/uk
Priority to JP2015559312A priority patent/JP6262258B2/ja
Publication of WO2014137796A1 publication Critical patent/WO2014137796A1/en
Priority to HK15111952.6A priority patent/HK1211062A1/xx

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • C23C22/361Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing titanium, zirconium or hafnium compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/86Regeneration of coating baths

Definitions

  • the present invention relates to methods for treating a ferrous metal substrate, such as cold rolled steel, hot rolled steel, and electrogalvanized steel.
  • the present invention also relates to coated ferrous metal substrates.
  • the present invention also relates to methods for removing iron from a pretreatment bath when the pretreatment bath is on the processing line, both in the presence of an article to be coated by the pretreatment composition and when the pretreatment bath is off-shift.
  • chromate-free and/or phosphate-free pretreatment compositions have been developed. Such compositions are generally based on chemical mixtures that in some way react with the substrate surface and bind to it to form a protective layer. For example, pretreatment compositions based on a group IIIB or IVB metal compound have recently become more prevalent. [0005] When processing ferrous metal substrates through a pretreatment composition based on a group IIIB or IVB metal compound, however, the concentration of ferric (Fe 3 ) iron in a bath of the pretreatment composition increases over time as more iron based metal is treated.
  • soluble (Fe +2 ) iron from the substrate becomes insoluble (Fe +3 ) through Fe +2 concentration build up, oxidation, and subsequent reaction with oxygen and water.
  • the resulting insoluble rust i.e., hydrated iron (III) oxide (Fe 2 03 nH 2 0) and/or iron (III) oxide-hydroxide (FeO(OH)), flocculates and the insoluble rust particles resist settling out during the mild agitation present while processing parts.
  • the insoluble rust particles can adhere to or deposit on the substrate and be carried to subsequent processing steps (particularly when filtration equipment is not available), such as a downstream electro coat bath that is employed to deposit an organic coating. Such cross-contamination can detrimentally affect the performance of such subsequently electrodeposited coatings.
  • the present invention is directed to methods for coating a ferrous metal substrate.
  • the method for coating a ferrous metal substrate comprises: (a) contacting the ferrous metal substrate with an aqueous pretreatment composition having a pH of 4 to 5.5 and comprising: (a) a Group IIIB and/or IVB metal compound; (b) phosphate ions; and (c) water, wherein the Group IIIB and/or IVB metal compound is present in the pretreatment composition in an amount of 10 to 500 ppm metal and the weight ratio of Group IIIB and/or IVB metal to phosphate ions in the pretreatment composition is at least 0.8: 1; and wherein the phosphate ions are maintained in a bath of the pretreatment composition in an amount: (i) sufficient to essentially prevent the formation of insoluble rust in the bath; and (ii) insufficient to prevent the deposition of a Group IIIB or IVB metal film having a coverage of at least 10 mg/m 2 on the ferrous metal substrate; and (iii) resulting in a weight ratio of phosphate to ferric ions
  • the method for coating a ferrous metal substrate comprises: (a) contacting the ferrous metal substrate with an aqueous pretreatment composition having a pH of 4 to 5.5 and comprising: (a) a Group IIIB and/or IVB metal compound; (b) phosphate ions; and (c) water, wherein the Group IIIB and/or IVB metal compound is present in the pretreatment composition in an amount of 10 to 500 ppm metal and the weight ratio of Group IIIB and/or IVB metal to phosphate ions in the pretreatment composition is at least 0.8: 1 ; and wherein the phosphate ions are maintained in a bath of the pretreatment composition in an amount: (i) sufficient to essentially prevent the formation of insoluble rust in the bath; and (ii) insufficient to prevent the deposition of a Group IIIB or IVB metal film having a coverage of at least 10 mg/m 2 on the ferrous metal substrate; and (iii) resulting in a weight ratio of phosphate to additional
  • the present invention is directed to methods for removing iron from a pretreatment bath comprising steps that are performed when the pretreatment bath is off-shift.
  • the off-shift methods for removing iron from a pretreatment bath containing a pretreatment composition comprising a Group IIIB and/or Group IV metal comprise: (a) reducing the pH of the pretreatment bath by at least 0.2; (b) adding phosphate ions to the pretreatment bath and in (a); and (c) raising the pH of the pretreatment bath in (b) by at least 0.2.
  • the off-shift methods for removing iron from a pretreatment bath containing a pretreatment composition comprising a Group IIIB and/or Group IVB metal comprise: (a) adding an acid to the pretreatment bath to reduce the pH of the pretreatment composition to below 4.0; (b) adding phosphate ions to the pretreatment bath in (a); and (c) raising the pH of the pretreatment bath in (b) to 4.0 and 5.5.
  • the present invention is also directed to substrates treated and coated thereby.
  • FIGs. 1 and 2 are graphical representations of observed results of Example 3;
  • Fig. 3 is a graphical representation of observed results of Example 4.
  • Fig. 4 is a graphical representation of observed results of Example 5.
  • Fig. 5 is a graphical representation of observed results of Example 6.
  • any numerical range recited herein is intended to include all sub-ranges subsumed therein.
  • a range of "1 to 10" is intended to include all sub-ranges between (and including) the recited minimum value of 1 and the recited maximum value of 10, that is, having a minimum value equal to or greater than 1 and a maximum value of equal to or less than 10.
  • off-shift means that an article to be coated by the pretreatment composition is absent from the pretreatment bath, but does not mean that the pretreatment bath is necessarily removed from the process line.
  • total iron or “total Fe” means the total amount of iron in a pretreatment bath, including but not limited to ferric (Fe 2 ) iron and ferrous (Fe +3 ) iron.
  • a pretreatment composition is “substantially free” of a particular component, it means that the material being discussed is present in the composition, if at all, as an incidental impurity. In other words, the material is not intentionally added to the composition, but may be present at minor or inconsequential levels, because it was carried over as an impurity as part of an intended composition component. Moreover, when it is stated that a pretreatment composition is "completely free” of a particular component it means that the material being discussed is not present in the composition at all.
  • Suitable ferrous metal substrates for use in the present invention include those that are often used in the assembly of automotive bodies, automotive parts, and other articles, such as small metal parts, including fasteners, i.e. , nuts, bolts, screws, pins, nails, clips, buttons, and the like.
  • suitable ferrous metal substrates include, but are not limited to, cold rolled steel, hot rolled steel, steel coated with zinc metal, zinc compounds, or zinc alloys, such as electrogalvanized steel, hot-dipped galvanized steel, galvanealed steel, and steel plated with zinc alloy.
  • the ferrous metal substrate being treating by the methods of the present invention may be a cut edge of a substrate that is otherwise treated and/or coated over the rest of its surface.
  • the metal ferrous substrate coated in accordance with the methods of the present invention may be in the form of, for example, a sheet of metal or a fabricated part.
  • the ferrous metal substrate to be treated in accordance with the methods of the present invention may first be cleaned to remove grease, dirt, or other extraneous matter. This is often done by employing mild or strong alkaline cleaners, such as are commercially available and conventionally used in metal pretreatment processes.
  • alkaline cleaners suitable for use in the present invention include ChemkleenTM 163, 177, 61 1L, and 490MX, each of which are commercially available from PPG Industries, Inc. Such cleaners are often followed and/or preceded by a water rinse.
  • certain embodiments of the present invention are directed to methods for treating a metal substrate that comprise contacting the metal substrate with a pretreatment composition comprising a group IIIB and/or IVB metal.
  • pretreatment composition refers to a composition that upon contact with the substrate reacts with and chemically alters the substrate surface and binds to it to form a protective layer.
  • the pretreatment composition comprises a carrier, often an aqueous medium, so that the composition may be in the form of a solution or dispersion of a group IIIB and/or IVB metal compound in the carrier.
  • the solution or dispersion may be brought into contact with the substrate by any of a variety of known techniques, such as dipping or immersion, spraying, intermittent spraying, dipping followed by spraying, spraying followed by dipping, brushing, or roll-coating.
  • the solution or dispersion when applied to the metal substrate is at a temperature ranging from 50 to 150°F (10 to 65°C).
  • the contact time is often from 2 seconds to five minutes, such as 30 seconds to 2 minutes.
  • group IIIB and/or IVB metal refers to an element that is in group IIIB or group IVB of the CAS Periodic Table of the Elements as is shown, for example, in the Handbook of Chemistry and Physics, 63 r edition (1983). Where applicable, the metal itself may be used. In certain embodiments, a group IIIB and/or IVB metal compound is used. As used herein, the term “group IIIB and/or IVB metal compound” refers to compounds that include at least one element that is in group IIIB or group IVB of the CAS Periodic Table of the Elements.
  • the group IIIB and/or IVB metal compound used in the pretreatment composition may be a compound of zirconium, titanium, hafnium, or a mixture thereof.
  • Suitable compounds of zirconium include, but are not limited to, hexafluorozirconic acid, alkali metal and ammonium salts thereof, ammonium zirconium carbonate, zirconium basic carbonate, zirconyl nitrate, zirconium carboxylates and zirconium hydroxy carboxylates, such as hydro fluorozirconic acid, zirconium acetate, zirconium oxalate, ammonium zirconium glycolate, ammonium zirconium lactate, ammonium zirconium citrate, and mixtures thereof.
  • Suitable compounds of titanium include, but are not limited to, fluorotitanic acid and its salts.
  • a suitable compound of hafhium includes, but is not limited to, hafnium nitrate.
  • the group IIIB and/or IVB metal compound is present in a bath of the pretreatment composition in an amount of at least 10 ppm metal, such as at least 20 ppm metal, at least 30 ppm metal, or, in some cases, at least 50 ppm metal (measured as elemental metal). In certain embodiments, the group IIIB and/or IVB metal compound is present in the bath of the pretreatment composition in an amount of no more than 500 ppm metal, such as no more than 150 ppm metal, or, in some cases, no more than 80 ppm metal (measured as elemental metal).
  • the amount of group IIIB and/or IVB metal in the pretreatment composition can range between any combination of the recited values inclusive of the recited values.
  • the pretreatment compositions used in certain embodiments of the methods of the present invention comprise phosphate ions.
  • the source of phosphate ions is phosphoric acid, such as 75% phosphoric acid, although other sources of phosphate ions are contemplated by the present invention, such as, for example, monosodium phosphate or disodium phosphate.
  • the pretreatment compositions of the methods of the present invention are substantially free of phosphate ions.
  • the phosphate ions are maintained in a bath of the pretreatment composition in an amount sufficient to essentially prevent the formation of insoluble rust in the bath.
  • the term “maintained” means that the amount of phosphate ions is regulated and, as necessary, adjusted to essentially prevent the formation of insoluble rust.
  • the phrase “essentially prevent the formation of insoluble rust” means that insoluble rust, i.e., including but not limited to, hydrated iron (III) oxide (Fe 2 0 3 -nH 2 0) and/or iron (III) oxide-hydroxide (FeO(OH)), is prevented from forming in the bath to an extent that an orange or red- brown appearance indicative of the formation of such compounds in the bath is not visible to the naked eye.
  • the phosphate ions are maintained in the bath in an amount sufficient to complex with the soluble iron etched from the surface of the ferrous metal substrate being treated to form iron (III) phosphate (FeP0 4 ) in the bath, which results in the bath having a whitish appearance, rather than an orange or red-brown appearance associated with the presence of rust and which results in the formation of an insoluble sludge that can be removed from the bath using conventional filtration equipment.
  • Certain embodiments of the present invention therefore, limit the amount of ferric iron (Fe +3 ) in the bath (from the ferrous metal substrate) that is available to become insoluble rust that can deposit on the substrate and be carried to subsequent processing equipment, such as a downstream spray nozzles, pumps, rinse baths, and electrocoat baths for the deposition of an organic coating. As previously indicated, such cross-contamination can detrimentally affect the performance of such subsequently deposited coatings.
  • the phosphate ions are also maintained in the bath of the pretreatment composition in an amount insufficient to prevent the deposition of a Group IIIB or IVB metal film having a coverage (total film weight) of at least 10mg/m 2 , such as at least 100 mg/m 2 or, in some cases, 100 to 500 mg/m 2 , on the ferrous metal substrate.
  • the presence of 1 to 1.8, such as 1.2 to 1.6 parts by weight phosphate ions to every 1 part by weight ferric (Fe +3 ) ions in a composition is sufficient to essentially prevent the formation of insoluble rust as described above while being insufficient to prevent the deposition of a Group IIIB or IVB metal film having a coverage of at least 100 mg/m 2 , such as at least 10mg/m 2 , on a ferrous metal substrate.
  • the phosphate ions are maintained in the bath at a level that results in a weight ratio of phosphate ions to ferric ions of 1 to 1.8: 1 , in some cases 1.2 to 1.6: 1.
  • the weight ratio of phosphate ions to ferric ions is less than 1 : 1 , then there may be too little phosphate in the bath to essentially prevent the formation of insoluble rust in the bath as described above. If the weight ratio of phosphate ions to ferric ions is greater than 1.8: 1 , then the amount of phosphate ions may be sufficient to prevent the deposition of an adequate Group IIIB or IVB metal film on a ferrous metal substrate.
  • the ratio of phosphate ions to ferric ions in the pretreatment composition can range between any combination of the recited values inclusive of the recited values.
  • the phosphate ions are maintained in the bath at a level that results in a weight ratio of group IIIB and/or IVB metal to phosphate ions in the bath of at least 50: 1 , in some cases at least 25:1, in some cases at least 12.5 : 1 , in some cases at least 3: 1, and in some cases at least 2: 1. If the weight ratio of group IIIB and/or IVB metal to phosphate ions is less than 2: 1 , then there may be too much phosphate in the bath, thereby negatively impacting on the ability to deposit a sufficient Group IIIB or IVB metal film on the ferrous metal substrate.
  • the pretreatment compositions of the present invention comprise, in some cases, 20 to 500 ppm group IIIB and/or IVB metal, such as 30 to 150 ppm, or, in some cases, 30 to 80 ppm group IIIB and/or IVB metal, in certain embodiments of the methods of the present invention, relatively little phosphate ion is often present in the bath since the phosphate ions are, in certain embodiments, maintained in the bath at a level that results in a weight ratio of group IIIB and/or IVB metal to phosphate ions in the bath of at least 2: 1 , in some cases at least 3 : 1.
  • such a bath comprises no more than 30 ppm, such as 10 to 30 ppm, phosphate ions.
  • the presence of a small level of phosphate ions has been shown to have a dramatic effect on useful bath life by preventing the formation of insoluble rust in the pretreatment bath for up to months or years in certain embodiments, such as by removing iron from the pretreatment bath.
  • the pretreatment composition also comprises an electropositive metal.
  • electropositive metal refers to metals that are more electropositive than the metal substrate. This means that, for purposes of the present invention, the term “electropositive metal” encompasses metals that are less easily oxidized than the metal of the metal substrate that is being treated.
  • the oxidation potential is expressed in volts, and is measured relative to a standard hydrogen electrode, which is arbitrarily assigned an oxidation potential of zero.
  • the oxidation potential for several elements is set forth in the table below. An element is less easily oxidized than another element if it has a voltage value, E*, in the following table, that is greater than the element to which it is being compared.
  • suitable electropositive metals for inclusion in the pretreatment composition include, for example, nickel, tin, copper, silver, and gold, as well mixtures thereof.
  • the source of electropositive metal in the pretreatment composition is a water soluble metal salt.
  • the water soluble metal salt is a water soluble copper compound.
  • water soluble copper compounds which are suitable for use in the present invention include, but are not limited to, copper cyanide, copper potassium cyanide, copper sulfate, copper nitrate, copper pyrophosphate, copper thiocyanate, disodium copper ethylenediaminetetraacetate tetrahydrate, copper bromide, copper oxide, copper hydroxide, copper chloride, copper fluoride, copper gluconate, copper citrate, copper lauroyl sarcosinate, copper formate, copper acetate, copper propionate, copper butyrate, copper lactate, copper oxalate, copper phytate, copper tartarate, copper malate, copper succinate, copper malonate, copper maleate, copper benzoate, copper salicylate, copper aspartate, copper glut
  • the copper compound is added as a copper complex salt such as ]3 ⁇ 4Cu(CN)4 or Cu-EDTA, which can be present stably in the composition on its own, but it is also possible to form a copper complex that can be present stably in the composition by combining a complexing agent with a compound that is difficultly soluble on its own.
  • a complexing agent such as a copper cyanide complex formed by a combination of CuCN and KCN or a combination of CuSCN and KSCN or KCN
  • a compound that can form a complex with copper ions can be used; examples thereof include polyphosphates, such as sodium tripolyphosphate and hexametaphosphoric acid; amino carboxylic acids, such as ethylenediaminetetraacetic acid, hydroxyethylethylenediaminetriacetic acid, and nitrilotriacetic acid; hydroxycarboxylic acids, such as tartaric acid, citric acid, gluconic acid, and salts thereof; aminoalcohols, such as triethanolamine; sulfur compounds, such as thioglycolic acid and thiourea, and phosphonic acids, such as nitrilotrimethylenephosphonic acid, ethylenediaminetetra(methylenephosphonic acid) and hydroxyethylidenediphosphonic acid.
  • polyphosphates such as sodium tripolyphosphate and hexametaphosphoric acid
  • amino carboxylic acids such as ethylenediaminetetraacetic acid, hydroxyethylethylenedi
  • the electropositive metal such as copper
  • the electropositive metal is included in the pretreatment compositions in an amount of at least 1 ppm, such as at least 5 ppm, or in some cases, at least 10 ppm of total metal (measured as elemental metal).
  • the electropositive metal is included in such pretreatment compositions in an amount of no more than 500 ppm, such as no more than 100 ppm, or in some cases, no more than 50 ppm of total metal (measured as elemental metal).
  • the amount of electropositive metal in the pretreatment composition can range between any combination of the recited values inclusive of the recited values.
  • the operating pH of the pretreatment composition used in the methods of the present invention ranges from 4.0 to 5.5, in some cases, 4.0 to 5.0, 4.5 to 5.5, or, in yet other cases, 4.5 to 5.0.
  • the pH of the pretreatment composition may be adjusted using, for example, any acid or base as is necessary.
  • the pretreatment compositions used in the methods of the present invention may comprise any of a variety of additional optional components.
  • the pretreatment compositions used in the methods of the present invention comprises a polyhydroxy functional cyclic compound as is described in United States Patent No. 6,805,756 at col. 3, line 9 to col. 4, line 32, the cited portion of which being incorporated herein by reference.
  • the pretreatment compositions used in the methods of the present invention are substantially free, or, in some cases, completely free, of any such polyhydroxy functional cyclic compound.
  • the pretreatment compositions used in the methods of the present invention comprise an oxidizer-accelerator, such as those described in United States Patent No. 6,805,756 at col. 4, line 52 to col. 5, line 13, the cited portion of which being incorporated herein by reference, and United States Patent No. 6, 193,815 at col. 4, line 62 to col. 5, line 39, the cited portion of which being incorporated herein by reference.
  • the pretreatment compositions are substantially free, or, in some cases, completely free, of any such an oxidizer-accelerator.
  • the pretreatment composition comprises an organic film forming resin, such as the reaction product of an alkanolamine and an epoxy-functional material containing at least two epoxy groups, such as those disclosed in United States Patent No. 5,653,823; a resin containing beta hydroxy ester, imide, or sulfide functionality, incorporated by using dimethylolpropionic acid, phthalimide, or mercapto glycerine as an additional reactant in the preparation of the resin; the reaction product is that of the diglycidyl ether of Bisphenol A (commercially available from Shell Chemical Company as EPON 880), dimethylol propionic acid, and diethanolamine in a 0.6 to 5.0:0.05 to 5.5: 1 mole ratio; water soluble and water dispersible polyacrylic acids as disclosed in United States Patent Nos.
  • an organic film forming resin such as the reaction product of an alkanolamine and an epoxy-functional material containing at least two epoxy groups, such as those disclosed in United States Patent No. 5,653,823
  • the pretreatment compositions are substantially free, or, in some cases, completely free, of any organic film-forming resin, such as one or more of those described above.
  • the pretreatment compositions used in the methods of the present invention comprise fluoride ion, such as is described in United States Patent No. 6,805,756 at col. 6, lines 7-23, the cited portion of which being incorporated herein by reference.
  • the fluoride ion is introduced into the composition through the Group IIIB and/or IVB metal compound.
  • the pretreatment compositions are substantially free, or, in some cases, completely free, of any fluoride ion introduced to the pretreatment composition from a source other than through the Group IIIB and/or IVB metal compound.
  • the pretreatment compositions used in the methods of the present invention comprise a polysaccharide, such as is described in United States Patent No. 6,805,756 at col. 6, lines 53-64, the cited portion of which being incorporated herein by reference and International Application WO 2005/001 158 at page 3, lines 17-23.
  • the pretreatment compositions are substantially free, or, in some cases, completely free, of any such polysaccharide.
  • the pretreatment compositions used in the methods of the present invention comprise a phosphate acid ester, a water-soluble polyethylene glycol ester of a fatty acid, and/or nitric acid, such as is described in United States Patent No. 5,139,586 at col. 6, lines 31 -63, the cited portion of which being incorporated herein by reference.
  • the pretreatment compositions are substantially free, or, in some cases, completely free, of a phosphate acid ester, a water-soluble polyethylene glycol ester of a fatty acid, and/or nitric acid.
  • the pretreatment compositions used in the methods of the present invention comprise vanadium and/or cerium ions, such as is described in United States Patent No. 4,992, 115 at col. 2, line 47 to col. 3, line 29, the cited portion of which being incorporated herein by reference and United States Patent Application Publication No. 2007/0068602.
  • the pretreatment compositions are substantially free, or, in some cases, completely free, of vanadium and/or cerium ions.
  • the pretreatment compositions used in the methods of the present invention comprise a phosphorous acid, hypophosphorous acid and/or salts thereof, such as is described in United States Patent No. 5,728,233 at col. 4, lines 24-37, the cited portion of which being incorporated herein by reference.
  • the pretreatment compositions are substantially free, or, in some cases, completely free, of phosphorous acid, hypophosphorous acid and/or salts thereof.
  • the pretreatment compositions used in the methods of the present invention comprise a Group IIA metal, such as is described in United States Patent No. 5,380,374 at col. 3, lines 25-33, the cited portion of which being incorporated herein by reference, and/or a Group IA metal, such as is described in United States Patent No. 5,441,580 at col. 2, line 66 to col. 3, line 4, the cited portion of which being incorporated herein by reference.
  • the pretreatment compositions are substantially free, or, in some cases, completely free, of any Group IIA metal and/or any Group IA metal.
  • the pretreatment compositions used in the methods of the present invention comprise a molybdenum compound, such as is described in UK Patent Application GB 2 259 920 A.
  • the pretreatment compositions are substantially free, or, in some cases, completely free, of any molybdenum compound.
  • the pretreatment compositions used in the methods of the present invention comprise one or more ions of metals selected from the group consisting of scandium, yttrium, lanthanum, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium, such as is described in United States Patent No. 5, 104,577 at col. 2, line 60 to col. 3, line 26, the cited portion of which being incorporated herein by reference.
  • the pretreatment compositions are substantially free, or, in some cases, completely free, of any ions of metals selected from the group consisting of scandium, yttrium, lanthanum, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium.
  • the pretreatment composition may optionally contain other materials, such as nonionic surfactants and auxiliaries conventionally used in the art of pretreatment.
  • water dispersible organic solvents for example, alcohols with up to about 8 carbon atoms, such as methanol, isopropanol, and the like, may be present; or glycol ethers such as the monoalkyl ethers of ethylene glycol, diethylene glycol, or propylene glycol, and the like.
  • water dispersible organic solvents are typically used in amounts up to about ten percent by volume, based on the total volume of aqueous medium.
  • Other optional materials include surfactants that function as defoamers or substrate wetting agents.
  • the pretreatment composition also comprises a filler, such as a siliceous filler.
  • a filler such as a siliceous filler.
  • suitable fillers include silica, mica, montmorillonite, kaolinite, asbestos, talc, diatomaceous earth, vermiculite, natural and synthetic zeolites, cement, calcium silicate, aluminum silicate, sodium aluminum silicate, aluminum polysilicate, alumina silica gels, and glass particles.
  • siliceous fillers other finely divided particulate substantially water-insoluble fillers may also be employed.
  • the pretreatment compositions are substantially free, or, in some cases, completely free, of any such filler.
  • the pretreatment composition is substantially or, in some cases, completely free of chromate and/or heavy metal phosphate, such as zinc phosphate.
  • the term “substantially free” when used in reference to the absence of chromate and/or heavy metal phosphate in the pretreatment composition means that these substances are not present in the composition to such an extent that they cause a burden on the environment.
  • the term “completely free”, when used with reference to the absence of a heavy metal phosphate and/or chromate means that there is no heavy metal phosphate and/or chromate in the composition at all.
  • the pretreatment composition utilized in the methods of the present invention consists essentially of or, in some cases, consists of: (a) a Group IIIB and/or IVB metal compound, such as a zirconium compound; (b) a source of phosphate ions, such as phosphoric acid; and (c) water.
  • the pretreatment composition utilized in the methods of the present invention consists essentially of or, in some cases, consists of: (a) a Group IIIB and/or IVB metal compound, such as a zirconium compound; and (c) water.
  • such pretreatment compositions include fluoride ions introduced to the pretreatment composition through the Group IIIB and/or IVB metal compound.
  • the phrase "consists essentially of means that the composition does not include any other components that would materially affect the basic and novel characteristic(s) of the invention.
  • the film coverage (total film weight) of the residue of the pretreatment coating composition is at least 10 milligrams per square meter (mg/m 2 ), such as 100 to 500 mg/m 2 , or, in some cases at least 50 mg/m 2 .
  • the thickness of the pretreatment coating can vary, but it is generally very thin, often having a thickness of less than 1 micrometer, in some cases it is from 1 to 500 nanometers, and, in yet other cases, it is 10 to 300 nanometers, such as 20 to 100 nanometers.
  • the off-shift method is used to remove soluble iron from the pretreatment bath such that the pretreatment bath, at the completion of the off-shift method, is substantially free of iron, thereby essentially preventing the formation of insoluble rust in the operating bath of the pretreatment composition.
  • the term "substantially free,” when used in reference to iron in the operating bath of the pretreatment composition means that the total iron is present in an amount of less than 10 ppm.
  • the bath of the pretreatment composition is substantially free of phosphate ions when the bath is operating, such as in pretreatment systems in which the presence of phosphate in the pretreatment bath may adversely affect the deposition of the pretreatment composition on the substrate.
  • the off-shift method of removing iron from the pretreatment bath may be particularly useful for such pretreatment systems that are substantially free of phosphate ions as a method of essentially preventing the formation of insoluble rust in the pretreatment bath.
  • the bath of the pretreatment composition comprises phosphate ions as a method of essentially preventing the formation of insoluble rust in the pretreatment bath.
  • the off-shift method of removing iron from the pretreatment bath may be particularly useful as an additional or supplemental method of essentially preventing the formation of insoluble rust in the pretreatment bath.
  • the pretreatment bath has an operating pH of greater than 4.0, such as between 4.2 and 5.5, preferably between 4.5 and 5.0, and most preferably 4.8.
  • a first step of the off-shift method of removing iron from the pretreatment bath comprises reducing the pH of the pretreatment bath by at least 0.2, such as by at least 0.5 or at least 1.0, such that the pH of the pretreatment bath is reduced to between 1.0 and 3.8, and preferably between 2.5 and 3.3.
  • the pH of the pretreatment bath is reduced by the addition of an acid to the pretreatment bath, including as non- limiting examples, a Group IVB fluro metal acid such as hexafluorozirconic acid and hexafluorotitanic acid, phosphoric acid, sulfuric acid, sulfamic acid, nitric acid, and mixtures thereof.
  • an acid including as non- limiting examples, a Group IVB fluro metal acid such as hexafluorozirconic acid and hexafluorotitanic acid, phosphoric acid, sulfuric acid, sulfamic acid, nitric acid, and mixtures thereof.
  • the first step of reducing the pH of the pretreatment bath is accomplished by adding a sufficient amount of an acid to the pretreatment bath to reduce the pH as discussed above.
  • a second step comprises adding phosphate ions to the pretreatment bath.
  • the sources of phosphate ions may be alkali metal and ammonium orthophosphates present as either the monohydrogen or dihydrogen type, including as examples monosodium phosphate, disodium phosphate, and mixtures thereof.
  • Zircobond Additive P a monosodium phosphate solution commercially available from PPG Industries, Inc., Euclid, Ohio, is used as the source of the phosphate ions.
  • a third step comprises adding an oxidizing agent to the pretreatment bath.
  • the oxidizing agent is a peroxide compound, air, sodium nitrite, sodium bromate, and mixtures thereof.
  • the peroxide compound is hydrogen peroxide.
  • the source of the phosphate ions and the oxidizing agent are each added in amounts that are sufficient to result in a pretreatment bath that is substantially free of iron.
  • a fourth step comprises raising the pH of the pretreatment bath by at least 0.2.
  • the pH is raised to above 4.0, such as 4.2 to 5.2, 4.5 to 5.0, and 4.8.
  • the pH is raised by adding a sufficient amount of an alkaline composition to the pretreatment bath, including as non-limiting examples caustic soda, caustic potash, and sodium hydroxide.
  • the alkaline composition is Chemfil Buffer, a commercial product available from PPG Industries, Inc., Euclid, Ohio, can be used in a quantity sufficient to achieve the desired operating pH.
  • the phosphate ions are added to the pretreatment bath in an amount sufficient to complex with the soluble iron etched from the surface of the ferrous metal substrate being treated to form iron (III) phosphate (FeP0 4 ) in the bath, which results in the bath having a whitish appearance, rather than an orange or red-brown appearance associated with the presence of rust and which results in the formation of an insoluble sludge that can be removed from the bath using conventional filtration equipment.
  • a fifth step comprises filtering the pretreatment bath using such conventional filtration equipment to remove solid matter from the pretreatment bath, i.e., iron phosphate, iron oxides, iron hydroxides, or any other insoluble sludge that forms in the pretreatment bath.
  • the step of filtering may immediately follow raising the pH of the pretreatment bath by at least 0.2.
  • the step of filtering may follow an equilibration period during which this insoluble sludge settles to the bottom of the pretreatment bath, such as 1 to 10 hours after raising the pH of the pretreatment bath.
  • the off-shift method of the present invention therefore, removes soluble iron in the bath (from the ferrous metal substrate) that is available to become insoluble rust that can deposit on the substrate and be carried to subsequent processing equipment, such as a downstream spray nozzles, pumps, rinse baths, and electrocoat baths for the deposition of an organic coating. As previously indicated, such cross-contamination can detrimentally affect the performance of such subsequently deposited coatings.
  • the substrate may be rinsed with water and dried.
  • the substrate is contacted with the pretreatment composition, it is then contacted with a coating composition comprising a film-forming resin.
  • a coating composition comprising a film-forming resin.
  • Any suitable technique may be used to contact the substrate with such a coating composition, including, for example, brushing, dipping, flow coating, spraying and the like.
  • such contacting comprises an electro coating step wherein an electrodepositable composition is deposited onto the metal substrate by electrodeposition.
  • film-forming resin refers to resins that can form a self-supporting continuous film on at least a horizontal surface of a substrate upon removal of any diluents or carriers present in the composition or upon curing at ambient or elevated temperature.
  • Conventional film-forming resins that may be used include, without limitation, those typically used in automotive OEM coating compositions, automotive refinish coating compositions, industrial coating compositions, architectural coating compositions, coil coating compositions, and aerospace coating compositions, among others.
  • the coating composition comprises a thermosetting film-forming resin.
  • thermosetting refers to resins that "set” irreversibly upon curing or crosslinking, wherein the polymer chains of the polymeric components are joined together by covalent bonds. This property is usually associated with a cross-linking reaction of the composition constituents often induced, for example, by heat or radiation. Curing or crosslinking reactions also may be carried out under ambient conditions. Once cured or crosslinked, a thermosetting resin will not melt upon the application of heat and is insoluble in solvents.
  • the coating composition comprises a thermoplastic film-forming resin.
  • thermoplastic refers to resins that comprise polymeric components that are not joined by covalent bonds and thereby can undergo liquid flow upon heating and are soluble in solvents.
  • the substrate is contacted with a coating composition comprising a film-forming resin by an electro coating step wherein an electrodepositable composition is deposited onto the metal substrate by electrodeposition.
  • the metal substrate being treated, serving as an electrode, and an electrically conductive counter electrode are placed in contact with an ionic, electrodepositable composition.
  • an adherent film of the electrodepositable composition will deposit in a substantially continuous manner on the metal substrate.
  • Electrodeposition is usually carried out at a constant voltage in the range of from 1 volt to several thousand volts, typically between 50 and 500 volts. Current density is usually between 1.0 ampere and 15 amperes per square foot (10.8 to 161.5 amperes per square meter) and tends to decrease quickly during the electrodeposition process, indicating formation of a continuous self- insulating film.
  • the electrodepositable composition utilized in certain embodiments of the present invention often comprises a resinous phase dispersed in an aqueous medium wherein the resinous phase comprises: (a) an active hydrogen group- containing ionic electrodepositable resin, and (b) a curing agent having functional groups reactive with the active hydrogen groups of (a).
  • the electrodepositable compositions utilized in certain embodiments of the present invention contain, as a main film-forming polymer, an active hydrogen-containing ionic, often cationic, electrodepositable resin.
  • an active hydrogen-containing ionic, often cationic, electrodepositable resin A wide variety of electrodepositable film-forming resins are known and can be used in the present invention so long as the polymers are "water dispersible,” i.e., adapted to be solubilized, dispersed or emulsified in water.
  • the water dispersible polymer is ionic in nature, that is, the polymer will contain anionic functional groups to impart a negative charge or, as is often preferred, cationic functional groups to impart a positive charge.
  • Examples of film-forming resins suitable for use in anionic electrodepositable compositions are base-solubilized, carboxylic acid containing polymers, such as the reaction product or adduct of a drying oil or semi-drying fatty acid ester with a dicarboxylic acid or anhydride; and the reaction product of a fatty acid ester, unsaturated acid or anhydride and any additional unsaturated modifying materials which are further reacted with polyol.
  • Also suitable are the at least partially neutralized interpolymers of hydroxy-alkyl esters of unsaturated carboxylic acids, unsaturated carboxylic acid and at least one other ethylenically unsaturated monomer.
  • Still another suitable electrodepositable film-forming resin comprises an alkyd- aminoplast vehicle, i.e., a vehicle containing an alkyd resin and an amine -aldehyde resin.
  • Yet another anionic electrodepositable resin composition comprises mixed esters of a resinous polyol, such as is described in United States Patent No. 3,749,657 at col. 9, lines 1 to 75 and col. 10, lines 1 to 13, the cited portion of which being incorporated herein by reference.
  • Other acid functional polymers can also be used, such as phosphatized polyepoxide or phosphatized acrylic polymers as are known to those skilled in the art.
  • the active hydrogen- containing ionic electrodepositable resin (a) is cationic and capable of deposition on a cathode.
  • cationic film-forming resins include amine salt group- containing resins, such as the acid-solubilized reaction products of polyepoxides and primary or secondary amines, such as those described in United States Patent Nos. 3,663,389; 3,984,299; 3,947,338; and 3,947,339.
  • these amine salt group- containing resins are used in combination with a blocked isocyanate curing agent. The isocyanate can be fully blocked, as described in United States Patent No.
  • film-forming resins can also be selected from cationic acrylic resins, such as those described in United States Patent Nos. 3,455,806 and 3,928, 157.
  • quaternary ammonium salt group-containing resins can also be employed, such as those formed from reacting an organic polyepoxide with a tertiary amine salt as described in United States Patent Nos. 3,962,165; 3,975,346; and 4,001, 101.
  • examples of other cationic resins are ternary sulfonium salt group-containing resins and quaternary phosphonium salt- group containing resins, such as those described in United States Patent Nos. 3,793,278 and 3,984,922, respectively.
  • film-forming resins which cure via transesterification such as described in European Application No. 12463 can be used.
  • cationic compositions prepared from Mannich bases such as described in United States Patent No. 4,134,932, can be used.
  • the resins present in the electrodepositable composition are positively charged resins which contain primary and/or secondary amine groups, such as described in United States Patent Nos. 3,663,389; 3,947,339; and 4,1 16,900.
  • a polyketimine derivative of a polyamine such as diethylenetriamine or triethylenetetraamine, is reacted with a polyepoxide.
  • the reaction product is neutralized with acid and dispersed in water, free primary amine groups are generated.
  • equivalent products are formed when polyepoxide is reacted with excess polyamines, such as diethylenetriamine and triethylenetetraamine, and the excess polyamine vacuum stripped from the reaction mixture, as described in United States Patent Nos. 3,663,389 and 4,116,900.
  • excess polyamines such as diethylenetriamine and triethylenetetraamine
  • the active hydrogen-containing ionic electrodepositable resin is present in the electrodepositable composition in an amount of 1 to 60 percent by weight, such as 5 to 25 percent by weight, based on total weight of the electrodeposition bath.
  • the resinous phase of the electrodepositable composition often further comprises a curing agent adapted to react with the active hydrogen groups of the ionic electrodepositable resin.
  • a curing agent adapted to react with the active hydrogen groups of the ionic electrodepositable resin.
  • blocked organic polyisocyanate and aminoplast curing agents are suitable for use in the present invention, although blocked isocyanates are often preferred for cathodic electrodeposition.
  • Aminoplast resins which are often the preferred curing agent for anionic electrodeposition, are the condensation products of amines or amides with aldehydes.
  • suitable amine or amides are melamine, benzoguanamine, urea and similar compounds.
  • the aldehyde employed is formaldehyde, although products can be made from other aldehydes, such as acetaldehyde and furfural.
  • the condensation products contain methylol groups or similar alkylol groups depending on the particular aldehyde employed.
  • these methylol groups are etherified by reaction with an alcohol, such as a monohydric alcohol containing from 1 to 4 carbon atoms, such as methanol, ethanol, isopropanol, and n-butanol.
  • an alcohol such as a monohydric alcohol containing from 1 to 4 carbon atoms, such as methanol, ethanol, isopropanol, and n-butanol.
  • Aminoplast resins are commercially available from American Cyanamid Co. under the trademark CYMEL and from Monsanto Chemical Co. under the trademark RESIMENE.
  • aminoplast curing agents are often utilized in conjunction with the active hydrogen containing anionic electrodepositable resin in amounts ranging from 5 percent to 60 percent by weight, such as from 20 percent to 40 percent by weight, the percentages based on the total weight of the resin solids in the electrodepositable composition.
  • blocked organic polyisocyanates are often used as the curing agent in cathodic electrodeposition compositions.
  • the polyisocyanates can be fully blocked as described in United States Patent No. 3,984,299 at col. 1, lines 1 to 68, col. 2, and col. 3, lines 1 to 15, or partially blocked and reacted with the polymer backbone as described in United States Patent No. 3,947,338 at col. 2, lines 65 to 68, col. 3, and col. 4 lines 1 to 30, the cited portions of which being incorporated herein by reference.
  • blocked is meant that the isocyanate groups have been reacted with a compound so that the resultant blocked isocyanate group is stable to active hydrogens at ambient temperature but reactive with active hydrogens in the film forming polymer at elevated temperatures usually between 90°C and 200°C.
  • Suitable polyisocyanates include aromatic and aliphatic polyisocyanates, including cycloaliphatic polyisocyanates and representative examples include diphenylmethane-4,4'-diisocyanate (MDI), 2,4- or 2,6-toluene diisocyanate (TDI), including mixtures thereof, p-phenylene diisocyanate, tetramethylene and hexamethylene diisocyanates, dicyclohexylmethane-4,4'- diisocyanate, isophorone diisocyanate, mixtures of phenylmethane-4,4'-diisocyanate and polymethylene polyphenylisocyanate.
  • MDI diphenylmethane-4,4'-diisocyanate
  • TDI 2,4- or 2,6-toluene diisocyanate
  • p-phenylene diisocyanate tetramethylene and hexamethylene diisocyanates
  • Triisocyanates such as triisocyanates
  • An example would include triphenylmethane-4,4',4"- triisocyanate.
  • Isocyanate ( )-prepolymers with polyols such as neopentyl glycol and trimethylolpropane and with polymeric polyols such as polycapro lactone diols and trio Is (NCO/OH equivalent ratio greater than 1) can also be used.
  • the polyisocyanate curing agents are typically utilized in conjunction with the active hydrogen containing cationic electrodepositable resin in amounts ranging from 5 percent to 60 percent by weight, such as from 20 percent to 50 percent by weight, the percentages based on the total weight of the resin solids of the electrodepositable composition.
  • the coating composition comprising a film- forming resin also comprises yttrium.
  • yttrium is present in such compositions in an amount from 10 to 10,000 ppm, such as not more than 5,000 ppm, and, in some cases, not more than 1 ,000 ppm, of total yttrium (measured as elemental yttrium).
  • Both soluble and insoluble yttrium compounds may serve as the source of yttrium.
  • yttrium sources suitable for use in lead-free electrodepositable coating compositions are soluble organic and inorganic yttrium salts such as yttrium acetate, yttrium chloride, yttrium formate, yttrium carbonate, yttrium sulfamate, yttrium lactate and yttrium nitrate.
  • yttrium nitrate a readily available yttrium compound
  • yttrium compounds suitable for use in electrodepositable compositions are organic and inorganic yttrium compounds such as yttrium oxide, yttrium bromide, yttrium hydroxide, yttrium molybdate, yttrium sulfate, yttrium silicate, and yttrium oxalate. Organoyttrium complexes and yttrium metal can also be used. When the yttrium is to be incorporated into an electrocoat bath as a component in the pigment paste, yttrium oxide is often the preferred source of yttrium.
  • the electrodepositable compositions described herein are in the form of an aqueous dispersion.
  • the term "dispersion” is believed to be a two -phase transparent, translucent or opaque resinous system in which the resin is in the dispersed phase and the water is in the continuous phase.
  • the average particle size of the resinous phase is generally less than 1.0 and usually less than 0.5 microns, often less than 0.15 micron.
  • the concentration of the resinous phase in the aqueous medium is often at least 1 percent by weight, such as from 2 to 60 percent by weight, based on total weight of the aqueous dispersion.
  • concentration of the resinous phase in the aqueous medium is often at least 1 percent by weight, such as from 2 to 60 percent by weight, based on total weight of the aqueous dispersion.
  • compositions are in the form of resin concentrates, they generally have a resin solids content of 20 to 60 percent by weight based on weight of the aqueous dispersion.
  • the electrodepositable compositions described herein are often supplied as two components: (1) a clear resin feed, which includes generally the active hydrogen-containing ionic electrodepositable resin, i.e., the main film-forming polymer, the curing agent, and any additional water-dispersible, non-pigmented components; and (2) a pigment paste, which generally includes one or more colorants (described below), a water-dispersible grind resin which can be the same or different from the main-film forming polymer, and, optionally, additives such as wetting or dispersing aids.
  • a clear resin feed which includes generally the active hydrogen-containing ionic electrodepositable resin, i.e., the main film-forming polymer, the curing agent, and any additional water-dispersible, non-pigmented components
  • a pigment paste which generally includes one or more colorants (described below), a water-dispersible grind resin which can be the same or different from the main-film forming polymer, and, optionally, additives such as wetting or dispersing aid
  • the two component electrodepositable composition is embodied in the form of an electrodeposition bath, as is well known to those skilled in the art, wherein components (1) and (2) are dispersed in an aqueous medium which comprises water and, usually, coalescing solvents.
  • an aqueous medium which comprises water and, usually, coalescing solvents.
  • the aqueous medium may contain a coalescing solvent.
  • Useful coalescing solvents are often hydrocarbons, alcohols, esters, ethers and ketones.
  • the preferred coalescing solvents are often alcohols, polyols and ketones.
  • Specific coalescing solvents include isopropanol, butanol, 2- ethylhexanol, isophorone, 2-methoxypentanone, ethylene and propylene glycol and the monoethyl monobutyl and monohexyl ethers of ethylene glycol.
  • the amount of coalescing solvent is generally between 0.01 and 25 percent, such as from 0.05 to 5 percent by weight based on total weight of the aqueous medium.
  • a colorant and, if desired, various additives such as surfactants, wetting agents or catalyst can be included in the coating composition comprising a film-forming resin.
  • the term "colorant” means any substance that imparts color and/or other opacity and/or other visual effect to the composition.
  • the colorant can be added to the composition in any suitable form, such as discrete particles, dispersions, solutions and/or flakes. A single colorant or a mixture of two or more colorants can be used.
  • Example colorants include pigments, dyes and tints, such as those used in the paint industry and/or listed in the Dry Color Manufacturers Association (DCMA), as well as special effect compositions.
  • a colorant may include, for example, a finely divided solid powder that is insoluble but wettable under the conditions of use.
  • a colorant can be organic or inorganic and can be agglomerated or non-agglomerated. Colorants can be incorporated by use of a grind vehicle, such as an acrylic grind vehicle, the use of which will be familiar to one skilled in the art.
  • Example pigments and/or pigment compositions include, but are not limited to, carbazole dioxazine crude pigment, azo, monoazo, disazo, naphthol AS, salt type (lakes), benzimidazolone, condensation, metal complex, isoindolinone, isoindoline and polycyclic phthalocyanine, quinacridone, perylene, perinone, diketopyrrolo pyrrole, thioindigo, anthraquinone, indanthrone, anthrapyrimidine, flavanthrone, pyranthrone, anthanthrone, dioxazine, triarylcarbonium, quinophthalone pigments, diketo pyrrolo pyrrole red (“DPPBO red”), titanium dioxide, carbon black and mixtures thereof.
  • the terms "pigment” and "colored filler” can be used interchangeably.
  • Example dyes include, but are not limited to, those that are solvent and/or aqueous based such as pthalo green or blue, iron oxide, bismuth vanadate, anthraquinone, perylene, aluminum and quinacridone.
  • Example tints include, but are not limited to, pigments dispersed in water-based or water miscible carriers such as AQUA-CHEM 896 commercially available from Degussa, Inc., CHARISMA COLORANTS and MAXITONER INDUSTRIAL COLORANTS commercially available from Accurate Dispersions division of Eastman Chemical, Inc.
  • AQUA-CHEM 896 commercially available from Degussa, Inc.
  • CHARISMA COLORANTS and MAXITONER INDUSTRIAL COLORANTS commercially available from Accurate Dispersions division of Eastman Chemical, Inc.
  • the colorant can be in the form of a dispersion including, but not limited to, a nanoparticle dispersion.
  • Nanoparticle dispersions can include one or more highly dispersed nanoparticle colorants and/or colorant particles that produce a desired visible color and/or opacity and/or visual effect.
  • Nanoparticle dispersions can include colorants such as pigments or dyes having a particle size of less than 150 nm, such as less than 70 nm, or less than 30 nm. Nanoparticles can be produced by milling stock organic or inorganic pigments with grinding media having a particle size of less than 0.5 mm. Example nanoparticle dispersions and methods for making them are identified in U.S. Patent No.
  • Nanoparticle dispersions can also be produced by crystallization, precipitation, gas phase condensation, and chemical attrition (i.e., partial dissolution).
  • a dispersion of resin-coated nanoparticles can be used.
  • a "dispersion of resin-coated nanoparticles" refers to a continuous phase in which is dispersed discreet "composite microparticles” that comprise a nanoparticle and a resin coating on the nanoparticle.
  • Example dispersions of resin-coated nanoparticles and methods for making them are identified in United States Patent Application Publication 2005- 0287348 Al , filed June 24, 2004, U.S. Provisional Application No. 60/482,167 filed June 24, 2003, and United States Patent Application Serial No. 1 1/337,062, filed January 20, 2006, which is also incorporated herein by reference.
  • Example special effect compositions that may be used include pigments and/or compositions that produce one or more appearance effects such as reflectance, pearlescence, metallic sheen, phosphorescence, fluorescence, photo chromism, photosensitivity, thermochromism, goniochromism and/or color- change. Additional special effect compositions can provide other perceptible properties, such as opacity or texture.
  • special effect compositions can produce a color shift, such that the color of the coating changes when the coating is viewed at different angles.
  • Example color effect compositions are identified in U.S. Patent No. 6,894,086, incorporated herein by reference.
  • Additional color effect compositions can include transparent coated mica and/or synthetic mica, coated silica, coated alumina, a transparent liquid crystal pigment, a liquid crystal coating, and/or any composition wherein interference results from a refractive index differential within the material and not because of the refractive index differential between the surface of the material and the air.
  • a photosensitive composition and/or photo chromic composition which reversibly alters its color when exposed to one or more light sources.
  • Photochromic and/or photosensitive compositions can be activated by exposure to radiation of a specified wavelength. When the composition becomes excited, the molecular structure is changed and the altered structure exhibits a new color that is different from the original color of the composition. When the exposure to radiation is removed, the photochromic and/or photosensitive composition can return to a state of rest, in which the original color of the composition returns.
  • the photochromic and/or photosensitive composition can be colorless in a non-excited state and exhibit a color in an excited state. Full color-change can appear within milliseconds to several minutes, such as from 20 seconds to 60 seconds.
  • Example photochromic and/or photosensitive compositions include photochromic dyes.
  • the photosensitive composition and/or photochromic composition can be associated with and/or at least partially bound to, such as by covalent bonding, a polymer and/or polymeric materials of a polymerizable component.
  • the photosensitive composition and/or photochromic composition associated with and/or at least partially bound to a polymer and/or polymerizable component in accordance with certain embodiments of the present invention have minimal migration out of the coating.
  • Example photosensitive compositions and/or photochromic compositions and methods for making them are identified in U.S. Application Serial No. 10/892,919 filed July 16, 2004, incorporated herein by reference.
  • the colorant can be present in the coating composition in any amount sufficient to impart the desired visual and/or color effect.
  • the colorant may comprise from 1 to 65 weight percent, such as from 3 to 40 weight percent or 5 to 35 weight percent, with weight percent based on the total weight of the composition.
  • the coating is often heated to cure the deposited composition.
  • the heating or curing operation is often carried out at a temperature in the range of from 120 to 250°C, such as from 120 to 190°C, for a period of time ranging from 10 to 60 minutes.
  • the thickness of the resultant film is from 10 to 50 microns.
  • certain embodiments of the present invention are also directed to methods for preventing rust contamination of coating equipment even in the absence of filtration equipment in a process wherein a ferrous metal substrate is being coated.
  • such methods comprise utilizing a pretreatment composition having a pH of 4 to 5.5 and comprising, or, in some cases, consisting essentially of: (a) a Group IIIB and/or IVB metal compound; (b) phosphate ions; and (c) water.
  • the phosphate ions are maintained in a bath of the pretreatment composition in an amount: (i) sufficient to essentially prevent the formation of insoluble rust in the bath; and (ii) insufficient to prevent the deposition of a Group IIIB and/or IVB metal film having a coverage of at least 10 mg/ft 2 on the ferrous metal substrate.
  • such methods comprise an off- shift method of removing iron from a pretreatment bath comprising a Group IIIB and/or Group IVB metal that, in certain embodiments, is substantially free of phosphate ions during operation, and in certain other embodiments, comprises phosphate ions.
  • the off-shift method comprises the steps of: (a) reducing the pH of the pretreatment bath by at least 0.2; (b) adding phosphate ions to the pretreatment bath in (a); (c) adding an oxidizing agent to the pretreatment bath in (b); and (d) raising the pH of the pretreatment bath in (c) by at least 0.2.
  • off-shift methods of removing iron from the pretreatment bath insoluble rust may be essentially removed from the pretreatment bath.
  • the off-shift method further comprises the step of filtering the pretreatment bath using filtration equipment.
  • the present invention is also directed to methods for coating a ferrous metal substrate.
  • these methods comprise: (a) contacting the ferrous metal substrate with an aqueous pretreatment composition having a pH of 4 to 5.5 and comprising or, in some cases, consisting essentially of: (i) a Group IIIB and/or IVB metal compound; (ii) phosphate ions; and (ii) water, wherein the phosphate ions are maintained in a bath of the pretreatment composition in an amount sufficient to essentially prevent the formation of insoluble rust in the bath; and then (b) contacting the substrate with a coating composition comprising a film-forming resin to form a coated metal substrate that exhibits corrosion resistance properties.
  • such methods comprise: (a) removing iron from a pretreatment bath when the pretreatment bath is off-shift ; and then (b) contacting the ferrous metal substrate with an aqueous pretreatment composition having a pH of 4 to 5.5 and comprising, or in some cases, consisting essentially of: (i) a Group IIIB and/or Group IVB metal; and (ii) water; wherein the pretreatment composition is, in certain embodiments, substantially free of phosphate ions; and then (c) contacting the substrate with a coating composition comprising a film-forming resin to form a coated metal substrate that exhibits corrosion resistance properties.
  • the step of removing iron from the pretreatment bath when the pretreatment bath is off-shift comprises, or in some cases, consists essentially of: (a) reducing the pH of the pretreatment bath by at least 0.2;
  • the term "corrosion resistance properties" refers to the measurement of corrosion prevention on a metal substrate utilizing the test described in ASTM B117 (Salt Spray Test).
  • ASTM B117 Salt Spray Test
  • the coated substrate is scribed with a knife to expose the bare metal substrate according to ASTM D 1654-92.
  • the scribed substrate is placed into a test chamber where an aqueous salt solution is continuously misted onto the substrate.
  • the chamber is maintained at a constant temperature.
  • the coated substrate is exposed to the salt spray environment for a specified period of time, such as 250, 500 or 1000 hours. After exposure, the coated substrate is removed from the test chamber and evaluated for corrosion along the scribe.
  • Corrosion is measured by "scribe creep", which is defined as the total distance the corrosion has traveled across the scribe measured in millimeters.
  • scribe creep is defined as the total distance the corrosion has traveled across the scribe measured in millimeters.
  • the first gallon was subdivided further into 700 ml portions to which
  • phosphoric acid (75% by wgt.) was added to yield a series of baths with phosphate ions at 10, 25, 50, 75 and 100 ppm. The same series of phosphate levels was repeated with Zirconium at 125, 150 and 200 ppm.
  • Acceptable performance for the cationic epoxy electro deposited coating at 1000 hours of neutral salt-spray exposure in this test was 4.0 - 5.0mm of 1 ⁇ 2 width scribe loss.
  • Acceptable performance for the TGIC-polyester powder paint at 500 hours of neutral salt-spray exposure is 2.0 - 3.0mm of 1 ⁇ 2 width scribe loss.
  • the results below demonstrate the acceptable corrosion performance can be obtained when phosphate ions are added to the zirconium treatment bath. As shown in Example 1.0, at a low concentration of phosphate ion, the treatment bath turned brown, indicating the presence of iron oxide or iron oxyhydroxide.
  • a pretreatment solution was prepared to which increasing amounts of hexafluorozirconic acid were added. Prior to coating cold rolled steel panels, the bath pH was adjusted to 4.7. Panels from ACT Labs (Hillsdale, MI) were first spray cleaned in an alkaline cleaner (PPG Industries Chemkleen 611L, at 2% and 140- 150°F) and rinsed twice before entering the pretreatment zone. The zirconium bath was sprayed onto the panels for 60 seconds at 9 psi. They were then rinsed with city water and finally with a deionized water halo prior to an infrared drying step.
  • an alkaline cleaner PPG Industries Chemkleen 611L, at 2% and 140- 150°F
  • Panel samples were obtained at 0, 10, 15, 20, 50, and 80 ppm zirconium bath levels. Sections of each were analyzed via XPS (X-Ray photoelectron spectroscopy) for determination of layer thickness of zirconium in the coatings. The depth of the zirconium layer was determined to be the nanometer at which the profile crossed back down to the 10% atomic percent level. The resulting table of depths was graphed vs. the zirconium bath concentration as illustrated in Fig. 1.
  • a concentrate containing iron was obtained by hanging clean steel panels over two days into a solution of hexafluorozirconic acid in deionized water that contained no phosphate.
  • the final ferrous level was approximately 900 ppm and ferric was 33 ppm.
  • the concentrate was then diluted in city water to provide approximately 20 ppm ferrous and 3 ppm ferric. Varying amounts of phosphoric acid were added followed by enough hydrogen peroxide to convert all the ferrous to ferric.
  • the pH was then adjusted to 4.7 for each bath. After standing quiescent over one day, the baths were analyzed for phosphate and zirconium. The results are plotted in Fig. 4. As is apparent, approximately 30 ppm phosphate would be enough to remove the 20 ppm ferric while maintaining most of the original 65 ppm of zirconium in solution.
  • Example 6 was carried out to demonstrate that ferric iron (Fe 3 ) can be removed from the pretreatment bath off-shift.
  • a stock solution was prepared from 3 liters of city water and 1.2 g fluorozirconic acid solution (45%).
  • the stock solution had a target of 85 ppm Zr.
  • 0.38 ml of ferric sulfate (50% solution) was added for a target solution having 20 ppm ferric ion.
  • the stock solution had a pH of 2.9.
  • the stock solution was split into Baths A-D, each containing 900ml of the stock solution.
  • a Hach meter was used in this Example (and in Examples 6 and 7) to measure ferrous iron (Fe 2 ) and total iron concentrations at various time points. Where it was desired to obtain the concentration of ferric iron (Fe 3 ) in a particular bath, ferric iron concentration was calculated as the difference between total iron concentration and ferrous iron concentration.
  • none of Baths A-D contained any ferrous iron (Fe +2 ) at any time point measured.
  • Bath A served as the control to which the ferric iron (Fe 3 ) and total iron concentrations (ppm) of baths B, C and D (treated as described below) were compared.
  • Additive P available from PPG Industries, Inc., Euclid, OH (45% by weight) was added to the 900ml stock solution of Bath C.
  • Bath C contained 14ppm of phosphate and had a pH of 2.9 that was steady over the 72 hour duration of the experiment.
  • the ferric iron (Fe +3 ) concentration in Bath C decreased from about 18 ppm to about 12 ppm in the first 2 hours of the experiment, and then continued to gradually decrease over the duration of the 72 hr experiment to a final concentration of 7 ppm.
  • a white precipitate was visible in Bath C within the first hours of the experiment, and by the end of the experiment, a slightly tan precipitate formed, indicating that removal of ferric iron was gradual and incomplete when the pH was below the normal operating level.
  • Additive P (45% by weight) was added to the 900 ml stock solution of Bath D.
  • Bath D contained 34ppm of phosphate.
  • the ferric iron (Fe +3 ) concentration of Bath D was 20ppm.
  • 0.5g Chemfil Buffer was added to Bath D to raise the pH to 4.75 and the bath immediately became cloudy. After allowing the crystals to settle, a bath sample was filtered through a five micron syringe filter and this filtrate was checked for total iron.
  • the ferric iron concentration of Bath D was 2 ppm and two hours later (at the conclusion of the experiment) was 1.9 ppm. The bath was clear with a small white precipitate.
  • the stock solution was split into Baths E-G, each containing 900ml of the stock solution.
  • Bath E served as the control to which the ferrous iron (Fe +2 ) and total iron concentrations (ppm) of baths F and G (treated as described below) were compared.
  • ferrous iron and total iron concentrations were monitored in each Bath at periodic intervals over the 44 hour duration of the experiments
  • Bath E served as a control.
  • Bath E had an initial pH of 3.1.
  • a few drops of Chemfil Buffer were added to the bath to increase the pH to 3.5, which, as illustrated in Table 4, remained steady for the duration of the experiment.
  • the total iron concentration (ppm) in Bath E dropped from 22.8ppm initially to 22.1ppm at the end of the 44hr experiment.
  • Ferrous iron (Fe +2 ) concentration was initially 19.8ppm and dropped to 15.7ppm at the end of the 44hr experiment.
  • the bath remained clear for the duration of the experiment, with no red color forming.
  • Bath G initially had a pH of 3.0, a total iron concentration of 22.8ppm and a ferrous iron concentration of 19.8ppm.
  • O.lg of monosodium phosphate (45% solution) was added to Bath G immediately prior to adding 0.32g hydrogen peroxide (3% wt. solution).
  • the total iron concentration was decreased to 10.2ppm
  • the ferrous iron concentration was decreased to 0.4ppm
  • pH was 2.6.
  • the pH of the bath was increased to 4.7 by adding 0.6g Chemfil Buffer, and 15 minutes later (i.e., 46 minutes after the start of the experiment), nearly all of the iron was removed, with the total iron concentration being 5ppm and the ferrous iron concentration being O.lppm.
  • the pH of the bath was 4.6, the total iron concentration was 0.24ppm, and the ferrous iron concentration was 0.02ppm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
PCT/US2014/019348 2013-03-06 2014-02-28 Methods for treating a ferrous metal substrate WO2014137796A1 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP2015559312A JP6262258B2 (ja) 2013-03-06 2014-02-28 鉄金属基板を処理するための方法
PL14713638T PL2964806T3 (pl) 2013-03-06 2014-02-28 Metody obróbki podłoża z metali żelaznych
KR1020157024178A KR101714292B1 (ko) 2013-03-06 2014-02-28 철 금속 기재의 처리 방법
AU2014226289A AU2014226289B2 (en) 2013-03-06 2014-02-28 Methods for treating a ferrous metal substrate
CA2898751A CA2898751C (en) 2013-03-06 2014-02-28 Methods for treating a ferrous metal substrate
MX2015011382A MX2015011382A (es) 2013-03-06 2014-02-28 Metodo para el tratamiento de un sustrato de metal ferroso.
SG11201505264XA SG11201505264XA (en) 2013-03-06 2014-02-28 Methods for treating a ferrous metal substrate
BR112015019200-9A BR112015019200B1 (pt) 2013-03-06 2014-02-28 Método para remover ferro de um banho de pré-tratamento
RU2015142283A RU2653028C2 (ru) 2013-03-06 2014-02-28 Способ обработки подложки из черного металла
CN201480010256.9A CN105026615A (zh) 2013-03-06 2014-02-28 处理铁类金属基底的方法
EP14713638.6A EP2964806B1 (en) 2013-03-06 2014-02-28 Methods for treating a ferrous metal substrate
UAA201509586A UA113689C2 (xx) 2013-03-06 2014-02-28 Спосіб видалення заліза з ванни попередньої обробки металевої підкладки
HK15111952.6A HK1211062A1 (en) 2013-03-06 2015-12-03 Methods for treating a ferrous metal substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/786,914 2013-03-06
US13/786,914 US9428410B2 (en) 2007-09-28 2013-03-06 Methods for treating a ferrous metal substrate

Publications (1)

Publication Number Publication Date
WO2014137796A1 true WO2014137796A1 (en) 2014-09-12

Family

ID=50390196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2014/019348 WO2014137796A1 (en) 2013-03-06 2014-02-28 Methods for treating a ferrous metal substrate

Country Status (16)

Country Link
EP (1) EP2964806B1 (pl)
JP (2) JP6262258B2 (pl)
KR (1) KR101714292B1 (pl)
CN (2) CN105026615A (pl)
AU (1) AU2014226289B2 (pl)
BR (1) BR112015019200B1 (pl)
CA (1) CA2898751C (pl)
HK (1) HK1211062A1 (pl)
MX (1) MX2015011382A (pl)
MY (1) MY171863A (pl)
PL (1) PL2964806T3 (pl)
RU (1) RU2653028C2 (pl)
SG (1) SG11201505264XA (pl)
TW (1) TWI515335B (pl)
UA (1) UA113689C2 (pl)
WO (1) WO2014137796A1 (pl)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106011823A (zh) * 2016-07-29 2016-10-12 南京科润工业介质股份有限公司 一种用于提高金属耐蚀性的表处理剂
EP3097221A1 (de) * 2014-01-23 2016-11-30 Chemetall GmbH Verfahren zur beschichtung von metallischen oberflächen, derart beschichtete substrate und ihre verwendung

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108842130B (zh) * 2018-07-12 2020-05-12 中国航发哈尔滨轴承有限公司 一种利用球面滚子化学热处理专用工装对球面滚子表面改性的方法
US11566330B2 (en) 2019-04-16 2023-01-31 Ppg Industries Ohio, Inc. Systems and methods for maintaining pretreatment baths
CN110330678B (zh) * 2019-07-03 2022-02-08 厦门理工学院 一种抗菌阻燃聚己内酯薄膜及其制备方法

Citations (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3455806A (en) 1965-02-27 1969-07-15 Basf Ag Cataphoretic deposition of nitrogen basic copolymers
US3663389A (en) 1970-04-17 1972-05-16 American Cyanamid Co Method of electrodepositing novel coating
US3749657A (en) 1972-01-04 1973-07-31 Ppg Industries Inc Treatment of electrodeposition rinse water
US3793278A (en) 1972-03-10 1974-02-19 Ppg Industries Inc Method of preparing sulfonium group containing compositions
US3912548A (en) 1973-07-13 1975-10-14 Amchem Prod Method for treating metal surfaces with compositions comprising zirconium and a polymer
US3928157A (en) 1972-05-15 1975-12-23 Shinto Paint Co Ltd Cathodic treatment of chromium-plated surfaces
US3947339A (en) 1971-12-01 1976-03-30 Ppg Industries, Inc. Method of electrodepositing primary amine group-containing cationic resins
US3947338A (en) 1971-10-28 1976-03-30 Ppg Industries, Inc. Method of electrodepositing self-crosslinking cationic compositions
US3962165A (en) 1971-06-29 1976-06-08 Ppg Industries, Inc. Quaternary ammonium salt-containing resin compositions
US3975346A (en) 1968-10-31 1976-08-17 Ppg Industries, Inc. Boron-containing, quaternary ammonium salt-containing resin compositions
US3984299A (en) 1970-06-19 1976-10-05 Ppg Industries, Inc. Process for electrodepositing cationic compositions
US3984922A (en) 1944-10-10 1976-10-12 Leo Rosen Rotors
US4001101A (en) 1969-07-10 1977-01-04 Ppg Industries, Inc. Electrodeposition of epoxy compositions
DE2707405A1 (de) 1976-07-19 1978-01-26 Vianova Kunstharz Ag Verfahren zur herstellung von bindemitteln fuer die elektrotauchlackierung
US4116900A (en) 1976-08-18 1978-09-26 Celanese Polymer Specialties Company Cathodic electrocoating resin system from polyepoxide, polyamine, and monoepoxide
US4134932A (en) 1977-03-16 1979-01-16 Basf Aktiengesellschaft Surface-coating binders for cathodic electrocoating
US4134866A (en) 1977-06-03 1979-01-16 Kansai Paint Company, Limited Aqueous cationic coating from amine-epoxy adduct, polyamide, and semi-blocked polyisocyanate, acid salt
EP0012463A1 (en) 1978-12-11 1980-06-25 Shell Internationale Researchmaatschappij B.V. Thermosetting resinous binder compositions, their preparation, and use as coating materials
US4992115A (en) 1988-02-15 1991-02-12 Nippon Paint Co., Ltd. Surface treatment chemical and bath for aluminum and its alloy
US5104577A (en) 1989-08-01 1992-04-14 Nippon Paint Co., Ltd. Surface treatment chemicals and bath for aluminum or its alloy and surface treatment method
US5139586A (en) 1991-02-11 1992-08-18 Coral International, Inc. Coating composition and method for the treatment of formed metal surfaces
GB2259920A (en) 1991-09-10 1993-03-31 Gibson Chem Ltd Surface conversion coating solution based on molybdenum and phosphate compounds
CA2087352A1 (en) 1992-07-01 1994-01-02 David W. Reichgott Method and composition for treatment of galvanized steel
US5328525A (en) 1993-01-05 1994-07-12 Betz Laboratories, Inc. Method and composition for treatment of metals
US5380374A (en) 1993-10-15 1995-01-10 Circle-Prosco, Inc. Conversion coatings for metal surfaces
US5441580A (en) 1993-10-15 1995-08-15 Circle-Prosco, Inc. Hydrophilic coatings for aluminum
US5449415A (en) 1993-07-30 1995-09-12 Henkel Corporation Composition and process for treating metals
WO1995033869A1 (en) 1994-06-03 1995-12-14 Henkel Corporation Composition and method for treating the surface of aluminiferous metals
US5653823A (en) 1995-10-20 1997-08-05 Ppg Industries, Inc. Non-chrome post-rinse composition for phosphated metal substrates
US5662746A (en) 1996-02-23 1997-09-02 Brent America, Inc. Composition and method for treatment of phosphated metal surfaces
US5728233A (en) 1995-11-20 1998-03-17 Nippon Paint Co., Ltd. Surface treatment composition, surface treatment solution and surface treatment method for aluminum and its alloys
US6193815B1 (en) 1995-06-30 2001-02-27 Henkel Corporation Composition and process for treating the surface of aluminiferous metals
JP2004027280A (ja) * 2002-06-25 2004-01-29 Toyota Central Res & Dev Lab Inc リン酸塩化成処理スラッジのリサイクル方法
US6805756B2 (en) 2002-05-22 2004-10-19 Ppg Industries Ohio, Inc. Universal aqueous coating compositions for pretreating metal surfaces
WO2005001158A1 (en) 2003-06-26 2005-01-06 Natech Limited Composition for forming conversion coatings on aluminium surfaces
US6875800B2 (en) 2001-06-18 2005-04-05 Ppg Industries Ohio, Inc. Use of nanoparticulate organic pigments in paints and coatings
US6894086B2 (en) 2001-12-27 2005-05-17 Ppg Industries Ohio, Inc. Color effect compositions
US20050287348A1 (en) 2004-06-24 2005-12-29 Faler Dennis L Nanoparticle coatings for flexible and/or drawable substrates
JP2006219691A (ja) * 2005-02-08 2006-08-24 Nippon Parkerizing Co Ltd 金属表面処理方法
US20070068602A1 (en) 2005-09-28 2007-03-29 Coral Chemical Company Zirconium-vanadium conversion coating compositions for ferrous metals and a method for providing conversion coatings
US20090084471A1 (en) * 2007-09-28 2009-04-02 Ppg Industries Ohio, Inc. Methods for treating a ferrous metal substrate
US20110083580A1 (en) * 2009-10-08 2011-04-14 Shan Cheng Replenishing compositions and methods of replenishing pretreatment compositions

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3874951A (en) * 1972-09-27 1975-04-01 Trw Inc Method for controlling iron content of a zinc phosphating bath
JPS53123340A (en) * 1977-04-04 1978-10-27 Mitsubishi Heavy Ind Ltd Regenerating method for waster of phosphate-film forming process
US4370177A (en) * 1980-07-03 1983-01-25 Amchem Products, Inc. Coating solution for metal surfaces
AR243581A1 (es) * 1980-07-14 1993-08-31 Parker Chemical Co Composicion acidogena acuosa libre de cromo y un procedimiento de aplicacion de dicha composicion para tratar superficies y formar un revestimiento resistente a la corrosion.
SU1046346A1 (ru) * 1981-12-25 1983-10-07 Всесоюзный Научно-Исследовательский И Проектный Институт По Очистке Технологических Газов,Сточных Вод И Использованию Вторичных Энергоресурсов Предприятий Черной Металлургии Способ регенерации отработанных фторсодержащих травильных растворов
JPS63103084A (ja) * 1986-10-17 1988-05-07 Sunao Mototani リン酸塩皮膜化成時に発生するスラツジの処理方法
DE3735538A1 (de) * 1987-10-21 1989-05-03 Metallgesellschaft Ag Verfahren zur erzeugung von phosphatueberzuegen
DE3742634A1 (de) * 1987-12-16 1989-06-29 Collardin Gmbh Gerhard Verfahren zur entschlammung von phosphatierungsbaedern und vorrichtung fuer dieses verfahren
DE3840668A1 (de) * 1988-12-02 1990-06-07 Metallgesellschaft Ag Verfahren beim phosphatieren von metalloberflaechen
US5427632A (en) * 1993-07-30 1995-06-27 Henkel Corporation Composition and process for treating metals
JP3705982B2 (ja) * 1999-08-23 2005-10-12 Jfeプラント&サービス株式会社 リン酸塩回収方法
AU1887601A (en) * 1999-12-13 2001-06-18 Toyo Kohan Co. Ltd. Method for producing surface treated steel sheet, surface treated steel sheet and surface treated steel sheet coated with resin
DE10110834B4 (de) * 2001-03-06 2005-03-10 Chemetall Gmbh Verfahren zur Beschichtung von metallischen Oberflächen und Verwendung der derart beschichteten Substrate
JP2003171780A (ja) * 2001-12-06 2003-06-20 Nippon Paint Co Ltd リン酸塩化成処理液の鉄イオン除去方法及び鉄イオン除去装置
JP2004043913A (ja) * 2002-07-12 2004-02-12 Nippon Paint Co Ltd 金属化成処理方法
JP2006213958A (ja) * 2005-02-02 2006-08-17 Nippon Parkerizing Co Ltd 金属材料表面処理用組成物及び処理方法
JP6081802B2 (ja) * 2013-01-15 2017-02-15 東洋鋼鈑株式会社 Feイオン含有処理浴における表面処理鋼板の製造方法

Patent Citations (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3984922A (en) 1944-10-10 1976-10-12 Leo Rosen Rotors
US3455806A (en) 1965-02-27 1969-07-15 Basf Ag Cataphoretic deposition of nitrogen basic copolymers
US3975346A (en) 1968-10-31 1976-08-17 Ppg Industries, Inc. Boron-containing, quaternary ammonium salt-containing resin compositions
US4001101A (en) 1969-07-10 1977-01-04 Ppg Industries, Inc. Electrodeposition of epoxy compositions
US3663389A (en) 1970-04-17 1972-05-16 American Cyanamid Co Method of electrodepositing novel coating
US3984299A (en) 1970-06-19 1976-10-05 Ppg Industries, Inc. Process for electrodepositing cationic compositions
US3962165A (en) 1971-06-29 1976-06-08 Ppg Industries, Inc. Quaternary ammonium salt-containing resin compositions
US3947338A (en) 1971-10-28 1976-03-30 Ppg Industries, Inc. Method of electrodepositing self-crosslinking cationic compositions
US3947339A (en) 1971-12-01 1976-03-30 Ppg Industries, Inc. Method of electrodepositing primary amine group-containing cationic resins
US3749657A (en) 1972-01-04 1973-07-31 Ppg Industries Inc Treatment of electrodeposition rinse water
US3793278A (en) 1972-03-10 1974-02-19 Ppg Industries Inc Method of preparing sulfonium group containing compositions
US3928157A (en) 1972-05-15 1975-12-23 Shinto Paint Co Ltd Cathodic treatment of chromium-plated surfaces
US3912548A (en) 1973-07-13 1975-10-14 Amchem Prod Method for treating metal surfaces with compositions comprising zirconium and a polymer
DE2707405A1 (de) 1976-07-19 1978-01-26 Vianova Kunstharz Ag Verfahren zur herstellung von bindemitteln fuer die elektrotauchlackierung
US4116900A (en) 1976-08-18 1978-09-26 Celanese Polymer Specialties Company Cathodic electrocoating resin system from polyepoxide, polyamine, and monoepoxide
US4134932A (en) 1977-03-16 1979-01-16 Basf Aktiengesellschaft Surface-coating binders for cathodic electrocoating
US4134866A (en) 1977-06-03 1979-01-16 Kansai Paint Company, Limited Aqueous cationic coating from amine-epoxy adduct, polyamide, and semi-blocked polyisocyanate, acid salt
EP0012463A1 (en) 1978-12-11 1980-06-25 Shell Internationale Researchmaatschappij B.V. Thermosetting resinous binder compositions, their preparation, and use as coating materials
US4992115A (en) 1988-02-15 1991-02-12 Nippon Paint Co., Ltd. Surface treatment chemical and bath for aluminum and its alloy
US5104577A (en) 1989-08-01 1992-04-14 Nippon Paint Co., Ltd. Surface treatment chemicals and bath for aluminum or its alloy and surface treatment method
US5139586A (en) 1991-02-11 1992-08-18 Coral International, Inc. Coating composition and method for the treatment of formed metal surfaces
GB2259920A (en) 1991-09-10 1993-03-31 Gibson Chem Ltd Surface conversion coating solution based on molybdenum and phosphate compounds
CA2087352A1 (en) 1992-07-01 1994-01-02 David W. Reichgott Method and composition for treatment of galvanized steel
US5328525A (en) 1993-01-05 1994-07-12 Betz Laboratories, Inc. Method and composition for treatment of metals
US5449415A (en) 1993-07-30 1995-09-12 Henkel Corporation Composition and process for treating metals
US5380374A (en) 1993-10-15 1995-01-10 Circle-Prosco, Inc. Conversion coatings for metal surfaces
US5441580A (en) 1993-10-15 1995-08-15 Circle-Prosco, Inc. Hydrophilic coatings for aluminum
WO1995033869A1 (en) 1994-06-03 1995-12-14 Henkel Corporation Composition and method for treating the surface of aluminiferous metals
US6193815B1 (en) 1995-06-30 2001-02-27 Henkel Corporation Composition and process for treating the surface of aluminiferous metals
US5653823A (en) 1995-10-20 1997-08-05 Ppg Industries, Inc. Non-chrome post-rinse composition for phosphated metal substrates
US5728233A (en) 1995-11-20 1998-03-17 Nippon Paint Co., Ltd. Surface treatment composition, surface treatment solution and surface treatment method for aluminum and its alloys
US5662746A (en) 1996-02-23 1997-09-02 Brent America, Inc. Composition and method for treatment of phosphated metal surfaces
US6875800B2 (en) 2001-06-18 2005-04-05 Ppg Industries Ohio, Inc. Use of nanoparticulate organic pigments in paints and coatings
US6894086B2 (en) 2001-12-27 2005-05-17 Ppg Industries Ohio, Inc. Color effect compositions
US6805756B2 (en) 2002-05-22 2004-10-19 Ppg Industries Ohio, Inc. Universal aqueous coating compositions for pretreating metal surfaces
JP2004027280A (ja) * 2002-06-25 2004-01-29 Toyota Central Res & Dev Lab Inc リン酸塩化成処理スラッジのリサイクル方法
WO2005001158A1 (en) 2003-06-26 2005-01-06 Natech Limited Composition for forming conversion coatings on aluminium surfaces
US20050287348A1 (en) 2004-06-24 2005-12-29 Faler Dennis L Nanoparticle coatings for flexible and/or drawable substrates
JP2006219691A (ja) * 2005-02-08 2006-08-24 Nippon Parkerizing Co Ltd 金属表面処理方法
US20070068602A1 (en) 2005-09-28 2007-03-29 Coral Chemical Company Zirconium-vanadium conversion coating compositions for ferrous metals and a method for providing conversion coatings
US20090084471A1 (en) * 2007-09-28 2009-04-02 Ppg Industries Ohio, Inc. Methods for treating a ferrous metal substrate
US20110083580A1 (en) * 2009-10-08 2011-04-14 Shan Cheng Replenishing compositions and methods of replenishing pretreatment compositions

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3097221A1 (de) * 2014-01-23 2016-11-30 Chemetall GmbH Verfahren zur beschichtung von metallischen oberflächen, derart beschichtete substrate und ihre verwendung
EP3097221B1 (de) * 2014-01-23 2022-05-04 Chemetall GmbH Verfahren zur beschichtung von metallischen oberflächen, derart beschichtete substrate und ihre verwendung
CN106011823A (zh) * 2016-07-29 2016-10-12 南京科润工业介质股份有限公司 一种用于提高金属耐蚀性的表处理剂
CN106011823B (zh) * 2016-07-29 2018-06-19 南京科润工业介质股份有限公司 一种用于提高金属耐蚀性的表面处理剂

Also Published As

Publication number Publication date
PL2964806T3 (pl) 2021-01-25
CA2898751A1 (en) 2014-09-12
BR112015019200B1 (pt) 2021-07-20
JP6262258B2 (ja) 2018-01-17
RU2015142283A (ru) 2017-04-10
JP2016507657A (ja) 2016-03-10
AU2014226289A1 (en) 2015-07-23
JP2016223019A (ja) 2016-12-28
TWI515335B (zh) 2016-01-01
KR20150115916A (ko) 2015-10-14
HK1211062A1 (en) 2016-05-13
KR101714292B1 (ko) 2017-03-08
JP6282700B2 (ja) 2018-02-21
RU2653028C2 (ru) 2018-05-04
UA113689C2 (xx) 2017-02-27
AU2014226289B2 (en) 2016-09-15
MY171863A (en) 2019-11-05
TW201443283A (zh) 2014-11-16
SG11201505264XA (en) 2015-08-28
EP2964806A1 (en) 2016-01-13
MX2015011382A (es) 2016-01-15
CN105026615A (zh) 2015-11-04
CN108842149A (zh) 2018-11-20
CA2898751C (en) 2017-09-19
BR112015019200A2 (pt) 2017-07-18
EP2964806B1 (en) 2020-08-05

Similar Documents

Publication Publication Date Title
US8652270B2 (en) Methods for treating a ferrous metal substrate
EP2117730B9 (en) Methods for coating a metal substrate and related coated substrates
US9574093B2 (en) Methods for coating a metal substrate and related coated metal substrates
JP6282700B2 (ja) 鉄金属基板を処理するための方法
CA2883186C (en) Zirconium pretreatment compositions containing lithium, associated methods for treating metal substrates, and related coated metal substrates
WO2014035691A1 (en) Zirconium pretreatment compositions containing molybdenum, associated methods for treating metal substrates, and related coated metal substrates
WO2013033372A1 (en) Two-step zinc phosphating process
EP2739768B1 (en) Zirconium pretreatment compositions containing a rare earth metal, associated methods for treating metal substrates, and related coated metal substrates
US9428410B2 (en) Methods for treating a ferrous metal substrate

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480010256.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14713638

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2898751

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2014226289

Country of ref document: AU

Date of ref document: 20140228

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015559312

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015019200

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/011382

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20157024178

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014713638

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: A201509586

Country of ref document: UA

ENP Entry into the national phase

Ref document number: 2015142283

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112015019200

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150811