WO2014136967A1 - 育苗期病害耐病性植物種子の製造方法及び育苗期病害の発病予防及び防除方法 - Google Patents

育苗期病害耐病性植物種子の製造方法及び育苗期病害の発病予防及び防除方法 Download PDF

Info

Publication number
WO2014136967A1
WO2014136967A1 PCT/JP2014/056059 JP2014056059W WO2014136967A1 WO 2014136967 A1 WO2014136967 A1 WO 2014136967A1 JP 2014056059 W JP2014056059 W JP 2014056059W WO 2014136967 A1 WO2014136967 A1 WO 2014136967A1
Authority
WO
WIPO (PCT)
Prior art keywords
seedling
disease
plant
seed
seeds
Prior art date
Application number
PCT/JP2014/056059
Other languages
English (en)
French (fr)
Inventor
力 有江
徹 寺岡
陽子 野中
亮宏 加藤
田中 淳
智美 徳永
賢一 倉内
智貴 鈴木
Original Assignee
国立大学法人東京農工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京農工大学 filed Critical 国立大学法人東京農工大学
Priority to US14/773,026 priority Critical patent/US10264796B2/en
Priority to KR1020157028014A priority patent/KR101770656B1/ko
Publication of WO2014136967A1 publication Critical patent/WO2014136967A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/30Microbial fungi; Substances produced thereby or obtained therefrom
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • A01H5/10Seeds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy

Definitions

  • the present invention relates to a method for producing seedling disease-resistant plant seeds using non-pathogenic bacteria corresponding to seed infectious pathogens, and to prevent the occurrence of seedling disease in the next generation using seedling disease-resistant plant seeds. , Relating to control technology.
  • Plant seed infectious diseases are positioned as seedling diseases as well as soil infectious diseases.
  • the seed infectious pathogen causing a seed infectious disease is often transmitted to the next generation by the carrier-bearing seed and spreads by infecting the seedling plant of the next generation.
  • a rice seedling disease is an agriculturally important seed-borne disease of rice caused by a rice seedling fungus belonging to Fusarium fujikuroi (full generation name Gibberella fujikuroi).
  • Fusarium fujikuroi full generation name Gibberella fujikuroi
  • the pathogenic bacteria are not only transmitted to surrounding healthy rice seedlings, but the infected plants show abnormal length and yellowing, and then die. It reaches.
  • many conidia of this fungus are formed on the lower surface of the leaf sheath, and these conidia are scattered and adhere to the flower parts, pistils, cocoons, and carcasses of surrounding healthy strains, and the cocoon is contaminated.
  • the cocoon becomes a transmission source for the following year as a germ-bearing seed (Non-patent Document 1).
  • This disease can be effectively controlled by seed disinfection with chemical pesticides such as benomyl and pefrazoate, and has been calmed down for a long time in the field.
  • chemical pesticides such as benomyl and pefrazoate
  • excessive reliance on chemical pesticides hastened the emergence of resistant bacteria, raising concerns about the invalidation of these drugs.
  • the disease was calmed down by using bactericides such as ipconazole with different mechanisms of action.
  • the use of chemical pesticides always presents a risk of the appearance of resistant bacteria, and problems such as environmental pollution and residue on rice remain.
  • the conventional physical control method and biological control method are unstable compared to chemical pesticides and cannot sufficiently suppress the occurrence of seed infectious diseases such as rice seedling disease.
  • the labor force for processing increased.
  • problems in terms of cost there were problems in the case of microbial pesticides, there were problems in terms of cost, and in the case of physical control methods, there were problems such as complexity of treatment and a decrease in seed germination rate.
  • An object of the present invention is to provide a safe and inexpensive organism that has a high control effect on seedling diseases including seed infectious diseases and soil infectious diseases for stable food production and supply.
  • seedling diseases including seed infectious diseases and soil infectious diseases for stable food production and supply.
  • microbial pesticides By developing microorganisms and providing microbial pesticides using them as active ingredients, establishing effective treatment methods for the microbial pesticides, and effectively controlling seedling diseases It is to provide technology that can reduce the labor and cost and stably grow safe agricultural products.
  • the biological control method using a microbial pesticide has a big problem that its effect is not stable.
  • One of the causes is difficulty in establishing on the plant body, in the tissue, in the rhizosphere, etc., until the microorganisms which are active ingredients exhibit the control effect.
  • the present inventors treated a non-pathogenic bacterium corresponding to a seed infectious pathogen and having a plant-fixing property on a flower part of a host plant at the flowering stage by a method such as spraying in advance.
  • a method such as spraying in advance.
  • a step of bringing a non-pathogenic bacterium corresponding to a seed infectious pathogen into contact with a flower part of a host plant before and after the flowering period, and a step of recovering a seed of the host plant to which the non-pathogenic bacterium obtained after the step is established A method for producing seedling disease-resistant plant seeds, comprising:
  • the non-pathogenic bacteria are Fusarium, Nectria, Gibberella, Calonectria, Hypomyces, Trichoderma, Penicillium, Talaromyces, Acremonium, Alternaria, Verticillium
  • the non-pathogenic bacterium is a Fusarium genus selected from the group consisting of Fusarium oxysporum, Fusarium moniliforme, Fusarium fujikuroi, Fusarium proliferatum, and Fusarium sacchari, according to any one of (1) to (3) Production method.
  • Seeds of disease-resistant plants at the seedling stage obtained by contacting non-pathogenic bacteria corresponding to seed-borne pathogens with the flower parts of the host plant before and after the flowering period.
  • a microbial pesticide for controlling diseases during the seedling stage comprising a non-pathogenic bacterium corresponding to a seed infectious bacterium as an active ingredient.
  • seedling disease-resistant plant seeds of the present invention it is possible to produce and provide seedlings (seedlings) resistant to seedling disease.
  • plant seeds resistant to seedling disease can be easily and efficiently produced.
  • the method for preventing and controlling the seedling disease of the present invention it is possible to prevent and control the disease of the seedling disease.
  • an inexpensive and highly efficient microbial pesticide for efficiently preventing and controlling the seedling disease can be provided.
  • the first aspect of the present invention relates to a method for producing seedling disease-resistant plant seeds (often referred to herein as “manufacturing method”). According to the production method of the present invention, it is possible to produce and provide a plant seed that has acquired disease resistance as if it were a resistant variety against a seedling disease by utilizing a biological control material microorganism.
  • the seedling disease refers to a plant disease that is infected or develops during the seedling season, and includes seed infectious diseases and soil infectious diseases.
  • “Seed-borne disease” is a plant disease caused by infection with a seed-borne pathogen, and is transmitted to not only the plant strain but also surrounding strains through seeds that have established the seed-borne pathogen during soaking or germination. It is.
  • a “soil-borne disease” is a plant disease that is originally caused by infection with pathogenic bacteria that survive in soil.
  • “Seed-infectious pathogen” refers to a microorganism that infects a flower part formed in a host plant, then settles on a seed and causes a disease symptom to a seedling individual.
  • the “seedling individual” refers to a seedling germinated from a seed and a plant individual from which the seedling has grown.
  • the “microorganism” usually refers to a micro organism that is difficult to recognize with the naked eye, such as a bacterium or a bacterium.
  • a fungus is a group of eukaryotes belonging to the kingdom of kingdom (Kingdom of fungi) in terms of biological classification, and is sometimes called a fungus or a filamentous fungus.
  • the fungus includes a unicellular eukaryotic microorganism such as yeast, or a filamentous fungus (including fungi) or a multicellular eukaryotic microorganism such as mushroom that is relatively difficult to recognize with the naked eye.
  • the seed infectious pathogen is a group having pathogenicity included in a specific microbial species as described above.
  • microorganisms including seed infectious pathogens include bacteria of the genus Bacillus, bacteria of the genus Pseudomonas (including bacteria of the genus Burkholderia and Acidovorax), bacteria of the genus Xanthomonas, bacteria of the genus Streptomyces, etc. Examples include Fusarium, Nectria, Gibberella, Calonectria, Hypomyces, Trichoderma, Penicillium, Talaromyces, Acremonium, Alternaria, Verticillium, and the like. Examples of the genus Fusarium include F. oxysporum, F.
  • the genus Fusarium is a major incomplete generation name of the genus Gibberella, and the genus Gibberella is a synonym of the genus Fusarium in this specification.
  • the flower part is infected at the flowering stage of the host plant, and then the seed and / or ovary (Poaceae) In the case of fruit, it will settle. Seed-borne pathogens germinate in the seeds that carry them, and settle in plant tissues and rhizosphere along with the growth of seedlings. Causes an infectious disease.
  • seed infectious diseases include rice sapling seedling disease (by Gibberella fujikuroi), rice blast disease (by Magnaporthe oryzae), seedling blight (by Fusarium spp., Pythium spp., Rhizoctonia spp., Trichoderma spp.) , Sesame leaf blight (by Cochliobolus miyabeanus), seedling blight (Pseudomonas plantarii (now Burkholderia plantarii)), rice blast blight (Pseudomonas glumae (current Burkholderia glumae)), brown stripe (Pseudomonas avenae (current) Acidovorax avenae)).
  • rice sapling seedling disease by Gibberella fujikuroi
  • rice blast disease by Magnaporthe oryzae
  • seedling blight by Fusarium spp., Pythium spp., Rh
  • the seed plants for infectious pathogens include angiosperms and gymnosperms.
  • Angiosperms may be either dicotyledonous plants or monocotyledonous plants.
  • Monocotyledonous plants include, for example, Poaceae plants.
  • Examples of dicotyledonous plants include Rosaceae plants, Solanaceae plants, Fabaceae plants, Cucurbitaceae plants, Brassicaceae plants, and the like.
  • it is a gramineous plant.
  • the grasses in this specification include, for example, rice (Oryza sativa and O. glaberrima), wheat Triticum aestivum, T. compactum, and T.
  • durum barley (Hordeum vulgare), rye (Secale cereale), millet ( Agriculturally important species such as Panicum miliaceum, millet (Setaria italica), millet (Echinochloa esculenta), sorghum (Sorghum bicolor), corn (Zea mays), and sugarcane (Saccharum officinarum) are included.
  • Preferred are rice, wheat, barley, corn and sugar cane, and more preferred is rice.
  • Bio control material microorganism is synonymous with “non-pathogenic fungus corresponding to seed infectious pathogen” in the present specification.
  • the term “corresponding” as used herein means that they are mainly of the same kind, the same genus or closely related to each other in taxonomy, or have a biological control effect. Therefore, as described above, “non-pathogenic fungi corresponding to seed infectious pathogens” refers to a group that is taxonomically the same species as a seed infectious pathogen but has no pathogenicity. Say. For example, in the case of a non-pathogenic bacterium corresponding to a rice sapling seedling fungus, a non-pathogenic bacterium of the genus Fusarium, for example, F.
  • the biological control material microorganism has a characteristic of not showing disease symptoms to the host plant while maintaining high infectivity and colonization of the host plant.
  • a host plant in which a biological control material microorganism is established becomes resistant to not only seed infectious diseases but also all seedling diseases including soil infectious diseases.
  • Specific examples of the biological control material microorganism include Fusarium oxysporum non-pathogenic strain W3 (accession number: NITE BP-01538) or Fusarium oxysporum non-pathogenic strain W5 (accession number: NITE BP-01539).
  • Plant disease-resistant plants are plants in which microorganisms for biological control are established, exhibiting disease resistance against all seedling diseases, including seed-borne diseases and soil-borne diseases, and those diseases A plant that does not show clear symptoms.
  • the source of the biological control material microorganisms is the plant tissue (leaf, hypocotyl, leaf sheath) of the same homogenous strain that grows around the plant strain affected by the disease in the field where the seed infectious disease occurs. , Petiole, stem, flower vase, fruit, root, etc.) and its rhizosphere soil.
  • the plant tissue is used as a separation source, it is preferable to disinfect the tissue surface.
  • about 1 cm 2 of the collected plant tissue piece may be immersed in 70% ethanol for 30 seconds, then in 1% hypochlorous acid for 3 minutes to sterilize the tissue surface, and then washed with sterile water.
  • concentrations of ethanol and hypochlorous acid and the immersion time are not particularly limited, and may be appropriately adjusted based on a technique known in the art depending on the site of the plant tissue.
  • the biological control material microorganism is a fungus
  • the plant tissue after surface sterilization is cut into about 1 cm 2 tissue pieces using sterilized tweezers, scalpels, etc. and placed on the medium.
  • Medium is PSA (potato decoction agar: 200 g / L potato decoction, 0.5% [w / v] sucrose, 1.5% [w / v] agar) or WA (elemental agar: 1% agar) Use it.
  • a selective medium suitable for the genus can be used. In order to prevent bacterial contamination, it is desirable to apply 20% lactic acid in advance on the medium.
  • the medium on which the plant tissue is placed is cultured at 25-30 ° C. for 2-5 days.
  • Establish a single colony strain by re-implanting a single colony (in the case of single-cell eukaryotic microorganisms), mycelial tips (in the case of filamentous fungi or basidiomycetes), spores or conidia grown on a medium plate into a new medium plate .
  • the biological control material microorganism is a bacterium
  • the plant tissue after surface sterilization is cut into about 1 cm 2 tissue pieces using sterilized tweezers, a scalpel, etc. and placed on the medium.
  • the medium is PSA or King B medium (2% [w / v] peptone, 1% [w / v] glycerin, 0.15% [w / v] dipotassium hydrogen phosphate, 0.15% [w / v] magnesium sulfate.
  • a selective medium suitable for the genus can be used.
  • the medium on which the plant tissue is placed is cultured at 25-30 ° C. for 1-3 days.
  • the generated single colony is scraped off and transplanted to a new medium plate, and the regrown colony is established as a single strain.
  • the seed production method for a disease-resistant plant of the seedling stage of the present invention includes a contact step and a recovery step. Hereinafter, each step will be specifically described.
  • the “contacting step” is a step of bringing a biological control material microorganism into contact with the flower part of the host plant before and after the flowering period.
  • any biological control material microorganism is settled on the host plant.
  • the “flowering period” refers to the period during which the host plant is in bloom.
  • “Before and after the flowering period” refers to a period including before the start of flowering of the host plant and after the end of flowering. This period is 2 weeks before and after the flowering period, preferably 10 days before and after, more preferably 1 week before and after or 5 days before and after.
  • the host plant is rice and it is two weeks before and after the flowering period, it corresponds to the period from the ear development stage where the young ears grow rapidly in rice to the time the seedling matures after the flowering period in the strain is completed To do.
  • the time when the biological control material microorganisms are brought into contact with the flower part of the host plant is before the seed infectious pathogens occurring or possibly occurring in the predetermined area are infected with the host plant.
  • the biological control material microorganism infects the host plant due to an action (competitive action) that eliminates the infection of other microorganisms by the seed-borne pathogen. This is because the effect of the present invention cannot be obtained.
  • the type of biological control material microorganisms to be contacted is not particularly limited. In general, if any biological control material microorganism infects an uninfected host plant, it will be occupied in the host plant by occupying and competing with the infected biological control material microorganism and / or due to the infection of the biological control material microorganism. Induced resistance makes it difficult to infect other seed-borne pathogens.
  • the present invention utilizes this principle, and by bringing a biological control material microorganism into contact with a host plant, regardless of the microbial species, a pathogenic bacterium of a seedling stage disease including a seed infectious disease is subsequently infected. Can be controlled.
  • the seeds of the host plant obtained by this production method can be resistant to seedling diseases.
  • a non-pathogenic bacterium corresponding to a seed infectious pathogen that has occurred or is likely to occur in an area where seeds of a disease-resistant disease-resistant plant should be sown may be used.
  • a non-pathogenic fungus of the genus Fusarium corresponding to the rice sapling seedling fungus may be used as a biological control material microorganism.
  • Fusariumiumoxysporum W3 strain (accession number: NITE BP-01538) or Fusarium oxysporum W5 strain (accession number: NITE BP-01539) which is a non-pathogenic bacterium derived from the genus Fusarium can be used.
  • NITE BP-01538 or Fusarium oxysporum W5 strain which is a non-pathogenic bacterium derived from the genus Fusarium
  • NITE BP-01539 which is a non-pathogenic bacterium derived from the genus Fusarium
  • the biological control material microorganism to be contacted is not a mixture of different plural bacterial species, but a single bacterial species is contacted.
  • the number of contact of the biological control material microorganisms is not limited. In a species in which florets contained in spikelets continuously bloom, such as a gramineous plant, this step may be performed several times in order to infect all the flower parts with the biological control material microorganisms. However, it is desirable that the biological control material microorganisms to be contacted each time are the same strain for the reasons described above.
  • the method for contacting the biological control material microorganism with the host plant is not particularly limited as long as it can contact the biological control material microorganism. Examples thereof include a method of spraying, spraying, applying, and immersing a culture solution, suspension, powder, etc. of a biological control material microorganism described later.
  • the place of contact with the host plant may be either a part or the whole of the host plant, but when contacting with a part of the plant, a site related to the host plant infection route of the biological control material microorganism, That is, it should be noted that the flower part is brought into contact.
  • the “recovery step” is a step of recovering the seeds of the host plant to which the biological control material microorganism obtained after the contact step has been established.
  • the biological control material microorganism that has come into contact with the flower part of the host plant in the contacting step usually settles in the cocoon, seed coat or ovule tissue.
  • the host plant develops seeds with established non-pathogenic mutants after pollination. Therefore, in this step, seeds that are sufficiently matured to have germination ability may be collected by a method known in the art.
  • the seeds obtained from the host plant after the contacting step can in principle be regarded as seeds of a disease-resistant plant at the seedling stage.
  • seeds may be dried as necessary to improve the storage stability.
  • the drying method may be any method as long as it retains the germinating ability of the seed and the moisture in the seed is moderately reduced as long as the established biological control material microorganism does not die.
  • a natural drying method that exposes to the outside air a dehumidifying and drying method that puts the product in a sealed container together with a dehumidifying agent, a wind drying method that uses hot air or cold air to dry using a blower or the like, or a combination thereof.
  • Subsequent seed storage methods may follow methods well known in the art.
  • the seed after the recovery process is a colonized seed with a biological control material microorganism.
  • the base sequence unique to the contacted biological control material microorganism gene is designed as a primer, and it is easily confirmed based on the technology by nucleic acid amplification methods such as PCR. do it.
  • the biological control material microorganism is Fusarium oxysporum, it can be a unique base sequence that can identify whether or not the ribosomal DNA IGS region is a biological control material microorganism. Therefore, it may be used as a primer set for amplifying the region.
  • FIGs11 (5'-GTAAGCCGTCCTTCGCCTCG-3 ': sequence number 1) and FIGS12 (5'-GCAAAATTCAATAGTATGGC-3': sequence number 2) are mentioned, for example.
  • NITE BP-01538 the DNA fragment having the base sequence described in SEQ ID NO: 3
  • the Fusarium oxysporum W5 strain accesion No: NITE BP- 01539
  • a DNA fragment having the base sequence set forth in SEQ ID NO: 4 is amplified. Therefore, it is possible to confirm and identify which biological control material microorganism derived from Fusarium oxysporum is established.
  • the seedlings of the seeds of the disease-resistant disease-resistant plants thus obtained are colonized seeds of the biological control material microorganisms, so that the disease control disease microorganisms develop disease symptoms due to the competitive action of the biological control material microorganisms. It can grow without doing.
  • the seeds of the seedlings can easily produce plant seeds that are resistant to any seedling disease as if they were seedling-resistant disease varieties. Can be manufactured and provided.
  • the seed production method of the seedling disease-resistant plant of the present invention only needs to be performed at least on the plant for seeding, it is possible to limit the application area of the biological control material microorganism to a minimum, Therefore, the environmental impact is small and economical.
  • the seed of the seedling disease-resistant plant of the present invention it is not necessary to carry out the control treatment or the disease suppression treatment for the seed infectious disease on the seed before sowing, and the host that does not cause the seedling disease only by sowing as usual Since plants can be cultivated, labor and costs can be reduced. In addition, seed disinfection with chemical pesticides is unnecessary or can be reduced.
  • the seed production method of the disease-resistant plant of the seedling stage of the present invention is highly safe because it is a microbial pesticide using non-pathogenic bacteria existing in nature, and has less impact on the environment than chemical pesticides.
  • the disease prevention and control method of the seedling stage disease The second aspect of the present invention relates to the disease prevention and control method of the seedling stage disease.
  • ADVANTAGE OF THE INVENTION According to this invention, the onset of the seedling stage disease in the seedling seedling seedling seedling seedling seedling seedling seedling seedling and other plant individuals around the seedling seedling can be prevented and controlled.
  • the seedling stage disease onset method of the present invention (hereinafter, often referred to as “preventive control method” in the present specification) is the seedling stage disease resistant plant according to the first aspect in which a biological control material microorganism is established. Use seeds.
  • the basic process of the preventive and control method of the present invention is only to carry out a normal cultivation method for plant species of seedling disease-resistant plants. However, seed disinfection performed prior to sowing is not necessary.
  • seed seeds of seedling disease and disease resistant rice are germinated and seeded in a container (seedling box, etc.) containing culture soil to raise seedlings. After that, it is sufficient to plant the seedlings in the field and cultivate them by the usual method.
  • the seed of the seedling disease-resistant plant described in the first aspect is settled with a biological control material microorganism.
  • the biological control material microorganism is a non-pathogenic bacterium, it does not cause disease at the seedling stage. Therefore, the seedling can efficiently prevent and control the infection of pathogenic bacteria of seedling diseases including seed infectious diseases and soil infectious diseases.
  • the biological control material microorganisms that have settled on seeds of seedling-borne disease-resistant plants are non-pathogenic bacteria but retain their infectivity. When cultivated together with seeds that are not infected with pathogenic fungi, they can be transmitted to surrounding healthy seedlings during the soaking and seedling periods. However, this results in the occupation of the biological control material microorganisms and resistance to pathogens induced by the infected plants themselves, and the subsequent infection of pathogens of seedling diseases including seed-borne diseases and soil-borne diseases is efficient. Can be prevented and controlled.
  • seedling diseases including seed infectious diseases and soil infectious diseases can be efficiently prevented and controlled without requiring special treatment.
  • seed infectious diseases and soil infectious diseases are observed not only in seedling seedling seedling seedling seedling seedling seedling seedling seedling seedlings as described in the first aspect, but also in healthy seedling individuals cultivated therewith. It is possible to efficiently prevent and control the infection of pathogenic bacteria of the seedling stage disease.
  • a microbial pesticide for controlling seedling diseases A third aspect of the present invention relates to a microbial pesticide for controlling diseases in the seedling season.
  • the microbial pesticide for seedling stage disease control of the present invention can be applied to a desired plant to impart seedling stage disease resistance to the plant.
  • the biological control material microorganism described in the first aspect may be used as the biological control material microorganism.
  • Specific examples of biological control material microorganisms include, for example, Fusarium oxysporum W3 strain (accession number: NITE BP-01538) or Fusarium oxysporum W5 strain (Fusarium oxysporum W5 strain) Accession number: NITE BP-01539).
  • NITE BP-01538 Fusarium oxysporum W3 strain
  • Fusarium oxysporum W5 strain Feusarium oxysporum W5 strain Accession number: NITE BP-01539
  • the amount of the biological control material microorganism per predetermined amount of the microbial pesticide for controlling seedling diseases of the present invention depends on various conditions such as the type, the type of plant to be applied, the dosage form, and the application (contact) method. .
  • the biological control material microorganism of the active ingredient contains a sufficient amount to contact and settle the application target plant. This amount is determined within the range of common technical knowledge in the field, taking into account each condition so that the biological control material microorganisms contained in the microbial pesticide of the present invention have a desired amount for the target plant after application. What is necessary is just to determine content of material microorganisms.
  • the biological control material microorganism when the biological control material microorganism is derived from the genus Fusarium and the microbial pesticide of the present invention is in a liquid state, its conidia is 1.0 ⁇ 10 4 pieces / mL or more, preferably 5.0 ⁇ 10 4 pieces / mL in the solution. It should be contained more than mL.
  • the upper limit is not particularly limited, but 1.0 ⁇ 10 9 cells / mL is usually sufficient even for a biological control material microorganism with a low infection rate.
  • the microbial pesticide of the present invention can contain a carrier that is acceptable in an agrochemical formulation as long as it does not inhibit or suppress the host plant infection activity of the biological control material microorganism.
  • “Agrochemically acceptable carrier” is a substance that facilitates the application of microbial pesticides, maintains the viability and infectivity of the active biological control material microorganism, and / or controls the action rate of microbial pesticides. In addition, it refers to a substance that has no or little harmful effect on the environment such as soil and water quality even when applied to the cultivation of plants including outdoors and indoors, or has no or low harmfulness to animals, particularly humans.
  • an excipient can be mentioned. Suitable excipients include ground natural minerals, ground synthetic minerals, emulsifiers, dispersants and surfactants.
  • ground natural minerals examples include kaolin, clay, talc and chalk.
  • Examples of the pulverized synthetic mineral include highly dispersed silica and silicate.
  • Examples of the emulsifier include nonionic emulsifiers and anionic emulsifiers (for example, polyoxyethylene fatty alcohol ethers, alkyl sulfonates, and aryl sulfonates).
  • dispersant examples include lignosulfite waste liquor and methylcellulose.
  • surfactant examples include lignosulfonic acid, naphthalenesulfonic acid, phenolsulfonic acid, dibutylnaphthalenesulfonic acid alkali metal salt, alkaline earth metal salt and ammonium salt, alkylaryl sulfonate, alkyl sulfate, alkyl sulfonate, fat Alcohol sulfates, fatty acids and sulfated fatty alcohol glycol ethers, sulfonated naphthalene and naphthalene derivatives and formaldehyde condensates, naphthalene or naphthalenesulfonic acid and phenol and formaldehyde condensates, polyoxyethylene octylphenyl ether, ethoxylated isoforms Octylphenol, octylphenol, nonylphenol, alkylphenyl polyglycol ether, tributylphenyl polyglycol
  • the microbial pesticide of the present invention can include one or more carriers that are acceptable in the agrochemical formulation.
  • other active ingredients having other pharmacological effects that is, herbicides, fungicides, insecticides, fertilizers (for example, urea, ammonium nitrate, superphosphate), as long as they do not affect the infection of microorganisms. Salt).
  • the dosage form of the microbial pesticide of the present invention may be in any state as long as it can maintain the host plant colonization of the biological control material microorganism.
  • the biological control material microorganism is suspended in an appropriate solution. It can be a turbid liquid state, a solid state (including a powder state), or a combination thereof.
  • the biological control material microorganism which is an active ingredient may be suspended in an appropriate solution.
  • Appropriate solutions include, for example, water, buffers, and culture media for their biological control material microorganisms.
  • the solid state there is no particular limitation as long as the biological control material microorganism as an active ingredient can act on the host plant.
  • Examples thereof include a granular state, a powder state, and a semi-solid state such as a gel. Considering that it adheres to the host plant by contact or the like, and grows and acts, it is preferably in the form of powder (particularly powder having adhesiveness) or gel.
  • Example 1 Effect of disease control in seedling disease-resistant plants (1) (the purpose) Preparation of a microbial pesticide for controlling seedling diseases of the present invention, preparation of seeds by a method for producing seedling disease-resistant plant seeds using the same, and seedling seedlings of which are seed-resistant to seedling diseases was verified on a pot scale.
  • Fusarium oxysporum non-pathogenic fungus W3 strain (Accession No .: NITE BP-01538) and W5 strain (Accession No .: NITE BP-01539) were used.
  • Each biological control material microorganism was cultured in PSB (potato decoction) medium (200 g / L potato decoction, 0.5% [w / v] sucrose) with shaking at 28 ° C. for 5 days. Collect conidia in the culture solution by centrifugation (1,500 ⁇ g, 20 minutes), and spore suspension diluted to 1.0 ⁇ 10 5 to 1.0 ⁇ 10 7 cells / mL in sterile water. It was a microbial pesticide for control.
  • PSB potential decoction
  • Rice (variety: Tan Ginbo) was used as the host plant. After irrigating by putting 80 g of sterilized culture soil as a floor soil in a 200 mL plastic pot, the two rice grains were sown as parent rice, covered with 20 g of sterilized culture soil, and irrigated again. After sowing, the plants were cultivated for 100 days in an artificial weather room set at 26 ° C under natural light conditions.
  • the method of bringing the microbial pesticide into contact with the parent rice is as follows.
  • the microbial pesticide is flowered using a hand spray in the morning (around 10:00 to 11:00) when the rice blooms. Sprayed directly on the part (contact process).
  • the spray amount was about 5 mL per ear.
  • the parent rice after the spray treatment was cultivated until the seeds matured in an artificial weather chamber set at 26 ° C under natural light conditions. When the above-ground part of the parent rice turned yellow, threshing was carried out to collect seed meal (recovery process).
  • the seed pods collected by this treatment are hereinafter referred to as “W3-treated seed pods” and “W5-treated seed pods” (corresponding to seeds of the disease-resistant plant at the seedling stage of the present invention).
  • the control seed potato collected by the same operation except that sterilized water is sprayed instead of the microbial pesticide is hereinafter referred to as “untreated seed potato”.
  • Each treated and untreated seed meal was dried before germination.
  • the seed amount per pot was about 2 g (about 70 grains) in terms of dry weight before the soaking process.
  • Pots seeded with W3-treated seeds, W5-treated seeds and untreated seeds were designated as W3 treated group, W5 treated group and untreated group, respectively.
  • the plants were cultivated in an artificial weather room set at 28 ° C. for 14 days, and the effects of the present invention were tested by comparing rice growth in each pot.
  • the symptom evaluation was carried out using the following formulas to calculate the seedling ratio and control value of the rice seedling disease using the plant height height and the strain in which yellowing was observed as a seedling affected with rice seedling disease.
  • Disease seedling rate (%) number of diseased seedlings / total number of standing seedlings x 100
  • Control value (emergency seedling rate in untreated area-diseased seedling rate in treated area) / diseased seedling ratio in untreated area x 100
  • the germination rate was approximately 90% or more with no significant difference in each treatment section.
  • seedlings of seedling disease-resistant rice treated with Fusarium oxysporum non-pathogenic fungus W3 strain or W5 strain showed disease resistance against the rice seedling disease caused by another species Fusarium fujikuroi
  • the seeds of seedling disease-resistant rice treated with microorganisms of biological control materials and settled are highly preventive and controllable against seedling diseases caused by pathogenic bacteria other than the biological control materials microbial species It was proved that
  • Example 2 Effect of disease control in seedling disease-resistant plants (2) (the purpose) Preparation of microbial pesticides for controlling seedling diseases of the present invention, preparation of seeds by the method for producing seeds of disease-resistant plants using seedlings, and seedlings of the seeds are resistant to seedling diseases This was verified on a field scale.
  • the host parent plant was rice (variety: short silver shaved) and cultivated by the following method in order to contact the non-pathogenic bacteria.
  • the basic operation is in accordance with Example 1.
  • seed sterilization of the parent rice was immersed in a disinfectant composed of a 200-fold diluted solution of 250 mg / L ipconazole / 230 mg / L cupric hydroxide wettable powder for 24 hours.
  • the obtained sterilized parent rice seeds were bred according to a method (conventional method) known in the art.
  • no control of rice sapling and seedling diseases was performed.
  • rice (variety: Koshihikari) naturally infected with rice seedling disease was used as an infection source of rice seedling disease in the field.
  • the seed pod of this infection source was raised without seed disinfection.
  • the contact of the non-pathogenic fungus of the present invention with the parent rice is based on the heading period on the 88th day after the planting in which the heading rate is 40-50% and the heading period on the 91st day after the planting in which the heading rate is 80-90%.
  • the non-pathogenic fungus was sprayed directly on the flower part using a hand spray during the morning (around 10 o'clock to 11 o'clock) when the parent rice bloomed twice.
  • the spray amount was about 140 mL / m 2 .
  • Parent rice after spraying was cultivated according to the customary method. On the 155th day after the planting of the parent rice, the rice was harvested, threshed, and seed pods were collected.
  • the rice bud seedling disease incidence rate was verified for the various rice cakes obtained.
  • the basic operation is in accordance with Example 1.
  • the natural infection from Koshihikari which is infected with an illness and seedling disease in the field, is used as a contamination source, in principle, it is not necessary to inoculate the pathogen with a pathogen. Therefore, only the soaking treatment of the seed pod was tested for the disease inhibitory effect according to Example 1 using sterilized water instead of the rice sapling spore suspension.
  • the disease symptom evaluation was carried out using the formula described in Example 1 to calculate the diseased seedling rate and the control value, with the plant height length and the strain in which yellowing was observed as a diseased seedling.
  • the rate of seedling of rice sapling seedlings in seedling rice in the non-pathogenic fungus W3 treated area or W5 treated area seeded with seeds of disease resistant rice in the seedling stage was about 30% in the W3 treated area.
  • the control value was 65% or more.
  • the diseased seedling rate was only about 6.6%, and it had a control value of 90% or more.
  • Example 3 Effect of disease control in seedling disease-resistant plants (3) It was verified by inoculating pathogenic bacteria under conditions more severe than those in Example 2 that seedling seedlings of the seedling stage disease-resistant plant seeds of the present invention were resistant to seedling stage diseases.
  • Example 2 The materials and basic operations were the same as in Examples 1 and 2. However, in this example, as in Example 2, the non-pathogenic bacteria treatment is performed in the field, and the seed pods are prepared by using natural infection from the Kakahikari infection with the scab disease. Under the same conditions as in Example 1, it was immersed in a spore suspension of Fusarium fujikuroi, which was additionally inoculated with a pathogen. This is a control test that assumes that seeds contaminated with idiotic fungus remain in the seeds and that the seeds expand to adjacent strains during seedling raising.
  • inoculation with rice sapling spore fungus spores in a suspension makes it possible to treat rice sapling in a non-pathogenic fungus W3 treatment area despite treatment under more severe disease conditions.
  • the diseased seedling rate was about 20%, the control value was 62%, and even in the non-pathogenic fungus W5 treatment area, the rice seedling disease rate was about 15% and the control value was over 70%. Therefore, the effect of the present invention was demonstrated irrespective of the mildness of the infection conditions caused by the seedling pathogenic bacteria.
  • Example 4 Effect of disease control in seedling disease-resistant plants (4) Even when a strain other than the Fusarium genus is used, it is confirmed that the seedling seedling seedling seedling seedling seedling seedling seedlings of the present invention are resistant to the seedling stage disease using a Trichoderma strain. It verified with.
  • Example 1 Trichoderma atrovidide SKT-1 strain (trade name: Ecohope, Kumiai Chemistry) marketed as a microbial pesticide was used together with the non-pathogenic fungus W5 of Fusarium oxysporum.
  • conidia were used by scraping those formed by plate culture instead of liquid culture. The concentration of conidia was 1.0 ⁇ 10 5 cells / mL, and spraying on the flower part was performed 4 times every 2 days from the 87th day after planting.
  • the diseased seedling rate was only about 6.0%, and the control value was 50% or more. From this experiment, the effect of the present invention was demonstrated not only when the W3 strain and W5 strain, which are non-pathogenic bacteria of Fusarium oxysporum, but also when Trichoderma spp. Were used. Therefore, it is considered that the present invention can be practiced using a wide variety of bacteria including Fusarium and Trichoderma.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Plant Pathology (AREA)
  • Dentistry (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)
  • Botany (AREA)
  • Mycology (AREA)
  • Virology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Developmental Biology & Embryology (AREA)
  • Physiology (AREA)
  • Toxicology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Pretreatment Of Seeds And Plants (AREA)
  • Soil Sciences (AREA)
  • Cultivation Of Plants (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 安定的な食料生産と供給のために、イネばか苗病等の育苗期病害に対して高い耐病効果を有し、安全かつ安価に供給可能な微生物農薬を開発することである。 種子伝染性病原菌に対応する非病原性菌を微生物農薬として開花期前後の宿主植物花部に接触させ、その後に得られる前記非病原性菌が定着した宿主植物の種子を回収することによって調製される育苗期病害耐病性植物の種子製造方法および、その種子を用いた育苗期病害の防除方法を提供する。

Description

育苗期病害耐病性植物種子の製造方法及び育苗期病害の発病予防及び防除方法
 本発明は、種子伝染性病原菌に対応する非病原菌を利用した育苗期病害耐病性植物種子を製造する方法、及び育苗期病害耐病性植物種子を用いて翌世代での育苗期病害の発病を予防、防除する技術に関する。
 植物の種子伝染性病害は、土壌伝染性病害と共に育苗期病害に位置づけられる。種子伝染性病害を引き起こす種子伝染性病原菌は、保菌種子によって翌世代に伝搬され、翌世代の苗植物に感染することで拡大する場合が多い。
 例えば、イネばか苗病は、Fusarium fujikuroi(完全世代名Gibberella fujikuroi)に属するイネばか苗病菌によって引き起こされる農業上重要なイネの種子伝染性病害である。このイネばか苗病菌が定着したイネ種子(種籾)が発芽すると、周辺の健康なイネ苗に病原菌が伝播するのみならず、感染した植物体は異常な徒長及び黄化症状を示し、その後枯死に至る。枯死した植物体では、葉鞘下部表面に本菌の分生子が多数形成され、この分生子が飛散して周辺の健全株の花部や雌蕊や葯や葯骸に付着して籾が汚染される。その籾は、保菌種子として翌年の伝染源となる(非特許文献1)。
 本病害はベノミル剤やペフラゾエート等の化学農薬による種子消毒によって効果的に防除可能であり、それ故、圃場では長らく沈静化していた。ところが、化学農薬への過度の依存は耐性菌の出現を早めることから、これらの薬剤の無効化が懸念された。さらに、イプコナゾール等の作用機作が異なる殺菌剤を用いることで、本病は沈静化していた。しかし、化学農薬の使用には耐性菌の出現のリスクが常に存在しており、また環境汚染、及び米への残留等の問題も残る。さらに、昨今は環境への関心の高まりと共に、環境と調和した持続可能な農業への移行が求められており、化学農薬の代替防除技術として、例えば、温湯浸漬法のような物理的防除法や、微生物農薬による生物的防除法が普及し始めている。これらの方法は、安全な農産物を生産して消費者に安心感を与え、植物保護による環境負荷を低減し、また化学農薬を利用し難い病害虫等を制御することを目標としている。
 しかし、その一方で従来の物理的防除法や生物的防除法は、化学農薬に比べて効果が不安定で、イネばか苗病をはじめとする種子伝染性病害の発生を十分に抑制できないという問題や、処理にかかる労働力が増加するという問題があった。その他にも、微生物農薬の場合にはコスト面での問題が、また物理的防除法の場合には処理の煩雑さや種子発芽率低下等の問題があった。
作物病害事典、岸國平編、全国農村教育協会
 本発明の課題は、安定的な食料生産と供給のために、種子伝染性病害及び土壌伝染性病害を含む育苗期病害に対して高い防除効果を有し、安全、かつ安価に供給可能な生物的防除資材微生物を開発し、それを有効成分とする微生物農薬を提供すること、及び当該微生物農薬の効果的な処理方法を確立し、育苗期病害を効果的に防除することによって、栽培者の労力やコストを低減し、安全な農産物を安定的に栽培できる技術を提供することである。
 前述のように微生物農薬を用いる生物的防除法は、その効果が安定しないという大きな問題がある。その原因の一つとして、有効成分である微生物が防除効果を発揮するまでの期間、植物体上や組織内、根圏等に定着することの困難性が挙げられる。
 そこで、本発明者らは、種子伝染性病原菌に対応し、植物に定着性を有する非病原性菌を、開花期の宿主植物の花部に噴霧等の方法で処理して予め非病原性菌が定着した種子を製造することによって、翌世代の植物体に非病原菌を定着させ、育苗期病害に対する生物的防除能を引き出す技術を着想した。実験の結果、翌世代の苗等の植物体は、非病原性菌に占有され、及び/又は病原菌に対する抵抗性を獲得することによって、種子伝染性病害のみならず、土壌伝染性病害を含む育苗期病害の発生を効果的に抑制できることを見出した。本発明は、当該知見に基づくものであり、以下を提供する。
(1)種子伝染性病原菌に対応する非病原性菌を開花期前後の宿主植物の花部に接触させる工程、前記工程後に得られる前記非病原性菌が定着した宿主植物の種子を回収する工程を含む、育苗期病害耐病性植物種子の製造方法。
(2)前記宿主植物がイネ科植物である、(1)に記載の製造方法。
(3)前記イネ科植物がイネである、(2)に記載の製造方法。
(4)前記非病原性菌がFusarium属菌、Nectria属菌、Gibberella属菌、Calonectria属菌、Hypomyces属菌、Trichoderma属菌、Penicillium属菌、Talaromyces属菌、Acremonium属菌、Alternaria属菌、Verticillium属菌、Bacillus属細菌、Pseudomonas属細菌、Xanthomonas属細菌及びStreptomyces属細菌からなる群から選択される、(1)~(3)のいずれかに記載の製造方法。
(5)前記非病原性菌がFusarium oxysporum、Fusarium moniliforme、Fusarium fujikuroi、Fusarium proliferatum、及びFusarium sacchariからなる群から選択されるFusarium属菌である、(1)~(3)のいずれかに記載の製造方法。
(6)前記非病原性菌が受託番号NITE BP-01538又はNITE BP-01539である、(1)~(3)のいずれかに記載の製造方法。
(7)種子伝染性病原菌に対応する非病原性菌を開花期前後の宿主植物の花部に接触させることで得られる育苗期病害耐病性植物の種子。
(8)前記宿主植物がイネ科植物である、(7)に記載の種子。
(9)前記非病原性菌が、(4)~(6)のいずれかに記載の非病原性菌である、(7)又は(8)に記載の種子。
(10)(7)又は(8)に記載の育苗期病害耐病性植物の種子を用いる育苗期病害の発病予防及び防除方法。
(11)前記植物がイネ科植物である、(10)に記載の予防及び防除方法。
(12)前記育苗期病害が種子伝染性病害及び土壌伝染性病害である、(10)又は(11)に記載の予防及び防除方法。
(13)種子伝染性病原菌に対応する非病原性菌を有効成分とする育苗期病害防除用微生物農薬。
(14)イネ科植物適用用である、(13)に記載の微生物農薬。
(15)前記非病原性菌が、(4)~(6)のいずれかに記載の非病原性菌である、(13)又は(14)に記載の微生物農薬。
 本明細書は本願の優先権の基礎である日本国特許出願2013-047121号の明細書および/または図面に記載される内容を包含する。
 本発明の育苗期病害耐病性植物種子によれば、育苗期病害に耐病性の実生個体(苗)を製造、提供することができる。
 本発明の育苗期病害耐病性植物種子の製造方法によれば、育苗期病害に耐病性の植物種子を、簡便かつ効率的に製造することができる。
 本発明の育苗期病害の発病予防及び防除方法によれば、育苗期病害の発病の予防及び防除ができる。
 本発明の育苗期病害防除用微生物農薬によれば、育苗期病害を効率的に予防及び防除するための、安価で高効率な微生物農薬を提供することができる。
1.育苗期病害耐病性植物種子の製造方法
 本発明の第1の態様は、育苗期病害耐病性植物種子の製造方法(本明細書ではしばしば「製造方法」と称する)に関する。本発明の製造方法によれば、生物的防除資材微生物の利用により、育苗期病害に対してあたかも抵抗性品種のような耐病性を獲得した植物種子を製造し、それを提供することができる。
1-1.定義
 以下で本明細書において使用する各用語について定義する。
 「育苗期病害」とは、育苗期に感染し、あるいは、発病する植物病害で、種子伝染性病害及び土壌伝染性病害が含まれる。
 「種子伝染性病害」は、種子伝染性病原菌の感染により発生する植物病害で、浸種時又は発芽時に種子伝染性病原菌が定着した種子等を介して当該植物株のみならず周辺株に伝播する病害である。一方、「土壌伝染性病害」は、元来、土壌中に生存する病原菌の感染により発生する植物病害である。
 「種子伝染性病原菌」とは、宿主植物に形成される花部に感染した後、種子に定着し、その実生個体に病害症状をもたらす微生物をいう。本明細書において「実生個体」とは、種子から発芽した苗及びそれが生長した植物個体をいう。また、本明細書において「微生物」とは、通常、肉眼での認識が困難な微小生物、例えば、細菌(バクテリア)や菌をいう。菌は、生物分類上で菌界(Kingdom of fungi)に属する真核生物群で、時に、真菌、糸状菌と呼ばれることもある。菌は、酵母のような単細胞真核微生物、又は肉眼での認識が比較的困難な糸状菌(かびを含む)若しくはきのこのような多細胞真核微生物を含む。
 種子伝染性病原菌は、前述のように、ある特定の微生物種に包含される病原性を有する集団である。種子伝染性病原菌を包含する微生物の例として、細菌であればBacillus属細菌、Pseudomonas属細菌(現Burkholderia属細菌及びAcidovorax属細菌を含む)、Xanthomonas属細菌、Streptomyces属細菌等が、また菌であればFusarium属菌、Nectria属菌、Gibberella属菌、Calonectria属菌、Hypomyces属菌、Trichoderma属菌、Penicillium属菌、Talaromyces属菌、Acremonium属菌、Alternaria属菌、Verticillium属菌等が挙げられる。Fusarium属菌には、例えば、F. oxysporum、F. moniliforme、F. fujikuroi、F. proliferatum、又はF. sacchariが含まれる。なお、Fusarium属は、Gibberella属の主要な不完全世代名であり、本明細書でGibberella属は、Fusarium属のシノニムとする。種子伝染性病原菌の宿主植物への感染経路や感染時期は、種類によって多少の差異はあるものの、一般には宿主植物の花期に花部に感染し、その後、種子及び/又は子房(イネ科植物においては頴果)に定着する。種子伝染性病原菌は、それを保菌した種子の発芽、及び実生個体の生長と共に植物組織や根圏等に定着し、さらに周辺の健康な株に伝播して増殖し、その菌種に特有の種子伝染性病害を発病させる。種子伝染性病害の具体例としては、イネばか苗病(Gibberella fujikuroiによる)、いもち病(Magnaporthe oryzaeによる)、苗立枯病(Fusarium属菌、Pythium属菌、Rhizoctonia属菌、Trichoderma属菌による)、ごま葉枯病(Cochliobolus miyabeanusによる)、苗立枯細菌病(Pseudomonas plantarii(現Burkholderia plantarii)による)、もみ枯細菌病(Pseudomonas glumae(現Burkholderia glumae)による)、褐条病(Pseudomonas avenae(現Acidovorax avenae))が挙げられる。
 種子伝染性病原菌の宿主植物は、被子植物及び裸子植物が該当する。被子植物は、双子葉植物又は単子葉植物のいずれであってもよい。単子葉類植物では、例えば、イネ科(Poaceae)植物が挙げられる。また、双子葉類植物であれば、バラ科(Rosaceae)植物、ナス科(Solanaceae)植物、マメ科(Fabaceae)植物、ウリ科(Cucurbitaceae)植物、アブラナ科(Brassicaceae)植物等が挙げられる。好ましくはイネ科植物である。本明細書におけるイネ科植物には、例えば、イネ(Oryza sativa及びO. glaberrima)、コムギTriticum aestivum、T. compactum、及びT. durum)、オオムギ(Hordeum vulgare)、ライムギ(Secale cereale)、キビ(Panicum miliaceum)、アワ(Setaria italica)、ヒエ(Echinochloa esculenta)、モロコシ(Sorghum bicolor)、トウモロコシ(Zea mays)、サトウキビ(Saccharum officinarum)等の農業上重要な種が含まれる。好ましくはイネ、コムギ、オオムギ、トウモロコシ、サトウキビであり、より好ましくはイネである。
 「生物的防除資材微生物」とは、本願明細書における「種子伝染性病原菌に対応する非病原性菌」と同義である。ここでいう「対応する」とは、分類学上互いに主に同種又は同属又は近縁であること、あるいは、生物的防除効果を持つことを意味する。したがって、「種子伝染性病原菌に対応する非病原性菌」とは、前述のように、ある特定の微生物種において、種子伝染性病原菌と分類学上同種でありながら病原性を有さない集団をいう。例えば、イネばか苗病菌に対応する非病原性菌であれば、Fusarium属菌、例えば、F. oxysporumやF. fujikuroiの非病原性菌が該当する。生物的防除資材微生物は、宿主植物への高い感染性と定着性を保持しながら、宿主植物に対して病害症状を示さないという特徴を有する。生物的防除資材微生物が定着した宿主植物は、種子伝染性病害のみならず土壌伝染性病害を含む育苗期病害全般に対しても耐病性となる。生物的防除資材微生物の具体例としては、Fusarium oxysporum 非病原性株W3(受託番号:NITE BP-01538)又はFusarium oxysporum 非病原性株W5(受託番号:NITE BP-01539)が挙げられる。これらの生物的防除資材微生物は、2013年2月13日付で、独立行政法人製品評価技術基盤機構 特許微生物寄託センター(〒292-0818日本国千葉県木更津市かずさ鎌足2-5-8 122号室)に日本に原寄託されている。
 「育苗期病害耐病性植物」とは、生物的防除資材微生物が定着した植物であって、種子伝染性病害及び土壌伝染性病害を含む育苗期病害全般に対して耐病性を示し、それらの病害の明瞭な症状が現われない植物をいう。
1-2.生物的防除資材微生物の分離方法
 本明細書に記載の発明において使用する生物的防除資材微生物の分離方法について説明する。前述のように、生物的防除資材微生物は自然界に広く存在することから、植物体から比較的容易に分離することができる。例えば、Tateishi H. & Chida T. 2000, J. Gen. Plant Pathol., 66: 353-359に記載の方法を参照すればよい。
(1)分離源
 生物的防除資材微生物の分離源は、種子伝染性病害の発生圃場内においてその病害に罹患した植物株の周辺に生育する健全な同種株の植物組織(葉、胚軸、葉鞘、葉柄、茎、花器、果実、根部等)やその根圏土壌とすればよい。前記植物組織を分離源とする場合には、組織表面を消毒しておくことが好ましい。消毒は、例えば、採取した植物組織片約1cm2を70%エタノールに30秒間、続いて1%次亜塩素酸に3分間浸漬して組織表面を殺菌後、滅菌水で洗浄すればよい。ただし、エタノールや次亜塩素酸の濃度及び浸漬時間は特に限定するものでなく、植物組織の部位等によって当該分野で公知の技術に基づき、適宜調整すればよい。
(2)分離方法
 生物的防除資材微生物が真菌の場合、表面殺菌後の植物組織を滅菌したピンセット、メス等を用いて1cm2程度の組織片に切り分けて培地上に置床する。培地は、PSA(ジャガイモ煎汁寒天培地:200 g/L ジャガイモ煎汁、0.5%[w/v]ショ糖、1.5%[w/v]寒天)やWA(素寒天培地:1% 寒天)を用いればよい。その他、分離すべき生物的防除資材微生物の属名が明確な場合には、その属に適合した選択培地を用いることもできる。細菌のコンタミネーションを防ぐため、培地上に予め20%乳酸を塗布しておくことが望ましい。前記植物組織を置床した培地を25~30℃で2~5日培養する。培地プレート上で生育した単一コロニー(単細胞真核微生物の場合)、菌糸先端(糸状菌又は担子菌の場合)、胞子又は分生子を新しい培地プレートに再移植して単一コロニー株を確立する。
 また、生物的防除資材微生物が細菌の場合も同様に、表面殺菌後の植物組織を滅菌したピンセット、メス等を用いて1cm2程度の組織片に切り分けて培地上に置床する。培地は、PSAやKing B培地(2%[w/v]ペプトン、1%[w/v]グリセリン、0.15%[w/v]リン酸水素二カリウム、0.15%[w/v]硫酸マグネシウム・七水和物、1.5%[w/v]寒天)の他、分離すべき生物的防除資材微生物の属名が明確な場合には、その属に適合した選択培地を用いることもできる。前記植物組織を置床した培地を25~30℃で1~3日培養する。発生した単一コロニーを掻き取り、新しい培地プレートに移植して、再び生育したコロニーを単一株として確立する。
(3)非病原性菌の分離
 分離した種子伝染性病原菌が非病原性菌、すなわち、本発明に使用する生物的防除資材微生物であるか否かは、上記(2)で単一株として確立した微生物を、宿主植物の苗に感染させ、その苗に特徴的な病害症状が現れないことを確認することによって分離すればよい。
1-3.構成
 本発明の育苗期病害耐病性植物の種子製造方法は、接触工程及び回収工程を含む。以下、各工程について具体的に説明をする。
(1)接触工程
 「接触工程」とは、開花期前後の宿主植物の花部に生物的防除資材微生物を接触させる工程である。
 この工程では、宿主植物の花部に種子伝染性病原菌が感染し、その種子に定着する前に、いずれかの生物的防除資材微生物を宿主植物に定着させる。
 本明細書において「開花期」とは、宿主植物が開花している期間をいう。「開花期前後」とは、宿主植物の開花が始まる前及び開花が終了した後を含む期間をいう。この期間は、開花期を挟んで前後2週間、好ましくは前後10日間、より好ましくは前後1週間又は前後5日間である。例えば、宿主植物がイネで、開花期を挟んで前後2週間の場合、イネにおいて幼穂が急速に生長する幼穂発育期からその株における開花期が完了して種子が成熟する前までの期間が該当する。
 前述のように、生物的防除資材微生物を宿主植物の花部に接触させる時期は、所定の地域で発生している又は発生のおそれがある種子伝染性病原菌が宿主植物に感染する前とする。種子伝染性病原菌が生物的防除資材微生物よりも先に宿主植物に感染した場合、種子伝染性病原菌による他の微生物の感染を排除する作用(競合作用)により生物的防除資材微生物が宿主植物に感染できず、本発明の効果を得ることができないためである。
 接触させる生物的防除資材微生物の種類は特に問わない。一般に、いずれかの生物的防除資材微生物が未感染の宿主植物に感染した場合、その感染した生物的防除資材微生物による占有と競合作用により、及び/又は生物的防除資材微生物の感染で宿主植物において誘導される抵抗性により、他の種子伝染性病原菌の感染が困難となる。本発明はこの原理を利用したものであって、生物的防除資材微生物を宿主植物に接触させることにより、微生物種を問わず、種子伝染性病原菌を含む育苗期病害の病原菌がその後に感染することを防除できる。それ故、本製造方法で得られる宿主植物の種子は、育苗期病害に対して耐病性となり得る。通常は、育苗期病害耐病性植物の種子を播種すべき地域で発生している又は発生する恐れのある種子伝染性病原菌に対応する非病原性菌を用いればよい。例えば、イネばか苗病が発生している圃場であれば、イネばか苗病菌に対応するFusarium属菌の非病原性菌を生物的防除資材微生物として用いればよい。例えば、Fusarium属菌由来の非病原性菌であるFusarium oxysporum W3株(受託番号:NITE BP-01538)又はFusarium oxysporum W5株(受託番号:NITE BP-01539)を用いることができる。もちろん、前述の理由から、他の種子伝染性病原菌に対応する非病原性菌由来の生物的防除資材微生物であっても同等の効果を得ることが可能である。ただし、接触させる生物的防除資材微生物は、異なる複数菌種の混合物ではなく、単一菌種を接触させることが望ましい。
 生物的防除資材微生物の接触回数は限定しない。イネ科植物のように小穂に含まれる小花が連続して開花する種では、全ての花部にくまなく生物的防除資材微生物を感染させるために数回にわたって本工程を行ってもよい。ただし、各回で接触させる生物的防除資材微生物は、前述の理由から同一株であることが望ましい。
 生物的防除資材微生物の宿主植物への接触方法は、生物的防除資材微生物を接触することができる方法であれば特に制限はしない。例えば、後述する生物的防除資材微生物の培養液、懸濁液、粉剤等を噴霧、散布、塗布、浸漬する等の方法が挙げられる。宿主植物への接触場所は、宿主植物体の一部又は全体のいずれであってもよいが、植物体の一部に接触させる場合、生物的防除資材微生物の宿主植物感染経路に関連する部位、すなわち花部に接触させる点に留意する。
(2)回収工程
 「回収工程」とは、前記接触工程後に得られる前記生物的防除資材微生物が定着した宿主植物の種子を回収する工程である。前記接触工程で宿主植物の花部に接触した生物的防除資材微生物は、通常、頴娃や種皮や胚珠組織に定着する。宿主植物は、受粉後に非病原性変異株が定着した種子を発達させる。したがって、本工程では、発芽能力を有するまで十分に成熟した種子を当該分野で公知の方法により回収すればよい。接触工程後の宿主植物から得られる種子は、原則、育苗期病害耐病性植物の種子とみなすことができる。
 回収工程後、保存性を向上させるために必要に応じて種子を乾燥させてもよい。乾燥方法は、種子の発芽能を保持し、定着している生物的防除資材微生物が死滅しない範囲において、種子中の水分を適度に減じる方法であれば、いずれの方法であってもよい。例えば、外気に晒す自然乾燥法、除湿剤とともに密閉容器内に入れる除湿乾燥法、送風装置等を用いて温風や冷風を送り乾燥させる風乾燥法又はそれらの組み合わせが挙げられる。その後の種子保管方法は、当該分野で周知の方法に従えばよい。
 また、必要であれば回収工程後の種子が生物的防除資材微生物の定着した保菌種子であるか否かを確認することもできる。保菌種子候補の一部又は全部から核酸を調製後に、接触させた生物的防除資材微生物の遺伝子に特有の塩基配列をプライマーとして設計し、PCR等の核酸増幅法により、当該技術に基づき容易に確認すればよい。例えば、生物的防除資材微生物がFusarium oxysporumの場合であれば、リボソームDNA IGS領域が生物的防除資材微生物か否かを同定し得る特有の塩基配列となり得る。それ故、その領域を増幅するプライマーセットとして用いればよい。具体的には、例えばFIGS11(5’-GTAAGCCGTCCTTCGCCTCG-3’:配列番号1)及びFIGS12(5’-GCAAAATTCAATAGTATGGC-3’:配列番号2)が挙げられる。このプライマーセットを用いることで、Fusarium oxysporum W3株(受託番号:NITE BP-01538)であれば配列番号3に記載の塩基配列を有するDNA断片が、またFusarium oxysporum W5株(受託番号:NITE BP-01539)であれば配列番号4に記載の塩基配列を有するDNA断片が、増幅される。したがって、Fusarium oxysporum由来のいずれの生物的防除資材微生物が定着しているかを確認、及び同定することができる。
 得られた育苗期病害耐病性植物の種子の実生個体は、生物的防除資材微生物の保菌種子であることから生物的防除資材微生物が有する競合作用により、育苗期病害耐病の株として病害症状を発病することなく生育できる。
1-4.効果
 本発明の育苗期病害耐病性植物の種子製造方法によれば、その種子の実生個体があたかも育苗期病害抵抗性品種のようにあらゆる育苗期病害に対して耐病性となる植物種子を簡便に製造し、提供することができる。
 本発明の育苗期病害耐病性植物の種子製造方法は、少なくとも採種用の植物に対してのみ行えば足りることから、生物的防除資材微生物の散布域も最小限に限定することが可能で、それ故、環境影響も小さく、また経済的にも優れている。
 本発明の育苗期病害耐病性植物の種子によれば、播種前の種子に種子伝染性病害に対する防除処理又は発病抑制処理を行う必要がなく、通常通り播種するだけで育苗期病害を発病しない宿主植物を栽培することができるので、労力削減やコスト削減も可能となる。また、化学農薬による種子消毒が不要となるか、低減できる。
 本発明の育苗期病害耐病性植物の種子製造方法は、自然界に存在する非病原性菌を利用した微生物農薬であることから安全性が高く、化学農薬と比較して環境に対する影響が小さい。
2.育苗期病害の発病予防及び防除方法
 本発明の第2の態様は、育苗期病害の発病予防及び防除方法に関する。本発明によれば、育苗期病害耐病性植物種子の実生個体及び該実生個体周辺の他植物個体における育苗期病害の発病を予防し、また防除することができる。
2-1.構成
 本発明の育苗期病害の発病方法(以下、本明細書ではしばしば「予防防除方法」と称する)は、生物的防除資材微生物を定着させた第1態様に記載の育苗期病害耐病性植物の種子を用いる。本発明の予防防除方法の基本的工程は、育苗期病害耐病性植物の植物種における通常の栽培方法を行うだけでよい。ただし、播種に先立って行われる種子消毒については、行う必要はない。
 イネを例に挙げて説明すると、育苗期病害耐病性イネの種籾を催芽させ、培養土を入れた容器(苗箱等)に播種して育苗する。その後、苗を圃場に定植し、常法により栽培すれば足りる。
 第1態様に記載の育苗期病害耐病性植物の種子は、生物的防除資材微生物が定着している。しかし、生物的防除資材微生物は、非病原性菌であるため育苗期病害を発病することはない。したがって、その苗は、種子伝染性病害や土壌伝染性病害を含む育苗期病害の病原菌の感染を効率的に予防及び防除することができる。
 さらに、育苗期病害耐病性植物の種子に定着している生物的防除資材微生物は、非病原性菌ではあるが感染性を保持していることから、育苗期病害耐病性植物の種子を種子伝染性病原菌非感染の種子と共に栽培した場合、浸種~育苗期に周辺の健苗にも伝播し得る。しかし、それによって生物的防除資材微生物の占有や、それに感染した植物自身により誘導される病原菌抵抗性が生じ、その後の種子伝染性病害や土壌伝染性病害を含む育苗期病害の病原菌の感染を効率的に予防及び防除することができる。
2-2.効果
 本発明の予防防除方法によれば、種子伝染性病害や土壌伝染性病害を含む育苗期病害を、特別な処理を必要とすることなく、効率的に予防及び防除することができる。
 本発明の予防防除方法によれば、従来播種前に行われていた種子消毒が必須ではなくなることから、労力削減やコスト削減が可能となる。
 本発明の予防防除方法によれば、第1態様に記載の育苗期病害耐病性植物の種子の実生個体のみならず、それと共に栽培した健苗個体においても種子伝染性病害や土壌伝染性病害を含む育苗期病害の病原菌の感染を効率的に予防及び防除することができる。
3.育苗期病害防除用微生物農薬
 本発明の第3の態様は、育苗期病害防除用微生物農薬に関する。本発明の育苗期病害防除用微生物農薬は、所望の植物に施用することで、その植物に育苗期病害耐病性を賦与することができる。
3-1.構成
 本発明の育苗期病害防除用微生物農薬は、生物的防除資材微生物を有効成分とする。
 生物的防除資材微生物は、第1態様に記載の生物的防除資材微生物を用いればよい。生物的防除資材微生物の具体例としては、例えば、イネばか苗病菌を発病させるFusarium fujikuroiに近縁種の非病原性菌Fusarium oxysporum W3株(受託番号:NITE BP-01538)又はFusarium oxysporum W5株(受託番号:NITE BP-01539)が挙げられる。本発明の効果を奏するためには、生物的防除資材微生物が宿主植物に対して定着性を維持している必要がある。したがって、本発明の微生物農薬中の生物的防除資材微生物は生存状態で保持されていなければならない。
 本発明の育苗期病害防除用微生物農薬の所定量あたりにおける生物的防除資材微生物の量は、その種類、施用対象植物の種類、剤形、及び施用(接触)方法等の諸条件によって左右される。通常は、本発明の微生物農薬を施用する際に有効成分の生物的防除資材微生物が施用対象植物に接触、定着する上で十分な量を含んでいることが好ましい。この量は、当該分野の技術常識の範囲において本発明の微生物農薬に含有される生物的防除資材微生物が施用後に対象植物に対して所望の量となるように各条件を勘案し、生物的防除資材微生物の含有量を決定すればよい。例えば、生物的防除資材微生物がFusarium属由来で、本発明の微生物農薬が液体状態の場合には、その分生子が溶液中に1.0×104個/mL以上、好ましくは5.0×104個/mL以上含まれていればよい。上限は特に制限はしないが、感染率が低い生物的防除資材微生物であっても通常は1.0×109個/mLもあれば足りる。
 本発明の微生物農薬は、生物的防除資材微生物の宿主植物感染活性を阻害又は抑制しない範囲において農薬製剤上許容可能な担体を含むことができる。
 「農薬製剤上許容可能な担体」とは、微生物農薬の施用を容易にし、有効成分である生物的防除資材微生物の生存性及び感染性を維持又は/及び微生物農薬の作用速度を制御する物質であって、野外及び屋内を含む植物の栽培に施用しても土壌及び水質等の環境に対する有害な影響がないか又は小さい、又は動物、特にヒトに対する有害性がないか又は低い物質をいう。例えば、賦形剤が挙げられる。好適な賦形剤としては、粉砕天然鉱物、粉砕合成鉱物、乳化剤、分散剤及び界面活性剤等が挙げられる。
 粉砕天然鉱物には、例えば、カオリン、クレイ、タルク及びチョークが挙げられる。
 粉砕合成鉱物には、例えば、高分散シリカ及びシリケートが挙げられる。乳化剤としては、非イオン性乳化剤やアニオン性乳化剤(例えば、ポリオキシエチレン脂肪アルコールエーテル、アルキルスルホネート及びアリールスルホネート)が挙げられる。
 分散剤としては、例えば、リグノ亜硫酸廃液及びメチルセルロースが挙げられる。
 界面活性剤としては、例えば、リグノスルホン酸、ナフタレンスルホン酸、フェノールスルホン酸、ジブチルナフタレンスルホン酸のアルカリ金属塩、アルカリ土類金属塩及びアンモニウム塩、アルキルアリールスルホネート、アルキルスルフェート、アルキルスルホネート、脂肪アルコールスルフェート、脂肪酸及び硫酸化脂肪アルコールグリコールエーテル、さらに、スルホン化ナフタレン及びナフタレン誘導体とホルムアルデヒドの縮合物、ナフタレン又はナフタレンスルホン酸とフェノール及びホルムアルデヒドの縮合物、ポリオキシエチレンオクチルフェニルエーテル、エトキシル化イソオクチルフェノール、オクチルフェノール、ノニルフェノール、アルキルフェニルポリグリコールエーテル、トリブチルフェニルポリグリコールエーテル、トリステアリルフェニルポリグリコールエーテル、アルキルアリールポリエーテルアルコール、アルコール及び脂肪アルコール/エチレンオキシドの縮合物、エトキシル化ヒマシ油、ポリオキシエチレンアルキルエーテル、エトキシル化ポリオキシプロピレン、ラウリルアルコールポリグリコールエーテルアセタール、ソルビトールエステル、リグノ亜硫酸廃液、及びメチルセルロースが挙げられる。
 本発明の微生物農薬は、前記農薬製剤上許容可能な担体を1以上包含することが可能である。また、この他に、生物的防除資材微生物の感染に影響しない範囲において、他の薬理作用を有する有効成分、すなわち、除草剤、殺菌剤、殺虫剤、肥料(例えば、尿素、硝酸アンモニウム、過リン酸塩)を包含することもできる。
 本発明の微生物農薬の剤形は、生物的防除資材微生物の宿主植物定着性を保持し得る状態であれば、いかなる状態であってもよく、たとえば、生物的防除資材微生物を適当な溶液に懸濁した液体状態、固体状態(粉末状態を含む)、又はその組み合わせとすることができる。液体状態の場合、有効成分である生物的防除資材微生物を適切な溶液に懸濁したものであればよい。適切な溶液としては、例えば、水、バッファー、その生物的防除資材微生物用の培地が挙げられる。固体状態の場合、有効成分である生物的防除資材微生物が、宿主植物に作用し得る状態であれば、特に制限はしない。たとえば、顆粒状態、粉末状態、ゲルのような半固体状態が挙げられる。接触等により宿主植物に付着し、増殖、作用することを鑑みれば、粉末状(特に接着性を有する粉末状)、ゲル状であることが好ましい。
3-2.効果
 本発明の育苗期病害防除用微生物農薬によれば、育苗期病害耐病性植物を簡便に製造するための、又は宿主植物の感染を予防するための、安価で効率のよい剤を提供することができる。
 以下で本発明の実施例について具体例を示して説明するが、本発明はこの実施例の形態に限定されるものではない。
<実施例1>
育苗期病害耐病性植物における育苗期病害防除効果(1)
(目的)
 本発明の育苗期病害防除用微生物農薬の調製、それを用いた育苗期病害耐病性植物種子の製造方法による種子の調製、及びその種子の実生個体が育苗期病害に対して耐病性となることをポットスケールで検証した。
(材料と方法)
 生物的防除資材微生物には、Fusarium oxysporumの非病原性菌W3株(受託番号:NITE BP-01538)、及びW5株(受託番号:NITE BP-01539)を用いた。
 各生物的防除資材微生物は、PSB(ジャガイモ煎汁)培地(200 g/L ジャガイモ煎汁、0.5%[w/v]ショ糖)で28℃にて5日間振とう培養した。遠心分離(1,500×g、20分間)によって培養液中の分生子を回収し、滅菌水に1.0×105~1.0×10個/mLになるように希釈した胞子懸濁液を育苗期病害防除用微生物農薬とした。
 宿主植物はイネ(品種:短銀坊主)を用いた。200mLのプラスチックポットに床土として滅菌培養土を80g入れて灌水後、前記イネ2粒を親イネとして播種し、滅菌培養土20gを覆土して再度灌水した。播種後、26℃に設定した自然光条件下の人工気象室内で100日間栽培した。
 前記微生物農薬を親イネに接触させる方法は、親イネの最初の開花から1週間後に、イネが開花する午前中(10時~11時頃)の時間にハンドスプレーを用いて前記微生物農薬を花部に直接噴霧した(接触工程)。噴霧量は1穂当り約5mLとした。噴霧処理後の親イネを、26℃に設定した自然光条件下の人工気象室内で種子が登熟するまで栽培した。親イネの地上部が黄色く変化した頃に脱穀して種籾を採取した(回収工程)。この処理で採取した種籾を以下「W3処理済種籾」及び「W5処理済種籾」(本発明の育苗期病害耐病性植物の種子に相当する)とする。一方、微生物農薬の代わりに滅菌水を噴霧した以外、同様の操作によって採取した対照種籾を以下「無処理種籾」とする。各処理済種籾と無処理種籾は、発芽処理前にそれぞれ乾燥した。
 各種籾をイネばか苗病菌の原因菌である病原性Fusarium fujikuroiの胞子懸濁液(1.0×103個/mL、調製方法は生物防除資材微生物の胞子懸濁液と同じ)に浴比1:1で浸し、15℃で4日間浸漬処理を行った。その後、30℃で1日間催芽処理を行った。200mLのプラスチックポットに滅菌培養土を床土として80g入れて灌水後、各処理済種籾と無処理種籾をポットに播種し、滅菌培養土20gを覆土して再度灌水した。1ポット当りの種籾量は、浸種処理前の乾燥重量で約2 g(70粒程度)とした。W3処理済種籾、W5処理済種籾及び無処理種籾を播種したポットをそれぞれW3処理区、W5処理区及び無処理区とした。播種後、28℃に設定した自然光条件下の人工気象室内で14日間栽培し、各ポットにおけるイネの生長比較によって、本発明の効果を検定した。
 病徴評価は、草丈の徒長、及び黄化が観察された株をイネばか苗病罹病苗として、下記の式を用いてイネばか苗病の発病苗率、及び防除価を算出した。
  発病苗率(%)=罹病苗数/全立苗数×100
  防除価=(無処理区の発病苗率-処理区の発病苗率)/無処理区の発病苗率×100
 なお、発芽率は、各処理区間で有意な差は無く、概ね90%以上であった。
(結果)
 表1に結果を示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、陰性対照である無処理区では、実生イネの約30.5%がイネばか苗病を発病したのに対して、育苗期病害耐病性イネの種子を播種したW3処理区及びW5処理区の実生イネの発病苗率は5%以下であった。これにより、本発明の微生物農薬を用いて育苗期病害耐病性植物の種子製造方法によって得られた種子は、育苗期病害に対して極めて高い耐病性を獲得することが実証された。また、Fusarium oxysporumの非病原性菌W3株又はW5株で処理した育苗期病害耐病性イネの種子が、別種であるFusarium fujikuroiを原因とするイネばか苗病に対して耐病性を示したことから、生物的防除資材微生物で処理し、それを定着させた育苗期病害耐病性イネの種子は、その生物的防除資材微生物種以外の病原菌を原因とする育苗期病害に対しても高い予防防除力を発揮することが立証された。
<実施例2>
育苗期病害耐病性植物における育苗期病害防除効果(2)
(目的)
 本発明の育苗期病害防除用微生物農薬の調製、それを用いた育苗期病害耐病性植物の種子の製造方法による種子の調製、及びその種子の実生個体が育苗期病害に対して耐病性となることを圃場スケールで検証した。
(材料と方法)
 Fusarium oxysporumの非病原性菌W5株(受託番号:NITE BP-01539)を用いた育苗期病害防除用微生物農薬の調製は、実施例1に準じて行った。培養液中の分生子の濃度は、1.0×105個/mLとした。
 宿主親植物をイネ(品種:短銀坊主)とし、上記非病原性菌を接触させるために以下の方法で栽培した。基本操作は実施例1に準じる。まず、250 mg/Lのイプコナゾール/230 mg/Lの水酸化第二銅水和剤の200倍希釈液からなる消毒剤に上記親イネの種籾を24時間浸漬し、種子消毒を行った。得られた消毒処理済の親イネ種籾を当該分野で公知の方法(慣行法)に従って育苗した。なお、前記消毒剤での処理以外には、イネばか苗病害防除を一切行っていない。
 一方、圃場におけるイネばか苗病の感染源には、イネばか苗病に自然感染したイネ(品種:コシヒカリ)を用いた。この感染源の種籾は、種子消毒を行わず育苗した。
 両苗は発病前の播種後32日目に本田に定植した。
 親イネへの本発明の非病原性菌の接触は、出穂率40~50%となる定植後88日目の出穂期と、出穂率80~90%となる定植後91日目の穂揃期の2回にわたって親イネが開花する午前中(10時~11時頃)の時間にハンドスプレーを用いて前記非病原性菌を花部に直接噴霧した。噴霧量は約140mL/m2とした。噴霧処理後の親イネは慣行法に従い栽培した。親イネの定植後155日目にイネを刈り取り、脱穀して種籾を採取した。
 得られた各種籾についてイネばか苗病発病率を検証した。基本操作は実施例1に準じる。ただし、本実施例では、圃場でのばか苗病感染コシヒカリからの自然感染を汚染源としているため、原則、種籾を病原菌接種する必要がない。したがって、種籾の浸漬処理のみ、イネばか苗病菌胞子懸濁液に換えて滅菌水を用い、実施例1に準じて発病抑制効果を検定した。病徴評価は、草丈の徒長、及び黄化が観察された株を罹病苗として、実施例1に記載の式を用いて発病苗率、及び防除価を算出した。
(結果)
 表2に結果を示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、育苗期病害耐病性イネの種子を播種した非病原性菌W3処理区又はW5処理区の実生イネにおけるイネばか苗病の発病苗率は、W3処理区では約30%にとどまり、防除価は65%以上であった。またW5処理区では発病苗率は約6.6%に過ぎず、90%以上の防除価を有していた。この実験により圃場スケールであっても本発明の効果が実証された。
<実施例3>
(目的)
育苗期病害耐病性植物における育苗期病害防除効果(3)
 本発明の育苗期病害耐病性植物種子の実生個体が育苗期病害に対して耐病性となることを実施例2よりも厳しい条件で病原菌を接種して検証した。
(材料と方法)
 材料及び基本操作は、実施例1及び2に準じた。ただし、本実施例では実施例2と同様に圃場で非病原性菌処理を行い、ばか苗病感染コシヒカリからの自然感染を汚染源として種籾を調製するものの、催芽処理において、種籾を滅菌水ではなく実施例1と同じ条件でイネばか苗病菌Fusarium fujikuroi胞子懸濁液に浸漬して、追加で病原菌接種を行った。これは、種子中にばか苗病菌の汚染したものが残存していて、育苗時に隣接株に拡大することを想定した防除試験である。
(結果)
 表3に結果を示す。
Figure JPOXMLDOC01-appb-T000003
 実施例2と同様の自然感染に加え、イネばか苗病菌胞子を懸濁液で接種することで、より厳しい発病条件で処理したにもかかわらず、非病原性菌W3処理区ではイネばか苗病の発病苗率が約20%、防除価が62%、また非病原性菌W5処理区でもイネばか苗病の発病苗率が約15%、防除価が70%以上であった。したがって、育苗期病原菌による感染条件の寛厳にかかわらず本発明の効果が実証された。
<実施例4>
(目的)
育苗期病害耐病性植物における育苗期病害防除効果(4)
 Fusarium属菌以外の菌株を用いた場合であっても、本発明の育苗期病害耐病性植物種子の実生個体が育苗期病害に対して耐病性となることを、Trichoderma属菌株を用いてポットスケールで検証した。
(材料と方法)
 材料及び基本操作は、実施例1に準じた。ただし、本実施例では、Fusarium oxysporumの非病原性菌W5と共に、微生物農薬として市販されているTrichoderma atrovidide SKT-1菌株(商品名:エコホープ、クミアイ化学)を用いた。また、分生子は液体培養でなく、平板培養で形成されたものをかきとって使用した。分生子の濃度は1.0×105個/mLとし、花部への噴霧は、定植後87日目から、2日ごとに計4回行った。
(結果)
 表4に結果を示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、Trichoderma菌処理区では、発病苗率は約6.0%にとどまり、防除価は50%以上であった。この実験により、Fusarium oxysporumの非病原性菌であるW3株及びW5株のみならず、Trichoderma属菌を用いた場合であっても、本発明の効果が実証された。したがって、本発明は、Fusarium属菌及びTrichoderma属菌を含む広範な菌を用いて実施可能であると考えられる。
 本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。

Claims (15)

  1.  種子伝染性病原菌に対応する非病原性菌を開花期前後の宿主植物の花部に接触させる工程、
     前記工程後に得られる前記非病原性菌が定着した宿主植物の種子を回収する工程
    を含む、育苗期病害耐病性植物の種子製造方法。
  2.  前記宿主植物がイネ科植物である、請求項1に記載の製造方法。
  3.  前記イネ科植物がイネである、請求項2に記載の製造方法。
  4.  前記非病原性菌がFusarium属菌、Nectria属菌、Gibberella属菌、Calonectria属菌、Hypomyces属菌、Trichoderma属菌、Penicillium属菌、Talaromyces属菌、Acremonium属菌、Alternaria属菌、Verticillium属菌、Bacillus属細菌、Pseudomonas属細菌、Xanthomonas属細菌及びStreptomyces属細菌からなる群から選択される、請求項1~3のいずれか一項に記載の製造方法。
  5.  前記非病原性菌がFusarium oxysporum、Fusarium moniliforme、Fusarium fujikuroi、Fusarium proliferatum、及びFusarium sacchariからなる群から選択されるFusarium属菌由来である、請求項1~3のいずれか一項に記載の製造方法。
  6.  前記非病原性菌が受託番号NITE BP-01538又はNITE BP-01539である、請求項1~3のいずれか一項に記載の製造方法。
  7.  種子伝染性病原菌に対応する非病原性菌を開花期前後の宿主植物の花部に接触させることによって得られる育苗期病害耐病性植物の種子。
  8.  前記宿主植物がイネ科植物である、請求項7に記載の種子。
  9.  前記非病原性菌が請求項4~6のいずれかに記載の非病原性菌である、請求項7又は8に記載の種子。
  10.  請求項7又は8に記載の育苗期病害耐病性植物の種子を用いる育苗期病害の発病予防及び防除方法。
  11.  前記植物がイネ科植物である、請求項10に記載の予防及び防除方法。
  12.  前記育苗期病害が種子伝染性病害及び土壌伝染性病害である、請求項10又は11に記載の予防及び防除方法。
  13.  種子伝染性病原菌に対応する非病原性菌を有効成分とする育苗期病害防除用微生物農薬。
  14.  イネ科植物適用用である、請求項13に記載の微生物農薬。
  15.  前記非病原性菌が請求項4~6のいずれかに記載の非病原性菌である、請求項13又は14に記載の微生物農薬。
PCT/JP2014/056059 2013-03-08 2014-03-07 育苗期病害耐病性植物種子の製造方法及び育苗期病害の発病予防及び防除方法 WO2014136967A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/773,026 US10264796B2 (en) 2013-03-08 2014-03-07 Method for producing seeds of plants resistant to seedling diseases, and method for preventing the onset of and controlling seedling diseases
KR1020157028014A KR101770656B1 (ko) 2013-03-08 2014-03-07 육묘기 병해 내병성 식물 종자의 제조 방법 및 육묘기 병해의 발병 예방 및 방제 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-047121 2013-03-08
JP2013047121 2013-03-08

Publications (1)

Publication Number Publication Date
WO2014136967A1 true WO2014136967A1 (ja) 2014-09-12

Family

ID=51491474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056059 WO2014136967A1 (ja) 2013-03-08 2014-03-07 育苗期病害耐病性植物種子の製造方法及び育苗期病害の発病予防及び防除方法

Country Status (4)

Country Link
US (1) US10264796B2 (ja)
JP (1) JP6241001B2 (ja)
KR (1) KR101770656B1 (ja)
WO (1) WO2014136967A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114902904A (zh) * 2022-06-20 2022-08-16 江西省永盛园艺股份有限公司 一种多肉植物养育用环境消杀设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016123372A (ja) * 2015-01-06 2016-07-11 日本車輌製造株式会社 自動種子消毒装置
US10412682B2 (en) * 2017-08-30 2019-09-10 Qualcomm Incorporated Mechanism to update/download profile using low power or no power
CN114456955B (zh) * 2022-02-25 2024-03-19 中国水稻研究所 一种水稻恶苗病的高效接种方法及其应用
CN115466685B (zh) * 2022-08-11 2024-02-23 浙江钱江生物化学股份有限公司 藤仓镰刀菌及其发酵生产赤霉素a4+7的方法及运用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001346407A (ja) * 2000-06-08 2001-12-18 Ts Shokubutsu Kenkyusho:Kk 無病種子の生産方法
JP2003192515A (ja) * 2001-12-27 2003-07-09 Kureha Chem Ind Co Ltd 植物病害防除剤および防除方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5753222A (en) * 1996-11-18 1998-05-19 Agritope, Inc. Antibiotic-producing strain of bacillus and methods for controlling plant diseases
US20070093387A1 (en) * 2003-05-13 2007-04-26 Kazuo Sumi Anti-microbial/anti-viral composition
EP2676536A1 (en) * 2012-06-22 2013-12-25 AIT Austrian Institute of Technology GmbH Method for producing plant seed containing endophytic micro-organisms

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001346407A (ja) * 2000-06-08 2001-12-18 Ts Shokubutsu Kenkyusho:Kk 無病種子の生産方法
JP2003192515A (ja) * 2001-12-27 2003-07-09 Kureha Chem Ind Co Ltd 植物病害防除剤および防除方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHUN'ICHIRO NAKAMURA, NORIN SHUSHIGAKU SORON, 20 July 1985 (1985-07-20), pages 161 - 194 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114902904A (zh) * 2022-06-20 2022-08-16 江西省永盛园艺股份有限公司 一种多肉植物养育用环境消杀设备
CN114902904B (zh) * 2022-06-20 2023-07-25 江西省永盛园艺股份有限公司 一种多肉植物养育用环境消杀设备

Also Published As

Publication number Publication date
JP2014195451A (ja) 2014-10-16
KR20150128883A (ko) 2015-11-18
US10264796B2 (en) 2019-04-23
JP6241001B2 (ja) 2017-12-06
KR101770656B1 (ko) 2017-08-23
US20160015040A1 (en) 2016-01-21

Similar Documents

Publication Publication Date Title
CN109762777B (zh) 一株多粘类芽孢杆菌菌株及其应用
KR101905045B1 (ko) 바실러스 서브틸리스 ygb70 균주 및 이를 포함하는 인삼 뿌리썩음병원균 방제용 미생물 제제
JP6241001B2 (ja) 育苗期病害耐病性植物種子の製造方法及び育苗期病害の発病予防及び防除方法
KR101785098B1 (ko) 이사리아 자바니카 Pf185 균주 또는 이를 이용한 진딧물 및 잘록병균의 동시방제용 조성물
KR101695918B1 (ko) 딸기 화분으로부터 분리한 곤충병원균 또는 딸기 진균병 병원균에 대해 항균활성을 갖는 스트렙토마이세스 바디우스 sp6c4 균주 및 이의 용도
EP1774854A1 (en) Microbial pesticide inhibiting the outbreak of plant disease damage
CN107075459B (zh) 芽孢杆菌属的新型细菌及其用途
CN104974965A (zh) 枯草芽孢杆菌jn005及其在防治水稻稻瘟病中的应用
Abdulkareem et al. Antagonistic activity of some plant growth rhizobacteria to Fusarium graminearum
Abada et al. Management Fusarium wilt of sweet pepper by Bacillus strains
Wu et al. Common strategies to control pythium disease
Li et al. Biological control of blossom blight of alfalfa caused by Botrytis cinerea under environmentally controlled and field conditions
KR20120061580A (ko) 심플리실리움 라멜리콜라 krict3 균주, 이를 함유하는 식물병 방제용 조성물 및 식물병 방제방법
KR101773339B1 (ko) 이사리아 푸모소로세아 Pf212 균주 또는 이를 이용한 진딧물, 잘록병균 및 고추 탄저병균의 동시방제용 조성물
JP2003531603A (ja) 新規のトリコデルマ属微生物菌株を利用した生物学的防除用微生物製剤およびその製造方法
CN104513802A (zh) 一种玉米内生枯草芽孢杆菌及其生防应用
KR101211681B1 (ko) 스트렙토마이세스 니그로글리세러스 씨엠씨0647 균주를 이용한 식물병 방제제
Zhang et al. Decline in Cucumis melo L. Caused by Monosporascus cannonballus
KR100760526B1 (ko) 비카베린을 생산하는 후자리움 옥시스포룸 ef119 균주,비카베린 또는 ef119 균주를 포함하는 식물병 방제용미생물 제제 및 이를 이용하여 식물병을 방제하는 방법
KR101044273B1 (ko) 비카베린을 포함하는 식물병 방제용 제제 및 이를 이용하여식물병을 방제하는 방법
JP4969961B2 (ja) 新規糸状菌を利用した植物の土壌伝染性病害防除資材
KR100905408B1 (ko) 마이크로비스포라 속 a073 균주, 이를 포함하는 식물병방제용 미생물 제제, 및 이를 이용한 식물병의 방제 방법
Zalewska et al. Antifungal activity of nanoparticles against chosen fungal pathogens of caraway
KR102444742B1 (ko) 작물의 깨씨무늬병 완화를 위한 조성물
Hansel Evaluation of an isolate of Bacillus subtilis for biocontrol of Phytophthora blight of

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14760023

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14773026

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157028014

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201506390

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 14760023

Country of ref document: EP

Kind code of ref document: A1