WO2014136324A1 - レンズ装置及び可動光学素子の位置検出方法 - Google Patents

レンズ装置及び可動光学素子の位置検出方法 Download PDF

Info

Publication number
WO2014136324A1
WO2014136324A1 PCT/JP2013/081126 JP2013081126W WO2014136324A1 WO 2014136324 A1 WO2014136324 A1 WO 2014136324A1 JP 2013081126 W JP2013081126 W JP 2013081126W WO 2014136324 A1 WO2014136324 A1 WO 2014136324A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
signal
magnetic signal
recorded
detected
Prior art date
Application number
PCT/JP2013/081126
Other languages
English (en)
French (fr)
Inventor
宮下 守
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2015504129A priority Critical patent/JP5802857B2/ja
Priority to CN201380074251.8A priority patent/CN105008974B/zh
Publication of WO2014136324A1 publication Critical patent/WO2014136324A1/ja
Priority to US14/847,250 priority patent/US9503676B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • H04N5/78Television signal recording using magnetic recording
    • H04N5/782Television signal recording using magnetic recording on tape
    • H04N5/7824Television signal recording using magnetic recording on tape with rotating magnetic heads
    • H04N5/7826Television signal recording using magnetic recording on tape with rotating magnetic heads involving helical scanning of the magnetic tape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/249Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using pulse code
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/008Recording on, or reproducing or erasing from, magnetic tapes, sheets, e.g. cards, or wires
    • G11B5/00813Recording on, or reproducing or erasing from, magnetic tapes, sheets, e.g. cards, or wires magnetic tapes
    • G11B5/00817Recording on, or reproducing or erasing from, magnetic tapes, sheets, e.g. cards, or wires magnetic tapes on longitudinal tracks only, e.g. for serpentine format recording
    • G11B5/00839Recording on, or reproducing or erasing from, magnetic tapes, sheets, e.g. cards, or wires magnetic tapes on longitudinal tracks only, e.g. for serpentine format recording using cyclically driven heads providing segmented tracks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/80Manufacturing details of magnetic targets for magnetic encoders
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/10Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens
    • G02B7/102Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens controlled by a microcomputer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/008Recording on, or reproducing or erasing from, magnetic tapes, sheets, e.g. cards, or wires
    • G11B5/00813Recording on, or reproducing or erasing from, magnetic tapes, sheets, e.g. cards, or wires magnetic tapes
    • G11B5/00817Recording on, or reproducing or erasing from, magnetic tapes, sheets, e.g. cards, or wires magnetic tapes on longitudinal tracks only, e.g. for serpentine format recording

Definitions

  • the present invention relates to a lens apparatus suitable for broadcasting and movies, and a position detection method for a movable optical element mounted thereon.
  • one track provided on a rotary drum is divided into 2n areas, and absolute position codes indicating absolute positions in the respective areas and the areas provided at both ends of the areas. And an identification code for identifying the.
  • an absolute position code detected from a range sandwiched between the identification codes is output.
  • one track provided on a rotating drum is divided into a plurality of areas, and an absolute position code indicating an absolute position is magnetized in each area. If the absolute position code is “1” in decimal, the magnetization frequency is 100 Hz. If it is “0” in decimal, the magnetization frequency is 50 Hz. If it is “2” in decimal, the magnetization frequency is 150 Hz. For example, it is magnetized by frequency modulation.
  • the present invention has been made in view of the above circumstances, and provides a lens device and a movable optical element position detection method capable of accurately detecting the absolute position of the movable optical element with a low cost and a simple configuration. With the goal.
  • the lens device of the present invention is a lens device having a movable optical element, and is provided with a rotating member that rotates around the optical axis of the movable optical element as the movable optical element moves, and is fixed to the rotating member.
  • a magnetic recording member disposed along a circumferential direction of the rotating member, wherein a position magnetic signal, which is a magnetic signal indicating the position, is present at each of the plurality of positions in the rotating direction on the outer periphery of the rotating member.
  • a recorded first magnetic recording member a signal detection unit that is disposed at a position facing the first magnetic recording member and detects a magnetic signal recorded on the first magnetic recording member, and the signal A position detection unit that detects the position of the movable optical element based on a magnetic signal detected by the detection unit, and the position magnetic signal represents an n-bit (n is a natural number of 2 or more) digital code.
  • One magnetic recording member is adjacent to the position magnetic signal between each of the plurality of position magnetic signals, and is a range that is a magnetic signal for identifying a range in which the adjacent position magnetic signal is recorded.
  • An identification magnetic signal is recorded, the range identification magnetic signal is composed of a magnetic pattern magnetized in the rotation direction, and a range in which the range identification magnetic signal is recorded is the first direction in the rotation direction.
  • a second width smaller than the width, and the position detection unit detects the position of the movable optical element based on the position magnetic signal continuously detected after the range identifying magnetic signal is detected. Detect too It is.
  • the position detection method for a movable optical element is a position detection method for a movable optical element mounted on a lens apparatus, and rotates around the optical axis of the movable optical element as the movable optical element moves.
  • a magnetic recording member provided fixed to the member and extending along a circumferential direction of the rotating member, wherein a position magnetic signal, which is a magnetic signal indicating the position, is provided at each of a plurality of positions on the outer periphery of the rotating member.
  • the range has a first width in the rotation direction of the rotating member, and the magnetic recording member is adjacent to the position magnetic signal between each of the plurality of position magnetic signals.
  • a range identifying magnetic signal which is a magnetic signal for identifying a range in which the position magnetic signal is recorded, is recorded, and the range identifying magnetic signal includes a magnetic pattern magnetized in the rotation direction, The range in which the range identifying magnetic signal is recorded has a second width smaller than the first width in the rotation direction.
  • the range identifying magnetic signal is detected.
  • the position of the movable optical element is detected on the basis of the position magnetic signal detected continuously.
  • the present invention it is possible to provide a lens device and a movable optical element position detection method capable of accurately detecting the absolute position of the movable optical element with a low cost and simple configuration.
  • FIG. 1 is an external view of an imaging device equipped with a lens device 2 according to an embodiment of the present invention.
  • FIG. 1 is a cross-sectional perspective view of the vicinity of the zoom ring 9 of the lens device 2 shown in FIG.
  • Partial enlarged view of the magnetic recording scale 40 shown in FIG. 2 and the magnetic sensor unit 50 facing the magnetic recording scale 40 2 is a developed view of the magnetic recording scale 40 shown in FIG.
  • the figure which shows an example of the signal (ABS phase) detected by the magnetic sensor 51, and the signal (increment phase) detected by the magnetic sensor 52 when rotating the rotating cylinder 20 at a fixed speed.
  • the figure for demonstrating the function of a rectangular wave conversion part The figure which shows another example of the signal (ABS phase) detected by the magnetic sensor 51, and the signal (increment phase) detected by the magnetic sensor 52 when rotating the rotary cylinder 20 at a fixed speed.
  • FIG. 1 is an external view of an imaging apparatus equipped with a lens apparatus 2 according to an embodiment of the present invention.
  • a lens device 2 is attached to the front portion of the imaging device main body 1.
  • the lens device 2 includes a casing 10 having a cylindrical shape or the like.
  • the housing 10 includes a photographing lens such as a zoom lens and a focus lens, and a diaphragm device that can adjust the aperture.
  • a mount 3 is provided at the base of the housing 10 of the lens device 2.
  • the lens device 2 is detachably mounted on a lens mounting portion provided at the front portion of the imaging device main body 1 through the connection portion of the mount portion 3.
  • an imaging element is disposed on the optical axis of the lens apparatus 2 in a state where the lens apparatus 2 is mounted. And the optical image condensed with the lens apparatus 2 is imaged with this image pick-up element.
  • the output signal of the imaging device is processed by an image processing unit built in the imaging apparatus main body 1 to generate various image data.
  • the photographer 5 holds the imaging device body 1 on the right shoulder and looks into the viewfinder device 6 with the right eye, for example. Then, the photographer 5 takes a picture of the subject while holding the holding unit of the lens device 2 with the right hand 7 and fixing the imaging device.
  • a focus ring 8 which can adjust the focus position by rotating the photographer 5 at an arbitrary angle by the hand, can be rotated around the outer periphery of the lens device 2 at the front end side (subject side) of the lens device 2. Is provided.
  • a zoom ring 9 that can adjust the zoom magnification by rotating the photographer 5 by an arbitrary angle by hand is provided at an intermediate portion of the lens device 2 so as to be rotatable around the outer periphery of the lens device 2. Yes.
  • the lens device 2 is provided with an iris ring 11 for adjusting the aperture amount of the aperture device on the image pickup device body 1 side of the zoom ring 9 so as to be rotatable around the outer periphery of the lens device 2.
  • FIG. 2 is a cross-sectional perspective view of the vicinity of the zoom ring 9 of the lens device 2 shown in FIG.
  • a rotating cylinder 20 that can rotate around the optical axis of the lens device 2 and a zoom lens that is provided inside the rotating cylinder 20 as a movable optical element are held.
  • a zoom lens holding unit 30 is provided inside the housing 10 provided with the zoom ring 9 on the outer periphery.
  • the zoom lens holding unit 30 is movable in the optical axis direction of the lens device 2 in conjunction with the rotation of the zoom ring 9.
  • the rotary cylinder 20 has a cam groove 21 for converting the linear motion of the zoom lens holding portion 30 into a rotational motion.
  • a projection of the zoom lens holding portion 30 is movably mounted in the cam groove 21.
  • a magnetic recording scale 40 as a magnetic recording member disposed along the circumferential direction (rotating direction) of the rotating cylinder 20 is fixedly disposed on the outer periphery of the rotating cylinder 20.
  • an annular magnetic recording scale 40 is used, but the magnetic recording scale 40 may not be annular, and a linear one having a length corresponding to the rotatable angle of the rotary cylinder 20 is used. May be.
  • a magnetic sensor unit 50 is fixedly disposed on the inner surface of the housing 10 at a position facing the magnetic recording scale 40.
  • FIG. 3 is a partially enlarged view of the magnetic recording scale 40 shown in FIG. 2 and the magnetic sensor unit 50 opposed thereto.
  • FIG. 4 is a development view of the magnetic recording scale 40 shown in FIG.
  • the magnetic recording scale 40 has a configuration in which a magnetic recording scale 41 and a magnetic recording scale 42 are overlapped.
  • Magnetic signals are recorded on the magnetic recording scale 41 and the magnetic recording scale 42, respectively.
  • the magnetic signal is composed of a magnetization pattern of S and N poles.
  • the magnetic sensor unit 50 includes a magnetic sensor 51 disposed at a position facing the magnetic recording scale 41 and a magnetic sensor 52 disposed at a position facing the magnetic recording scale 42.
  • the position of the magnetic recording scale 41 facing the magnetic sensor 51 and the position of the magnetic recording scale 42 facing the magnetic sensor 52 are the same position in the rotation direction of the rotary cylinder 20, but even if the positions are shifted. Good.
  • the magnetic sensor 51 has one magnetoresistive element whose electric resistance changes according to the applied magnetic field, detects the magnetic signal recorded on the magnetic recording scale 41, and outputs the detected signal.
  • the magnetic sensor 52 has one magnetoresistive element whose electric resistance changes according to the applied magnetic field, detects the magnetic signal recorded on the magnetic recording scale 42, and outputs the detected signal.
  • the magnetic recording scale 41 has a plurality of recording portions 41a arranged at regular intervals in the rotation direction of the rotary cylinder 20.
  • recording portions 41b are provided adjacent to both sides of the recording portion 41a.
  • the recording unit 41 a is provided at a position corresponding to each divided area when the outer periphery of the rotary cylinder 20 is divided into a plurality of parts in the rotation direction of the rotary cylinder 20. Each recording unit 41a records a position magnetic signal indicating the position of the corresponding divided area.
  • This position magnetic signal is composed of a magnetic pattern magnetized in the rotating direction of the rotary cylinder 20 and representing a 4-bit digital code (0001 to 1111).
  • the digital code “1” is composed of a magnetization pattern representing a sine wave signal for one cycle
  • the digital code “0” is a magnetization pattern representing a signal having an amplitude value of 0 in the sine wave signal for one cycle. Consists of.
  • the number of bits of the digital code is not limited to “4”, and an appropriate value may be determined in accordance with the detection accuracy of the rotational position of the rotary cylinder 20.
  • the recording unit 41b records an identification magnetic signal for identifying the recording unit 41a adjacent to the recording unit 41b.
  • the recording unit 41b is smaller in width in the rotation direction than the recording unit 41a.
  • the identification magnetic signal is composed of a magnetic pattern magnetized in the rotation direction of the rotating cylinder 20 (for example, a magnetization pattern representing a sine wave signal for one period).
  • the positional magnetic signal recorded in the recording unit 41a and the identification magnetic signal recorded in the recording unit 41b are the magnetic intensity and magnetization width of the magnetization pattern (in the rotation direction of each magnetized region constituting the magnetization pattern). At least one of the widths is different.
  • the magnetic recording scale 42 In the magnetic recording scale 42, a large number of recording sections 42a are arranged in the rotational direction.
  • each recording unit 42a a magnetic signal for increment is recorded.
  • the increment magnetic signal is constituted by a magnetic pattern (magnetization pattern representing a sine wave signal for one period) magnetized in the rotation direction of the rotary cylinder 20.
  • FIG. 5 is a diagram illustrating an example of a signal (ABS phase) detected by the magnetic sensor 51 and a signal (increment phase) detected by the magnetic sensor 52 when the rotating cylinder 20 is rotated at a constant speed.
  • the magnetization width of the magnetization pattern constituting the identification magnetic signal recorded in the recording unit 41b is larger than the magnetization pattern constituting the positional magnetic signal recorded in the recording unit 41a. Therefore, the wavelength of the sine wave signal detected from the recording unit 41b becomes longer for each sine wave signal detected from the recording unit 41a. According to the example of FIG. 5, the identification magnetic signal and the position magnetic signal can be clearly distinguished by the difference in wavelength.
  • FIG. 6 is a diagram illustrating another example of a signal (ABS phase) detected by the magnetic sensor 51 and a signal (increment phase) detected by the magnetic sensor 52 when the rotating cylinder 20 is rotated at a constant speed. is there.
  • the magnetization width of the magnetization pattern constituting the positional magnetic signal recorded in the recording unit 41a is the same as the magnetization width of the magnetization pattern constituting the identification magnetic signal recorded in the recording unit 41b. is there.
  • the magnetic intensity of the magnetization pattern constituting the identification magnetic signal recorded in the recording unit 41b is larger than the magnetic intensity of the magnetization pattern constituting the positional magnetic signal recorded in the recording unit 41a. Therefore, the amplitude of the sine wave signal detected from the recording unit 41b is larger than each sine wave signal detected from the recording unit 41a.
  • the identification magnetic signal and the position magnetic signal can be clearly distinguished by the difference in amplitude.
  • FIG. 7 is a diagram showing still another example of a signal (ABS phase) detected by the magnetic sensor 51 and a signal (increment phase) detected by the magnetic sensor 52 when the rotating cylinder 20 is rotated at a constant speed. It is.
  • the magnetization width of the magnetization pattern constituting the identification magnetic signal recorded in the recording unit 41b is larger than the magnetization width of the magnetization pattern constituting the positional magnetic signal recorded in the recording unit 41a. It has become. Furthermore, the magnetic intensity of the magnetization pattern constituting the identification magnetic signal recorded in the recording unit 41b is larger than the magnetic intensity of the magnetization pattern constituting the positional magnetic signal recorded in the recording unit 41a. Therefore, for each sine wave signal detected from the recording unit 41a, the wavelength of the sine wave signal detected from the recording unit 41b is longer and the amplitude of the sine wave signal is larger. According to the example of FIG. 7, the identification magnetic signal and the position magnetic signal can be clearly distinguished by the difference in wavelength and amplitude.
  • FIG. 8 is a functional block diagram of the lens apparatus 2 that detects the position of the zoom lens holding unit 30 shown in FIG. 2 (synonymous with the position of the zoom lens).
  • the lens device 2 is provided with rectangular wave conversion units 60A and 60B, A / D converters 61A and 61B, and a lens control unit 70.
  • the rectangular wave converter 60A converts the signal (increment signal (increment phase)) output from the magnetic sensor 52 into a rectangular wave.
  • the rectangular wave converter 60B converts the signal (absolute signal (ABS phase)) output from the magnetic sensor 51 into a rectangular wave.
  • a threshold value is set for the positive output value of the ABS phase, and a peak of the signal portion is determined from a signal portion larger than the threshold value.
  • a rectangular wave is generated in which the difference between the value and the threshold is the amplitude, and the time between two points where the signal portion and the threshold straight line intersect is the pulse width.
  • the A / D converter 61A samples the rectangular wave output from the rectangular wave conversion unit 60A at a predetermined interval and converts it into a digital signal.
  • the A / D converter 61B samples the rectangular wave output from the rectangular wave conversion unit 60B at a predetermined interval and converts it into a digital signal.
  • the lens control unit 70 includes a lens position detection unit 71 that detects the position of the zoom lens, and a memory 72.
  • the lens control unit 70 is configured mainly with a processor, and the lens position detection unit 71 is a functional block realized by the processor executing a program stored in the memory 72.
  • the lens position detector 71 monitors the pulse width of the rectangular wave output from the A / D converter 61B, and the pulse width has reached the first predetermined value.
  • a magnetic signal for identification is detected, a rectangular wave input from the A / D converter 61B after this time is detected as a position magnetic signal, a digital code indicated by this position magnetic signal is decoded, and the position of the divided area Is detected.
  • the first predetermined value is a value of the pulse width of the rectangular wave detected by the magnetic sensor 51 from the recording unit 41b when the rotary cylinder 20 is rotated at a speed (reference speed) considered in actual use. Yes.
  • the detection of the position of the divided area described above is performed on the assumption that the rotary cylinder 20 is rotated at the reference speed.
  • the lens position detection unit 71 counts the number of rectangular waves (corresponding to the increment magnetic signal) input from the A / D converter 61A after the detection of the identification magnetic signal, and specifies the detected position. The detailed position of the portion facing the magnetic sensors 51 and 52 in the divided area is determined. The relationship between the detailed position in each divided area and the position of the zoom lens is known. For this reason, the lens position detection unit 71 detects the absolute position of the zoom lens corresponding to the detailed position.
  • the lens position detector 71 monitors the amplitude of the rectangular wave output from the A / D converter 61B, and when the amplitude reaches the second predetermined value, A magnetic signal for identification is detected, a rectangular wave input from the A / D converter 61B after this time is detected as a position magnetic signal, a digital code indicated by the position magnetic signal is decoded, and a position of the divided area is detected. To do. The subsequent operation is as described above.
  • the second predetermined value is the amplitude value of the rectangular wave detected by the magnetic sensor 51 from the recording unit 41b when the rotary cylinder 20 is rotated at the reference speed.
  • the lens position detector 71 monitors the amplitude and pulse width of the rectangular wave output from the A / D converter 61B, and the pulse width becomes the first predetermined value.
  • the amplitude reaches the second predetermined value, an identification magnetic signal is detected, and a rectangular wave input from the A / D converter 61B after this time is detected as a position magnetic signal. Is decoded and the position of the divided area is detected. The subsequent operation is as described above.
  • the lens unit 2 since the lens unit 2 includes the recording unit 41b before and after the recording unit 41a in the magnetic recording scale 41, the recording unit 41b is detected by detecting the magnetic signal recorded in the recording unit 41b.
  • the detection start timing of the magnetic signal (code indicating the position of the divided area) of the recording unit 41a adjacent to 41b can be known.
  • the width of the recording unit 41b in the rotation direction is smaller than the width of the recording unit 41a in the rotation direction, and no magnetic signal is recorded between the recording unit 41b and the recording unit 41a ( There is no non-magnetized area. Therefore, the zoom lens position can be detected with a small amount of rotation, and the operability until the zoom lens position is detected can be improved.
  • the number of sine wave signals to be recorded in the recording unit 41b is one in the above, it may be plural. If the number is smaller than the number of bits of the digital code recorded in the recording unit 41a, the identification magnetic signal can be detected at high speed. In particular, as shown in FIGS. 5 to 7, the lens position can be detected at the highest speed by improving the operability by reducing the number of sine wave signals to be recorded in the recording unit 41b to one. be able to.
  • the magnetization width of the magnetic signal recorded in the recording unit 41b may be smaller than the magnetization width of the magnetic signal recorded in the recording unit 41a. Also in this case, the identification magnetic signal and the position magnetic signal can be clearly distinguished. In this case, since the width of the recording unit 41b can be reduced, the lens position can be detected at a higher speed.
  • the magnetic signal for identification and the position magnetic signal are similarly obtained even when the magnetic intensity of the magnetic signal recorded in the recording unit 41b is smaller than the magnetic intensity of the magnetic signal recorded in the recording unit 41a. It can be clearly distinguished.
  • At least one of the magnetic intensity and the magnetization width of the magnetic signal recorded in the recording unit 41b is different from the magnetic signal recorded in the recording unit 41a.
  • the magnetic signal recorded in the recording unit 41b can have the same strength and the same magnetization width with respect to the magnetic signal recorded in the recording unit 41a.
  • FIG. 10 is a diagram showing still another example of a signal (ABS phase) detected by the magnetic sensor 51 and a signal (increment phase) detected by the magnetic sensor 52 when the rotating cylinder 20 is rotated at a constant speed. It is.
  • the position magnetic signal recorded in the recording unit 41a is a 5-bit digital code. Further, in FIG. 10, for the sake of explanation, all digital codes recorded in the recording unit 41a are illustrated as (11111).
  • the magnetic strength and the magnetization width of the magnetic signal recorded in the recording unit 41a are the same as the magnetic strength and the magnetization width of the magnetic signal recorded in the recording unit 41b.
  • the increment magnetic signal recorded on the magnetic recording scale 42 has a portion whose phase matches only with the identification magnetic signal recorded on the recording unit 41b. That is, the position magnetic signal recorded in the recording unit 41a and the position magnetic signal for incrementing recorded in the recording unit 42a are not in phase at any position.
  • the lens position detection unit 71 monitors the rectangular wave input from the A / D converter 61A and the rectangular wave input from the A / D converter 61B, and the respective rectangular waves are in phase ( When the rectangular wave rise timing or fall timing coincides, the identification magnetic signal is detected. Then, the lens position detector 71 decodes the digital code based on the rectangular wave input from the A / D converter 61B after detecting the identification magnetic signal, and detects the position of the divided area. The subsequent operation is as described above.
  • the detection start timing of the magnetic signal (code indicating the position of the divided area) of the recording unit 41a is known with a small amount of rotation. be able to.
  • the zoom lens is taken as an example of the movable optical element mounted on the lens device 2, but the technique described in the present embodiment can be applied to other movable optical elements such as a focus lens and a diaphragm device.
  • the disclosed lens device is a lens device having a movable optical element, and is provided with a rotating member that rotates around the optical axis of the movable optical element as the movable optical element moves, and is fixed to the rotating member.
  • a magnetic recording member disposed along a circumferential direction of the rotating member, wherein a position magnetic signal, which is a magnetic signal indicating the position, is present at each of the plurality of positions in the rotating direction on the outer periphery of the rotating member.
  • a recorded first magnetic recording member a signal detection unit that is disposed at a position facing the first magnetic recording member and detects a magnetic signal recorded on the first magnetic recording member, and the signal A position detection unit that detects the position of the movable optical element based on a magnetic signal detected by the detection unit, and the position magnetic signal represents an n-bit (n is a natural number of 2 or more) digital code.
  • the range in which one position magnetic signal is recorded on the first magnetic recording member has a first width in the rotation direction of the rotating member, which is constituted by a magnetic pattern magnetized in the rolling direction.
  • the first magnetic recording member is adjacent to the position magnetic signal between each of the plurality of position magnetic signals to identify a range in which the adjacent position magnetic signal is recorded.
  • the range identification magnetic signal is recorded, and the range identification magnetic signal is constituted by a magnetic pattern magnetized in the rotation direction, and the range in which one range identification magnetic signal is recorded is the rotation direction.
  • Position of movable optical element It is intended to detect.
  • the magnetic intensity of the magnetic pattern constituting the range identifying magnetic signal is different from the magnetic intensity of the magnetic pattern constituting the position magnetic signal.
  • the magnetization width of the magnetic pattern constituting the range identifying magnetic signal is different from the magnetization width of the magnetic pattern constituting the position magnetic signal.
  • the disclosed lens device is a magnetic recording member that is fixed to the rotating member and disposed along a circumferential direction of the rotating member, and is a second magnetic recording in which an increment magnetic signal is recorded.
  • the signal detection unit is disposed to face both the first magnetic recording member and the second magnetic recording member, and includes the first magnetic recording member and the second magnetic recording member.
  • the magnetic signal recorded on each of the second magnetic recording members does not have a portion whose phase coincides with the position magnetic signal, and is used for identifying the range.
  • the position detection unit has a portion in phase with the magnetic signal, and the position detection unit has a signal detected from the first magnetic recording member and a signal detected from the second magnetic recording member in phase.
  • the disclosed lens device includes one in which the range identifying magnetic signal is a signal for m periods (m is a natural number of 1 or more) smaller than n.
  • the disclosed position detection method of the movable optical element is a position detection method of the movable optical element mounted on the lens device, and rotates around the optical axis of the movable optical element as the movable optical element moves.
  • a magnetic recording member provided fixed to the member and extending along a circumferential direction of the rotating member, wherein a position magnetic signal, which is a magnetic signal indicating the position, is provided at each of a plurality of positions on the outer periphery of the rotating member.
  • the position magnetic signal is composed of a magnetic pattern magnetized in the rotational direction representing a digital code of bits (n is a natural number of 2 or more), and one magnetic position signal in the magnetic recording member
  • the recorded range has a first width in the rotation direction of the rotating member, and the magnetic recording member is adjacent to the position magnetic signal between each of the plurality of position magnetic signals.
  • a range identifying magnetic signal which is a magnetic signal for identifying a range in which the adjacent position magnetic signal is recorded, is recorded, and the range identifying magnetic signal is configured by a magnetic pattern magnetized in the rotation direction.
  • One range in which the range identifying magnetic signal is recorded has a second width smaller than the first width in the rotation direction.
  • the range identifying magnetic signal is recorded.
  • the position of the movable optical element is detected on the basis of the position magnetic signal that is detected after the detection.
  • the present invention is particularly convenient and effective when applied to a commercial television camera or the like.
  • Rotating cylinder 30 Zoom lens holding unit 41, 42 Magnetic recording scale 41a Range in which digital code is recorded 41b Range in which information for detecting start of digital code is recorded 50 Magnetic sensor units 51, 52 Magnetic sensor 70 Lens control 71 Lens position detection unit

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Lens Barrels (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

 可動光学素子の絶対位置を低コストかつ簡易な構成で精度良く検出するレンズ装置及び可動光学素子の位置検出方法を提供する。ズームレンズの移動に伴って光軸回りに回転する回転筒20の外周に固定して設けられる磁気記録スケール41には、記録部41bと記録部41aのペアが回転方向に複数個設けられている。記録部41bの幅は記録部41aの幅よりも狭い。記録部41aには磁気記録スケール41における位置を示すコード情報が記録され、記録部41bには、これに隣接する記録部41aを検出するための磁気信号が記録されている。レンズ位置検出部71は、記録部41bに記録された磁気信号を検出してから続けて検出したコード情報に基づいて、ズームレンズの位置を検出する。

Description

レンズ装置及び可動光学素子の位置検出方法
 本発明は、放送用や映画用に適したレンズ装置とそれに搭載される可動光学素子の位置検出方法に関する。
 近年、テレビやモニタなどの大画面化及び高解像度化が進み、映し出される映像に対する高画質化の要求が高まっている。この高画質化の要求に応えるべく、映画用や放送用のズームレンズでは高精度な位置検出が可能である位置検出器(エンコーダ)を搭載し、レンズ制御の高性能化が図られている。
 これまで、コンパクトかつ低コストのエンコーダとして、特許文献1,2に記載されたものが提案されている。
 特許文献1に記載のエンコーダは、回転ドラムに設けた1本のトラックが2個の領域に分割され、この各領域に絶対位置を示す絶対位置コードと、その領域の両端に設けられる該領域を識別するための識別コードとが着磁されている。そして、識別コードをMRセンサにより検出したときに、識別コードで挟まれる範囲から検出された絶対位置コードを出力するようにしている。
 特許文献2に記載のエンコーダは、回転ドラムに設けた1本のトラックが複数個の領域に分割され、この各領域に絶対位置を示す絶対位置コードが着磁されている。絶対位置コードは、10進数で“1”であれば着磁周波数を100Hz、10進数で“0”であれば着磁周波数を50Hz、10進数で“2”であれば着磁周波数を150Hz、といった具合に、周波数変調されて着磁されている。
日本国特開平4-307327号公報 日本国特開平5-99688号公報
 特許文献2に記載のエンコーダでは、絶対位置コードの開始位置をどのようにして検出するかについて考慮されていない。
 一方、特許文献1に記載のエンコーダによれば、識別コードが存在するため、絶対位置コードの開始位置を容易に検出することが可能である。
 しかしながら、特許文献1に記載のエンコーダは、異なる領域の識別コード同士の間に、少なくとも絶対位置コードと同じだけの無着磁領域を設ける必要がある。このため、ある領域の位置を検出してからその隣の領域を検出するまでに、回転ドラムを少なくとも1領域分は回す必要がある。
 このため、特許文献1に記載のエンコーダをレンズ装置に適用した場合、例えば電源を入れてからレンズ位置を検出するまでの間に、ユーザがレンズ鏡筒を大きく回す必要が生じ、使い勝手が悪くなる。
 また、絶対位置コード2つ分の領域で1つの絶対位置を検出することになるため、1本のトラックの領域分割数を多くすることが難しい。レンズ装置、特に業務用のレンズ装置等では、レンズの回転位置を細かく検出する必要があるため、特許文献1の技術では、レンズ装置への適用は難しい。
 本発明は、上記事情に鑑みてなされたものであり、可動光学素子の絶対位置を低コストかつ簡易な構成で精度良く検出することのできるレンズ装置及び可動光学素子の位置検出方法を提供することを目的とする。
 本発明のレンズ装置は、可動光学素子を有するレンズ装置であって、上記可動光学素子の移動に伴って上記可動光学素子の光軸回りに回転する回転部材と、上記回転部材に固定して設けられ上記回転部材の円周方向に沿って配置される磁気記録部材であって、上記回転部材の外周における上記回転方向の複数の位置の各々に、上記位置を示す磁気信号である位置磁気信号が記録された第一の磁気記録部材と、上記第一の磁気記録部材と対向する位置に配置され、上記第一の磁気記録部材に記録されている磁気信号を検出する信号検出部と、上記信号検出部により検出される磁気信号に基づいて上記可動光学素子の位置を検出する位置検出部と、を備え、上記位置磁気信号は、nビット(nは2以上の自然数)のデジタルコードを表す上記回転方向に着磁された磁気パターンにより構成され、上記第一の磁気記録部材において上記位置磁気信号が記録される範囲は、上記回転部材の回転方向に第一の幅を有しており、上記第一の磁気記録部材には、上記複数の位置磁気信号の各々の間に上記位置磁気信号に隣接させて、隣接する上記位置磁気信号が記録されている範囲を識別するための磁気信号である範囲識別用磁気信号が記録され、上記範囲識別用磁気信号は上記回転方向に着磁された磁気パターンにより構成され、上記範囲識別用磁気信号が記録される範囲は、上記回転方向に上記第一の幅よりも小さい第二の幅を有しており、上記位置検出部は、上記範囲識別用磁気信号が検出されてから続けて検出される上記位置磁気信号に基づいて、上記可動光学素子の位置を検出するものである。
 本発明の可動光学素子の位置検出方法は、レンズ装置に搭載される可動光学素子の位置検出方法であって、上記可動光学素子の移動に伴って上記可動光学素子の光軸回りに回転する回転部材に固定して設けられ上記回転部材の円周方向に沿って伸びる磁気記録部材であって、上記回転部材の外周における複数の位置の各々に、上記位置を示す磁気信号である位置磁気信号が記録された磁気記録部材から上記磁気信号を検出する信号検出ステップと、上記検出した磁気信号に基づいて上記可動光学素子の位置を検出する位置検出ステップと、を備え、上記位置磁気信号は、nビット(nは2以上の自然数)のデジタルコードを表す上記回転方向に着磁された磁気パターンにより構成され、上記磁気記録部材において上記位置磁気信号が記録される範囲は、上記回転部材の回転方向に第一の幅を有しており、上記磁気記録部材には、上記複数の位置磁気信号の各々の間に上記位置磁気信号に隣接させて、隣接する上記位置磁気信号が記録されている範囲を識別するための磁気信号である範囲識別用磁気信号が記録され、上記範囲識別用磁気信号は上記回転方向に着磁された磁気パターンにより構成され、上記範囲識別用磁気信号が記録される範囲は、上記回転方向に上記第一の幅よりも小さい第二の幅を有しており、上記位置検出ステップでは、上記範囲識別用磁気信号が検出されてから続けて検出される上記位置磁気信号に基づいて、上記可動光学素子の位置を検出するものである。
 本発明によれば、可動光学素子の絶対位置を低コストかつ簡易な構成で精度良く検出することのできるレンズ装置及び可動光学素子の位置検出方法を提供することができる。
本発明の一実施形態に係るレンズ装置2を装着した撮像装置の外観図 図1に示すレンズ装置2のズームリング9付近の断面斜視図 図2に示す磁気記録スケール40とこれに対向する磁気センサ部50の部分拡大図 図2に示す磁気記録スケール40の展開図 回転筒20を一定速度で回転させたときに磁気センサ51によって検出される信号(ABS相)と、磁気センサ52によって検出される信号(インクリメント相)の一例を示す図 回転筒20を一定速度で回転させたときに磁気センサ51によって検出される信号(ABS相)と、磁気センサ52によって検出される信号(インクリメント相)の別の例を示す図 回転筒20を一定速度で回転させたときに磁気センサ51によって検出される信号(ABS相)と、磁気センサ52によって検出される信号(インクリメント相)の更に別の例を示す図 図2に示すズームレンズ保持部30の位置(ズームレンズの位置と同義)を検出するレンズ装置2の機能ブロックを示す図 矩形波変換部の機能を説明するための図 回転筒20を一定速度で回転させたときに磁気センサ51によって検出される信号(ABS相)と、磁気センサ52によって検出される信号(インクリメント相)の更に別の例を示す図
 以下、本発明の実施形態について図面を参照して説明する。
 図1は、本発明の一実施形態に係るレンズ装置2を装着した撮像装置の外観図である。撮像装置本体1の前部にはレンズ装置2が装着されている。
 レンズ装置2は円筒形状等の筐体10を備える。この筐体10内には、ズームレンズやフォーカスレンズ等の撮影レンズと、開口量を調整できる絞り装置が内蔵されている。レンズ装置2の筐体10の基部にはマウント部3が設けられている。レンズ装置2は、このマウント部3の接続部により、撮像装置本体1の前部に設けられているレンズ装着部に着脱自在に装着される。
 撮像装置本体1には、レンズ装置2が装着された状態で、レンズ装置2の光軸上に撮像素子が配置される。そして、この撮像素子により、レンズ装置2によって集光された光学像を撮像する。撮像素子の出力信号は、撮像装置本体1に内蔵される画像処理部によって処理されて、各種画像データが生成される。
 撮影者5は、この撮像装置本体1を右肩に担いで例えば右眼でファインダ装置6を覗く。そして、撮影者5は、右手7でレンズ装置2の把持部を把持して撮像装置を固定しながら、被写体を撮影することになる。
 レンズ装置2の先端側(被写体側)には、撮影者5が手で任意角度回転させることで、フォーカス位置の調整を行うことができるフォーカスリング8が、レンズ装置2の外周囲を回動可能に設けられている。
 レンズ装置2の中間部分には、撮影者5が手で任意角度回転させることで、ズーム倍率の調整を行うことができるズームリング9が、レンズ装置2の外周囲を回動可能に設けられている。
 レンズ装置2には、ズームリング9の更に撮像装置本体1側に、絞り装置の開口量を調整するためのアイリスリング11が、レンズ装置2の外周囲を回動可能に設けられている。
 図2は、図1に示すレンズ装置2のズームリング9付近の断面斜視図である。
 ズームリング9が外周に設けられた筐体10の内部には、レンズ装置2の光軸回りに回転可能な回転筒20と、回転筒20内部に設けられ可動光学素子としてのズームレンズを保持するズームレンズ保持部30とが設けられる。
 ズームレンズ保持部30は、ズームリング9の回転に連動して、レンズ装置2の光軸方向に移動可能となっている。
 回転筒20は、ズームレンズ保持部30の直線運動を回転運動に変換するためのカム溝21を有している。カム溝21にはズームレンズ保持部30の突起部が移動可能に装着されており、ズームレンズ保持部30が光軸方向へ移動すると、この移動に伴って回転筒20が光軸を中心に回転する。
 回転筒20の外周には、回転筒20の円周方向(回転方向)に沿って配置される磁気記録部材としての磁気記録スケール40が固定して配置されている。本実施形態では、磁気記録スケール40として環状のものを用いるが、磁気記録スケール40は環状でなくてもよく、回転筒20の回転可能な角度に応じた長さを有する直線状のものを用いてもよい。
 筐体10の内面には、磁気記録スケール40と対向する位置に磁気センサ部50が固定して配置されている。
 図3は、図2に示す磁気記録スケール40とこれに対向する磁気センサ部50の部分拡大図である。図4は、図2に示す磁気記録スケール40の展開図である。
 図3に示すように、磁気記録スケール40は、磁気記録スケール41と磁気記録スケール42を重ねた構成である。
 磁気記録スケール41と磁気記録スケール42には、それぞれ、磁気信号が記録されている。磁気信号は、S極とN極の磁化パターンで構成されている。
 磁気センサ部50は、磁気記録スケール41と対向する位置に配置された磁気センサ51と、磁気記録スケール42と対向する位置に配置された磁気センサ52とを備える。磁気センサ51が対向する磁気記録スケール41の位置と、磁気センサ52が対向する磁気記録スケール42の位置とは、回転筒20の回転方向において同じ位置になっているが、位置がずれていてもよい。
 磁気センサ51は、印加磁界に応じて電気抵抗が変化する磁気抵抗効果素子を1つ有しており、磁気記録スケール41に記録されている磁気信号を検出し、検出した信号を出力する。
 磁気センサ52は、印加磁界に応じて電気抵抗が変化する磁気抵抗効果素子を1つ有しており、磁気記録スケール42に記録されている磁気信号を検出し、検出した信号を出力する。
 図4に示すように、磁気記録スケール41には、回転筒20の回転方向に向かって複数の記録部41aが一定間隔を空けて配置されている。また、磁気記録スケール41において、記録部41aの両隣には記録部41bが隣接して設けられている。
 記録部41aは、回転筒20の外周を回転筒20の回転方向に複数に分割したときの各分割領域に対応する位置に設けられている。各記録部41aには、これに対応する分割領域の位置を示す位置磁気信号が記録されている。
 この位置磁気信号は、4ビットのデジタルコード(0001~1111)を表す、回転筒20の回転方向に着磁された磁気パターンにより構成される。デジタルコードの“1”は、1周期分の正弦波信号を表す磁化パターンにより構成され、デジタルコードの“0”は、上記1周期分の正弦波信号において振幅値が0の信号を表す磁化パターンにより構成される。なお、デジタルコードのビット数は“4”に限らず、回転筒20の回転位置の検出精度に合わせて適当な値を決めればよい。
 記録部41bは、これに隣接する記録部41aを識別するための識別用磁気信号が記録されている。記録部41bは、回転方向における幅が記録部41aよりも小さくなっている。識別用磁気信号は、回転筒20の回転方向に着磁された磁気パターン(例えば1周期分の正弦波信号を表す磁化パターン)により構成される。
 記録部41aに記録される位置磁気信号と、記録部41bに記録される識別用磁気信号とは、磁化パターンの磁気強度及び着磁幅(磁化パターンを構成する磁化された各領域の回転方向の幅)の少なくとも一方が異なっている。
 磁気記録スケール42には、多数の記録部42aが回転方向に並べて配置されている。
 各記録部42aには、インクリメント用の磁気信号が記録されている。インクリメント用の磁気信号は、回転筒20の回転方向に着磁された磁気パターン(1周期分の正弦波信号を表す磁化パターン)により構成される。
 図5は、回転筒20を一定速度で回転させたときに磁気センサ51によって検出される信号(ABS相)と、磁気センサ52によって検出される信号(インクリメント相)の一例を示す図である。
 図5の例では、記録部41aに記録される位置磁気信号を構成する磁化パターンに対し、記録部41bに記録される識別用磁気信号を構成する磁化パターンの着磁幅が大きくなっている。したがって、記録部41aから検出される各正弦波信号に対し、記録部41bから検出される正弦波信号の波長が長くなる。図5の例によれば、この波長の違いにより、識別用磁気信号と位置磁気信号とを明確に区別することができる。
 図6は、回転筒20を一定速度で回転させたときに磁気センサ51によって検出される信号(ABS相)と、磁気センサ52によって検出される信号(インクリメント相)の別の例を示す図である。
 図6の例では、記録部41aに記録される位置磁気信号を構成する磁化パターンの着磁幅と、記録部41bに記録される識別用磁気信号を構成する磁化パターンの着磁幅は同じである。しかし、記録部41bに記録される識別用磁気信号を構成する磁化パターンの磁気強度が、記録部41aに記録される位置磁気信号を構成する磁化パターンの磁気強度よりも大きくなっている。したがって、記録部41aから検出される各正弦波信号に対し、記録部41bから検出される正弦波信号の振幅は大きくなる。図6の例によれば、この振幅の違いにより、識別用磁気信号と位置磁気信号とを明確に区別することができる。
 図7は、回転筒20を一定速度で回転させたときに磁気センサ51によって検出される信号(ABS相)と、磁気センサ52によって検出される信号(インクリメント相)の更に別の例を示す図である。
 図7の例では、記録部41bに記録される識別用磁気信号を構成する磁化パターンの着磁幅が、記録部41aに記録される位置磁気信号を構成する磁化パターンの着磁幅よりも大きくなっている。更に、記録部41bに記録される識別用磁気信号を構成する磁化パターンの磁気強度が、記録部41aに記録される位置磁気信号を構成する磁化パターンの磁気強度よりも大きくなっている。したがって、記録部41aから検出される各正弦波信号に対し、記録部41bから検出される正弦波信号の波長が長くなりかつこの正弦波信号の振幅が大きくなっている。図7の例によれば、この波長及び振幅の違いにより、識別用磁気信号と位置磁気信号とを明確に区別することができる。
 図8は、図2に示すズームレンズ保持部30の位置(ズームレンズの位置と同義)を検出するレンズ装置2の機能ブロックを示す図である。
 レンズ装置2には、矩形波変換部60A,60Bと、A/D変換器61A,61Bと、レンズ制御部70とが設けられる。
 矩形波変換部60Aは、磁気センサ52から出力された信号(インクリメント信号(インクリメント相))を矩形波に変換する。矩形波変換部60Bは、磁気センサ51から出力された信号(アブソリュート信号(ABS相))を矩形波に変換する。
 例えば図5のような信号が検出される場合には、図9に示すように、ABS相の正の出力値に対して閾値を設定し、閾値よりも大きい信号部分から、その信号部分のピーク値と閾値の差を振幅とし、その信号部分と閾値の直線とが交わる2点間の時間をパルス幅とする矩形波を生成する。
 A/D変換器61Aは、矩形波変換部60Aから出力された矩形波を所定間隔でサンプリングしてデジタル信号に変換する。A/D変換器61Bは、矩形波変換部60Bから出力された矩形波を所定間隔でサンプリングしてデジタル信号に変換する。
 レンズ制御部70は、ズームレンズの位置を検出するレンズ位置検出部71と、メモリ72とを備える。
 レンズ制御部70はプロセッサを主体に構成されており、レンズ位置検出部71は、メモリ72に記憶されているプログラムをプロセッサが実行することにより実現される機能ブロックである。
 図5のような信号が検出される場合、レンズ位置検出部71は、A/D変換器61Bから出力された矩形波のパルス幅をモニタし、パルス幅が第一の所定値になったことをもって、識別用磁気信号を検出し、この時点より後にA/D変換器61Bから入力される矩形波を位置磁気信号として検出し、この位置磁気信号が示すデジタルコードをデコードし、分割領域の位置を検出する。
 上記第一の所定値は、回転筒20を実使用において考えられる速度(基準速度)で回転させていったときに、記録部41bから磁気センサ51により検出された矩形波のパルス幅の値としている。上述した分割領域の位置の検出は、上記基準速度で回転筒20が回転されることを前提にして行っている。
 レンズ位置検出部71は、識別用磁気信号を検出した時点以降にA/D変換器61Aから入力された矩形波(インクリメント用の磁気信号に相当)の数をカウントし、上記検出した位置で特定される分割領域内における、磁気センサ51,52と対向している部分の詳細位置を判定する。各分割領域内の詳細位置とズームレンズの位置との関係は既知である。このため、レンズ位置検出部71は、この詳細位置から、これに対応するズームレンズの絶対位置を検出する。
 図6のような信号が検出される場合、レンズ位置検出部71は、A/D変換器61Bから出力された矩形波の振幅をモニタし、振幅が第二の所定値になったことをもって、識別用磁気信号を検出し、この時点より後にA/D変換器61Bから入力される矩形波を位置磁気信号として検出し、この位置磁気信号が示すデジタルコードをデコードし、分割領域の位置を検出する。その後の動作は上述したとおりである。
 なお、第二の所定値は、回転筒20を基準速度で回転させていったときに、記録部41bから磁気センサ51により検出された矩形波の振幅値である。
 図7のような信号が検出される場合、レンズ位置検出部71は、A/D変換器61Bから出力された矩形波の振幅とパルス幅をモニタし、パルス幅が第一の所定値になりかつ振幅が第二の所定値になったことをもって、識別用磁気信号を検出し、この時点より後にA/D変換器61Bから入力される矩形波を位置磁気信号として検出し、この位置磁気信号が示すデジタルコードをデコードし、分割領域の位置を検出する。その後の動作は上述したとおりである。
 以上のように、レンズ装置2は、磁気記録スケール41における記録部41aの前後には記録部41bが設けられているため、記録部41bに記録された磁気信号を検出することで、その記録部41bに隣接する記録部41aの磁気信号(分割領域の位置を示すコード)の検出開始タイミングを知ることができる。しかも、記録部41bの回転方向における幅は、記録部41aの回転方向における幅よりも小さくなっており、かつ、記録部41bと記録部41aとの間には磁気信号が記録されていない領域(無着磁領域)がない。このため、少ない回転量でズームレンズ位置を検出することができ、ズームレンズ位置検出までの操作性を向上させることができる。
 なお、記録部41bに記録する正弦波信号の数は上記では1つにしたが複数としてもよい。記録部41aに記録されるデジタルコードのビット数よりも少ない数とすれば、識別用磁気信号の検出を高速に行うことができる。特に、図5~7に示すように、記録部41bに記録する正弦波信号の数を最小の1個にすることで、レンズ位置の検出を最も高速に行うことができ、操作性を向上させることができる。
 また、記録部41aに記録される磁気信号の着磁幅に対し、記録部41bに記録される磁気信号の着磁幅が小さくなっていてもよい。この場合も、識別用磁気信号と位置磁気信号とを明確に区別することができる。この場合は、記録部41bの幅を狭くすることができるため、レンズ位置の検出をより高速に行うことができる。
 更に、記録部41aに記録される磁気信号の磁気強度に対し、記録部41bに記録される磁気信号の磁気強度が小さくなっていることでも、同様に、識別用磁気信号と位置磁気信号とを明確に区別することができる。
 以上の説明では、記録部41aに記録される磁気信号に対し、記録部41bに記録される磁気信号の磁気強度及び着磁幅の少なくとも一方を異ならせた。しかし、記録部41aに記録される磁気信号に対し、記録部41bに記録される磁気信号を同一強度及び同一着磁幅とすることもできる。
 図10は、回転筒20を一定速度で回転させたときに磁気センサ51によって検出される信号(ABS相)と、磁気センサ52によって検出される信号(インクリメント相)の更に別の例を示す図である。図10では、記録部41aに記録される位置磁気信号を5ビットのデジタルコードとしている。また、図10では説明のために、記録部41aに記録されるデジタルコードを全て(11111)として図示している。
 図10の例では、記録部41aに記録される磁気信号の磁気強度及び着磁幅と、記録部41bに記録される磁気信号の磁気強度及び着磁幅は同じになっている。そして、磁気記録スケール42に記録されるインクリメント用の磁気信号は、記録部41bに記録される識別用磁気信号とのみ、位相が一致する部分を有している。つまり、記録部41aに記録される位置磁気信号と、記録部42aに記録されるインクリメント用の位置磁気信号とはどの位置においても位相が同じなっていない。
 したがって、レンズ位置検出部71は、A/D変換器61Aから入力される矩形波と、A/D変換器61Bから入力される矩形波とをモニタし、それぞれの矩形波が同相になった(矩形波の立ち上がりタイミング又は立ち下がりタイミングが一致した)ことをもって、識別用磁気信号を検出する。そして、レンズ位置検出部71は、この識別用磁気信号の検出後にA/D変換器61Bから入力される矩形波に基づいて、デジタルコードをデコードし、分割領域の位置を検出する。その後の動作は上述したとおりである。
 以上のように、磁気記録スケール40に図10のような磁気信号を記録しておくことでも、記録部41aの磁気信号(分割領域の位置を示すコード)の検出開始タイミングを少ない回転量で知ることができる。
 ここまでは、レンズ装置2に搭載される可動光学素子としてズームレンズを例にしたが、フォーカスレンズや絞り装置等の他の可動光学素子にも本実施形態で説明した技術を適用可能である。
 以上説明してきたように、本明細書には以下の事項が開示されている。
 開示されたレンズ装置は、可動光学素子を有するレンズ装置であって、上記可動光学素子の移動に伴って上記可動光学素子の光軸回りに回転する回転部材と、上記回転部材に固定して設けられ上記回転部材の円周方向に沿って配置される磁気記録部材であって、上記回転部材の外周における上記回転方向の複数の位置の各々に、上記位置を示す磁気信号である位置磁気信号が記録された第一の磁気記録部材と、上記第一の磁気記録部材と対向する位置に配置され、上記第一の磁気記録部材に記録されている磁気信号を検出する信号検出部と、上記信号検出部により検出される磁気信号に基づいて上記可動光学素子の位置を検出する位置検出部と、を備え、上記位置磁気信号は、nビット(nは2以上の自然数)のデジタルコードを表す上記回転方向に着磁された磁気パターンにより構成され、上記第一の磁気記録部材において1つの上記位置磁気信号が記録される範囲は、上記回転部材の回転方向に第一の幅を有しており、上記第一の磁気記録部材には、上記複数の位置磁気信号の各々の間に上記位置磁気信号に隣接させて、隣接する上記位置磁気信号が記録されている範囲を識別するための磁気信号である範囲識別用磁気信号が記録され、上記範囲識別用磁気信号は上記回転方向に着磁された磁気パターンにより構成され、1つの上記範囲識別用磁気信号が記録される範囲は、上記回転方向に上記第一の幅よりも小さい第二の幅を有しており、上記位置検出部は、上記範囲識別用磁気信号が検出されてから続けて検出される上記位置磁気信号に基づいて、上記可動光学素子の位置を検出するものである。
 開示されたレンズ装置は、上記範囲識別用磁気信号を構成する磁気パターンの磁気強度が、上記位置磁気信号を構成する磁気パターンの磁気強度とは異なるものである。
 開示されたレンズ装置は、上記範囲識別用磁気信号を構成する磁気パターンの着磁幅が、上記位置磁気信号を構成する磁気パターンの着磁幅とは異なるものである。
 開示されたレンズ装置は、上記回転部材に固定して設けられ上記回転部材の円周方向に沿って配置される磁気記録部材であって、インクリメント用の磁気信号が記録された第二の磁気記録部材を備え、上記信号検出部は、上記第一の磁気記録部材と上記第二の磁気記録部材の両方に対向して配置され、上記第一の磁気記録部材と上記第二の磁気記録部材のそれぞれに記録されている磁気信号を検出するものであり、上記第二の磁気記録部材に記録される磁気信号は、上記位置磁気信号とは位相が一致する部分を有さず、上記範囲識別用磁気信号と位相が一致する部分を有しており、上記位置検出部は、上記第一の磁気記録部材から検出される信号と上記第二の磁気記録部材から検出される信号とが同位相になったことをもって上記範囲識別用磁気信号を検出し、上記範囲識別用信号が検出された時点から検出される上記インクリメント用の磁気信号の数と、上記範囲識別用磁気信号が検出されてから続けて検出される上記位置磁気信号とを用いて、上記可動光学素子の位置を検出するものである。
 開示されたレンズ装置は、上記範囲識別用磁気信号が、上記nよりも小さいm(mは1以上の自然数)周期分の信号であるものを含む。
 開示されたレンズ装置は、m=1であるものを含む。
 開示された可動光学素子の位置検出方法は、レンズ装置に搭載される可動光学素子の位置検出方法であって、上記可動光学素子の移動に伴って上記可動光学素子の光軸回りに回転する回転部材に固定して設けられ上記回転部材の円周方向に沿って伸びる磁気記録部材であって、上記回転部材の外周における複数の位置の各々に、上記位置を示す磁気信号である位置磁気信号が記録された磁気記録部材から上記磁気信号を検出する信号検出ステップと、上記検出した磁気信号に基づいて上記可動光学素子の位置を検出する位置検出ステップと、を備え、上記位置磁気信号は、nビット(nは2以上の自然数)のデジタルコードを表す上記回転方向に着磁された磁気パターンにより構成され、上記磁気記録部材において1つの上記位置磁気信号が記録される範囲は、上記回転部材の回転方向に第一の幅を有しており、上記磁気記録部材には、上記複数の位置磁気信号の各々の間に上記位置磁気信号に隣接させて、隣接する上記位置磁気信号が記録されている範囲を識別するための磁気信号である範囲識別用磁気信号が記録され、上記範囲識別用磁気信号は上記回転方向に着磁された磁気パターンにより構成され、1つの上記範囲識別用磁気信号が記録される範囲は、上記回転方向に上記第一の幅よりも小さい第二の幅を有しており、上記位置検出ステップでは、上記範囲識別用磁気信号が検出されてから続けて検出される上記位置磁気信号に基づいて、上記可動光学素子の位置を検出するものである。
 本発明は、特に業務用のテレビカメラ等に適用して利便性が高く、有効である。
 以上、本発明を特定の実施形態によって説明したが、本発明はこの実施形態に限定されるものではなく、開示された発明の技術思想を逸脱しない範囲で種々の変更が可能である。
 本出願は、2013年3月6日出願の日本特許出願(特願2013-43994)に基づくものであり、その内容はここに取り込まれる。
20 回転筒
30 ズームレンズ保持部
41,42 磁気記録スケール
41a デジタルコードが記録される範囲
41b デジタルコードの開始を検出するための情報が記録される範囲
50 磁気センサ部
51,52 磁気センサ
70 レンズ制御部
71 レンズ位置検出部

Claims (7)

  1.  可動光学素子を有するレンズ装置であって、
     前記可動光学素子の移動に伴って前記可動光学素子の光軸回りに回転する回転部材と、
     前記回転部材に固定して設けられ前記回転部材の円周方向に沿って配置される磁気記録部材であって、前記回転部材の外周における前記回転方向の複数の位置の各々に、前記位置を示す磁気信号である位置磁気信号が記録された第一の磁気記録部材と、
     前記第一の磁気記録部材と対向する位置に配置され、前記第一の磁気記録部材に記録されている磁気信号を検出する信号検出部と、
     前記信号検出部により検出される磁気信号に基づいて前記可動光学素子の位置を検出する位置検出部と、を備え、
     前記位置磁気信号は、nビット(nは2以上の自然数)のデジタルコードを表す前記回転方向に着磁された磁気パターンにより構成され、
     前記第一の磁気記録部材において1つの前記位置磁気信号が記録される範囲は、前記回転部材の回転方向に第一の幅を有しており、
     前記第一の磁気記録部材には、前記複数の位置磁気信号の各々の間に前記位置磁気信号に隣接させて、隣接する前記位置磁気信号が記録されている範囲を識別するための磁気信号である範囲識別用磁気信号が記録され、
     前記範囲識別用磁気信号は前記回転方向に着磁された磁気パターンにより構成され、
     1つの前記範囲識別用磁気信号が記録される範囲は、前記回転方向に前記第一の幅よりも小さい第二の幅を有しており、
     前記位置検出部は、前記範囲識別用磁気信号が検出されてから続けて検出される前記位置磁気信号に基づいて、前記可動光学素子の位置を検出するレンズ装置。
  2.  請求項1記載のレンズ装置であって、
     前記範囲識別用磁気信号を構成する磁気パターンの磁気強度は、前記位置磁気信号を構成する磁気パターンの磁気強度とは異なるレンズ装置。
  3.  請求項1又は2記載のレンズ装置であって、
     前記範囲識別用磁気信号を構成する磁気パターンの着磁幅は、前記位置磁気信号を構成する磁気パターンの着磁幅とは異なるレンズ装置。
  4.  請求項1記載のレンズ装置であって、
     前記回転部材に固定して設けられ前記回転部材の円周方向に沿って配置される磁気記録部材であって、インクリメント用の磁気信号が記録された第二の磁気記録部材を備え、
     前記信号検出部は、前記第一の磁気記録部材と前記第二の磁気記録部材の両方に対向して配置され、前記第一の磁気記録部材と前記第二の磁気記録部材のそれぞれに記録されている磁気信号を検出するものであり、
     前記第二の磁気記録部材に記録される磁気信号は、前記位置磁気信号とは位相が一致する部分を有さず、前記範囲識別用磁気信号と位相が一致する部分を有しており、
     前記位置検出部は、前記第一の磁気記録部材から検出される信号と前記第二の磁気記録部材から検出される信号とが同位相になったことをもって前記範囲識別用磁気信号を検出し、前記範囲識別用信号が検出された時点から検出される前記インクリメント用の磁気信号と、前記範囲識別用磁気信号が検出されてから続けて検出される前記位置磁気信号とを用いて、前記可動光学素子の位置を検出するレンズ装置。
  5.  請求項1から4のいずれか1項記載のレンズ装置であって、
     前記範囲識別用磁気信号は、前記nよりも小さいm(mは1以上の自然数)周期分の信号であるレンズ装置。
  6.  請求項5記載のレンズ装置であって、
     m=1であるレンズ装置。
  7.  レンズ装置に搭載される可動光学素子の位置検出方法であって、
     前記可動光学素子の移動に伴って前記可動光学素子の光軸回りに回転する回転部材に固定して設けられ前記回転部材の円周方向に沿って伸びる磁気記録部材であって、前記回転部材の外周における複数の位置の各々に、前記位置を示す磁気信号である位置磁気信号が記録された磁気記録部材から前記磁気信号を検出する信号検出ステップと、
     前記検出した磁気信号に基づいて前記可動光学素子の位置を検出する位置検出ステップと、を備え、
     前記位置磁気信号は、nビット(nは2以上の自然数)のデジタルコードを表す前記回転方向に着磁された磁気パターンにより構成され、
     前記磁気記録部材において1つの前記位置磁気信号が記録される範囲は、前記回転部材の回転方向に第一の幅を有しており、
     前記磁気記録部材には、前記複数の位置磁気信号の各々の間に前記位置磁気信号に隣接させて、隣接する前記位置磁気信号が記録されている範囲を識別するための磁気信号である範囲識別用磁気信号が記録され、
     前記範囲識別用磁気信号は前記回転方向に着磁された磁気パターンにより構成され、
     1つの前記範囲識別用磁気信号が記録される範囲は、前記回転方向に前記第一の幅よりも小さい第二の幅を有しており、
     前記位置検出ステップでは、前記範囲識別用磁気信号が検出されてから続けて検出される前記位置磁気信号に基づいて、前記可動光学素子の位置を検出する可動光学素子の位置検出方法。
PCT/JP2013/081126 2013-03-06 2013-11-19 レンズ装置及び可動光学素子の位置検出方法 WO2014136324A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015504129A JP5802857B2 (ja) 2013-03-06 2013-11-19 レンズ装置及び可動光学素子の位置検出方法
CN201380074251.8A CN105008974B (zh) 2013-03-06 2013-11-19 镜头装置以及可动光学元件的位置检测方法
US14/847,250 US9503676B2 (en) 2013-03-06 2015-09-08 Lens device and position detection method of movable optical element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-043994 2013-03-06
JP2013043994 2013-03-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/847,250 Continuation US9503676B2 (en) 2013-03-06 2015-09-08 Lens device and position detection method of movable optical element

Publications (1)

Publication Number Publication Date
WO2014136324A1 true WO2014136324A1 (ja) 2014-09-12

Family

ID=51490869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081126 WO2014136324A1 (ja) 2013-03-06 2013-11-19 レンズ装置及び可動光学素子の位置検出方法

Country Status (4)

Country Link
US (1) US9503676B2 (ja)
JP (1) JP5802857B2 (ja)
CN (1) CN105008974B (ja)
WO (1) WO2014136324A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020076937A1 (en) * 2018-10-10 2020-04-16 Sri International Single-track magnetic encoding

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008116343A (ja) * 2006-11-06 2008-05-22 Sendai Nikon:Kk アブソリュートエンコーダ
JP2011112520A (ja) * 2009-11-27 2011-06-09 Sony Corp 位置検知装置、撮像装置および位置検知方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3706084A (en) * 1969-10-27 1972-12-12 Honeywell Inc Mass memory system
JPS62168019A (ja) * 1986-01-20 1987-07-24 Hitachi Ltd 磁気式回転センサ
US4768119A (en) * 1986-03-05 1988-08-30 Nippon Gakki Seizo Kabushiki Kaisha Non-contact head with variable clearance compensating means
US4796104A (en) * 1986-04-07 1989-01-03 Victor Company Of Japan, Ltd. Video signal recording and reproducing apparatus performing time-lapse recordings compatible with standard-type apparatuses
JPS6342059A (ja) * 1986-08-06 1988-02-23 Sony Corp 記録再生装置
US4951162A (en) * 1986-11-06 1990-08-21 Canon Kabushiki Kaisha Tracking control system with pilot signal phase setting circuitry
JPS63187462A (ja) * 1987-01-29 1988-08-03 Fujitsu Ltd 磁気ディスク装置の回転同期制御方式
US5051846A (en) * 1987-10-13 1991-09-24 Victor Company Of Japan, Ltd. Magnetic video tape recording and reproducing apparatus
JP2979692B2 (ja) 1991-04-03 1999-11-15 松下電器産業株式会社 磁気エンコーダ
JPH0599688A (ja) 1991-10-11 1993-04-23 Matsushita Electric Ind Co Ltd 磁気エンコーダ
JP4080538B2 (ja) * 1996-08-27 2008-04-23 日立マクセル株式会社 光磁気記録媒体の再生方法及び再生装置
JP2000100081A (ja) * 1998-09-25 2000-04-07 Sony Corp デジタル信号の磁気記録装置及び方法、デジタル信号の磁気再生装置及び方法、並びに、テープ状記録媒体
US6320712B1 (en) * 1999-06-23 2001-11-20 Iomega Corporation Apparatus and methods for low overhead highly reliable determination of rotational position of a magnetic storage medium
JP4463350B2 (ja) * 1999-10-22 2010-05-19 シチズンホールディングス株式会社 アナログ電子時計
JP4044387B2 (ja) * 2002-08-02 2008-02-06 富士通株式会社 磁気転写装置
JP2010092550A (ja) * 2008-10-09 2010-04-22 Hitachi Global Storage Technologies Netherlands Bv 磁気記録ヘッド、その製造方法及び磁気記録再生装置
JP5138558B2 (ja) * 2008-11-21 2013-02-06 エイチジーエスティーネザーランドビーブイ 磁気記録装置及びその磁気記録方法
JP5902025B2 (ja) * 2012-04-23 2016-04-13 株式会社日立製作所 マイクロ波アシスト磁気記録によるサーボパターン、垂直磁気記録媒体、磁気記憶装置、及びその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008116343A (ja) * 2006-11-06 2008-05-22 Sendai Nikon:Kk アブソリュートエンコーダ
JP2011112520A (ja) * 2009-11-27 2011-06-09 Sony Corp 位置検知装置、撮像装置および位置検知方法

Also Published As

Publication number Publication date
CN105008974A (zh) 2015-10-28
JP5802857B2 (ja) 2015-11-04
JPWO2014136324A1 (ja) 2017-02-09
US20150381924A1 (en) 2015-12-31
US9503676B2 (en) 2016-11-22
CN105008974B (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
JP5736518B2 (ja) 撮像レンズ鏡筒およびその動作制御方法
US8817169B2 (en) Motor driven optical apparatus
US20190033687A1 (en) Optical-device drive apparatus, interchangeable lens, and imaging apparatus
US9372324B2 (en) Imaging lens barrel and method for controlling operation of the same
US8942553B2 (en) Lens device and position detection method of movable optical element
JP2013246416A (ja) 像ぶれ補正装置及び撮像装置
JP5802857B2 (ja) レンズ装置及び可動光学素子の位置検出方法
JP6053985B2 (ja) レンズ装置、撮像装置、可動レンズの位置検出方法
US20180058885A1 (en) Encoder and apparatus having the same
JP5384320B2 (ja) レンズ装置の位置検出装置
US10620400B2 (en) Position detection device for movable lens, lens device, imaging device, position detection method for movable lens, and non-transitory computer readable medium storing a position detection program for movable lens
JP5736520B2 (ja) 撮像レンズ鏡筒およびその動作制御方法
KR20130052754A (ko) 위치 검출 장치 및 이를 구비한 경통 조립체
JP6031415B2 (ja) レンズ装置及び可動光学素子の位置検出方法
JP2010151987A (ja) レンズ装置
JP2013003352A (ja) 光学装置及び撮像装置
JP2013182197A (ja) 撮像装置およびレンズ鏡筒
JP2016024343A (ja) 撮像装置
JP2013156442A (ja) レンズ装置、撮像装置、絶対位置検出方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13876931

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015504129

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13876931

Country of ref document: EP

Kind code of ref document: A1