JP5138558B2 - 磁気記録装置及びその磁気記録方法 - Google Patents

磁気記録装置及びその磁気記録方法 Download PDF

Info

Publication number
JP5138558B2
JP5138558B2 JP2008298846A JP2008298846A JP5138558B2 JP 5138558 B2 JP5138558 B2 JP 5138558B2 JP 2008298846 A JP2008298846 A JP 2008298846A JP 2008298846 A JP2008298846 A JP 2008298846A JP 5138558 B2 JP5138558 B2 JP 5138558B2
Authority
JP
Japan
Prior art keywords
recording
assist
magnetic field
heat spot
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008298846A
Other languages
English (en)
Other versions
JP2010123232A (ja
JP2010123232A5 (ja
Inventor
英明 前田
宏康 田辺
正文 望月
英樹 財津
Original Assignee
エイチジーエスティーネザーランドビーブイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エイチジーエスティーネザーランドビーブイ filed Critical エイチジーエスティーネザーランドビーブイ
Priority to JP2008298846A priority Critical patent/JP5138558B2/ja
Priority to US12/622,064 priority patent/US8018672B2/en
Publication of JP2010123232A publication Critical patent/JP2010123232A/ja
Publication of JP2010123232A5 publication Critical patent/JP2010123232A5/ja
Application granted granted Critical
Publication of JP5138558B2 publication Critical patent/JP5138558B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B19/00Driving, starting, stopping record carriers not specifically of filamentary or web form, or of supports therefor; Control thereof; Control of operating function ; Driving both disc and head
    • G11B19/02Control of operating function, e.g. switching from recording to reproducing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/012Recording on, or reproducing or erasing from, magnetic disks
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B2005/0002Special dispositions or recording techniques
    • G11B2005/0005Arrangements, methods or circuits
    • G11B2005/001Controlling recording characteristics of record carriers or transducing characteristics of transducers by means not being part of their structure
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B2005/0002Special dispositions or recording techniques
    • G11B2005/0005Arrangements, methods or circuits
    • G11B2005/0021Thermally assisted recording using an auxiliary energy source for heating the recording layer locally to assist the magnetization reversal

Landscapes

  • Recording Or Reproducing By Magnetic Means (AREA)
  • Digital Magnetic Recording (AREA)

Description

本発明は磁気ディスク・ドライブ及びその磁気記録方法に関し、特に、磁気情報の記録において磁気ディスクにエネルギーを与えることで磁気記録層の保持力を下げるアシスト磁気記録方式を実装した磁気ディスク・ドライブにおける制御に関する。
磁気ディスク・ドライブの一つであるハードディスク・ドライブ(HDD)の基本的な構成は、磁気ディスクと磁気ディスクを回転させるスピンドルモータ、記録再生素子を搭載したヘッド・スライダ、ヘッド・スライダを保持するサスペンション、ヘッド・スライダを所望のデータが記録された位置に移動させるようにサスペンションを回動駆動するボイス・コイル・モータ(VCM)を有している。
HDDは、情報を記録再生する際には、磁気ディスクに形成されたトラックのうち、所望のトラック上を記録再生素子(ヘッド素子部)が飛行するようにVCMによってサスペンションを回動させる。HDDは、トラック上に形成されたサーボ信号と呼ばれる位置決め信号を読み出すことで現在の位置を割り出し、記録再生素子を所望のトラックまで移動する。記録動作において、HDDは、再生素子で読み出した位置決め信号を参照し、記録位置へと記録素子を移動する。再生動作時においても同様に、再生素子で読み出した位置決め信号を参照し、再生素子を再生位置へと移動する。
トラックは円周状に形成されており、ヘッド・スライダ上の記録再生素子は、前述のとおり、サスペンションの軸を中心としたVCMによる回動運動により移動する。そのため、記録素子とトラックとの間の角度、また、あるいは再生素子とトラックとの間の角度は、それぞれ、磁気ディスクの半径位置により変化する。記録素子あるいは再生素子の位置におけるヘッド・スライダ長手方向とトラックの接線方向(円周方向)との間のずれは、スキュー角と呼ばれる。このスキュー角は、磁気ディスクの半径位置により変化する。
一方、近年の情報のディジタル化や小型化の要求に伴い、HDDの高記録密度に対する要求が高まっている。この高記録密度を実現するためには、1ビットあたりの記録面積は小さくなる。しかし、その影響から記録情報(記録ビット)の境界では磁性粒子の境界が一致せず、記録ビットの境界部分で磁化遷移位置が乱れ、これが雑音を増加させる原因となる。この雑音を抑制するためには、磁性粒子の粒径を小さくすることが重要である。
しかし、粒径が小さくなることで磁性粒子が持つ磁気的エネルギーが小さくなり、この磁気的エネルギーが熱エネルギーを下回った場合は、「熱揺らぎ」と呼ばれる磁気情報の消失が起こる。この熱揺らぎに対応するためには、磁気異方性定数の大きな磁性粒子材料で磁気ディスクの記録層を作成すればよいが、保磁力も大きくなるために記録磁界も大きくしなければならない。大きな記録磁界を発生させるためには記録素子の微細化が困難になる。逆に、微細な記録素子が発生する記録磁界では磁気ディスクの保持力を超えられず、情報を記録することができない。
上記のような問題に対して、熱や電磁波によるエネルギーを使用したアシスト磁気記録方式が提案されている。その中で、熱アシスト磁気記録(Heat Asist Magnetic Recording:HAMR)について図10を参照して説明する。図10は、磁性粒子の温度と保磁力の関係を示す。この磁性粒子を採用した磁気ディスクは常温Tr℃における保磁力はHc0となる。この記録層を暖めることで保持力Hcが下がり、温度Tw以上に加熱すると、微細な記録素子が発生する記録磁界Hwが媒体のHcを上回り記録することができる。加熱手段としては、レーザ光のほか、近年は近接場光の利用も検討されている。
一方、磁気記録層は、記録時以外では温度が下がり、保磁力Hcが高い状態Hc0に戻るため、記録時以外は高い保磁力により熱揺らぎの耐性を持つことができる。このように、HAMRの基本的な概念は、磁気ディスクを加熱することで記録層の保磁力を低下させ、記録素子が発生できる記録磁界強度で記録を行うものである。このようなHAMRは、磁気ディスク記録層の保磁力とヘッド素子部からの記録磁界強度、媒体を加熱する構成の種類やサイズなどにより、以下の3種類に分けることができる。本明細書において、これらを、それぞれ、磁界方式、熱スポット方式、そしてハイブリッド方式と呼ぶ。
図11Aは、磁界方式の構成を模式的に示している。磁界方式のHDDは、幅広い熱スポット(加熱領域)601に対して、微小な記録素子602を持つ。熱スポット601は減磁領域を示している。熱スポット601と記録磁界とが同時に重なる位置にデータが記録される。なお、本図において、記録素子602と同じ領域に記録磁界が形成されているとする。これらの点は、以下に説明する図において同様である。
図11Aにおいて、記録素子幅より熱スポット径が十分に広い。このため、磁気ディスク上で記録磁界Hwに到達する範囲(図において記録素子602と重なる範囲)では、磁気ディスクの保磁力Hcのほうが記録磁界Hwよりも低い。よって、磁気ディスク上の記録幅(トラック幅)は、記録素子602(のトレーリング・エッジ)の幅で決まる。また、熱によって隣接の記録磁化は減磁しない、もしくは、その影響は軽微である。
図11Bは、熱スポット方式の構成を模式的に示している。熱スポット方式のHDDは、狭い熱スポット603の径に対して、十分に幅広い記録素子604を持つ。この構成において、磁気ディスク上で記録磁界Hwに到達する範囲(図において記録素子604と重なる範囲)は、熱スポット603の径に対して広い。熱スポット603と記録磁界とが同時に重なる位置にデータが記録される。そのため、記録幅(トラック幅)は、熱スポット603の径で決まる。また、記録素子604による記録磁界によって隣接の記録磁化は減磁しない、もしくは、その影響は軽微である。
図11Cは、ハイブリッド方式の構成を模式的に示している。磁気データは、熱スポットと記録磁界が重なり合った部分で記録される。つまり、データが記録されている領域の幅(記録幅)610は、熱スポットと記録磁界幅のうちの狭い方の領域になる。一方、本構成において、磁気記録層の磁化は、熱スポット内の熱により減磁され、また、記録磁界によっても減磁される。つまり、隣接トラックへの影響は、熱スポット径と記録磁界幅のうちの広い領域611ないし612におよぶ。このため、熱スポット径と記録磁界幅とが、隣接トラックにはみ出さないように設計する必要がある。
従来の技術としては、例えば、特許文献1に開示されている技術ように、熱スポット径を変化させることで、熱スポット径および記録素子幅によらずに狭トラック幅を実現する手法が知られている。
特開2007−12226号公報
上述のように、HAMRにおいて記録される幅は、熱スポット径と記録磁界幅によって決まる。しかし、前述のHDDのように、VCMの回動運動でヘッド・スライダを移動するロータリーアクチュエータを採用したHDDにおいては、磁気ディスクの半径方向の位置の違いが、スキューの変化にあわせて、ヘッド・スライダ上の素子の半径方向の位置ずれの変化に現れる。すなわち、スキューの変化と共に、記録素子とアシスト素子との半径方向の位置が変化し、スキュー角の絶対値が大きい半径位置では、意図しない記録幅の変動が生じるという問題があった。
そこで、本発明の目的は、スキュー角によりアシスト素子と記録素子との半径方向の位置に変動が生じても、記録幅の変動を抑えることである。
本発明の一態様の磁気記録装置は、磁気記録層を有する磁気ディスクと、ヘッド・スライダ上にある記録素子と前記ヘッド・スライダ上にあり、前記記録素子によって発生する記録磁界が前記記録層に印加される領域にアシスト・エネルギーを与えるアシスト素子と、前記磁気ディスクの半径方向における前記ヘッド・スライダの位置に応じて、前記アシスト素子よるアシスト領域の大きさを制御するコントローラとを有する。適切な記録アシスト径を与えることで、半径位置に応じて所望の記録幅を実現することができる。
前記コントローラは、前記ヘッド・スライダの長手方向と記録トラックとの間のずれであるスキュー角の増加に応じて、前記アシスト領域を小さくする。これにより、隣接トラックへの影響を低減することができる。
前記コントローラは、ディスク半径方向における前記アシスト領域の幅が前記記録素子による記録磁界幅内に収まるように、前記アシスト素子を制御する。これにより、所望のトラック幅を得つつ隣接トラックへの影響を低減することができる。
前記コントローラは、前記記録素子によって、隣接する記録トラックの一部が重なるように、複数連続記録トラックをディスク半径方向における一方の側から他方の側に向かって書き進み、前記複数連続記録トラックのそれぞれの書き込みにおいて、前記アシスト領域の前記一方の側の端が前記記録素子による記録磁界内に収まるように、前記アシスト素子を制御する。これにより、適切なトラック幅を得つつ隣接トラックへの影響を低減することができる。
前記コントローラは、前記スキュー角による前記アシスト範囲の中心と前記記録素子による記録磁界の中心のずれに応じて、前記記録素子のターゲット位置を補正する。これにより、より広い記録幅を得ることができる。
前記コントローラは、異なる半径位置において前記記録素子による記録磁界幅の中心と前記アシスト領域の中心との差分を測定し、前記差分に応じて、各半径位置におけるアシスト領域を決定する。これにより、より正確にアシスト領域を制御することができる。前記コントローラは、各半径位置における前記アシスト領域による減磁領域と、前記記録磁界による減磁領域とを測定することで、前記差分を測定する。これにより正確に測定を行うことができる。前記コントローラは、各半径位置における前記アシスト領域による減磁領域と、前記アシスト領域と前記記録磁界による記録幅とを測定することで、前記差分を測定する。これにより正確に測定を行うことができる。
本発明の他の態様は、記録素子からの記録磁界とアシスト素子からのアシスト・エネルギーにより磁気ディスクの記録層にデータを記録する磁気記録装置に対する設定方法である。この方法は、磁気ディスクの異なる半径位置において前記記録素子による記録磁界幅の中心と前記アシスト領域の中心との差分を測定する。前記測定結果に応じて、前記磁気ディスクの半径位置に応じた前記アシスト領域の大きさを決定する。前記半径位置に応じた前記アシスト領域の大きさを表すデータを登録する。このような測定により、アシスト領域の制御に必要なデータを正確に得ることができる。
本発明によれば、適切な記録アシスト径を与えることで、半径位置に応じて所望の記録幅を実現することができる。
以下に、本発明を適用した実施の形態を説明する。説明の明確化のため、以下の記載及び図面は、適宜、省略及び簡略化がなされている。各図面において、同一要素には同一の符号が付されており、説明の明確化のため、必要に応じて重複説明は省略されている。以下においては、磁気記録装置の一例であるハードディスク・ドライブ(HDD)に本発明を適用した実施形態について説明する。また、本実施形態においては、熱アシスト記録方式を採用するHDDについて主に説明する。なお、本発明は、熱エネルギーや電磁波エネルギーなど、いずれのアシスト・エネルギーを使用するアシスト磁気記録方式にも適用することができる。
図1A〜図1Dを用いて、図11Cを参照して説明したハイブリッド方式のHDDについて、熱スポット径および熱スポットと記録磁界との距離を測定する方法を説明する。ハイブリッド方式において、特定のトラック幅を設定した場合は、隣接トラックに影響を及ぼさないように熱スポットおよび記録磁界を制御しなければならない。逆にある信号品質を確保できるよう記録幅を設定した場合は、熱スポットおよび記録磁界による減磁が生じる範囲を含めたトラック・ピッチの設計を行わなければならない。
これらを実現するために、HDDの設計あるいは製造において、熱スポット径および熱スポットと記録磁界との距離の測定が重要になる。この熱スポット径の測定方法について説明する。この測定は、HDDの設計のためのテストあるいはHDDの製造におけるテスト工程において、テスト装置あるいはHDDが行う。
最初に、図1Aのように、測定する位置とその近傍数トラック分を、一定記録周波数で記録する。図1Aにおいて、左右方向が半径方向であり、上下方向が円周方向である。記録パターン101の左右に消去幅102を有するバンドが形成されている。記録パターン101は、HDDに実装される記録素子と熱アシスト素子とは異なる素子により予め磁気ディスクに記録しておく、あるいは、HDD内のヘッドにより記録パーン101を記録面に書き込む。
記録周波数は、例えば、最高記録周波数(1ビット毎のビット反転)の1/10倍など、十分に大きな読み出し信号が得られる周波数であればよく、記録する範囲120は熱アシスト素子と記録素子との公差を含む設計値に対して十分広い範囲である。予め記録してある範囲120のオフトラック・プロファイル103は、半径方向(図の左右方向)において一定周期の振幅変化を示す。
次に、図1Bに示すように、一定記録周波数で記録された領域120に対して、熱アシスト素子のみを稼動させて熱スポット104による減磁を行う。減磁領域107は、熱スポット104の径121と一致する幅である。減磁領域107を含む一定周波数の領域120を、微小量ずつ半径方向における位置を変えて再生素子で読み出すことで、オフトラック・プロファイル108を作成する。
一定周波数の領域120において、減磁された領域の振幅は劣化している。従って、この振幅の劣化した幅を測定することで、熱スポット径121を測定することができる。さらに、熱アシスト素子への供給パワー(熱アシスト素子の出力)を変化させながら上記の測定を繰り返し行うことで、熱アシスト素子への供給パワーに対する熱スポット径120の変化量を得ることができる。
同様に、図1Cのように、記録素子105による記録磁界のみを発生させることで、一定記録周波数で記録された領域120に対して記録磁界による減磁を行う。減磁領域109の幅は、記録磁界幅122と一致する幅である。減磁領域109を含む一定周波数の領域120を、微小量ずつ半径方向における位置を変えて再生素子で読み出すことで、オフトラック・プロファイル110を作成する。なお、図1Bと図1Cにおいて、減磁領域の幅121、122を規定する振幅値(AMPLITUDE)が異なって見えるが、これは、それぞれの減磁領域に隣接するのが記録パターン101であるか消去幅102であるかの相違によるものに過ぎない。
一定周波数の領域120において、振幅の劣化した幅を測定することで、記録磁界幅122を測定することができる。さらに、記録素子105への記録電流(記録パワー)を変化させながら上記の測定を繰り返し行うことで、記録素子105への記録電流に対する記録磁界幅122の変化量を得ることができる。
次に、図1Dに示すように、選択した半径位置において、規定の熱スポット径123となる熱アシスト素子のパワーを設定し、熱スポット104による減磁のオフトラック・プロファイル111を作成する。また、規定の記録磁界幅124となる記録電流を設定し、記録を行う。この記録領域を微小量ずつ半径方向における位置を変えて再生素子により読み出すことで、記録磁界幅124による減磁のオフトラック・プロファイル112を作成する。プロファイル111の中心位置125とプロファイル112の中心位置127の差126は、測定を行っている半径位置での熱スポット104と記録磁界との位置ずれ量を示している。さらに、半径位置を変えて、異なる複数の半径位置において熱スポットと記録磁界との位置ずれ量を測定する。これにより、異なる半径位置のそれぞれにおいて、半径方向のずれ量を検出できる。
上記の手法で得られた熱スポットと記録磁界との位置ずれ量と半径位置との関係、記録電流と記録磁界幅の関係、そして、パワーと熱スポット径との関係とから、各半径位置で最適となる熱スポット径104および記録磁界幅124となる、熱アシスト素子のパワーと記録電流とを決定することができる。HDDは、その決定されたパワーと記録電流によりデータ記録を行う。このように、ハイブリッド方式のHAMRにおいて、熱スポット径および熱スポットと記録磁界との位置ずれ量を測定することで、最適な熱アシスト素子の出力(パワー)を求めることができる。
次に、図2A〜図2Cを用いて、図11Bを参照して説明した熱スポット方式のHDDについて、熱スポット径および熱スポットと記録磁界との距離を測定する方法を説明する。熱スポット方式において、特定トラック幅を設定した場合は、熱スポットがその特定トラック幅に合うように制御することが重要である。
最初に、図2Aのように、測定位置及びその近傍に、数トラックを一定記録周波数で記録しておく。記録パターン101は、HDDに実装される記録素子と熱アシスト素子とは異なる素子により予め磁気ディスクに記録しておく。記録周波数は、図1Aを参照して説明した例と同様に、ある程度大きいことが望ましい。後に信号の記録再生のプロファイルを作成するため、振幅が飽和しない程度(最高記録周波数の1/4〜1/6倍程度が好ましい。また、記録再生の範囲は、図1Aを参照して説明した例と同様である。
続いて、図2Bに示すように、一定記録周波数で記録された領域120に、熱源(熱アシスト素子)のみを稼動させ、一定記録周波数で記録された領域120の一部を減磁させる。次に、減磁領域を含む一定周波数の領域120を、微小量ずつ半径方向における位置を変えて再生素子で読み出すことで、オフトラック・プロファイル108を作成する。一定周波数の領域120に対して、減磁された箇所の振幅は劣化している。この振幅の変化した幅を測定することで、熱スポット径121を測定することができる。また、熱アシスト素子の出力(パワー)を変化させながら上記測定を行うことで、熱アシスト素子のパワーに対する熱スポット径の変化量を得ることができる。
次に、図2Cのように、特定の半径位置で、規定の熱スポット径123となる熱アシスト素子のパワーを設定する。熱スポット104による減磁のオフトラック・プロファイル111を作成し、熱スポット104の中心位置125を特定する。さらに、同一のディスク半径位置において、規定の熱スポット径123と記録磁界幅124となるように熱アシスト素子のパワーおよび記録電流を設定し、記録を行う。記録した領域を再生素子により半径位置を微小量ずつ変化させて読み出すことで、記録のオフトラック・プロファイル113を作成する。
記録のオフトラック・プロファイル113における信号のピーク位置128は記録磁界の中心位置に等し。このプロファイル113の中心位置128と熱スポットによる減磁のプロファイル111の中心位置125との差分129は、そのディスク半径位置での熱スポットと記録磁界との位置ずれ量を示している。このように、各半径位置での半径方向のずれ量を検出できる。
上記の測定を、異なる複数の半径位置において行う。この測定で得られた熱スポットと記録磁界の位置ずれ量と半径位置との関係、そして、熱スポット径とパワーとの関係から、各半径位置で最適となる熱スポット径となるように熱アシスト素子のパワーを決定することができる。HDDは、このパワーにおいて熱アシスト素子を制御する。このように、熱スポット方式のHAMRにおいて、熱スポット径および熱スポットと記録磁界との位置ずれ量を上述のように測定することで、最適な熱アシスト素子のパワーを求めることができる。
次に、図3A〜図3Cを用いて、図11Aを参照して説明した磁界方式のHDDについて、熱スポット径と記録磁界との間の関係を測定する方法を説明する。磁界方式において特定のトラック幅を設定した場合は、そのトラック幅のよりも広い領域を覆うように熱スポットを制御することが重要である。また、消費電力秘伝の観点から、熱スポット径はできるけ小さいことが好ましい。
まず、図3Aに示すように、十分に大きな径の熱スポット201を形成するように熱アシスト素子のパワーを制御する。このときの熱スポットは、Hw>Hcとなる記録磁界の全範囲を覆う。従って、記録幅221は、記録磁界の幅(図において記録素子202のトレーリング・エッジの幅)に等しい。このオフトラック・プロファイル203のトラック幅222をTw0とする。
次に、図3Bに示すように、熱源のパワーを制御し、熱スポット径が小さくなるように変化させながら、記録幅を測定する。このとき、Tw0より記録幅が狭くなる径の熱スポット204によるオフトラック・プロファイル205は、トラック幅224を有する。図3Cに、トラック幅と熱源のパワーとの関係を示す。トラック幅が減少を始める点206では、熱スポット径が記録磁界の端部にかかっている。この状態が、このヘッド位置(半径位置)での最適な熱スポット径となる。
HDDは、各トラック(半径位置)において、上記の手法で得られた記録磁界端部まで覆う熱スポット径になるように、熱スポット(熱アシスト素子の出力)を制御する。このように、磁界方式のHAMRにおいて、上述の測定により半径位置に応じた適切な熱アシスト素子のパワーを求めることができる。
以下において、本実施形態におけるHDDの記録動作について説明する。上記三つのHAMR方式のそれぞれについて、HDDの記録動作を説明する。まず、図4を参照して、ハイブリッド方式のHAMRを実装したHDDにおける好ましい記録動作について説明する。ハイブリッド方式のHAMRにおいては、熱スポットと記録磁界の双方により、記録層の磁化が減磁される。図4の構成において、熱アシスト素子は、磁気記録素子に対して、円周方向(飛行方向)の後方側(トレーリング側)に配置されている。ハイブリッド方式のHAMRにおいて、熱スポットと記録素子(記録磁界)との位置関係により、熱スポットおよび記録磁界による減磁領域の大きさが変化する。
図4(a)は、内周側のデータ・トラックに記録する際の好ましい熱スポット(の位置)301、磁気記録素子(の位置)302、そして、記録幅322の関係を示している。データ・トラックは、データが記録されている中央の記録域と、その両側の減磁域と、で構成されている。記録域の幅が記録幅322である。データ・トラックの幅321は、記録幅322と減磁域の幅の和である。ハイブリッド方式においては、データ・トラックの端は、熱スポットの端と記録磁界の端のうちのより外側にある一方で規定される。図4において、トラック幅321、323、325と記録磁界の幅(図1Cにおける122)とが一致している。
ヘッド・スライダは、図の上側から下側に移動(飛行)する。データ記録域322は、熱スポット位置と記録磁界とが同時に重なっている位置に形成される。図4において、記録素子のトレーリング・エッジと熱スポットが重なる位置で、最終的な記録幅が決まる。なお、本図では、記録素子位置302と記録磁界の位置とは一致しているとする。この点は、以下の各図の説明において同様である。
図4(a)に示す内周側では、スキュー角の影響で、記録幅321(記録素子位置302)の中心に対して、熱スポット位置301(熱アシスト素子)の中心は、内周側へずれる。好ましくは、HDDは、熱スポット位置301の内周側の端301aを、記録磁界(記録素子位置302)の内周側の端302aよりも外周側に位置するように熱スポットの径を制御する。このとき、熱スポット位置301の外周側の端は、記録磁界の外周側の端位置よりも内周側になる。
つまり、熱スポット位置301の内周端と外周端の双方が、半径方向において記録磁界内に収まる。これにより、内周側の隣接データ・トラックへの熱スポットによる影響を防ぐことができる。さらに好ましくは、HDDは、熱スポット位置301の内周側の端301aを記録磁界の内周側の端302aにあわせるように、熱スポットの径を制御する。これにより、記録幅に対する減磁幅の比を小さくすることができる。
なお、スキュー角は、記録素子105の位置におけるヘッド・スライダの長手方向と磁気ディスクの円周接線方向(トラック接線方向)との間の角度である。上記ヘッド・スライダの長手方向の上記円周接線に対するずれの方向は、内周側と外周側とで異なるが、本発明においては、ずれが内周側・外周側の関係なく、ずれた角度が問題となる。そのため、スキュー角は絶対値で考えればよいので、常に0もしくは正の数で記載している。
次に、図4(b)に中周のデータ・トラックに記録する際の好ましい熱スポット位置303、磁気記録素子位置304、そして、記録幅324の関係を示す。中周においては、熱スポット位置303(熱アシスト素子)の中心は、記録幅323(記録素子位置304)の中心とほぼ同じ位置にある。このとき、熱スポットの両端303aおよび303bが、記録磁界(記録素子位置304)の両端304aおよび304b内に収まるように制御する。これにより、両側隣接データ・トラックへの熱スポットによる影響を防ぐことができる。特に、熱スポットの両端303aおよび303bが、記録磁界の両端304aおよび304bに一致する場合、記録幅に対する減磁幅の比を小さくすることができる。
最後に、図4(c)に外周側のデータ・トラックに記録する際の熱スポット位置305、磁気記録素子位置306、そして、記録幅326の関係を示す。外周側では、スキュー角の影響で、記録幅326(記録素子位置306)の中心に対して、熱スポット位置305(熱アシスト素子)の中心は、外周側へずれる。HDDは、熱スポットの外周側の端305bを記録磁界の外周側の端306bよりも内周側に位置するように熱スポットの径を制御する。
このとき、熱スポット位置301の内周側の端は、記録磁界の内周側の端位置よりも外周側になる。つまり、熱スポット位置301の内周端と外周端の双方が、半径方向において記録磁界内に収まる。これにより、外側の隣接データ・トラックへの熱スポットによる影響を防ぐことができる。さらに好ましくは、HDDは、熱スポットの外周側の端305bを記録磁界の外周側の端325bにあわせるようにスポット径を制御する。これにより、記録幅に対する減磁幅の比を小さくすることができる。
図4を参照して具体的に説明したように、HDDは、記録素子による記録磁界の端を基準に熱スポットの径を制御することで、所望のトラック幅を確保すると共に、熱スポットによる隣接データ・トラックへの影響を低減する。具体的には、HDDは、スキュー角の増加に応じて熱スポット径を小さくする。例えば、HDDは半径位置(トラック)に応じた熱スポット径(熱アシスト素子のパワー(出力))を規定する関数あるいはテーブルを有しており、それらに従って、熱スポット径を制御する。熱スポット径をトラック毎に規定する、あるいは、複数の連続するトラックのグループに対して一つの熱スポット径を規定してもよい。
この磁気記録制御、特に、その熱スポット制御により、ハイブリッド方式のHAMRにおいて、全ての半径位置で、適切なトラック・ピッチの設定、もしくは、設定されたトラック・ピッチに適切な熱スポット径を実現することができる。
上記の制御方法のほかに、記録磁界による減磁領域が、内周側と外周側で分かっている場合、HDDは、隣接データ・トラックのデータ領域端を基準に熱スポット径を制御してもよい。例えば、内周側で記録磁界による減磁領域がわかっている場合は、HDDは、熱スポットの内周側の端を内周側隣接トラックの外周側データ領域端を基準に熱スポット径を制御してもよい。具体的には、熱スポットの内周側端を内周側隣接トラックの外周側データ領域端よりも外周側、あるいはそれに合わせるように制御する。
また、外周側で磁界による減磁領域がわかっている場合は、HDDは、熱スポットの外周側の端を外周側隣接トラックの内周側データ領域端を基準に熱スポット径を制御してもよい。具体的には、熱スポットの外周側の端部を外周側隣接トラックの内周側データ領域端よりも内周側、あるいはそれに合わせるように、熱スポット径を制御してもよい。このように、HDDは、結果として、隣接トラックのデータを減じさせないように熱スポット径を制御できればよい。
次に、図5を参照して、熱スポット方式のHAMRを実装したHDDにおける好ましい記録動作について説明する。熱スポット方式のHAMRにおいて、熱スポットにより記録層の磁化が減磁され、記録磁界による減磁の影響は小さい、もしくは、無視しうる。熱アシスト素子と磁気記録素子のスライダ上の位置関係及びヘッド・スライダの移動方向(飛行方向)は、図4の構成と同様である。
図5(b)は、中周のデータ・トラックに記録する際の好ましい熱スポット位置333、磁気記録素子位置(記録磁界形成位置)343、そして、記録幅344の関係を示す。特に、図5(b)は、スキュー0における関係を例示している。中周においては、熱スポット位置333(熱アシスト素子)の中心は、記録幅344(記録素子位置334)の中心とほぼ同じ位置にある。
トラックの幅343は、熱スポットの径と一致している。隣接データ・トラックへの影響を避けるため、熱スポットの径は、記録磁界の幅以下であることが必要である。また、記録域に対する減磁域の比を小さくするためには、図5(b)に例示するように、熱スポットの径と記録磁界の幅とが同一であることが好ましい。
図5(a)は、熱スポット方式の構成において、内周側のデータ・トラックに記録する際の好ましい熱スポット位置331、磁気記録素子位置(記録磁界形成位置)332、そして、記録幅342の関係を示している。記録域と減磁域とからなるデータ・トラックの幅341は、熱スポット径と一致している。内周側において、熱スポットの位置331の中心は、スキュー角の影響で、記録幅342(記録素子の位置332)の中心より内周側にずれている。
このため、中周におけるスキュー角が0度(図5(b)参照)のときと同じ熱スポット径では、熱スポットの一部が内周側の隣接トラック340上に重なり、隣接トラック340に記録されたデータに熱減磁の影響が出る可能性が高い。HDDは、内周側データ・トラックの記録において、熱スポット径を小さくすることで、内周側の隣接トラック340に記録された信号が影響を受けないように制御する。
さらに、内周側領域においては、記録幅342の中心に対して、熱スポット径341の中心が内周側にずれている。つまり、データ・トラックにおける内周側の減磁域が、外周側の減磁域よも大きな幅を有している。そのため、好ましい方法として、本来の記録素子位置337から微小量外周側にずらした位置332をターゲットとして記録素子を位置決めすることにより、熱スポット径を大きくすることができ、十分な記録幅を得ることができる。この際、上述のとおり、熱スポット径が隣接トラックにかからないように制御する。
図5(c)は、外周側のデータ・トラックに記録する際の好ましい熱スポット位置335、磁気記録素子位置(記録磁界形成位置)336、そして、記録幅346の関係を示している。記録域と減磁域とからなるデータ・トラックの幅345は、熱スポット径と一致している。外周側において、熱スポットの位置335の中心は、スキュー角の影響で、記録幅346(記録素子の位置336)の中心より外周側にずれている。
このため、中周におけるスキュー角が0度(図5(b)参照)のときと同じ熱スポット径では、熱スポットの一部が外周側の隣接トラック347上に重なり、隣接トラック347に記録されたデータに熱減磁の影響が出る可能性が高い。HDDは、外周側データ・トラックの記録において、熱スポット径を小さくすることで、外周側の隣接トラック347に記録された信号が影響を受けないように制御する。
さらに、外周側領域においては、記録幅346の中心に対して、トラック幅345の中心が外周側にずれている。つまり、データ・トラックにおける外周側の減磁域が、内周側の減磁域よも大きな幅を有している。そのため、好ましい方法においては、本来の記録素子位置338から微小量内周側にずらした位置336に記録素子を位置決めすることにより、熱スポット径を大きくすることができ、十分な記録幅を得ることができる。この際、上述のとおり、熱スポット径が隣接トラックにかからないように制御する。
以上のように、HDDは、スキュー角の増加に応じて熱スポット径を小さくすることで、全ての半径位置で、適切なトラック・ピッチの設定、もしくは、設定されたトラック・ピッチに適切な熱スポット径を実現することができる。これにより、隣接トラックへの影響をできる限り小さくすることでき、隣接トラックのデータ信頼性を十分に確保することができる。さらに、記録素子位置を半径位置に応じて調整することで記録幅を大きくすることができる。
具体的な処理においては、例えば、HDDは半径位置(トラック)に応じた熱スポット径(パワー)を規定する関数あるいはテーブルを有しており、それらに従って、熱スポット径を制御する。ここで、熱スポット径をトラック毎に規定する、あるいは、複数の連続するトラックのグループに対して一つの熱スポット径を規定してもよい。
次に、図6を参照して、磁界方式のHAMRを実装したHDDにおける好ましい記録動作について説明する。熱アシスト素子と磁気記録素子のスライダ上の位置関係及びヘッド・スライダの移動方向(飛行方向)は、図4の構成と同様である。磁界方式のHAMRにおいて、記録素子からの記録磁界により記録層の磁化は減磁されるが、熱スポットによる減磁の影響は小さい、あるいは、実質的に存在しない。
本構成において、HDDは、半径位置による記録幅の変化が小さくなるように、そして電力消費量が小さくなるように熱スポット径を制御する。図6(a)は、内周側の領域における、熱スポット位置351、記録素子位置(記録磁界位置)352、そして記録幅361の関係を示している。記録域は、磁気記録素子位置352により決まる。記録磁界の幅(半径方向における寸法)は、スキュー角の増加により減少する。従って、HDDは、内周側領域において熱スポット径を大きくすることで、スキューによる記録幅の減少の一部もしくは全部を補償する。
図6(c)は、外周側の領域における、熱スポット位置355、記録素子位置(記録磁界位置)356、そして記録幅363の関係を示している。記録域は、磁気記録素子位置356により決まる。記録磁界の幅(半径方向における寸法)は、スキュー角の増加により減少する。従って、HDDは、外周側領域において熱スポット径を大きくすることで、スキューによる記録幅の減少の一部もしくは全部を補償する。
以上のように、HDDは、スキュー角の増加に応じて熱スポット径を大きくすることで、記録磁界が記録位置を決定付ける系において、記録された信号の幅の半径位置に対する変化を小さくする、あるいは信号の幅を一定にすることができ、信号対雑音比を大きくすることができる。また、熱スポット径を磁気記録に不要な範囲を多く含まないように小さくすることで、消費電力を低減することができる。例えば、HDDは半径位置(トラック)に応じた熱スポット径(パワー)を規定する関数あるいはテーブルを有しており、それらに従って、熱スポット径を制御する。熱スポット径をトラック毎に規定する、あるいは、複数の連続するトラックのグループに対して一つの熱スポット径を規定してもよい。
以下において、図7A〜図7Cを用いて、位置決め信号(サーボ・データ)の書き込み(サーボ・ライト)における熱スポット径の制御方法を説明する。一般的に、HDD筐体に実装された磁気ディスクへのサーボ・ライトの手法として二つの方法が知られている。一つの方法は、外部の機構によりHDDに実装されているアクチュエータを機械的に制御しながら、HDDに実装されているヘッド・スライダにより磁気ディスクにサーボ・データを書き込む。他の方法は、HDDに実装される制御回路あるいは外部コンピュータによりアクチュエータのボイス・コイル・モータを制御しながらHDDに実装されているヘッド・スライダにより磁気ディスクにサーボ・データを書き込む。本発明は、いずれのサーボ・ライトにも適用することができる。
以下においては、ハイブリッド方式のHAMRによるサーボ・ライトの例を説明する。サーボ・データは、データ・トラック幅と同等かもしくは、データ・トラック幅よりも狭い幅(サーボ・トラック幅)で記録される。通常、データ・トラック幅は記録素子幅で決められる(もしくはデータ・トラック幅に合うように記録素子幅を形成する)。そのため、より狭い幅を持つサーボ・データは、その一部を上書きしながら書き進められる。以下において、ディスク1周で書き込まれるサーボ・データを、サーボ・ライト・トラックと呼ぶ。
通常、サーボ・データは、最内周から最外周へ、もしくは、最外周から最内周へと、全周にわたり一方向に書き込まれる。図7A〜図7Cでは、最内周から最外周へ書きつなぐ例を説明する。n番目のサーボ・ライト・トラックを書き込んだあと、n+1番目のサーボ・ライト・トラックを書き込む際には、n番目のサーボ・ライト・トラックの外周側の部分はn+1番目のサーボ・ライト・トラックに上書きされてしまう。
従って、n+1番目のサーボ・ライト・トラックが書き終わった時点で残っているn番目のサーボ・ライト・トラックは内周側の部分のみとなる。このため、熱スポットの内周端が記録磁界の内周端よりも外周側となるように、熱スポット径を制御する。これにより、先に書き込んだ内周側のサーボ・ライト・トラックに対して、熱スポットによる減磁の影響を防ぐことができる。好ましくは、図7A〜7Cに例示するように、熱スポットの内周端を記録磁界の内周端にそろえるように熱スポット径を制御する。これにより、記録幅を広くすることができる。
具体的に説明する。内周側では、図7Aに示すように、サーボ・ライト・トラックの書き込みに時において、スキュー角の影響により、熱スポット401の中心はサーボ・ライト・トラック421(最終的に記録されるトラック)の中心に対して内周側に位置がずれる。このため、熱スポット402の内周側の端を記録磁界(記録素子412)の内周端にそろえるように、熱スポット径を小さくする。このように制御することで、ni番目のサーボ・ライト・トラック421は、ni+1番目のサーボ・ライト・トラック422が書き込まれた後でも、ni+1番目のサーボ・ライト・トラック422の書き込み時における熱スポット402による劣化は生じない。
中周においては、図7Bに示すように、サーボ・ライト・トラックの書き込みに時において、熱スポット403、404の中心は、記録素子413、414の中心に一致する。熱スポット403、404の内周側の端を、記録磁界(記録素子413、414)の内周端にそろえるように、熱スポット径を制御する。これにより、nm番目のサーボ・ライト・トラック423、nm+1番目のサーボ・ライト・トラック424が記録された後でも、nm+1番目のサーボ・ライト・トラック424の記録時における熱スポット404による劣化は生じない。
同様に、外周側では、図7Cに示すように、熱スポット405、406の中心は、書き込み時におけるサーボ・ライト・トラック中心に対して外周側に位置がずれる。このため、熱スポット径を大きくして、熱スポット405、406を記録磁界(記録素子415、416)の内周端にそろえる。このように制御することで、no番目のサーボ・ライト・トラック425は、no+1番目のサーボ・ライト・トラック426が書き込まれた後でも、no+1番目のサーボ・ライト・トラック426の記録時における熱スポット406による劣化は生じない。
書きつなぐ方向が外周から内周に進む場合は、熱スポットと記録磁界の外周端をそろえるように熱スポット径を制御して、上述と同様にサーボ・データを書き進めればよい。上述のようにヘッド位置にあわせて熱スポット径を制御することで、熱スポットによる隣接サーボ・データの減磁を防ぎ、品質のよいサーボ・データを書き込むことができる。
以下において、図8A〜図8Dを用いて、シングルドライト(Shingled Write)記録方式における熱スポット径の制御方法を説明する。ハイブリッド方式のHAMRの例について具体的に説明する。シングルドライト記録方式は、連続した複数のデータ・トラックを連続して記録し、その際に、データ・トラックの一部を上書きすることで狭トラック化を実現する記録方式である。通常、数トラックから数十トラックをグループ化し、グループ単位での記録を行う。また、シングルドライト記録方式において、半径位置によらず書き進む方向が一定の場合と、半径位置によって書き進む方向を変化させる場合の2通りの手法がある。
図8Aおよび図8Bに、グループ化されたトラックに対して外周側から内周側に書き進む例を示す。また、図8Cおよび図8Dに、グループ化されたトラックに対して、内周側から外周側に書き進む例を示す。図8Aおよび図8Cは、記録するトラックが記録面全体の内周側にある場合を示している。また、図8Bおよび図8Dは、記録するトラックが記録面全体の外周側にある場合を示している。全ての図において、X本のトラックで、連続して記録再生する1グループを構成するとする。
まず、外周側から内周側に書き進む場合について説明する。このとき、HDDは、熱スポット径の外周端が記録磁界の外周端よりも内周側に位置するように熱スポット径を制御する。外周側領域では、図8Bのような配置となる。熱スポット位置513および514、記録素子位置523および524、記録するトラック位置503および504を示す。このとき、n番目の熱スポット位置513は記録素子位置523に対して外周側にある。
HDDは、熱スポットの外周端513aが記録磁界の外周端523aよりも内周側に位置するように熱スポット径を小さくする。好ましくは、熱アシスト素子の出力を制御し、熱スポットの外周側端513aを記録磁界の外周側端523aにそろえる。これにより、熱スポットの内周端も記録磁界の内周端の外周側に位置し、熱スポットの幅は記録磁界の幅内に収まる。
n番トラック503を記録後、n+1番トラック504を記録する際には、n番トラック503の一部を重ねて記録する。n+1番トラック504の記録における熱スポット制御もn番トラック503における記録と同様である。本図の例においては、HDDは、熱スポットの外周側端部514aを記録磁界の外周側端部524aにそろえるように熱スポット径を制御して記録する。これにより、n番トラック503に記録された情報は、n+1番トラック504を記録する際の熱スポット514により減磁されることなく、記録情報を保持することができる。
内周側領域では、図8Aのような配置となる。このとき、熱スポット位置511は記録素子位置521に対して、内周側にある。外周側における制御と同様に、HDDは、熱スポット511の外周側端511aを記録磁界の外周側端521aよりも内周側となるように熱スポット径を大きくする。好ましくは、熱スポット511の外周側端511aを記録磁界の外周側端部521aにそろえる。これにより、m番トラック501は記録磁界の外周側端まで、情報を記録することができる。
その後、m+1番トラック502を記録する際には、m番トラック501の一部を重ねて記録する。熱スポット制御は、m番トラック501の記録におけるものと同様である。m番トラック501は記録磁界の外周側端部まで情報が記録されているため、m+1番トラックが記録されても、情報が失われることがない。また、熱スポット512の外周側端512aを記録磁界の外周側端522aよりも内周側になるように制御することで、m+1番トラック502を記録する際の熱スポット512により減磁されることはない。
内周側領域においては、熱スポットの内周側端が記録磁界の内周側端よりも内周側にある。このため、グループの最内周のデータ・トラックの記録において、内周側隣接グループのデータ・トラックに減磁の影響を及ぼす可能性がある。この減磁に対する対応としては、いくつかの方法が考えられる。例えば、二つのグループの間に熱スポットによる減磁の影響を小さくするようにスペースを設ける、最内周トラックのデータ記録における熱スポット径を小さくする、あるいは、熱スポットの減磁によっても十分は記録幅を得ることができるように設計する。
次に、内周側から外周側に書き進む例(図8C、図8D)について説明する。このとき、HDDは、熱スポット径の内周端が記録磁界の内周端よりも外周側に位置するように熱スポット径を制御する。内周側では、図8Cのような配置となる。このとき、熱スポット位置563は記録素子位置573に対して内周側にある。HDDは、熱スポットの内周側端563bを記録磁界の内周側端573bよりも外周側となるように、熱スポット径(を規定する熱アシスト素子の出力)を制御する。このとき、外周側においても、熱スポットの端は記録磁界の端よりも内周側にある。好ましくは、熱スポットの内周側端563bを記録磁界の内周側端573bにそろえる。
m+X番トラック553を記録後、m+X−1番トラック554を記録する際には、HDDは、m+X番トラック553の一部を重ねて記録する。熱スポット径を小さくするように制御して記録したことにより、m+X番トラック553に記録された情報は熱スポット564bにより減磁されることなく記録情報を保持することができる。
外周側では、図8Dのような配置となる。このとき、熱スポット位置561は記録素子位置571に対して、外周側にある。HDDは、熱スポットの内周側端561bを記録磁界の内周側端571bよりも外周側に位置するように熱スポット径(を規定する熱アシスト素子の出力)を制御する。好ましくは、熱スポットの内周側端部561bを記録磁界の内周側端部571bにそろえるように、熱スポット径が大きくする。n+X番トラック551は記録磁界の内周側端部571bまで、情報を記録することができる。
その後、n+X−1番トラック552を記録する際には、n+X番トラック551の一部を重ねて記録するが、n+X番トラック551は記録磁界の内周側端部571bまで情報が記録されているため、n+X−1番トラック552が記録されても、情報が失われることがない。また、熱スポット552の内周側端部562bを記録磁界の内周側端部572bよりも外周側に位置する、好ましくは、それにそろえるように制御することで、n+X−1番トラック552を記録する際の熱スポット562により減磁されることはない。
外周側領域においては、熱スポットの外周側端が記録磁界の外周側端よりも外周側にある。このため、グループの最外周のデータ・トラックの記録において、外周側隣接グループのデータ・トラックに減磁の影響を及ぼす可能性がある。これに対しては、図8A、8Bを参照して説明した例により対応することができる。
以上のように、本構成により、HAMRにシングルドライト記録方式を用いた磁気記録装置において、従来のシングルドライト方式と同様のトラック・ピッチを実現でき、熱スポットによるデータの減磁や熱スポット位置のずれにより、品質の低いデータ(信号)の書き込みを防ぐことができる。
最後に、本発明を適用することができるHDDの全体構成について、図9を参照して説明する。HDDの全体構成を模式的に示すブロック図である。HDD1は、エンクロージャ10内に、データを記憶するディスクである磁気ディスク11を有している。SPM14は、磁気ディスク11を所定の角速度で回転する。磁気ディスク11の各記録面に対応して、磁気ディスク11にアクセスするヘッド・スライダ12が設けられている。
各ヘッド・スライダ12はアクチュエータ16の先端部に固定されている。アクチュエータ16はVCM15に連結され、回動軸を中心に回動することによって、ヘッド・スライダ12を回転する磁気ディスク11上においてその半径方向に移動する。各ヘッド・スライダ12は、磁気ディスク上を飛行するスライダと、スライダに固定され磁気信号と電気信号との間の変換を行うヘッド素子部とを備えている。本形態のヘッド・スライダ12は、さらに、記録素子からの記録磁界による磁気記録をアシストするエネルギーを磁気記録層に照射する記録アシスト素子を有している。
エンクロージャ10の外側に固定された回路基板20上には、回路素子が実装されている。モータ・ドライバ・ユニット22は、HDC/MPU23からの制御データに従って、SPM14及びVCM15を駆動する。RAM24は、リード・データ及びライト・データを一時的に格納するバッファとして機能する。エンクロージャ10内のアーム電子回路(AE)13は、複数のヘッド・スライダ12の中から磁気ディスク11へのアクセスを行うヘッド・スライダ12を選択し、その再生信号を増幅してリード・ライト・チャネル(RWチャネル)21に送る。また、RWチャネル21からの記録信号と記録アシスト素子への信号(パワーを含む)とを選択したヘッド・スライダ12に送る。なお、本発明は一つのヘッド・スライダ12のみを有するHDDに適用することができる。また、記録アシスト素子へ信号は、AE13と異なる回路が与えてもよい。
RWチャネル21は、リード処理において、AE13から供給されたリード信号を一定の振幅となるように増幅し、取得したリード信号からデータを抽出し、デコード処理を行う。読み出されるデータは、ユーザ・データとサーボ・データとを含む。デコード処理されたリード・ユーザ・データ及びサーボ・データは、HDC/MPU23に供給される。また、RWチャネル21は、ライト処理において、HDC/MPU23から供給されたライト・データを符号化し、更に符号化されたライト・データをライト信号(アナログ信号)に変換してAE13に供給する。
コントローラであるHDC/MPU23は、リード/ライト処理制御、コマンド実行順序の管理、サーボ信号を使用したヘッド・スライダ12のポジショニング制御(サーボ制御)、ホスト51との間のインターフェース制御、ディフェクト管理、エラーが発生した場合のエラー対応処理など、データ処理に関する必要な処理及びHDD1の全体制御を実行する。HDC/MPU23は、AE13に制御データを設定することで、記録アシスト素子が形成するアシスト範囲の制御を行う。HDC/MPU23によるアシスト範囲の制御は、本本実施形態において説明した方法に従う。
以上、本発明を好ましい実施形態を例として説明したが、本発明が上記の実施形態に限定されるものではない。当業者であれば、上記の実施形態の各要素を、本発明の範囲において容易に変更、追加、変換することが可能である。たとえば、本実施例ではHDDを例に挙げて説明したが、MOなどHAMRを利用した情報記録再生装置においても適用可能である。
さらには、熱アシスト素子は磁気記録素子に対して後方(トレーリング)側に設置しているが、熱源を磁気記録素子に対して前方(リーディング)側に設置した装置においても、上記実施例の効果を実現するように制御することで適用可能である。本発明は熱以外のエネルギーを磁気記録層に与えて磁気記録をアシストする磁気ディスク・ドライブにも適用することができる。
本実施形態において、ハイブリッド方式での熱スポット径の測定方法を示す図である。 本実施形態において、ハイブリッド方式での熱スポット径の測定方法を示す図である。 本実施形態において、ハイブリッド方式での熱スポット径の測定方法を示す図である。 本実施形態において、ハイブリッド方式での熱スポット径の測定方法を示す図である。 本実施形態において、熱スポット方式での熱スポット径の測定方法を示す図である。 本実施形態において、熱スポット方式での熱スポット径の測定方法を示す図である。 本実施形態において、熱スポット方式での熱スポット径の測定方法を示す図である。 本実施形態において、磁界方式での熱スポット径の測定方法を示す図である。 本実施形態において、磁界方式での熱スポット径の測定方法を示す図である。 本実施形態において、磁界方式での熱スポット径の測定方法を示す図である。 本実施形態においてハイブリッド方式での最適な熱スポット径を示す図である。 本実施形態において、熱スポット方式での最適な熱スポット径を示す図である。 本実施形態において、磁界方式での最適な熱スポット径を示す図である。 本実施形態において、位置決め信号を記録する際の最適な熱スポット径を示す図である。 本実施形態において、位置決め信号を記録する際の最適な熱スポット径を示す図である。 本実施形態において、位置決め信号を記録する際の最適な熱スポット径を示す図である。 本実施形態において、シングルドライト記録方式における最適な熱スポット径を示す図である。 本実施形態において、シングルドライト記録方式における最適な熱スポット径を示す図である。 本実施形態において、シングルドライト記録方式における最適な熱スポット径を示す図である。 本実施形態において、シングルドライト記録方式における最適な熱スポット径を示す図である。 本実施形態において、HDDの全体構成を模式的に示すブロック図である。 従来技術の説明において磁気ディスクの保磁力と温度の関係を示す図である。 HAMRの各種方式を示す図である。 HAMRの各種方式を示す図である。 HAMRの各種方式を示す図である。
符号の説明
101:記録パターン、102:消去幅、103:オフトラック・プロファイル
104:熱スポット、105:磁気記録素子、107:熱スポットによる消去領域
108:熱スポットにより消去されたオフトラック・プロファイル
109:磁界による消去領域
110:磁界により消去されたオフトラック・プロファイル
111:スキューが付いた熱スポットにより消去されたオフトラック・プロファイル
112:スキューが付いた場合の磁界により消去されたオフトラック・プロファイル
123:熱スポット径、124:磁界幅、125:熱スポット中心
126:熱スポットと磁界との位置ずれ、127:記録磁界中心、201:熱スポット径
202:磁気記録素子、203:プロファイル、204:熱スポット径
205:磁気記録素子、205:プロファイル、206:トラック幅が減少する点
221:記録幅、222:半値幅、224:半値幅
301、303、305:熱スポット径、302、304、306:磁気記録素子
321、323、325:トラック幅、322、324、326:記録トラック
331、333、335:熱スポット径、332、334、336:磁気記録素子
341、343、345:トラック幅、342、344、346:記録トラック
351、353、355:熱スポット径、352、354、356:磁気記録素子
360、364:隣接トラック、361、362、363:記録トラック
401〜406:熱スポット、411〜416:磁気記録素子
421:ni番目の位置決め信号、422:ni+1番目の位置決め信号
423:nm番目の位置決め信号、424:nm+1番目の位置決め信号
425:no番目の位置決め信号、426:no+1番目の位置決め信号
501:m番目のトラック、502:m+1番目のトラック、503:n番目のトラック
504:n+1番目のトラック551:n+X番目のトラック
552:n+X−1番目のトラック、553:m+X番目のトラック
554:m+X−1番目のトラック、511〜514、561〜564:熱スポット
521〜524、571〜574:磁気記録素子

Claims (14)

  1. 磁気記録層を有する磁気ディスクと、
    ヘッド・スライダ上にある記録素子と、
    前記ヘッド・スライダ上にあり、前記記録素子によって発生する記録磁界が前記磁気記録層に印加される領域にアシスト・エネルギーを与えるアシスト素子と、
    前記磁気ディスクの半径方向における前記ヘッド・スライダの位置に応じて、前記アシスト素子によるアシスト領域の大きさを制御するコントローラと、
    を有する磁気記録装置。
  2. 前記コントローラは、前記ヘッド・スライダの長手方向と記録トラックとの間のずれであるスキュー角の増加に応じて、前記アシスト領域を小さくする、
    請求項1に記載の磁気記録装置。
  3. 前記コントローラは、ディスク半径方向における前記アシスト領域の幅が前記記録素子による記録磁界幅内に収まるように、前記アシスト素子を制御する、
    請求項1に記載の磁気記録装置。
  4. 前記コントローラは、
    前記記録素子によって、隣接する記録トラックの一部が重なるように、複数連続記録トラックをディスク半径方向における一方の側から他方の側に向かって書き進み、
    前記複数連続記録トラックのそれぞれの書き込みにおいて、前記アシスト領域の前記一方の側の端が前記記録素子による記録磁界内に収まるように、前記アシスト素子を制御する、
    請求項1に記載の磁気記録装置。
  5. 前記コントローラは、スキュー角による前記アシスト領域の中心と前記記録素子による記録磁界の中心のずれに応じて、前記記録素子のターゲット位置を補正する、
    請求項1に記載の磁気記録装置。
  6. 前記コントローラは、異なる半径位置において前記記録素子による記録磁界幅の中心と前記アシスト領域の中心との差分を測定し、
    前記差分に応じて、各半径位置における前記アシスト領域の大きさを決定する、
    請求項1に記載の磁気記録装置。
  7. 前記コントローラは、各半径位置における前記アシスト領域による減磁領域と、前記記録磁界による減磁領域とを測定することで、前記差分を測定する、
    請求項6に記載の磁気記録装置。
  8. 前記コントローラは、各半径位置における前記アシスト領域による減磁領域と、前記アシスト領域と前記記録磁界による記録幅とを測定することで、前記差分を測定する、
    請求項6に記載の磁気記録装置。
  9. 記録素子からの記録磁界とアシスト素子からのアシスト・エネルギーにより磁気ディスクの記録層にデータを記録する磁気記録装置に対する設定方法であって、
    磁気ディスクの異なる半径位置において前記記録素子による記録磁界幅の中心と前記アシスト素子によるアシスト領域の中心との差分を測定し、
    前記測定結果に応じて、前記磁気ディスクの半径位置に応じた前記アシスト領域の大きさを決定し、
    前記半径位置に応じた前記アシスト領域の大きさを表すデータを登録する、
    方法。
  10. 各半径位置における前記アシスト領域による減磁領域と、前記記録磁界による減磁領域とを測定することで、前記差分を測定する、
    請求項9に記載の方法。
  11. 各半径位置における前記アシスト領域による減磁領域と、前記アシスト領域と前記記録磁界による記録幅とを測定することで、前記差分を測定する、
    請求項9に記載の方法。
  12. 前記データは、前記記録素子と記録トラックとの間のスキュー角の増加に応じて、前記アシスト領域を小さくすることを示す、
    請求項9に記載の方法。
  13. 前記データは、ディスク半径方向における前記アシスト領域の幅が前記記録素子による記録磁界幅内に収まるように、前記アシスト素子を制御することを示す、
    請求項9に記載の方法。
  14. 前記データは、前記記録素子によって、隣接する記録トラックの一部が重なるように、複数連続記録トラックをディスク半径方向における一方の側から他方の側に向かって書き進む場合に、前記複数連続記録トラックのそれぞれの書き込みにおいて、前記アシスト領域の前記一方の側の端が前記記録素子による記録磁界内に収まるように、前記アシスト素子を制御することを示す、
    請求項9に記載の方法。
JP2008298846A 2008-11-21 2008-11-21 磁気記録装置及びその磁気記録方法 Expired - Fee Related JP5138558B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008298846A JP5138558B2 (ja) 2008-11-21 2008-11-21 磁気記録装置及びその磁気記録方法
US12/622,064 US8018672B2 (en) 2008-11-21 2009-11-19 Magnetic recording device and magnetic recording method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008298846A JP5138558B2 (ja) 2008-11-21 2008-11-21 磁気記録装置及びその磁気記録方法

Publications (3)

Publication Number Publication Date
JP2010123232A JP2010123232A (ja) 2010-06-03
JP2010123232A5 JP2010123232A5 (ja) 2011-11-24
JP5138558B2 true JP5138558B2 (ja) 2013-02-06

Family

ID=42196017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008298846A Expired - Fee Related JP5138558B2 (ja) 2008-11-21 2008-11-21 磁気記録装置及びその磁気記録方法

Country Status (2)

Country Link
US (1) US8018672B2 (ja)
JP (1) JP5138558B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7219534B2 (ja) 2017-03-28 2023-02-08 川崎重工業株式会社 塗装用ロボット装置

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8385157B1 (en) * 2009-09-30 2013-02-26 Western Digital Technologies, Inc. Method and system for performing EAMR recording at high density using a large thermal spot size
JP2012038391A (ja) * 2010-08-10 2012-02-23 Hitachi Ltd 磁気ヘッドスライダ及び磁気記録再生装置
JP5539817B2 (ja) * 2010-09-01 2014-07-02 株式会社日立製作所 磁気記録装置及び磁気記録方法
JP2012079380A (ja) * 2010-09-30 2012-04-19 Toshiba Corp 情報記録装置、情報記録方法、及び電子機器
US8270256B1 (en) * 2011-05-06 2012-09-18 Hitachi Global Storage Technologies Netherland B.V. Magnetic recording disk drive with shingled writing and wide-area thermal assistance
US8416646B2 (en) * 2011-07-25 2013-04-09 HGST Netherlands B.V. Magnetic recording disk drive with shingled writing and rectangular optical waveguide for wide-area thermal assistance
US8937783B2 (en) 2011-12-21 2015-01-20 HGST Netherlands B.V. Magnetic data recording system with improved servo capability for bit patterned recording
JP2013143163A (ja) * 2012-01-10 2013-07-22 Toshiba Corp 磁気ディスク装置、磁気ディスク評価装置および磁気ヘッド
JP2014099226A (ja) * 2012-11-14 2014-05-29 Showa Denko Kk サーボ情報記録方法及び磁気記憶装置
CN103177735B (zh) * 2013-02-04 2015-06-17 华中科技大学 缩小写磁极斜交角变化范围的方法及使用该方法的写磁极
WO2014136324A1 (ja) * 2013-03-06 2014-09-12 富士フイルム株式会社 レンズ装置及び可動光学素子の位置検出方法
US9064528B1 (en) 2013-05-17 2015-06-23 Western Digital Technologies, Inc. Interferometric waveguide usable in shingled heat assisted magnetic recording in the absence of a near-field transducer
US8923102B1 (en) 2013-07-16 2014-12-30 Western Digital (Fremont), Llc Optical grating coupling for interferometric waveguides in heat assisted magnetic recording heads
US9672862B2 (en) * 2013-09-17 2017-06-06 Marvell International Ltd. Method of writing servo information on a storage medium and arrangement for writing servo information on a storage medium
JP2015082334A (ja) 2013-10-24 2015-04-27 株式会社東芝 磁気記録ヘッド、およびこれを備えたディスク装置
US10090011B2 (en) 2015-05-19 2018-10-02 Seagate Technology Llc Procedure for setting laser and heater power in HAMR device
JP7467372B2 (ja) * 2021-03-10 2024-04-15 株式会社東芝 磁気ディスク装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100371453B1 (ko) * 1999-03-15 2003-02-06 가부시끼가이샤 도시바 자기 기록 장치 및 자기 기록 방법
US6674594B1 (en) * 1999-07-21 2004-01-06 Hitachi Maxell, Ltd. Read/write head and magnetic recording device
JP4144867B2 (ja) * 2002-08-09 2008-09-03 株式会社日立グローバルストレージテクノロジーズ 磁気ディスク装置
JP2007012226A (ja) * 2005-07-04 2007-01-18 Canon Inc 磁気情報記録方法、及び磁気情報記録装置
JP2007207349A (ja) * 2006-02-02 2007-08-16 Tdk Corp 近接場光発生部を備えた薄膜磁気ヘッド
JP4934530B2 (ja) * 2007-07-11 2012-05-16 株式会社日立製作所 熱アシスト磁気記録装置及び熱アシスト磁気記録方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7219534B2 (ja) 2017-03-28 2023-02-08 川崎重工業株式会社 塗装用ロボット装置

Also Published As

Publication number Publication date
US8018672B2 (en) 2011-09-13
US20100128382A1 (en) 2010-05-27
JP2010123232A (ja) 2010-06-03

Similar Documents

Publication Publication Date Title
JP5138558B2 (ja) 磁気記録装置及びその磁気記録方法
US10475473B2 (en) Recording head with multiple magnetic writers simultaneously writing to adjacent tracks
JP5743461B2 (ja) シングル磁気記録用の非対称書き込み装置
US6963458B2 (en) Method and apparatus for reducing the servo position error signal non-linearity during self-servo writing irrespective of the head width
US6445521B1 (en) Write current optimization in a disc drive system
US8125728B2 (en) Disk drive, head-slider and method for controlling clearance of a read element and a write element in the disk drive
JP2008027512A (ja) 磁気ヘッド及び磁気ディスク装置
US6798592B1 (en) Method for reducing position error signal in a disk drive
US10068597B1 (en) Head with multiple readers configured for reading interlaced magnetic recording tracks
KR100618884B1 (ko) 디스크 드라이브의 서보 정보 기록 방법
JP2008243266A (ja) 磁気記録媒体、磁気記録媒体へのサーボ記録方法、磁気記録装置
JP2006294163A (ja) ディスク装置
US9390738B1 (en) Reading and writing to a HAMR recording medium at different skew angles
JP2006185583A (ja) 磁気ディスクのサーボパターンの記録方法,それを利用したディスクドライブ,磁気ディスクおよびコンピュータで読み取り可能な媒体
KR100660885B1 (ko) 하드디스크 드라이브의 버스트 기록 방법 및 이에 적합한장치
US9013966B1 (en) Magnetic recording head and disk device including the same
US10861486B1 (en) Writer with narrower high moment trailing shield
JP2007234113A (ja) ディスク装置およびディスク装置の制御方法
JP5002685B2 (ja) 磁気記録媒体およびディスク装置
JP2001189062A (ja) ディスク記憶装置及びサーボデータ書き込み方法
US10522184B1 (en) Microwave assisted magnetic recording drive utilizing interlaced track recording
JP3842723B2 (ja) ディスク記憶装置
US7535667B2 (en) Erase band compensated offset servo trimming
JP2015082334A (ja) 磁気記録ヘッド、およびこれを備えたディスク装置
JP2003123421A (ja) サーボ情報記録方法

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111006

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121114

R150 Certificate of patent or registration of utility model

Ref document number: 5138558

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees