WO2014134812A1 - 电子烟中防止微控制器电源电压跌落的保护装置和方法 - Google Patents

电子烟中防止微控制器电源电压跌落的保护装置和方法 Download PDF

Info

Publication number
WO2014134812A1
WO2014134812A1 PCT/CN2013/072307 CN2013072307W WO2014134812A1 WO 2014134812 A1 WO2014134812 A1 WO 2014134812A1 CN 2013072307 W CN2013072307 W CN 2013072307W WO 2014134812 A1 WO2014134812 A1 WO 2014134812A1
Authority
WO
WIPO (PCT)
Prior art keywords
microcontroller
storage capacitor
power
diode
power supply
Prior art date
Application number
PCT/CN2013/072307
Other languages
English (en)
French (fr)
Inventor
向智勇
Original Assignee
Xiang Zhiyong
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiang Zhiyong filed Critical Xiang Zhiyong
Priority to JP2015560511A priority Critical patent/JP2016510970A/ja
Priority to EP13877393.2A priority patent/EP2966743B1/en
Publication of WO2014134812A1 publication Critical patent/WO2014134812A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/24Resetting means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/30Means for acting in the event of power-supply failure or interruption, e.g. power-supply fluctuations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/30Means for acting in the event of power-supply failure or interruption, e.g. power-supply fluctuations
    • G06F1/305Means for acting in the event of power-supply failure or interruption, e.g. power-supply fluctuations in the event of power-supply fluctuations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/20Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for electronic equipment

Definitions

  • the present invention relates to the field of electronic cigarettes and electronic cigarette cases, and more particularly to an electronic cigarette and an electronic cigarette case with a microcontroller, and a protection device and method for preventing a voltage drop of a microcontroller power supply.
  • the microcontroller controls a switching MOSFET ( Field effect transistor) to control the on and off of the load, as shown in Figures 1 and 2, the circuit includes a battery 100, a microcontroller 200, a field effect transistor 300, wherein the battery 100 Used to power the microcontroller 200, the signal output of the microcontroller 200 is used to control the switching of the FET to control the heating elements in the electronic cigarette or electronic cigarette case.
  • Figure 1 and Figure 2 There are some risks in the power supply structure, such as when the electronic cigarette or electronic cigarette case is turned on. In the case of a short circuit or overcurrent output, the microcontroller power supply voltage will drop very quickly due to a short circuit.
  • the microcontroller When the voltage drops below the minimum operating voltage of the microcontroller, the microcontroller may be uncontrollable. Unstable state, long-time high current or short circuit may cause large current to burn out the components or circuits inside the product. The uncontrollable state of the microcontroller may cause other accidental damage, so it is necessary to develop a circuit. Delays the drop rate of the microcontroller's supply voltage.
  • the technical problem to be solved by the present invention is that the microcontroller existing in the prior art is in an uncontrollable unstable state in the event of overcurrent or short circuit, and burns defects such as components or lines inside the product to provide an electronic device.
  • a protection device for preventing a voltage drop of a microcontroller power supply in an electronic cigarette comprising a microcontroller, a power module and a field effect transistor, wherein the power module is used to provide power to the microcontroller, and is characterized in that it further comprises a storage
  • the energy storage circuit is connected between the microcontroller and the power module, and the energy storage circuit is configured to provide the microcontroller for a certain period of time when an overcurrent or short circuit occurs a power supply voltage, delaying a drop in a power supply voltage of the power supply module or the microcontroller; the microcontroller for processing the overcurrent or short circuit signal during the time period, outputting a control signal to turn off the field effect Transistor.
  • the energy storage circuit comprises a diode and a storage capacitor
  • the anode of the diode is connected to the anode of the power module
  • the cathode of the diode is respectively connected to the positive power terminal of the microcontroller.
  • One end of the storage capacitor, the other end of the storage capacitor is connected to the negative pole of the power module and the negative power terminal of the microcontroller, and the energy storage circuit is configured to cause the power module when an overcurrent or short circuit occurs When the voltage drops, the microcontroller is powered by the storage capacitor, and the power module is discharged by the diode to cut off the storage capacitor.
  • the energy storage circuit comprises a diode and a storage capacitor
  • one end of the storage capacitor is respectively connected to the positive pole of the power module and the positive power terminal of the microcontroller
  • the energy storage The other end of the capacitor is respectively connected to the anode positive pole and the negative power supply end of the microcontroller
  • the negative pole of the diode is connected to the negative pole of the power module
  • the energy storage circuit is configured to cause an overcurrent or short circuit to cause the
  • the device further includes an overcurrent or short circuit detecting module, wherein the overcurrent or short circuit detecting module is configured to detect an operating current of the line in real time, and provide the detected data to the microcontroller.
  • the device wherein a signal output end of the microcontroller is connected to a gate of the field effect transistor, and a source of the field effect transistor is connected to a negative electrode of the power module, the field effect transistor The drain is connected to an external load.
  • a signal output end of the microcontroller is connected to a gate of the field effect transistor, a source of the field effect transistor is connected to an external load, and a drain of the field effect transistor is connected to the The positive pole of the power module and the anode of the diode.
  • the device wherein a signal output end of the microcontroller is connected to a gate of the field effect transistor, a source of the field effect transistor and a negative electrode of the power module and a negative electrode of the diode, respectively
  • the drain of the field effect transistor is connected to an external load.
  • a signal output end of the microcontroller is connected to a gate of the field effect transistor, a drain of the field effect transistor is respectively connected to a positive electrode of the power module, and the energy storage One end of the capacitor is coupled to the positive supply terminal of the microcontroller, and the source of the field effect transistor is coupled to an external load.
  • microcontroller is a single chip microcomputer or a CPU.
  • a protection method for preventing a voltage drop of a microcontroller power supply in an electronic cigarette characterized in that the method comprises:
  • the microcontroller processes the overcurrent or short circuit signal by the microcontroller during the time period, and outputs a control signal to turn off the field effect transistor to cut off the current.
  • the energy storage circuit comprises a diode and a storage capacitor
  • a positive pole of the diode is connected to the power module
  • a cathode of the diode is respectively connected to the storage capacitor and the microcontroller
  • the other end of the storage capacitor is respectively connected to the micro-controller and the negative pole of the power module, and the certain period of time is a discharge time of the storage capacitor.
  • the energy storage circuit comprises a diode and a storage capacitor
  • one end of the storage capacitor is respectively connected to the positive pole of the power module and the positive power terminal of the microcontroller
  • the other end of the storage capacitor is respectively connected to the anode of the diode and the negative power terminal of the microcontroller
  • the cathode of the diode is connected to the cathode of the power module
  • the period of time is the storage capacitor Discharge time.
  • the discharge time is a minimum operating voltage time at which the storage capacitor discharges from a normal operating voltage of the microcontroller to the microcontroller.
  • the invention discloses a protection device and a method for preventing a voltage drop of a microcontroller power supply in an electronic cigarette, which has the following beneficial effects: the device Utilizing a storage circuit between the microcontroller and the power module When the circuit is overcurrent or short circuit, the microcontroller is powered by the energy storage circuit, so that the microcontroller can maintain the normal working voltage for a certain period of time; after the microcontroller determines that the current is overcurrent or short circuit, the MOSFET is turned off. The purpose of stopping the current output is to protect the electronic cigarette product.
  • the circuit designed by the invention is simple and low in cost, and also solves the uncontrollable phenomenon that the microcontroller is unstable in the prior art.
  • FIG. 1 is a schematic diagram of a first embodiment of a power supply circuit of a prior art electronic cigarette microcontroller
  • Embodiment 2 is a schematic diagram of Embodiment 2 of a power supply circuit of a prior art electronic cigarette microcontroller
  • FIG. 3 is a circuit block diagram of a protection device for preventing a voltage drop of a microcontroller power supply according to the present invention
  • FIG. 4 is a circuit diagram of a first embodiment of a protection device for preventing a voltage drop of a microcontroller power supply according to the present invention
  • FIG. 5 is a circuit diagram of a second embodiment of a protection device for preventing a power supply voltage drop of a microcontroller according to the present invention.
  • FIG. 6 is a schematic circuit diagram of a third embodiment of a protection device for preventing a voltage drop of a microcontroller power supply according to the present invention.
  • Fig. 7 is a circuit diagram showing the fourth embodiment of the protection device for preventing the voltage drop of the microcontroller power supply according to the present invention.
  • the invention provides a delay microcontroller power supply voltage drop in the prior art that the microcontroller exists in an uncontrollable unstable state under an overcurrent or short circuit condition, and burns out defects such as components or lines inside the product.
  • the core idea of the protection device and method is to connect a storage circuit between the microcontroller and the power module.
  • the energy storage circuit is used to provide the microcontroller for a certain period of time when the load is over-current or short-circuited.
  • the power supply voltage which is lower than the normal operating voltage of the microcontroller but higher than the minimum operating voltage of the microcontroller, avoiding the overcurrent or short circuit caused by the load, causing the battery or microcontroller's power supply voltage to drop rapidly, resulting in the microcontroller not functioning properly.
  • the microcontroller utilizes the time period to process an overcurrent or short circuit detection signal, output a control signal to turn off the field effect transistor, disconnect the power supply to the load, and achieve overcurrent or short circuit protection to the electronic cigarette.
  • the occurrence of uncontrollable phenomena of instability of the microcontroller existing in the prior art is solved.
  • FIG. 3 is a circuit block diagram of a protection device for preventing a voltage drop of a microcontroller power supply according to the present invention, wherein the power module 100 is included in the circuit , microcontroller 200, field effect transistor 300 and tank circuit 400 And an overcurrent or short circuit detecting module, configured to detect the working current of the line in real time, and provide the detected data to the microcontroller (not shown, omitted); Circuit 400 It is disposed between the power module 100 and the micro control 200, and the power module 100 is connected to the microcontroller 200 for supplying power to the microcontroller 200, and the energy storage circuit is used for the microcontroller 200.
  • the microcontroller 200 For detecting and judging that an overcurrent or short circuit occurs during the time period, the overcurrent or short circuit signal is processed by the microcontroller 200, and the control signal is output to turn off the field effect transistor 300 to achieve the purpose of protecting the circuit.
  • the microcontroller 200 of the present invention can select a single chip microcomputer, a CPU or a logic control device, and the microcontroller includes three pins, the first The pin is the positive power terminal of the microcontroller, the third pin is the negative power terminal of the microcontroller, the second pin is the signal output terminal, the power module 100 is the rechargeable battery, and the field effect transistor 300 model is preferred.
  • AO3400 or DTS2300 is limited to the above selected models in practical applications.
  • the energy storage circuit 400 of the present invention includes a diode (D) and a storage capacitor (C), in a specific embodiment 1 of the present invention (see Figure 4)), the anode of the diode (D) is connected to the anode of the battery 100, and the cathode of the diode (D) is connected to the first pin (positive power terminal) of the microcontroller 200 and the storage capacitor (C). At one end, the other end of the storage capacitor (C) is respectively connected to the negative pole of the battery 100 and the third pin of the microcontroller 200, and the storage circuit 400 is used to cause the battery 100 to be caused by an overcurrent or short circuit.
  • the microcontroller 200 When the voltage drops, the microcontroller 200 is powered by the storage capacitor (C), and the discharge of the battery 100 is cut off by the diode (D), and the second of the microcontroller 200
  • the pin is connected to the gate of the field effect transistor 300, the source of the field effect transistor 300 is connected to the negative terminal of the battery 100, and the drain of the field effect transistor 300 is connected to an external load.
  • the anode of the diode (D) is connected to the anode of the battery 100, and the diode (D)
  • the negative pole of the microcontroller 200 is connected to the first pin (positive power terminal) of the microcontroller 200 and the end connected to the storage capacitor (C), and the other end of the storage capacitor (C) is respectively connected to the negative terminal of the battery 100 and the microcontroller.
  • the third pin of 200 is connected, and the tank circuit 400 is used to pass the storage capacitor (C) to the microcontroller 200 when an overcurrent or short circuit causes a voltage drop of the battery 100. Power is supplied, and the storage capacitor (C) is cut off by the diode (D) to discharge the battery 100.
  • the second pin of the microcontroller 200 is connected to the gate of the field effect transistor 300, and the field effect transistor
  • the source of 300 is connected to an external load
  • the drain of the field effect transistor 300 is connected to the anode of the battery 100 and the anode of the diode (D)
  • the energy storage circuit of the embodiment 1 and the embodiment 2 is 400.
  • the connection form of the battery 100 and the microcontroller 200 is the same in the circuit, except that the field effect transistor 300 is connected in a different manner, as shown in FIG. 4 and FIG.
  • one end of the storage capacitor (C) in the energy storage circuit 400 is connected to the battery.
  • the positive terminal of 100 and the positive power terminal of the microcontroller (pin 1), the other end of the storage capacitor (C) is connected to the positive terminal of the diode (D) and the negative power terminal of the microcontroller 200 (3rd) Pin), the negative pole of diode (D) is connected to the negative pole of battery 100, and the tank circuit 400 is used to charge the capacitor (C) through the storage capacitor (C) when an overcurrent or short circuit causes the battery 100 voltage to drop.
  • the 200 power supply also prevents the battery 100 from rapidly dropping in voltage and intercepts the discharge of the battery 100 through the diode (D).
  • the microcontroller 200 in this embodiment The signal output terminal (the second pin) is connected to the gate of the field effect transistor 300, the source of the field effect transistor 300 is opposite to the negative terminal of the battery 100 and the negative terminal of the diode D, and the field effect transistor The drain of the 300 is connected to an external load.
  • one end of the storage capacitor (C) in the energy storage circuit 400 is connected to the battery.
  • the positive terminal of 100 and the positive power terminal of the microcontroller (pin 1), the other end of the storage capacitor (C) is connected to the positive terminal of the diode (D) and the negative power terminal of the microcontroller 200 (3rd) Pin), the negative pole of diode (D) is connected to the negative pole of battery 100, and the tank circuit 400 is used to charge the capacitor (C) through the storage capacitor (C) when an overcurrent or short circuit causes the battery 100 voltage to drop.
  • the 200 power supply also prevents the battery 100 from rapidly dropping in voltage and intercepts the discharge of the battery 100 through the diode (D).
  • the microcontroller 200 in this embodiment The signal output terminal (the second pin) is connected to the gate of the field effect transistor 300, and the drain of the field effect transistor 300 is respectively connected to the anode of the battery 100, the end of the storage capacitor C, and the microcontroller.
  • the positive power supply terminal (pin 1) of 200 is connected, the source of field effect transistor 300 is connected to an external load; the energy storage circuit 400 of embodiment 3 and embodiment 4 is in circuit and battery 100
  • the connection form is the same as that of the microcontroller 200, except that the field effect transistor 300 is connected in different ways, as shown in Figures 6 and 7.
  • the energy storage circuit of the present invention is used to utilize the storage capacitor C when an overcurrent or short circuit causes a voltage drop of the power module.
  • the characteristic that the voltage cannot be abruptly is supplied to the microcontroller through the storage capacitor, and the unidirectional conduction characteristic of the diode D is used to cut off the storage capacitor C to discharge the battery and the external load.
  • the protection method for preventing the voltage drop of the microcontroller power supply of the present invention mainly includes the following steps:
  • the storage circuit between the microcontroller and the battery works to block the battery voltage or the voltage drop of the microcontroller power supply through the energy storage circuit, so that the microcontroller maintains the normal working voltage for a certain period of time;
  • the microcontroller processes the overcurrent or short circuit signal during this time period (ie, under normal power supply conditions), and the microcontroller outputs a control signal to cut off the FET and cut off the current.
  • the microcontroller's time period is the discharge time of the storage capacitor C; in Figure 6 and Figure 7
  • the certain period of time of the microcontroller is the discharge time of the storage capacitor C, which is the time during which the storage capacitor C discharges from the normal operating voltage of the microcontroller to the minimum operating voltage of the microcontroller.
  • the certain period of time of the microcontroller of the present invention is the discharge time of the storage capacitor C, the discharge time can be 1-100 milliseconds, and the optimal time is 2-5 milliseconds) .
  • the energy storage circuit is configured to utilize a characteristic that the capacitor voltage cannot be abrupt when an overcurrent or a short circuit causes a voltage drop of the power module, and supply power to the microcontroller through the storage capacitor, and utilize a unidirectional conduction characteristic of the diode. Discharging the power module and the external load by the storage capacitor by the diode.
  • the present invention connects a storage circuit between the microcontroller and the battery, after the overcurrent or short circuit occurs in the circuit through the energy storage circuit, the power supply voltage of the power module or the microcontroller is delayed, so that The controller maintains a normal operating voltage for a certain period of time; the microcontroller processes the overcurrent or short circuit signal during the time period, outputs a control signal to turn off the FET, cut off the current, and achieve an overcurrent or short circuit to the electronic cigarette.
  • the protection solves the uncontrollable phenomenon that the microcontroller is unstable in the prior art, and effectively protects the overcurrent or short circuit of the electronic cigarette.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Protection Of Static Devices (AREA)

Abstract

一种电子烟中防止微控制器电源电压跌落的保护装置和方法,所述的保护装置包括微控制器(200),电源模块(100)和场效应晶体管(300),所述电源模块(100)用于为所述微控制器(200)提供电源,还包括储能电路(400),所述储能电路(400)连接在所述微控制器(200)和所述电源模块(100)之间,所述储能电路(400)用于当发生过流或短路时,通过储能电路(400)给微控制器(200)供电,使微控制器(200)可在一定时间段内保持正常工作电压;待微控制器(200)确定是过流或短路后、关闭MOSFET,停止电流的输出,所述的保护装置和方法解决了现有技术中所存在的微控制器(200)不稳定的不可控现象的发生。

Description

电子烟中防止微控制器电源电压跌落的保护装置和方法 技术领域
本发明涉及电子香烟和电子烟盒技术领域,尤其涉及一种带有微控制器的电子香烟和电子烟盒、防止微控制器电源电压跌落的保护装置和方法。
背景技术
目前大部分的电子香烟和电子烟盒的微控制器是电池直接供电的,微控制器控制一个开关 MOSFET ( 场效应晶体管 )去控制负载的通断,如图 1 和 2 所示,该电路包括电池 100 ,微控制器 200 、 场效应晶体管 300 ,其中 电池 100 用于为微控制器 200 供电,微控制器 200 的信号输出端用于控制 场效应晶体管的通断来控制电子烟或 电子烟盒内的加热元件。图 1 和图 2 的供电结构存在一些风险,比如当电子烟或电子烟盒在导通 MOSFET 的情况下,输出出现短路或过流时,微控制器电源电压会因为短路而跌落的非常快,当电压跌落至低于微控制器的最小工作电压时,微控制器就可能处于不可控的不稳定状态,长时间的大电流或短路可能导致大电流烧坏产品内部的元器件或线路,微控制器的不可控状态可能导致其他意外的损害,所以需要开发一种电路来 延迟微控制器的电源电压的跌落速度。
所以现有技术存在缺陷,需要改进。
发明内容
本发明要解决的技术问题在于,针对现有技术中存在的微控制器在过流或短路情况下处于不可控的不稳定状态,烧坏产品内部的元器件或线路等缺陷,提供一种电子烟中利用储能电路来延迟微控制器电源电压跌落的保护装置和方法, 达到保护电路的目的。
本发明解决其技术问题所采用的技术方案是: 一种电子烟中防止微控制器电源电压跌落的保护装置,包括微控制器,电源模块和场效应晶体管,所述电源模块用于为所述微控制器提供电源,其特征在于,还包括储能电路,所述储能电路连接在所述微控制器和所述电源模块之间,所述储能电路用于当发生过流或短路时,在一定时间段内为所述微控制器提供电源电压、延迟所述电源模块或所述微控制器的电源电压的下跌;所述微控制器用于在所述时间段内处理所述过流或短路信号,输出控制信号以关闭所述场效应晶体管。
所述的装置,其中,所述储能电路包括一二极管和一储能电容,所述二极管正极连接所述电源模块的正极,所述二极管的负极分别连接所述微控制器正电源端以及所述储能电容的一端,所述储能电容的另一端与所述电源模块负极和所述微控制器负电源端连接,所述储能电路用于在发生过流或短路引起所述电源模块电压下跌时,通过所述储能电容为所述微控制器供电,并通过所述二极管截断所述储能电容对所述电源模块放电。
所述的装置,其中,所述储能电路包括一二极管和一储能电容,所述储能电容的一端分别连接所述电源模块正极和所述微控制器的正电源端,所述储能电容的另一端分别接所述二极管正极和所述微控制器的负电源端,所述二极管的负极接所述电源模块的负极,所述储能电路用于在发生过流或短路引起所述电源模块电压下跌时,通过所述储能电容为所述微控制器供电,同时阻止所述电源模块电压的快速下跌,并通过所述二极管截断所述储能电容对所述电源模块放电。
所述的装置,其中,还包括过流或短路检测模块,所述过流或短路检测模块用于实时检测线路的工作电流,并将所检测数据提供给所述微控制器。
所述的装置,其中,所述微控制器的信号输出端连接至所述场效应晶体管的栅极,所述场效应晶体管的源极与所述电源模块的负极相连,所述场效应晶体管的漏极连接外接负载。
所述的装置,其中,所述微控制器的信号输出端连接至所述场效应晶体管的栅极,所述场效应晶体管的源极接外接负载,所述场效应晶体管的漏极连接所述电源模块的正极和所述二极管的正极。
所述的装置,其中,所述微控制器的信号输出端连接至所述场效应晶体管的栅极,所述场效应晶体管的源极分别与所述电源模块的负极和所述二极管的负极,所述场效应晶体管的漏极连接外接负载。
所述的装置,其中,所述微控制器的信号输出端连接至所述场效应晶体管的栅极,所述场效应晶体管的漏极分别与所述电源模块的正极、以及与所述储能电容的一端和所述微控制器的正电源端相连,所述场效应晶体管的源极连接外接负载。
所述的装置,其中,所述微控制器为单片机或 CPU 。
一种用于电子烟中防止微控制器电源电压跌落的保护方法,其特征在于,所述方法包括:
在微控制器和电源模块之间连接一储能电路,通过所述储能电路在电路发生过流或短路后,延迟所述电源模块或所述微控制器的电源电压的下跌,在一定时间段内为所述微控制器提供电源电压; ;
所述微控制器在所述时间段内通过所述微控制器对过流或短路信号进行处理,输出控制信号以关闭场效应晶体管,切断电流。
所述的方法,其中,所述储能电路包括一二极管和一储能电容,所述二极管的正极接所述电源模块,所述二极管的负极分别接所述储能电容和所述微控制器,所述储能电容的另一端分别接所述微控制器和所述电源模块的负极,所述一定时间段为所述储能电容的放电时间。
所述的方法,其中,所述储能电路包括一二极管和一储能电容,所述储能电容的一端分别连接所述电源模块正极和所述微控制器的正电源端, 所述储能电容的另一端分别接所述二极管正极和所述微控制器的负电源端,所述二极管的负极接所述电源模块的负极,所述一定时间段为所述储能电容的放电时间。
所述的方法,其中,所述放电时间为所述储能电容从所述微控制器正常工作电压放电至所述微控制器的最小工作电压时间。
本发明公开了一种 电子烟中防止微控制器电源电压跌落的保护装置和方法,具有以下有益效果:本装置 利用在微控制器和电源模块之间连接一储能电路 ,在电路发生过流或短路时,通过储能电路给微控制器供电,使微控制器可在一定时间段内保持正常工作电压;待微控制器确定是过流或短路后、关闭 MOSFET ,停止电流的输出,达到了保护电子烟产品的目的,本发明所设计的 电路简单,成本较低, 也解决了现有技术中所存在的微控制器不稳定的不可控现象的发生。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图 1 是现有技术电子烟 微控制器的供电 电路实施例一示意图;
图 2 是现有技术电子烟 微控制器的供电 电路实施例二示意图;
图 3 是本发明 防止微控制器电源电压跌落的保护装置电路方框图;
图 4 是本发明 防止微控制器电源电压跌落的保护装置实施例一的电路示意图;
图 5 是本发明 防止微控制器电源电压跌落的保护装置实施例二的电路示意图;
图 6 是本发明 防止微控制器电源电压跌落的保护装置实施例三的电路示意图;
图 7 是本发明 防止微控制器电源电压跌落的保护装置实施例四的电路示意图。
具体实施方式
为 了解决现有技术中存在的微控制器在过流或短路情况下处于不可控的不稳定状态,烧坏产品内部的元器件或线路等缺陷,本发明提供一种延迟微控制器电源电压跌落的保护装置和方法,其核心思想为:在微控制器和电源模块之间连接一储能电路,储能电路用于当负载发生过流或短路时,在一定时间段内为微控制器提供电源电压,该电压小于微控制器正常工作电压但高于微控制器的最小工作电压、避免了因负载发生过流或短路引起电池或微控制器的电源电压快速下跌、导致微控制器不能正常工作的情况,所述微控制器利用该时间段,处理过流或短路检测信号,输出控制信号以关闭所述场效应晶体管,断开对负载的供电,实现对电子烟的过流或短路保护,解决了现有技术中所存在的微控制器不稳定的不可控现象的发生。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
图 3 为本发明防止微控制器电源电压跌落的保护装置电路框图,其中,在该电路中,包括电源模块 100 ,微控制器 200 ,场效应晶体管 300 和储能电路 400 ,还包括过流或短路检测模块,所述过流或短路检测模块用于实时检测线路的工作电流,并将所检测数据提供给所述微控制器(图上未标示,省略);储能电路 400 设置在电源模块 100 和微控制 200 之间,电源模块 100 与微控制器 200 相连、用于为微控制器 200 提供电源,储能电路用于为微控制器 200 提供一定时间段内的正常工作电压、延迟电源模块 100 或微控制器 200 的电源电压的下跌,微控制器 200 与场效应晶体管 300 相连、并与过流或短路检测模块相连,用于实时检测线路的工作电流,并将所检测数据提供给微控制器 200 ,微控制器 200 用于在该时间段内检测和判断发生过流或短路后,通过微控制器 200 对过流或短路信号进行处理,输出控制信号以关闭场效应晶体管 300 ,达到保护电路的目的。
其中,本发明微控制器 200 可选用单片机, CPU 或逻辑控制器件,微控制器包括 3 个引脚,第 1 引脚为微控制器正电源端,第 3 引脚为微控制器负电源端,第 2 引脚为信号输出端,电源模块 100 为可充电电池,场效应晶体管 300 型号可优选 AO3400 或 DTS2300 ,当然实际应用中并限于上述所选型号。
本发明的储能电路 400 包括一二极管( D )和一储能电容( C ),在本发明具体实施例 1 中(见图 4 所示),二极管( D )的正极接电池 100 的正极,二极管( D )的负极分别接微控制器 200 的第 1 引脚(正电源端)以及连接储能电容( C )的一端,储能电容( C )的另一端分别与电池 100 的负极和微控制器 200 的第 3 引脚相连,储能电路 400 用于在发生过流或短路引起电池 100 的电压下跌时,通过储能电容( C )为微控制器 200 供电,并通过二极管( D )截断储能电容( C )对电池 100 的放电,微控制器 200 的第 2 引脚连接至场效应晶体管 300 的栅极,场效应晶体管 300 的源极与电池 100 的负极相连,场效应晶体管 300 的漏极连接外接负载。
在本发明具体实施例 2 中(见图 5 所示),二极管( D )的正极接电池 100 的正极,二极管( D )的负极分别接微控制器 200 的第 1 引脚(正电源端)以及连接储能电容( C )的一端,储能电容( C )的另一端分别与电池 100 的负极和微控制器 200 的第 3 引脚相连,储能电路 400 用于在发生过流或短路引起电池 100 的电压下跌时,通过储能电容( C )为微控制器 200 供电,并通过二极管( D )截断储能电容( C )对电池 100 的放电,微控制器 200 的第 2 引脚连接至场效应晶体管 300 的栅极,场效应晶体管 300 的源极接外接负载,场效应晶体管 300 的漏极连接电池 100 的正极和二极管( D )的正极,实施例 1 和实施例 2 的储能电路 400 在电路中与电池 100 和微控制器 200 的连接形式相同,所不同之处在于场效应晶体管 300 的连接方式不同,详见图 4 和图 5 所示。
在本发明具体实施例 3 中(见图 6 所示),储能电路 400 中的储能电容( C )一端分别连接电池 100 的正极和微控制器的正电源端(第 1 引脚),储能电容( C )的另一端分别接二极管( D )的正极、微控制器 200 的负电源端(第 3 引脚),二极管( D )的负极连接电池 100 的负极,储能电路 400 用于在发生过流或短路引起电池 100 电压下跌时,通过储能电容( C )为微控制器 200 供电,同时阻止电池 100 电压的快速下跌,并通过二极管 (D) 截断储能电容 C 对电池 100 的放电。本实施例中微控制器 200 的信号输出端(第 2 引脚)连接至场效应晶体管 300 的栅极,场效应晶体管 300 的源极分别与电池 100 的负极和二极管 D 的负极,场效应晶体管 300 的漏极连接外接负载。
在本发明具体实施例 4 中(见图 7 所示),储能电路 400 中的储能电容( C )一端分别连接电池 100 的正极和微控制器的正电源端(第 1 引脚),储能电容( C )的另一端分别接二极管( D )的正极、微控制器 200 的负电源端(第 3 引脚),二极管( D )的负极连接电池 100 的负极,储能电路 400 用于在发生过流或短路引起电池 100 电压下跌时,通过储能电容( C )为微控制器 200 供电,同时阻止电池 100 电压的快速下跌,并通过二极管 (D) 截断储能电容 C 对电池 100 的放电。本实施例中微控制器 200 的信号输出端(第 2 引脚)连接至场效应晶体管 300 的栅极,场效应晶体管 300 的漏极分别与电池 100 的正极、储能电容 C 的一端以及微控制器 200 的正电源端(第 1 引脚)相连,场效应晶体管 300 的源极连接外接负载;实施例 3 和实施例 4 的储能电路 400 在电路中与电池 100 和微控制器 200 的连接形式相同,所不同之处在于场效应晶体管 300 的连接方式不同,详见图 6 和 7 所示。
本发明的储能电路用于在发生过流或短路引起电源模块电压下跌时,利用储能电容 C 电压不能突变的特性,通过该储能电容为微控制器供电,并利用二极管 D 的单向导电特性,通过二极管截断储能电容 C 对电池和外接负载的放电。
本发明的防止微控制器电源电压跌落的保护方法,主要包括如下步骤:
S1 、实时检测线路的工作电流,并将所检测数据提供给微控制器,当检测到过流或短路,同时电池电压跌落;
S2 、微控制器和电池之间的储能电路工作,通过储能电路阻碍电池电压或微控制器电源电压的下跌,使微控制器在一定时间段内保持正常工作电压;
S3 、微控制器在该时间段内(即在正常电源供电情况下)处理过流或短路信号,微控制器输出控制信号以切断场效应晶体管,切断电流。
在图 4 和图 5 中,微控制器的一定时间段为储能电容 C 的放电时间;在图 6 和图 7 中,微控制器的一定时间段为储能电容 C 的放电时间,该放电时间为储能电容 C 从微控制器正常工作电压放电至微控制器的最小工作电压的时间, (本发明微控制器的一定时间段为储能电容 C 的放电时间,放电时间可为 1-100 毫秒,最佳时间为 2-5 毫秒) 。所述储能电路用于在发生过流或短路引起电源模块电压下跌时,利用电容电压不能突变的特性,通过所述储能电容为所述微控制器供电,并利用二极管单向导电特性,通过所述二极管截断所述储能电容对所述电源模块和外接负载的放电。
综上所述,由于本发明在微控制器和电池之间连接一储能电路,通过储能电路在电路发生过流或短路后,延迟电源模块或微控制器的电源电压的下跌,使微控制器在一定时间段内保持正常工作电压;微控制器在该时间段内对过流或短路信号进行处理,输出控制信号以关闭场效应晶体管,切断电流,实现对电子烟的过流或短路保护,解决了现有技术中所存在的微控制器不稳定的不可控现象的发生,有效地实现了对电子烟的过流或短路的保护。
因此,本发明不局限于所公开的具体实施例,而应当包括落入本发明权利要求范围内的全部实施方式。

Claims (13)

  1. 一种电子烟中防止微控制器电源电压跌落的保护装置,包括微控制器,电源模块和场效应晶体管,所述电源模块用于为所述微控制器提供电源,其特征在于,还包括储能电路,所述储能电路连接在所述微控制器和所述电源模块之间,所述储能电路用于当发生过流或短路时,在一定时间段内为所述微控制器提供电源电压、延迟所述电源模块或所述微控制器的电源电压的下跌;所述微控制器用于在所述时间段内处理所述过流或短路信号,输出控制信号以关闭所述场效应晶体管。
  2. [根据细则91更正 24.06.2013] 
    根据权利要求 1 所述的防止微控制器电源电压跌落的保护装置,其特征在于,所述储能电路包括一二极管和一储能电容,所述二极管正极连接所述电源模块的正极,所述二极管的负极分别连接所述微控制器正电源端以及所述储能电容的一端,所述储能电容的另一端与所述电源模块负极和所述微控制器负电源端连接,所述储能电路用于在发生过流或短路引起所述电源模块电压下跌时,通过所述储能电容为所述微控制器供电,并通过所述二极管截断所述储能电容对所述电源模块放电。
  3. [根据细则91更正 24.06.2013] 
    根据权利要求 1 所述的防止微控制器电源电压跌落的保护装置,其特征在于,所述储能电路包括一二极管和一储能电容,所述储能电容的一端分别连接所述电源模块正极和所述微控制器的正电源端,所述储能电容的另一端分别接所述二极管正极和所述微控制器的负电源端,所述二极管的负极接所述电源模块的负极,所述储能电路用于在发生过流或短路引起所述电源模块电压下跌时,通过所述储能电容为所述微控制器供电,同时阻止所述电源模块电压的快速下跌,并通过所述二极管截断所述储能电容对所述电源模块放电。
  4. [根据细则91更正 24.06.2013] 
    根据权利要求 1 所述的防止微控制器电源电压跌落的保护装置,其特征在于,还包括过流或短路检测模块,所述过流或短路检测模块用于实时检测线路的工作电流,并将所检测数据提供给所述微控制器。
  5. [根据细则91更正 24.06.2013] 
    根据权利要求 2 所述的防止微控制器电源电压跌落的保护装置,其特征在于,所述微控制器的信号输出端连接至所述场效应晶体管的栅极,所述场效应晶体管的源极与所述电源模块的负极相连,所述场效应晶体管的漏极连接外接负载。
  6. [根据细则91更正 24.06.2013] 
    根据权利要求 2 所述的防止微控制器电源电压跌落的保护装置,其特征在于,所述微控制器的信号输出端连接至所述场效应晶体管的栅极,所述场效应晶体管的源极接外接负载,所述场效应晶体管的漏极连接所述电源模块的正极和所述二极管的正极。
  7. [根据细则91更正 24.06.2013] 
    根据权利要求 3 所述的防止微控制器电源电压跌落的保护装置,其特征在于,所述微控制器的信号输出端连接至所述场效应晶体管的栅极,所述场效应晶体管的源极分别与所述电源模块的负极和所述二极管的负极,所述场效应晶体管的漏极连接外接负载。
  8. [根据细则91更正 24.06.2013] 
    根据权利要求 3 所述的防止微控制器电源电压跌落的保护装置,其特征在于,所述微控制器的信号输出端连接至所述场效应晶体管的栅极,所述场效应晶体管的漏极分别与所述电源模块的正极、以及与所述储能电容的一端和所述微控制器的正电源端相连,所述场效应晶体管的源极连接外接负载。
  9. [根据细则91更正 24.06.2013] 
    根据权利要求 1-8 任一权利要求所述的防止微控制器电源电压跌落的保护装置,其特征在于,所述微控制器为单片机或 CPU 。
  10. 一种用于电子烟中防止微控制器电源电压跌落的保护方法,其特征在于,所述方法包括:
    在微控制器和电源模块之间连接一储能电路,通过所述储能电路在电路发生过流或短路后,延迟所述电源模块或所述微控制器的电源电压的下跌,在一定时间段内为所述微控制器提供电源电压;
    所述微控制器在所述时间段内通过所述微控制器对过流或短路信号进行处理,输出控制信号以关闭场效应晶体管,切断电流。
  11. 根据权利要求 10 所述的防止微控制器电源电压跌落的保护方法,其特征在于,所述储能电路包括一二极管和一储能电容,所述二极管的正极接所述电源模块,所述二极管的负极分别接所述储能电容和所述微控制器,所述储能电容的另一端分别接所述微控制器和所述电源模块的负极,所述一定时间段为所述储能电容的放电时间。
  12. 根据权利要求 10 所述的防止微控制器电源电压跌落的保护方法,其特征在于,所述储能电路包括一二极管和一储能电容,所述储能电容的一端分别连接所述电源模块正极和所述微控制器的正电源端, 所述储能电容的另一端分别接所述二极管正极和所述微控制器的负电源端,所述二极管的负极接所述电源模块的负极,所述一定时间段为所述储能电容的放电时间。
  13. 根据权利要求11或 12 所述的防止微控制器电源电压跌落的保护方法,其特征在于,所述放电时间为所述储能电容从所述微控制器正常工作电压放电至所述微控制器的最小工作电压时间。
PCT/CN2013/072307 2013-03-05 2013-03-07 电子烟中防止微控制器电源电压跌落的保护装置和方法 WO2014134812A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015560511A JP2016510970A (ja) 2013-03-05 2013-03-07 電子タバコにおいてマイクロコントローラーの供給電圧の低下を防止する保護装置および保護方法
EP13877393.2A EP2966743B1 (en) 2013-03-05 2013-03-07 Protection device and method for preventing power source voltage of microcontroller from dropping in electronic cigarette

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310069936.5 2013-03-05
CN201310069936.5A CN104037720B (zh) 2013-03-05 2013-03-05 电子烟中防止微控制器电源电压跌落的保护装置和方法

Publications (1)

Publication Number Publication Date
WO2014134812A1 true WO2014134812A1 (zh) 2014-09-12

Family

ID=51468386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/072307 WO2014134812A1 (zh) 2013-03-05 2013-03-07 电子烟中防止微控制器电源电压跌落的保护装置和方法

Country Status (5)

Country Link
US (1) US9025291B2 (zh)
EP (1) EP2966743B1 (zh)
JP (1) JP2016510970A (zh)
CN (1) CN104037720B (zh)
WO (1) WO2014134812A1 (zh)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10244793B2 (en) 2005-07-19 2019-04-02 Juul Labs, Inc. Devices for vaporization of a substance
CN102940313B (zh) * 2012-11-13 2015-04-01 卓尔悦(常州)电子科技有限公司 电子烟的智能控制器及方法
CN104037720B (zh) * 2013-03-05 2018-09-07 惠州市吉瑞科技有限公司 电子烟中防止微控制器电源电压跌落的保护装置和方法
US10279934B2 (en) 2013-03-15 2019-05-07 Juul Labs, Inc. Fillable vaporizer cartridge and method of filling
CN203326671U (zh) * 2013-07-10 2013-12-04 向智勇 一种用于电子烟盒的控制电路
JP6653432B2 (ja) 2013-12-23 2020-02-26 ジュール・ラブズ・インコーポレイテッドJuul Labs, Inc. 気化装置のシステムおよび方法
US20160366947A1 (en) 2013-12-23 2016-12-22 James Monsees Vaporizer apparatus
US10058129B2 (en) 2013-12-23 2018-08-28 Juul Labs, Inc. Vaporization device systems and methods
US10076139B2 (en) 2013-12-23 2018-09-18 Juul Labs, Inc. Vaporizer apparatus
USD842536S1 (en) 2016-07-28 2019-03-05 Juul Labs, Inc. Vaporizer cartridge
US10159282B2 (en) 2013-12-23 2018-12-25 Juul Labs, Inc. Cartridge for use with a vaporizer device
USD825102S1 (en) 2016-07-28 2018-08-07 Juul Labs, Inc. Vaporizer device with cartridge
EP3108758A4 (en) * 2014-01-24 2018-03-21 Kimree Hi-Tech Inc. System and method for preventing loss of electronic cigarette case
WO2015157928A1 (zh) * 2014-04-16 2015-10-22 吉瑞高新科技股份有限公司 一种电子烟
PL3138425T3 (pl) 2014-06-27 2023-10-16 Fontem Ventures B.V. Elektroniczne urządzenie do palenia oraz system kapsułki
EP3750583B1 (en) * 2014-10-14 2022-03-02 Fontem Holdings 1 B.V. Electronic smoking device and cartridge
MX2017007042A (es) 2014-12-05 2018-06-15 Juul Labs Inc Control de dosis calibrada.
WO2016154815A1 (zh) * 2015-03-27 2016-10-06 惠州市吉瑞科技有限公司 一种雾化器组件和电子烟
SG11201806793TA (en) 2016-02-11 2018-09-27 Juul Labs Inc Fillable vaporizer cartridge and method of filling
CO2018009342A2 (es) 2016-02-11 2018-09-20 Juul Labs Inc Cartuchos de fijación segura para dispositivos vaporizadores
US10405582B2 (en) 2016-03-10 2019-09-10 Pax Labs, Inc. Vaporization device with lip sensing
CN105857015B (zh) * 2016-05-04 2018-04-06 宁波普瑞均胜汽车电子有限公司 一种输出驱动后除霜负载的电路
USD849996S1 (en) 2016-06-16 2019-05-28 Pax Labs, Inc. Vaporizer cartridge
USD848057S1 (en) 2016-06-23 2019-05-07 Pax Labs, Inc. Lid for a vaporizer
USD836541S1 (en) 2016-06-23 2018-12-25 Pax Labs, Inc. Charging device
USD851830S1 (en) 2016-06-23 2019-06-18 Pax Labs, Inc. Combined vaporizer tamp and pick tool
WO2018163263A1 (ja) * 2017-03-06 2018-09-13 日本たばこ産業株式会社 バッテリユニット、香味吸引器、バッテリユニットを制御する方法、及びプログラム
EP3581039B8 (en) * 2017-03-06 2022-07-13 Japan Tobacco Inc. Battery unit, flavor aspirator, method for controlling battery unit, and program
WO2018163262A1 (ja) 2017-03-06 2018-09-13 日本たばこ産業株式会社 バッテリユニット、香味吸引器、バッテリユニットを制御する方法、及びプログラム
WO2018190322A1 (ja) 2017-04-12 2018-10-18 隆 竹原 電気分解式ガス吸引具
CN207265866U (zh) * 2017-08-21 2018-04-20 卓尔悦欧洲控股有限公司 升压电路、电池装置和电子烟
USD887632S1 (en) 2017-09-14 2020-06-16 Pax Labs, Inc. Vaporizer cartridge
US20200138100A1 (en) 2017-11-08 2020-05-07 Aqua Bank CO.,LTD. Dual-purpose smoking device and hydrogen inhaler
CN111511231A (zh) * 2018-01-12 2020-08-07 菲利普莫里斯生产公司 包括等离子体加热元件的气溶胶生成装置
KR102283057B1 (ko) * 2018-07-04 2021-07-28 주식회사 케이티앤지 에어로졸 생성장치의 이상동작 예방 방법 및 그 시스템
CN109283867A (zh) * 2018-08-24 2019-01-29 深圳市合元科技有限公司 一种开关控制电路、开关控制方法及电子烟
US11103013B2 (en) * 2018-09-07 2021-08-31 Fontem Holdings 1 B.V. Pivotable charging case for electronic smoking device
JP6609687B1 (ja) 2018-12-27 2019-11-20 日本たばこ産業株式会社 エアロゾル吸引器用の電源ユニット、その制御方法及び制御プログラム
KR102243862B1 (ko) * 2019-03-14 2021-04-23 김성우 전자기 유도형 전자 담배
CN112152312A (zh) * 2020-11-24 2020-12-29 北京理工大学深圳汽车研究院(电动车辆国家工程实验室深圳研究院) 一种供电延时保持电路和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050040792A1 (en) * 2003-08-18 2005-02-24 Rajendran Nair Method & apparatus for charging, discharging and protection of electronic battery cells
CN201667547U (zh) * 2010-02-02 2010-12-08 上海长园维安电子线路保护股份有限公司 嵌入可编程开关式充电功能的锂电池保护模块
CN102280924A (zh) * 2011-07-18 2011-12-14 北京四方继保自动化股份有限公司 一种继电保护装置持续供电系统
CN203166462U (zh) * 2013-03-05 2013-08-28 向智勇 电子烟中防止微控制器电源电压跌落的保护装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2841470B2 (ja) * 1989-05-12 1998-12-24 松下電器産業株式会社 充放電回路
US5249227A (en) * 1992-11-30 1993-09-28 Motorola, Inc. Method and apparatus of controlling processing devices during power transition
JPH07234746A (ja) * 1994-02-25 1995-09-05 Hitachi Ltd マイクロプロセッサの電源バックアップ回路
JPH10337023A (ja) * 1997-05-29 1998-12-18 Nemic Lambda Kk スイッチング電源装置
JP3680498B2 (ja) * 1997-06-24 2005-08-10 株式会社デンソー 電子制御装置
JPH1155847A (ja) * 1997-07-29 1999-02-26 Yazaki Corp 車両負荷制御装置
JP3756743B2 (ja) * 2000-08-23 2006-03-15 株式会社オートネットワーク技術研究所 電流検出回路
EP1724899B1 (en) * 2005-05-17 2016-08-03 Continental Automotive GmbH Apparatus for short circuit protection
JP2008029067A (ja) * 2006-07-19 2008-02-07 Elm Technology Corp 2次電池用保護回路を有するバッテリーパック
CN101518361B (zh) * 2009-03-24 2010-10-06 北京格林世界科技发展有限公司 高仿真电子烟
JP5308298B2 (ja) * 2009-09-29 2013-10-09 セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー リセット回路
US8350522B2 (en) * 2010-03-10 2013-01-08 Apple Inc. External power source voltage drop compensation for portable devices
EP2563172B2 (en) * 2010-04-30 2022-05-04 Fontem Holdings 4 B.V. Electronic smoking device
JP2012029633A (ja) * 2010-07-30 2012-02-16 Jbs:Kk 電子タバコ
JP5172923B2 (ja) * 2010-09-21 2013-03-27 日立オートモティブシステムズ株式会社 電源ユニット及び制御装置
US20140230835A1 (en) * 2013-02-21 2014-08-21 Sarmad Saliman Disposable electronic cigarette with power shut off protection
CN104037720B (zh) * 2013-03-05 2018-09-07 惠州市吉瑞科技有限公司 电子烟中防止微控制器电源电压跌落的保护装置和方法
CN104037719B (zh) * 2013-03-05 2018-12-18 惠州市吉瑞科技有限公司 一种用于电子烟的过流或短路保护的控制装置及方法
US9423152B2 (en) * 2013-03-15 2016-08-23 R. J. Reynolds Tobacco Company Heating control arrangement for an electronic smoking article and associated system and method
CN203152492U (zh) * 2013-04-01 2013-08-28 向智勇 具有杀菌功能的电子烟盒

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050040792A1 (en) * 2003-08-18 2005-02-24 Rajendran Nair Method & apparatus for charging, discharging and protection of electronic battery cells
CN201667547U (zh) * 2010-02-02 2010-12-08 上海长园维安电子线路保护股份有限公司 嵌入可编程开关式充电功能的锂电池保护模块
CN102280924A (zh) * 2011-07-18 2011-12-14 北京四方继保自动化股份有限公司 一种继电保护装置持续供电系统
CN203166462U (zh) * 2013-03-05 2013-08-28 向智勇 电子烟中防止微控制器电源电压跌落的保护装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2966743A4 *

Also Published As

Publication number Publication date
EP2966743A1 (en) 2016-01-13
EP2966743A4 (en) 2016-10-19
CN104037720B (zh) 2018-09-07
JP2016510970A (ja) 2016-04-11
US20140258741A1 (en) 2014-09-11
EP2966743B1 (en) 2018-05-30
US9025291B2 (en) 2015-05-05
CN104037720A (zh) 2014-09-10

Similar Documents

Publication Publication Date Title
WO2014134812A1 (zh) 电子烟中防止微控制器电源电压跌落的保护装置和方法
WO2015013913A1 (zh) 一种用于电子烟的过流过压保护电路及方法
US20140253020A1 (en) Device and method for protecting rechargeble power supply of electronic cigarette
WO2018018693A1 (zh) 电池保护电路、电池及移动终端
CN103078384B (zh) 一种不间断电源
CN206908273U (zh) 电源电流检测保护电路
WO2012106949A1 (zh) 电池供电系统及其上电的控制方法
CN105048607A (zh) 一种新型多输出锂电池电源装置及其控制方法
CN108832696A (zh) 锂电池组
CN204131100U (zh) 清洁机器人及其电池保护系统
WO2024066803A1 (zh) 一种v口电池及放电控制方法
WO2023071623A1 (zh) 电子装置、应用该电子装置的电池杆及电子雾化装置
TWI547051B (zh) 電池保護電路
CN204793605U (zh) 一种大功率快速响应激光电源
CN207530702U (zh) 一种缓启动电路
WO2018049629A1 (zh) 一种物联网设备
CN207118034U (zh) 一种带保护功能的led驱动电路
CN210608594U (zh) 电池及主动均衡模块
CN207625287U (zh) 一种短路保护自恢复的led开关电源电路
CN202374353U (zh) 一种电视机及其主板电源短路检测电路
WO2016090555A1 (zh) 过电流保护电路
CN210867180U (zh) 一种bms电流保护信号锁存与复位电路
CN203166485U (zh) 电子烟的可充电电源保护装置
CN203135491U (zh) 一种不间断电源
CN206332493U (zh) 一种可防止充电口短路的锂电池充电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13877393

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013877393

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015560511

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE