WO2024066803A1 - 一种v口电池及放电控制方法 - Google Patents

一种v口电池及放电控制方法 Download PDF

Info

Publication number
WO2024066803A1
WO2024066803A1 PCT/CN2023/114055 CN2023114055W WO2024066803A1 WO 2024066803 A1 WO2024066803 A1 WO 2024066803A1 CN 2023114055 W CN2023114055 W CN 2023114055W WO 2024066803 A1 WO2024066803 A1 WO 2024066803A1
Authority
WO
WIPO (PCT)
Prior art keywords
interface
module
output
usb
battery
Prior art date
Application number
PCT/CN2023/114055
Other languages
English (en)
French (fr)
Inventor
周阳
曹文杰
Original Assignee
深圳市乐其网络科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市乐其网络科技有限公司 filed Critical 深圳市乐其网络科技有限公司
Publication of WO2024066803A1 publication Critical patent/WO2024066803A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/30Charge provided using DC bus or data bus of a computer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the technical field of mobile power sources, and in particular to a V-mount battery and a discharge control method.
  • the V-mount is a standard battery interface, which is mainly used for camera power supply interface.
  • auxiliary equipment such as: monitors, focus followers, wireless image transmission, stabilizers, etc.
  • the power supply interface types of the above auxiliary equipment are diverse, such as BP electrode interface, USB-A interface, USB-C interface, D-Tap interface, DC interface, etc., so a power supply device compatible with the above interfaces is needed.
  • BP electrodes and D-Tap interfaces have become the basic configuration of V-mount batteries.
  • Some V-mount batteries are also equipped with USB interfaces, but they cannot directly provide DC interface type output voltage. They still need to be transferred through an adapter (such as a V-mount hanging plate) to provide DC interface type output voltage. Therefore, the existing V-mount batteries are very inconvenient to use.
  • the technical problem to be solved by the present invention is to provide a V-mount battery and a discharge control method to solve the problem that the existing V-mount battery cannot directly provide a DC interface type output voltage.
  • the technical solution adopted by the present invention is:
  • a V-mount battery comprising:
  • the BMS module being electrically connected to the battery cell and configured to monitor electrical parameters of the battery cell and control input and output of the battery cell according to the electrical parameters of the battery cell;
  • an interface module the interface module being electrically connected to the BMS module and configured to provide an output voltage to the external load according to the discharge voltage of the battery cell when the external load is connected, and to charge the battery cell when an external power source is connected, the interface module comprising a DC output interface;
  • the transformer module is electrically connected to the BMS module and the DC output interface.
  • the voltage transformation module is used to transform the discharge voltage of the battery cell into a target output voltage, and output the target output voltage to the DC output interface.
  • the V-mount battery also includes a main control module, which is electrically connected to the interface module, the transformer module and the BMS module respectively, and is used to obtain the load connection status, electrical parameters and electrical parameters of each output interface of the interface module and the battery cell, and independently control the opening or closing of some output interfaces according to the load connection status, electrical parameters and electrical parameters of each output interface and the battery cell.
  • a main control module which is electrically connected to the interface module, the transformer module and the BMS module respectively, and is used to obtain the load connection status, electrical parameters and electrical parameters of each output interface of the interface module and the battery cell, and independently control the opening or closing of some output interfaces according to the load connection status, electrical parameters and electrical parameters of each output interface and the battery cell.
  • the interface module also includes a USB-A interface and a USB-C interface
  • the V-mount battery also includes a USB interface control module and an Emark module
  • the USB interface control module is electrically connected to the BMS module, the Emark module, the USB-A interface and the USB-C interface respectively, and the USB interface control module is used to provide an output voltage to the corresponding external load according to the discharge voltage of the battery cell when at least one of the USB-C interface and the USB-A interface is connected to an external load, and to charge the battery cell when the USB-C interface is connected to an external power supply;
  • the Emark module is electrically connected to the USB-C interface
  • the main control module is electrically connected to the USB interface control module.
  • the main control module is used to obtain the load connection status and electrical parameters of the USB-A interface and the USB-C interface through the USB interface control module, and independently control the opening or closing of the USB-A interface and the USB-C interface according to the load connection status and electrical parameters of the USB-A interface and the USB-C interface.
  • the main control module includes a voltage stabilizing unit and a main control chip
  • the main control chip is electrically connected to the BMS module and the USB interface control module respectively;
  • the voltage stabilizing unit is electrically connected to the BMS module and the main control chip respectively, and is used to stabilize the power supply voltage from the BMS module to the main control chip.
  • the BMS module includes a BMS control circuit and a fuse
  • One end of the fuse is connected to the positive electrode of the battery cell, and the other end of the fuse is connected to the discharge input end of the BMS control circuit;
  • the discharge output end of the BMS control circuit is respectively connected to the voltage conversion module and the USB interface control
  • the module and part of the interface of the interface module, the data transmission end of the BMS control circuit is connected to the main control module.
  • the transformer module includes a switch tube and a transformer
  • the input end of the switch tube is connected to the discharge output end of the BMS module, the output end of the switch tube is connected to the input end of the transformer, the control end of the switch tube is connected to the main control module, and the output end of the transformer is connected to the DC output interface.
  • a discharge control method applied to any of the above-mentioned V-mount batteries, wherein the interface module includes a BP electrode interface, a D-Tap interface, a DC output interface, a USB-C interface, and a USB-A interface;
  • the discharge control method comprises the steps of:
  • the corresponding output interface is turned on.
  • discharge control method further comprises the steps of:
  • the remaining power of the battery is compared with the rated power of each of the remaining output interfaces respectively, and the corresponding remaining output interfaces are controlled to be turned on and off according to the comparison results.
  • the method further comprises the steps of:
  • the actual total discharge power is compared with the rated power of the battery, and the alarm prompt is controlled to be turned on or off according to the comparison result.
  • discharge control method further comprises the steps of:
  • the updated actual total discharge power is compared with the rated power of the battery again, and the turning on and off of the alarm prompt is controlled according to the comparison result.
  • the BMS module controls the input and output of the battery cell.
  • the BMS module outputs the discharge voltage of the battery cell to the transformer module.
  • the transformer module transforms the discharge voltage to a target output voltage and then outputs it to the DC output interface to supply power to an external load with a DC power supply interface, thereby avoiding the use of an additional V-mount hanging plate, which is conducive to simplifying the assembly steps. Since the DC output interface is set on the V-mount battery, the overall volume of the assembled equipment such as the camera and the photographic light is reduced.
  • the integration of the DC output interface and the battery cell reduces external interference, thereby improving the power supply stability of the external load.
  • FIG1 is a first circuit principle block diagram of a V-mount battery according to an embodiment of the present invention.
  • FIG2 is a second circuit principle block diagram of a V-mount battery according to an embodiment of the present invention.
  • FIG3 is a third circuit principle block diagram of a V-mount battery according to an embodiment of the present invention.
  • FIG4 is a schematic block diagram of a discharge circuit of a DC output interface according to an embodiment of the present invention.
  • FIG5 is a fourth circuit schematic diagram of a V-mount battery according to an embodiment of the present invention.
  • FIG6 is a first flow chart of a discharge control method according to an embodiment of the present invention.
  • FIG7 is a second flow chart of the discharge control method according to an embodiment of the present invention.
  • FIG8 is a third flow chart of the discharge control method according to an embodiment of the present invention.
  • FIG9 is a fourth flow chart of the discharge control method according to an embodiment of the present invention.
  • FIG10 is a fifth flow chart of the discharge control method according to an embodiment of the present invention.
  • FIG. 11 is a flowchart of the working process of a V-mount battery according to an embodiment of the present invention.
  • the first embodiment of the present invention is:
  • a V-mount battery is used in video cameras, photographic lights and other equipment to power several electrical devices.
  • the V-mount battery includes a shell, a battery cell 100 and a circuit board.
  • the battery cell 100 can be a single lithium battery cell or a lithium battery cell group, which is not limited here.
  • the circuit board is provided with: a BMS (BATTERY MANAGEMENT SYSTEM) module 200, the BMS module 200 is electrically connected to the battery cell 100, and is used to monitor the electrical parameters of the battery cell 100, and control the input and output of the battery cell 100 according to the electrical parameters of the battery cell 100.
  • BMS BATTERY MANAGEMENT SYSTEM
  • An interface module 300 the interface module 300 is electrically connected to the BMS module 200, and is used to provide an output voltage to an external load according to the discharge voltage of the battery cell 100 when an external load is connected, and to charge the battery cell 100 when an external power supply is connected, and the interface module 300 includes a DC output interface 310.
  • the transformer module 400 is electrically connected to the BMS module 200 and the DC output interface 310 , respectively.
  • the transformer module 400 is used to transform the discharge voltage of the battery cell 100 to a target output voltage, and output the target output voltage to the DC output interface 310 .
  • the BMS module 200 is a commonly used protection module for the battery cell 100, and specifically adopts a commonly used BMS control circuit to provide bidirectional protection for the battery cell 100 during the charging and discharging process, such as overvoltage protection, undervoltage protection, overcurrent protection, short circuit protection, temperature protection, etc., to prevent abnormal conditions during the charging and discharging process from damaging the service life and performance of the battery cell 100.
  • the BMS module 200 monitors the electrical parameters of the battery cell 100 and controls the input and output of the battery cell 100 according to the electrical parameters of the battery cell 100. When the electrical parameters of the battery cell 100 are abnormal, the connection with the external load or input power supply is disconnected.
  • the interface module 300 includes several interfaces with input or output functions.
  • the interface module 300 includes one or more of a BP electrode interface 320, a D-Tap interface 330, a USB interface, a DC output interface 310, etc.
  • the number and working voltage of each interface type can be set according to actual needs, and there is no restriction here.
  • the interface module 300 includes a DC output interface 310.
  • the BMS module 200 controls the discharge of the battery cell 100 to output the discharge voltage of the battery cell 100 to the transformer module 400 without abnormal conditions.
  • the transformer module 400 boosts or bucks the discharge module to obtain a target output voltage of a preset voltage, and outputs the target output voltage to the DC output interface 310, and supplies power to the external load through the DC output interface 310.
  • the electrical parameters referred to in this embodiment include one or more parameters such as current, voltage, power, etc.
  • the external load includes auxiliary equipment such as monitors, follow focus devices, wireless image transmission devices, stabilizers, etc.
  • the above configuration is adopted in this embodiment to avoid using an additional V-mount hanging plate, which is conducive to simplifying the assembly steps. Since the DC output interface 310 is arranged on the V-mount battery, the overall volume of the assembled equipment such as the camera and the video light is reduced, and the integration of the DC output interface 310 and the battery cell 100 reduces external interference, thereby improving the power supply stability of the external load.
  • the V-mount battery also includes a main control module 500, which is electrically connected to the interface module 300, the transformer module 400 and the BMS module 200 respectively.
  • the main control module 500 is used to obtain the load connection status, electrical parameters of each output interface of the interface module 300 and the electrical parameters of the battery cell 100, and independently control the opening or closing of some output interfaces according to the load connection status, electrical parameters of each output interface and the electrical parameters of the battery cell 100.
  • the main control module 500 obtains the load connection status and electrical parameters of each output interface of the interface module 300, and also obtains the electrical parameters of the battery cell 100 through the BMS module 200, and calculates and processes the load connection status of each output interface, the electrical parameters of each output interface and the electrical parameters of the battery cell 100, and controls the opening or closing of some output interfaces according to the results.
  • the main control module 500 obtains the load connection status of the DC output interface 310, detects that the DC output interface 310 is connected to an external load, obtains the actual discharge power of the DC output interface 310, and compares the actual discharge power with a preset power threshold. If the power does not exceed the preset power threshold, the DC output interface 310 is kept open; when the actual discharge power of the DC output interface 310 reaches or exceeds the preset power threshold, the DC output interface 310 is closed.
  • the interface module 300 further includes a USB-A interface 340 and a USB-C interface 350
  • the V-mount battery further includes a USB interface control module 600 and an Emark module 700.
  • the USB interface control module 600 is electrically connected to the BMS module 200, the Emark module 700, the USB-A interface 340 and the USB-C interface 350, respectively, and the USB interface control module 600 is used to provide an output voltage to the corresponding external load according to the discharge voltage of the battery cell 100 when at least one of the USB-C interface 350 and the USB-A interface 340 is connected to an external load, and to charge the battery cell 100 when the USB-C interface 350 is connected to an external power supply.
  • the Emark module 700 is electrically connected to the USB-C interface 350, and the Emark module 700 is used to identify when the charging and discharging power of the USB-C interface 350 reaches 65W, so as to identify whether the external load, power supply, and charging cable connected to the USB-C interface 350 can support a power of more than 65W.
  • the main control module 500 is electrically connected to the USB interface control module 600. The main control module 500 is used to obtain the load connection status and electrical parameters of the USB-A interface 340 and the USB-C interface 350 through the USB interface control module 600, and independently control the opening or closing of the USB-A interface 340 and the USB-C interface 350 according to the load connection status and electrical parameters of the USB-A interface 340 and the USB-C interface 350.
  • the V-port battery also includes a USB-A interface 340 and a USB-C interface 350 to power external loads of the corresponding interface type.
  • the USB-C interface 350 is a bidirectional power transmission interface, and is connected to the Emark module 700, which can realize the output and input of 65W power to realize the fast charging of the battery cell 100 and the power supply of the external load with a 65W power demand.
  • the USB interface control module 600 adopts the existing USB control chip to monitor the electrical parameters of each USB interface, and performs discharge overcurrent protection on each USB interface, and also performs charging overcurrent and overvoltage protection on the USB charging process of the battery cell 100.
  • the Emark module 700 can adopt the existing functional module.
  • the main control module 500 obtains the load connection status and electrical parameters of each USB interface by controlling the USB interface control module 600, and independently controls the opening and closing of each USB interface according to the acquired data.
  • the main control module 500 may include a voltage stabilizing unit 520 and a main control chip 510 (MCU).
  • the main control chip 510 is respectively connected to the BMS module 200 and the USB interface control module 510.
  • the voltage stabilizing unit 520 is electrically connected to the BMS module 200 and the main control chip 510 respectively, and the voltage stabilizing unit 520 is used to stabilize the power supply voltage from the BMS module 200 to the main control chip 510.
  • the voltage stabilizing unit 520 adopts a low-voltage linear regulator. It can be understood that in this embodiment, each module is connected through the main control chip 510 to obtain the load connection status and electrical parameters of each output interface. In addition, the voltage stabilizing unit 520 is also connected to the DC output interface 310 to provide a pull-up voltage for the insertion detection circuit of the DC output interface 310, and the main control module 500 is also electrically connected to the insertion detection circuit of the DC output interface 310 to obtain the load connection status of the DC output interface 310. Among them, the insertion detection circuit of the DC output interface is an existing commonly used detection circuit, and the specific circuit structure can be adjusted accordingly, and no specific restrictions are made here.
  • the BMS module includes a BMS control circuit 220 and a fuse 210, one end of the fuse 210 is connected to the positive electrode of the battery cell 100, and the other end of the fuse 210 is connected to the discharge input end of the BMS control circuit 220.
  • the discharge output end of the BMS control circuit 220 is respectively connected to the transformer module 400, the USB interface control module 600, and part of the interface of the interface module 300, and the data transmission end of the BMS control circuit 220 is connected to the main control module 500.
  • the fuse 210 provides irreversible protection for the battery cell 100.
  • the BMS control circuit 220 cannot provide restorable protection in time, the fuse 210 will blow and protect the battery cell 100 and the circuit.
  • the transformer module 400 includes a switch tube 410 and a transformer 420.
  • the input end of the switch tube 410 is connected to the discharge output end of the BMS module 200, the output end of the switch tube 410 is connected to the input end of the transformer 420, the control end of the switch tube 410 is connected to the main control module 500, and the output end of the transformer 420 is connected to the DC output interface 310.
  • the main control module 500 is also connected to the enable end of the transformer 420. When the main control module 500 monitors the load connected to the DC output interface 310, the main control module 500 enables the transformer 420 to work and turns on the switch tube 410, so that the BMS module 200 outputs the discharge voltage of the battery cell 100 to the transformer 420.
  • the transformer 420 transforms the discharge voltage of the battery cell 100 into a target output voltage and outputs it to the DC output interface 310.
  • the main control module 500 is also connected to the DC output interface 310, and monitors the electrical parameters of the DC output interface 310 in real time to adjust the DC output voltage according to the DC output interface 310.
  • the electrical parameters of the output interface 310 control the on and off of the switch tube 410.
  • the switch tube 410 can be a field effect tube or a triode, etc.
  • the specific circuit of the transformer module 400 can be adjusted and set according to actual needs.
  • the present embodiment is further provided with a button 930, a firmware burning interface 920 and a display module 800, and the display module adopts an OLED display screen.
  • the main control chip 510 is electrically connected to the button 930, the firmware burning interface 920 and the display module 800 respectively, and the voltage stabilizing unit 520 is electrically connected to the display module 800.
  • the button 930 is used to output a button 930 signal to the main control chip 510, and the main control chip 510 is used to display the electrical parameter information such as the power of the battery 100 through the display module 800 according to the button 930 signal, and to display the electrical parameter information of each connection port or part of the connection port.
  • the firmware burning interface 920 is used to connect an external computer to burn a program to the main control chip 510.
  • the voltage stabilizing unit 520 is used to supply power to the display module 800.
  • this embodiment uses two DC output interfaces 310 with different output voltages (8V and 12V), and configures a corresponding transformer 420 for each DC output interface 310, which is conducive to compatibility with more DC interface type electrical devices.
  • this embodiment provides a discharge control method, which is applied to the V-mount battery in Embodiment 1.
  • the interface module 300 of the V-mount battery includes a BP electrode interface 320 , a D-Tap interface 330 , a DC output interface 310 , a USB-C interface 350 , and a USB-A interface 340 .
  • V-mount batteries have multiple interfaces, multiple interfaces will inevitably be used at the same time. If all interfaces are used for high-power devices, the battery will discharge overcurrent. After the battery overcurrent, the BMS will terminate the battery discharge to ensure safety. Sudden power failure will interrupt the photography process and there is a risk of damaging the electrical equipment. In order to deal with this situation, the current solution is to increase the BMS discharge overcurrent monitoring range, but this solution causes the battery to age quickly and shorten its life. During use, the temperature rises rapidly, causing the BMS over-temperature protection to shut down the discharge.
  • the discharge control method comprises the following steps:
  • the main control module 500 obtains a current preset threshold interval corresponding to the DC output interface 310 , and compares the actual output current of the DC output interface 310 with the current preset threshold interval.
  • the output interface when the output interface is connected to an external load, the electrical parameters of the output interface are compared with the preset threshold interval, and the output interface is controlled to be turned on and off according to the comparison result, thereby protecting the discharge circuit of the V-mount battery and the external load.
  • Each output interface is monitored independently, and when any output interface is abnormal, the corresponding interface can be closed in time without affecting the normal use of other interfaces, avoiding the simultaneous closure of other output interfaces.
  • the discharge control method further includes the steps of:
  • this step includes:
  • the sum of the actual discharge powers of the BP electrode interface 320 and the D-Tap interface 330 is subtracted from the initial power of the battery to obtain the remaining power of the battery.
  • the corresponding remaining output interface is turned on; when the remaining power of the battery is less than the rated power of the remaining output interface, the corresponding remaining output interface is turned off.
  • the remaining output interfaces that are not connected to external loads are in a closed state.
  • the corresponding remaining output interface has a load in place but the load is not electrically connected to the battery.
  • the conditions are met and the corresponding remaining output interface is turned on, and the external load obtains power from the battery.
  • a V-mount battery can be configured with a corresponding indicator light for each output interface to indicate that the load of the output interface is in place and electrically connected to the battery.
  • the BP electrode interface 320 and the D-Tap interface 330 are used more frequently when the V-mount battery is used, they are the main output interfaces, and the power allocated to them accounts for a large proportion. Therefore, the actual discharge power sum of the BP electrode interface 320 and the D-Tap interface 330 is obtained first and the remaining power of the battery is obtained. Then, it is determined whether the remaining power of the battery meets the rated power of each remaining output interface, so that the corresponding output interface is turned on when the rated power is less than the remaining power of the battery, and the corresponding output interface is turned off when the rated power reaches or exceeds the remaining power of the battery.
  • this embodiment pre-determines whether the remaining power of the battery can meet the rated power of the subsequent external load, and closes or opens the corresponding output interface, thereby further protecting the battery cell, circuit and external load.
  • the discharge control method further includes the steps of:
  • the actual discharge power of each of the output interfaces currently supplying power to the load is first obtained, and then the actual total discharge power is obtained according to all the actual discharge powers;
  • the actual discharge power of each output interface connected to the load may be lower than the rated power or higher than the rated power, there is a situation where the actual total discharge power of all output interfaces is higher. If the actual total discharge power reaches or exceeds the rated power of the battery, the battery is in an overload state, and an alarm prompt is given in time, and the load is removed through manual intervention to avoid instantaneous power failure and damage to electrical equipment.
  • the alarm prompt can be one or more of a sound prompt, a light prompt, etc.
  • an alarm LED light and a buzzer connected to the main control module 500 are provided in the V-mount battery. When the actual total discharge power of the output interfaces of all connected loads reaches or exceeds the rated power of the battery, the main control module 500 controls the lighting of the alarm LED light and triggers the buzzer.
  • the discharge control method further includes the steps of:
  • this embodiment implements dynamic power allocation, and allocates power according to the order of use of the remaining output interfaces. After the output interface removes the load, the remaining power is recalculated and compared, and the power of the withdrawn output interface is redistributed. This ensures the normal operation of the used output interface and avoids overcurrent when the external load is powered.
  • the workflow of the V-mount battery is as follows: first, obtain the remaining power of the battery, and determine whether the remaining output interface is connected to a load. Then, obtain the remaining output of the connected load. The rated power of the interface is compared with the remaining power of the battery, and the corresponding output interface is turned on according to the comparison result. Then the actual total discharge power of all output interfaces currently supplying power to the load is obtained, and the actual total discharge power is compared with the rated power of the battery cell. When the actual total discharge power is greater than the rated total power of the battery cell, an over-power discharge prompt is issued. When the load is removed, the corresponding output interface is turned off, and the remaining power of the battery and the actual total discharge power of all output interfaces are recalculated and updated.
  • the V-mount battery of this embodiment can realize dynamic power allocation, give priority to the discharge of BP electrode and D-Tap, and use the USB-A, USB-C and DC output interfaces first. When the rated power of the battery is insufficient, the remaining idle output interfaces will be limited. Ensure that the discharge current and temperature of the battery cell will not exceed the normal range, and the devices that are already in the power supply state can continue to work normally.
  • the BMS module controls the input and output of the battery cell.
  • the BMS module outputs the discharge voltage of the battery cell to the transformer module.
  • the transformer module transforms the discharge voltage to the target output voltage and outputs it to the DC output interface to supply power to an external load with a DC power supply interface, thereby avoiding the use of an additional V-mount hanging plate, which is conducive to simplifying the assembly steps.
  • the DC output interface is provided on the V-mount battery, the overall volume of equipment such as cameras and photographic lights after assembly is reduced.
  • the integration of the DC output interface and the battery cell reduces external interference, thereby improving the power supply stability of the external load.
  • the V-mount battery of the present application is also provided with a USB-A interface and a USB-C interface with a fast charging function, which enriches the interface types of the V-mount battery and is compatible with electrical equipment with more interface types and specifications.
  • the actual discharge power of the BP electrode interface and the D-Tap interface is first detected, and the remaining distributable power of the battery is calculated.
  • the remaining interfaces are connected to the load, it is determined whether the distributable power meets the rated discharge power of the port. If it meets the requirements, it is allowed to be used, otherwise it is prohibited to use and the user is prompted. If the total power of the used interfaces reaches the rated power of the battery, the user will be prompted that the battery is discharging at overpower.
  • the present application realizes three-level battery circuit safety protection.
  • the first-level protection is to configure electrical parameter detection for each output interface, provide discharge overcurrent, charge overcurrent and overvoltage protection, and shut down abnormal output interfaces without affecting the use of other output interfaces.
  • the second-level protection is the cell-end BMS recoverable protection. It is used to detect whether the input and output current, voltage, temperature, charge, etc. of the battery cell have reached the upper and lower limits of the safety value. If there are any of the above abnormalities, the battery charging and discharging function will be temporarily shut down, and all interfaces will be unusable. The battery charging and discharging function will be turned on again after the above data returns to the safe value.
  • the third level of protection is irreversible protection. If the current and voltage are far greater than the normal range, the fuse will be blown to prevent the battery from catching fire or exploding, and to avoid damage to electrical equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种V口电池及放电控制方法,V口电池包括:电芯(100);BMS模块(200),BMS模块与电芯电连接,用于监测电芯的电参数,并根据电芯的电参数控制电芯的输入和输出;接口模块(300),接口模块与BMS模块电连接,用于在连接外部负载时根据电芯的放电电压向外部负载提供输出电压,以及在接入外部电源时为电芯充电,接口模块包括DC输出接口(310);以及变压模块(400),变压模块分别与BMS模块以及DC输出接口电连接,变压模块用于将电芯的放电电压变压至目标输出电压,并将目标输出电压输出至DC输出接口。本申请由于DC输出接口设置于V口电池上,减少摄像机、摄影灯等设备组装后的整体体积,DC输出接口与电芯一体化降低外部干扰,从而提高了外部负载的供电稳定性。

Description

一种V口电池及放电控制方法 技术领域
本发明涉及移动电源技术领域,尤其涉及一种V口电池及放电控制方法。
背景技术
V口是一种电池标准接口,主要应用于摄像机供电接口。随着摄影行业以及科技的发展,摄像机和相机在使用过程中需要的辅助设备越来越多。其中包含多种电子辅助设备,例如:监视器、跟焦器、无线图传、稳定器等。上述辅助设备的供电接口类型多种多样,例如BP电极接口、USB-A接口、USB-C接口、D-Tap接口、DC接口等,所以需要一种兼容以上接口的供电设备。目前,BP电极、D-Tap接口成为V口电池的基本配置,部分V口电池还配有USB接口,但是无法直接提供DC接口类型的输出电压,仍需通过转接装置(例如V口挂板)进行转接后再提供DC接口类型的输出电压,因此,现有的V口电池使用起来十分不方便。
发明内容
本发明所要解决的技术问题是:提供一种V口电池及放电控制方法,以解决现有的V口电池无法直接提供DC接口类型的输出电压的问题。
为了解决上述技术问题,本发明采用的技术方案为:
一种V口电池,包括:
电芯;
BMS模块,所述BMS模块与所述电芯电连接,用于监测所述电芯的电参数,并根据所述电芯的电参数控制所述电芯的输入和输出;以及
接口模块,所述接口模块与所述BMS模块电连接,用于在连接外部负载时根据所述电芯的放电电压向外部负载提供输出电压,以及在接入外部电源时为所述电芯充电,所述接口模块包括DC输出接口;以及
变压模块,所述变压模块分别与BMS模块以及所述DC输出接口电连接,所 述变压模块用于将所述电芯的放电电压变压至目标输出电压,并将所述目标输出电压输出至所述DC输出接口。
进一步的,所述V口电池还包括主控模块,所述主控模块分别与所述接口模块、所述变压模块以及BMS模块电连接,所述主控模块用于获取所述接口模块的每个输出接口各自的负载连接状态、电参数以及所述电芯的电参数,并根据每个所述输出接口各自的负载连接状态、电参数以及所述电芯的电参数分别独立控制部分输出接口的开启或关闭。
进一步的,所述接口模块还包括USB-A接口以及USB-C接口,所述V口电池还包括USB接口控制模块以及Emark模块;
所述USB接口控制模块分别与所述BMS模块、所述Emark模块、所述USB-A接口以及所述USB-C接口电连接,所述USB接口控制模块用于在所述USB-C接口、所述USB-A接口中的至少一个接口连接外部负载时,根据所述电芯的放电电压分别向对应的外部负载提供输出电压,以及在所述USB-C接口接入外部电源时向所述电芯充电;
所述Emark模块与所述USB-C接口电连接;
所述主控模块与所述USB接口控制模块电连接,所述主控模块用于通过所述USB接口控制模块获取所述USB-A接口、所述USB-C接口各自的负载连接状态、电参数,并根据所述USB-A接口、所述USB-C接口各自的负载连接状态、电参数,分别独立控制所述USB-A接口、所述USB-C接口的开启或关闭。
进一步的,所述主控模块包括稳压单元和主控芯片;
所述主控芯片分别与所述BMS模块以及所述USB接口控制模块电连接;
所述稳压单元分别与所述BMS模块以及所述主控芯片电连接,所述稳压单元用于对所述BMS模块向所述主控芯片的供电电压进行稳压。
进一步的,所述BMS模块包括BMS控制电路以及保险丝;
所述保险丝的一端连接电芯的正极,所述保险丝的另一端连接所述BMS控制电路的放电输入端;
所述BMS控制电路的放电输出端分别连接所述变压模块、所述USB接口控制 模块以及所述接口模块的部分接口,所述BMS控制电路的数据传输端连接所述主控模块。
进一步的,所述变压模块包括开关管以及变压器;
所述开关管的输入端与所述BMS模块的放电输出端连接,所述开关管的输出端与所述变压器的输入端连接,所述开关管的控制端与所述主控模块连接,所述变压器的输出端与所述DC输出接口连接。
一种放电控制方法,应用于上述任一项所述的V口电池,所述接口模块包括BP电极接口、D-Tap接口、DC输出接口、USB-C接口以及USB-A接口;
所述放电控制方法包括步骤:
获取所述接口模块的每个输出接口各自的负载连接状态;
获取已连接负载的所述输出接口各自的电参数;
将已连接负载的所述输出接口各自的电参数与对应的预设阈值区间进行比较,并输出比较结果;
当所述输出接口的电参数未处于所述预设阈值区间时,关闭对应的所述输出接口;
当所述输出接口的电参数处于预设阈值区间时,开启对应的所述输出接口。
进一步的,所述放电控制方法还包括步骤:
获取当前所述电池的剩余功率;
获取当前接入负载但未向负载供电的每个剩余输出接口各自的额定功率;
将所述电池的剩余功率分别与每个所述剩余输出接口各自的额定功率进行比较,并根据比较结果控制对应的剩余输出接口的开启和关闭。
进一步的,所述方法还包括步骤:
获取当前所有向负载供电的所述输出接口的实际放电总功率;
将所述实际放电总功率与所述电池的额定功率进行比较,并根据比较结果控制警报提示的开启或关闭。
进一步的,所述放电控制方法还包括步骤:
当任意所述输出接口的负载移除时,关闭对应的所述输出接口;
更新电池的所述剩余功率;
将更新后的所述电池的所述剩余功率分别与当前接入负载但未向负载供电的每个剩余输出接口各自的额定功率进行比较,并根据比较结果控制对应的所述剩余输出接口的开启和关闭;
更新所述实际放电总功率;
将更新后的所述实际放电总功率与所述电池的所述额定功率再次进行比较,并根据比较结果控制警报提示的开启和关闭。
本发明的有益效果在于:BMS模块控制电芯的输入和输出,当DC输出接口接入外部负载时,BMS模块向变压模块输出电芯的放电电压,变压模块将放电电压变压至目标输出电压后输出至DC输出接口,以向具有DC供电接口的外部负载供电,从而避免采用额外的V口挂板,有利于简化组装步骤。由于DC输出接口设置于V口电池上,减少摄像机、摄影灯等设备组装后的整体体积,DC输出接口与电芯一体化降低外部干扰,从而提高了外部负载的供电稳定性。
附图说明
图1为本发明实施例的V口电池的第一电路原理框图;
图2为本发明实施例的V口电池的第二电路原理框图;
图3为本发明实施例的V口电池的第三电路原理框图;
图4为本发明实施例的DC输出接口的放电电路的原理框图;
图5为本发明实施例的V口电池的第四电路原理框图;
图6为本发明实施例的放电控制方法的第一流程框图;
图7为本发明实施例的放电控制方法的第二流程框图;
图8为本发明实施例的放电控制方法的第三流程框图;
图9为本发明实施例的放电控制方法的第四流程框图;
图10为本发明实施例的放电控制方法的第五流程框图;
图11为本发明实施例的V口电池的工作流程框图。
标号说明:
100、电芯;200、BMS模块;210、保险丝;220、BMS控制电路;300、接
口模块;310、DC输出接口;320、BP电极接口;330、D-Tap接口;340、USB-A接口;350、USB-C接口;400、变压模块;410、开关管;420、变压器;500、主控模块;510、主控芯片;520、稳压单元;600、USB接口控制模块;700、Emark模块;800、显示模块;920、固件烧录接口;930、按键。
具体实施方式
为详细说明本发明的技术内容、所实现目的及效果,以下结合实施方式并配合附图予以说明。
实施例一
请参照图1至图5,本发明的实施例一为:
一种V口电池,应用于摄像机、摄影灯等设备,为若干个用电设备供电。
请参照图1,所述V口电池包括壳体、电芯100以及电路板。其中,电芯100可以为单节锂电芯或锂电芯组,此处不做限制。所述电路板上设置有:BMS(BATTERY MANAGEMENT SYSTEM,电池管理系统)模块200,所述BMS模块200与所述电芯100电连接,用于监测所述电芯100的电参数,并根据所述电芯100的电参数控制所述电芯100的输入和输出。接口模块300,所述接口模块300与所述BMS模块200电连接,用于在连接外部负载时根据所述电芯100的放电电压向外部负载提供输出电压,以及在接入外部电源时为所述电芯100充电,所述接口模块300包括DC输出接口310。变压模块400,所述变压模块400分别与BMS模块200以及所述DC输出接口310电连接,所述变压模块400用于将所述电芯100的放电电压变压至目标输出电压,并将所述目标输出电压输出至所述DC输出接口310。
本实施例的V口电池的工作原理为:BMS模块200为常用的电芯100保护模块,具体采用常用的BMS控制电路,用于在充放电过程中对电芯100提供双向保护,例如过压保护、欠压保护、过流保护、短路保护、温度保护等,以防止充放电过程的异常情形对电芯100的使用寿命和性能造成损害。BMS模块200监测电芯100的电参数,并根据电芯100的电参数控制电芯100的输入和输出,当 电芯100的电参数出现异常时断开与外部负载或输入电源的连接。接口模块300包括若干个具有输入或输出功能的接口,示例性地,接口模块300包括BP电极接口320、D-Tap接口330、USB接口、DC输出接口310等中的一种或多种,每种接口类型的数量和工作电压大小可以根据实际需要进行设置,此处不做限制。本实施例中,接口模块300包括DC输出接口310,当DC输出接口310接入外部负载时,无异常情况下,BMS模块200控制电芯100放电,以向变压模块400输出电芯100的放电电压。变压模块400对放电模块进行升压或降压,以得到预设电压大小的目标输出电压,并将目标输出电压输出至DC输出接口310,通过DC输出接口310向外部负载供电。
本实施例所称的电参数,包括电流、电压、功率等其中的一种或多种参数。外部负载包括监视器、跟焦器、无线图传、稳定器等辅助设备。
可以理解的,本实施例采用上述设置,避免采用额外的V口挂板,有利于简化组装步骤。由于DC输出接口310设置于V口电池上,减少摄像机、摄影灯等设备组装后的整体体积,DC输出接口310与电芯100一体化降低外部干扰,从而提高了外部负载的供电稳定性。
请参照图2,具体的,V口电池还包括主控模块500,所述主控模块500分别与所述接口模块300、所述变压模块400以及BMS模块200电连接,所述主控模块500用于获取所述接口模块300的每个输出接口各自的负载连接状态、电参数以及所述电芯100的电参数,并根据每个所述输出接口各自的负载连接状态、电参数以及所述电芯100的电参数分别独立控制部分输出接口的开启或关闭。
可以理解的,主控模块500通过获取接口模块300的各个输出接口的负载连接状态以及电参数,还通过BMS模块200获取电芯100的电参数,并根据每个输出接口各自的负载连接状态,以及将每个输出接口各自的电参数和电芯100的电参数进行运算处理,根据结果控制部分输出接口的开启或关闭。
示例性地,主控模块500获取DC输出接口310的负载连接状态,监测到DC输出接口310连接上外部负载,并获取DC输出接口310的实际放电功率,将实际放电功率与预设功率阈值进行比较。当DC输出接口310的实际放电功率 未超过预设功率阈值,则保持DC输出接口310的开启;当DC输出接口310的实际放电功率达到或超过预设功率阈值时,则关闭DC输出接口310。
请参照图3,可选的,所述接口模块300还包括USB-A接口340以及USB-C接口350,所述V口电池还包括USB接口控制模块600以及Emark模块700。所述USB接口控制模块600分别与所述BMS模块200、所述Emark模块700、所述USB-A接口340以及所述USB-C接口350电连接,所述USB接口控制模块600用于在所述USB-C接口350、所述USB-A接口340中的至少一个接口连接外部负载时,根据所述电芯100的放电电压分别向对应的外部负载提供输出电压,以及在所述USB-C接口350接入外部电源时向所述电芯100充电。所述Emark模块700与所述USB-C接口350电连接,Emark模块700用于在USB-C接口350充放电功率达到65W时进行识别,以识别USB-C接口350连接的外部负载、电源、充电线能否支持65W以上的功率。所述主控模块500与所述USB接口控制模块600电连接,所述主控模块500用于通过所述USB接口控制模块600获取所述USB-A接口340、所述USB-C接口350各自的负载连接状态、电参数,并根据所述USB-A接口340、所述USB-C接口350各自的负载连接状态、电参数,分别独立控制所述USB-A接口340、所述USB-C接口350的开启或关闭。
本实施例中,V口电池还包括USB-A接口340和USB-C接口350,为对应接口类型的外部负载供电。其中,USB-C接口350为双向供电传输接口,并连接Emark模块700,可以实现65W功率的输出和输入,以实现电芯100的快速充电和65W用电需求的外部负载的供电。USB接口控制模块600采用现有的USB控制芯片,监测各个USB接口的电参数,并对各USB接口进行放电过流保护,还对电芯100的USB充电过程进行充电过流过压保护,Emark模块700可以采用现有的功能模块。进一步的,主控模块500通过控制USB接口控制模块600,获取各个USB接口的负载连接状态和电参数,并根据获取的数据分别独立控制各个USB接口的开启和关闭。
请参照图5,可选的,所述主控模块500包括稳压单元520和主控芯片510(MCU)。所述主控芯片510分别与所述BMS模块200以及所述USB接口控 制模块600电连接。所述稳压单元520分别与所述BMS模块200以及所述主控芯片510电连接,所述稳压单元520用于对所述BMS模块200向所述主控芯片510的供电电压进行稳压。
本实施例中,所述稳压单元520采用低压线性稳压器。可以理解的,本实施例通过主控芯片510连接各个模块,从而获取各个输出接口的负载连接状态以及电参数。另外,稳压单元520还与DC输出接口310连接,用于为所述DC输出接口310的插入检测电路提供上拉电压,主控模块500还与DC输出接口310的插入检测电路电连接,以获取DC输出接口310的负载连接状态。其中,DC输出接口的插入检测电路为现有的常用检测电路,具体电路结构可以进行相应的调整,此处不做具体限制。
请参照图4,可选的,所述BMS模块包括BMS控制电路220以及保险丝210,所述保险丝210的一端连接电芯100的正极,所述保险丝210的另一端连接所述BMS控制电路220的放电输入端。所述BMS控制电路220的放电输出端分别连接所述变压模块400、所述USB接口控制模块600以及所述接口模块300的部分接口,所述BMS控制电路220的数据传输端连接所述主控模块500。
可以理解的,保险丝210为电芯100提供了不可恢复的电芯100保护,在电芯100出现充放电过流且BMS控制电路220无法及时提供可恢复保护时,保险丝210将熔断并保护电芯100和电路。
请继续参照图4,所述变压模块400包括开关管410以及变压器420。所述开关管410的输入端与所述BMS模块200的放电输出端连接,所述开关管410的输出端与所述变压器420的输入端连接,所述开关管410的控制端与所述主控模块500连接,所述变压器420的输出端与所述DC输出接口310连接。主控模块500还与变压器420的使能端连接,当主控模块500监测DC输出接口310的接入负载时,主控模块500使能变压器420工作,并使开关管410导通,以使BMS模块200向变压器420输出电芯100的放电电压,变压器420将电芯100的放电电压变压为目标输出电压并输出至DC输出接口310。同时,主控模块500还与DC输出接口310连接,并实时监控DC输出接口310的电参数,以根据DC 输出接口310的电参数控制开关管410的开启和关闭。本实施例中,开关管410可以采用场效应管或三极管等,变压模块400的具体电路可以根据实际需要进行调整设置。
请参照图5,本实施例还设置有按键930、固件烧录接口920以及显示模块800,显示模块采用OLED显示屏。主控芯片510分别与按键930、固件烧录接口920以及显示模块800电连接,稳压单元520与显示模块800电连接。按键930用于向主控芯片510输出按键930信号,主控芯片510用于根据按键930信号通过显示模块800显示电芯100的电量等电参数信息,以及显示各个连接端口或部分连接端口的电参数信息。固件烧录接口920用于连接外部计算机,以向主控芯片510烧录程序。稳压单元520用于向显示模块800供电。
示例性地,本实施例采用两个不同输出电压大小(8V和12V)的DC输出接口310,并为每个DC输出接口310配置了相应的变压器420,有利于兼容更多的DC接口类型的用电设备。
实施例二
请参照图6至图11,本实施例提供一种放电控制方法,应用于实施例一中的V口电池。所述V口电池的所述接口模块300包括BP电极接口320、D-Tap接口330、DC输出接口310、USB-C接口350以及USB-A接口340。
由于V口电池设置多种接口必然出现多个接口同时使用的情况,如果各接口都用于大功率的设备将会出现电芯放电过流的情况,电芯过流后BMS终止电芯放电确保安全,突然断电将会同时中断摄影进程,并且有损坏用电设备的风险。为了应对这种情况目前的方案是调大BMS放电过流监控范围,但是这种方案造成电芯快速老化缩短寿命,使用过程中温度快速升高引起BMS过温保护关闭放电。
请参照图6,所述放电控制方法包括步骤:
S110、获取所述接口模块300的每个输出接口各自的负载连接状态;
S120、获取已连接负载的所述输出接口各自的电参数;
S130、将已连接负载的所述输出接口各自的电参数与对应的预设阈值区间进行比较,并输出比较结果;
示例性地,主控模块500获取DC输出接口310对应的电流预设阈值区间,将DC输出接口310的实际输出电流大小与电流预设阈值区间进行比较。
S140、当所述输出接口的电参数未处于所述预设阈值区间时,关闭对应的所述输出接口;
S150、当所述输出接口的电参数处于预设阈值区间时,开启对应的所述输出接口。
可以理解的,当输出接口连接外部负载时,将输出接口的电参数与预设阈值区间进行比较,并根据比较结果控制输出接口的开启和关闭,从而保护V口电池的放电电路和外部负载。各个输出接口均独立进行监控,在任意输出接口出现异常时可以及时关闭对应接口,而不会影响其他接口的正常使用,避免其他输出接口同时关闭。
请参照图7,可选的,所述放电控制方法还包括步骤:
S210、获取当前所述电池的剩余功率;
请参照图8,本步骤包括:
S211、获取所述电池的初始功率;
S212、获取所述BP电极接口320、所述D-Tap接口330各自的实际放电功率;
S213、根据所述BP电极接口320、所述D-Tap接口330各自的实际放电功率获得电池的剩余功率;
本步骤中,将电池的初始功率减去BP电极接口320、D-Tap接口330的实际放电功率之和,从而获得电池的剩余功率。
S220、获取当前接入负载但未向负载供电的每个剩余输出接口各自的额定功率;
S230、将所述电池的剩余功率分别与每个所述剩余输出接口各自的额定功率进行比较,并根据比较结果控制对应的剩余输出接口的开启和关闭。
本步骤中,当所述电池的剩余功率大于等于所述剩余输出接口的额定功率时,开启对应的所述剩余输出接口;当所述电池的剩余功率小于所述剩余输出接口的额定功率时,关闭对应的所述剩余输出接口。
可以理解的,未接入外部负载的剩余输出接口处于关闭状态,当外部负载接入剩余输出接口时,对应的剩余输出接口虽然负载在位但负载未与电池形成电连接状态,在进行电池的剩余功率与剩余输出接口各自的额定功率比较后,满足条件并开启对应剩余输出接口,外部负载才获得电池的供电。示例性地,V口电池可以为每个输出接口配置相应的指示灯,以指示该输出接口的负载在位并且与电池电连接。
由于V口电池使用时,BP电极接口320、D-Tap接口330的使用频率较高,为主要的输出接口,同时分配的功率占比较大,因此,优先获取BP电极接口320、D-Tap接口330的实际放电功率总和并得到电池的剩余功率。随后判断电池的剩余功率是否满足各个剩余输出接口的额定功率,从而在额定功率小于电池的剩余功率时开启对应的输出接口,而在额定功率达到或超过电池的剩余功率时关闭对应的输出接口。进一步的,如果剩余输出接口中的任意接口完成外部负载的连接并为外部负载供电,则更新电池的剩余功率,并再次进行电池的剩余功率与负载在位但未连接负载的剩余输出接口的额定功率进行比较。本实施例通过这种放电控制策略,预先判断电池的剩余功率是否可以满足后续接入的外部负载的额定功率,并进行对应输出接口的关闭或开启,从而进一步保护电芯、电路和外部负载。
请参照图9,可选的,所述放电控制方法还包括步骤:
S240、获取当前所有向负载供电的所述输出接口的实际放电总功率;
本步骤中,先获取当前所有向负载供电的输出接口各自的实际放电功率,再根据所有实际放电功率获得实际放电总功率;
S250、将所述实际放电总功率与所述电池的额定功率进行比较,并根据比较结果控制警报提示的开启或关闭。
本步骤中,当实际放电总功率大于等于电池的额定功率时,进行警报提示;当实际放电总功率小于电池的额定功率时,不进行警报提示。示例性地,警报提 示会持续至移除任意负载后,即实际放电总功率小于电池的额定功率后解除,又或者是持续至BMS模块进行电路保护而关断电芯放电后解除。
可以理解的,由于每个已连接负载的输出接口的实际放电功率可能低于额定功率,也可能高于额定功率,那么存在所有输出接口的实际放电总功率较高的情况,如果该实际放电总功率达到或超过电池的额定功率,则电池处于过载状态,及时进行警报提示,通过人工干预取下负载,避免瞬间断电损坏用电设备。其中,警报提示可以是声音提示、灯光提示等其中的一种或多种方式,示例性地,V口电池内设置有连接主控模块500的警报LED灯和蜂鸣器,当所有已连接负载的输出接口的实际放电总功率达到或超过电池额定功率,由主控模块500控制点亮警报LED灯并触发蜂鸣器。
请参照图10,进一步的,所述放电控制方法还包括步骤:
S310、当任意所述输出接口的负载移除时,关闭对应的所述输出接口;
本步骤中,任意输出接口的外部负载移除时,关闭对应的输出接口,保证电路安全。
S320、更新电池的所述剩余功率;
S330、将更新后的所述电池的所述剩余功率分别与当前接入负载但未向负载供电的每个剩余输出接口各自的额定功率进行比较,并根据比较结果控制对应的所述剩余输出接口的开启和关闭;
S340、更新所述实际放电总功率。
S350、将更新后的所述实际放电总功率与所述电池的所述额定功率再次进行比较,并根据比较结果控制警报提示的开启和关闭。
可以理解的,本实施例实现动态的功率分配,根据剩余输出接口的使用顺序分配功率,输出接口移除负载后,重新剩余功率计算和比较判断,将收回的输出接口的功率重新分配。确保已使用的输出接口的正常工作,又避免外部负载供电时出现过流。
请参照图11,示例性地,本实施例提供V口电池的工作流程为:先获取电池的剩余功率,判断剩余输出接口是否接入负载。接着获取接入负载的剩余输出 接口的额定功率,将该额定功率与电池的剩余功率进行比较,根据比较结果开启对应的输出接口。随后获取当前所有向负载供电的输出接口的实际放电总功率,并将实际放电总功率与电芯的额定功率进行比较,并在实际放电总功率大于电芯的额定总功率时,进行超功率放电提示。当负载移除时,关闭对应的输出接口,并重新计算更新电池的剩余功率,以及所有输出接口的实际放电总功率。
由此可见,本实施例的V口电池可实现动态功率分配,优先支持BP电极、D-Tap的放电,USB-A、USB-C、DC输出接口先插先用,在电池额定功率不足时将会限制剩余空闲输出接口。确保电芯放电电流、电芯温度不会超过正常范围,已处于供电状态的设备也可以持续正常工作。
综上所述,本发明提供的V口电池及放电控制方法,BMS模块控制电芯的输入和输出,当DC输出接口接入外部负载时,BMS模块向变压模块输出电芯的放电电压,变压模块将放电电压变压至目标输出电压后输出至DC输出接口,以向具有DC供电接口的外部负载供电,从而避免采用额外的V口挂板,有利于简化组装步骤。由于DC输出接口设置于V口电池上,减少摄像机、摄影灯等设备组装后的整体体积,DC输出接口与电芯一体化降低外部干扰,从而提高了外部负载的供电稳定性。本申请的V口电池还设置有USB-A接口以及具有快充功能的USB-C接口,丰富了V口电池的接口类型,兼容更多接口种类、规格的用电设备。
另外,本申请的放电控制方法中,先检测BP电极接口和D-Tap接口的实际放电功率,计算电池剩余可分配功率,其余接口接入负载时判断可分配功率是否符合该端口额定放电功率,若符合则允许使用,否则禁止使用并提示用户。若已使用的接口总功率达到电池额定功率将提示用户电池正在超功率放电。通过该放电控制方法,除了可在电池放电功率允许范围内最大限度提供放电,确保设备正常使用,同时还可以让用户及时掌握电池工作状态,快速人工干预。
进一步的,本申请实现了三级电池电路安全保护,第一级保护为每个输出接口配置有电参数检测,提供放电过流、充电过流过压保护,可在不影响其他输出接口使用的前提下关断异常输出接口。第二级保护为电芯端BMS可恢复保护, 用于检测电芯输入输出电流、电压、温度、电荷量等是否达到安全值上下限,如果有以上异常时将临时关断电池充放电功能,所有接口将不能使用,以上数据恢复安全值后再开启电池充放电功能。第三级保护为不可恢复保护,如果电流电压出现远大于正常范围时将熔断保险丝,避免电池出现起火、爆炸的情况,同时避免用电设备损坏。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等同变换,或直接或间接运用在相关的技术领域,均同理包括在本发明的专利保护范围。

Claims (10)

  1. 一种V口电池,其特征在于,包括:
    电芯;
    BMS模块,所述BMS模块与所述电芯电连接,用于监测所述电芯的电参数,并根据所述电芯的电参数控制所述电芯的输入和输出;
    接口模块,所述接口模块与所述BMS模块电连接,用于在连接外部负载时根据所述电芯的放电电压向外部负载提供输出电压,以及在接入外部电源时为所述电芯充电,所述接口模块包括DC输出接口;以及
    变压模块,所述变压模块分别与BMS模块以及所述DC输出接口电连接,所述变压模块用于将所述电芯的放电电压变压至目标输出电压,并将所述目标输出电压输出至所述DC输出接口。
  2. 根据权利要求1所述的V口电池,其特征在于,还包括主控模块,所述主控模块分别与所述接口模块、所述变压模块以及BMS模块电连接,所述主控模块用于获取所述接口模块的每个输出接口各自的负载连接状态、电参数以及所述电芯的电参数,并根据每个所述输出接口各自的负载连接状态、电参数以及所述电芯的电参数分别独立控制部分输出接口的开启或关闭。
  3. 根据权利要求2所述的V口电池,其特征在于,所述接口模块还包括USB-A接口以及USB-C接口,所述V口电池还包括USB接口控制模块以及Emark模块;
    所述USB接口控制模块分别与所述BMS模块、所述Emark模块、所述USB-A接口以及所述USB-C接口电连接,所述USB接口控制模块用于在所述USB-C接口、所述USB-A接口中的至少一个接口连接外部负载时,根据所述电芯的放电电压分别向对应的外部负载提供输出电压,以及在所述USB-C接口接入外部电源时向所述电芯充电;
    所述Emark模块与所述USB-C接口电连接;
    所述主控模块与所述USB接口控制模块电连接,所述主控模块用于通过所述USB接口控制模块获取所述USB-A接口、所述USB-C接口各自的负载连接状态、电参数,并根据所述USB-A接口、所述USB-C接口各自的负载连接状态、电参数,分别独立控制所述USB-A接口、所述USB-C接口的开启或关闭。
  4. 根据权利要求3所述的V口电池,其特征在于,所述主控模块包括稳压单元和主控芯片;
    所述主控芯片分别与所述BMS模块以及所述USB接口控制模块电连接;
    所述稳压单元分别与所述BMS模块以及所述主控芯片电连接,所述稳压单元用于对所述BMS模块向所述主控芯片的供电电压进行稳压。
  5. 根据权利要求3所述的V口电池,其特征在于,所述BMS模块包括BMS控制电路以及保险丝;
    所述保险丝的一端连接电芯的正极,所述保险丝的另一端连接所述BMS控制电路的放电输入端;
    所述BMS控制电路的放电输出端分别连接所述变压模块、所述USB接口控制模块以及所述接口模块的部分接口,所述BMS控制电路的数据传输端连接所述主控模块。
  6. 根据权利要求5所述的V口电池,其特征在于,所述变压模块包括开关管以及变压器;
    所述开关管的输入端与所述BMS模块的放电输出端连接,所述开关管的输出端与所述变压器的输入端连接,所述开关管的控制端与所述主控模块连接,所述变压器的输出端与所述DC输出接口连接。
  7. 一种放电控制方法,其特征在于,应用于权利要求1-6任一项所述的V口电池,所述接口模块包括BP电极接口、D-Tap接口、DC输出接口、USB-C接口以及USB-A接口;
    所述放电控制方法包括步骤:
    获取所述接口模块的每个输出接口各自的负载连接状态;
    获取已连接负载的所述输出接口各自的电参数;
    将已连接负载的所述输出接口各自的电参数与对应的预设阈值区间进行比较,并输出比较结果;
    当所述输出接口的电参数未处于所述预设阈值区间时,关闭对应的所述输出接口;
    当所述输出接口的电参数处于预设阈值区间时,开启对应的所述输出接口。
  8. 根据权利要求7所述的放电控制方法,其特征在于,所述放电控制方法还包括步骤:
    获取当前所述电池的剩余功率;
    获取当前接入负载但未向负载供电的每个剩余输出接口各自的额定功率;
    将所述电池的剩余功率分别与每个所述剩余输出接口各自的额定功率进行比较,并根据比较结果控制对应的剩余输出接口的开启和关闭。
  9. 根据权利要求8所述的放电控制方法,其特征在于,所述方法还包括步骤:
    获取当前所有向负载供电的所述输出接口的实际放电总功率;
    将所述实际放电总功率与所述电池的额定功率进行比较,并根据比较结果控制警报提示的开启或关闭。
  10. 根据权利要求9所述的放电控制方法,其特征在于,所述放电控制方法还包括步骤:
    当任意所述输出接口的负载移除时,关闭对应的所述输出接口;
    更新电池的所述剩余功率;
    将更新后的所述电池的所述剩余功率分别与当前接入负载但未向负载供电的每个剩余输出接口各自的额定功率进行比较,并根据比较结果控制对应的所述剩余输出接口的开启和关闭;
    更新所述实际放电总功率;
    将更新后的所述实际放电总功率与所述电池的所述额定功率再次进行比较,并根据比较结果控制警报提示的开启和关闭。
PCT/CN2023/114055 2022-09-30 2023-08-21 一种v口电池及放电控制方法 WO2024066803A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211212689.5 2022-09-30
CN202211212689.5A CN115622176A (zh) 2022-09-30 2022-09-30 一种v口电池及放电控制方法

Publications (1)

Publication Number Publication Date
WO2024066803A1 true WO2024066803A1 (zh) 2024-04-04

Family

ID=84861205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/114055 WO2024066803A1 (zh) 2022-09-30 2023-08-21 一种v口电池及放电控制方法

Country Status (2)

Country Link
CN (1) CN115622176A (zh)
WO (1) WO2024066803A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115622176A (zh) * 2022-09-30 2023-01-17 深圳市乐其网络科技有限公司 一种v口电池及放电控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105576748A (zh) * 2015-12-30 2016-05-11 桂林众捷新能源科技有限公司 一种多接口充电调度方法及系统
CN212676907U (zh) * 2020-06-24 2021-03-09 王欣 一种多功能v口电池
CN113594602A (zh) * 2021-09-07 2021-11-02 郑州万迪来电子技术有限公司 可叠加的供电装置
CN115622176A (zh) * 2022-09-30 2023-01-17 深圳市乐其网络科技有限公司 一种v口电池及放电控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105576748A (zh) * 2015-12-30 2016-05-11 桂林众捷新能源科技有限公司 一种多接口充电调度方法及系统
CN212676907U (zh) * 2020-06-24 2021-03-09 王欣 一种多功能v口电池
CN113594602A (zh) * 2021-09-07 2021-11-02 郑州万迪来电子技术有限公司 可叠加的供电装置
CN115622176A (zh) * 2022-09-30 2023-01-17 深圳市乐其网络科技有限公司 一种v口电池及放电控制方法

Also Published As

Publication number Publication date
CN115622176A (zh) 2023-01-17

Similar Documents

Publication Publication Date Title
WO2024066803A1 (zh) 一种v口电池及放电控制方法
JP2986059B2 (ja) バッテリ充電装置
WO2019144274A1 (zh) 一种控制电池充电的方法、设备及其系统
EP3806274B1 (en) Charging integrated circuit and operating method
WO2021056904A1 (zh) 电动汽车安全充电方法、电子设备及存储介质
WO2022095013A1 (zh) 一种充电器
TWI634722B (zh) 電池並聯搭接的控制方法
CN106773997A (zh) 一种自动开关机装置、方法及插排
CN215498364U (zh) 一种多串并锂电池管理系统
CN1540478A (zh) 智能移动电源
WO2022061677A1 (zh) 充电控制方法、电路、设备及存储介质
WO2020114028A1 (zh) 插座
CN111327087B (zh) 一种电子设备及其进行充电的方法
CN114221403B (zh) 充电方法和充电装置
US20140354242A1 (en) Device and charge control method
US10742057B2 (en) Self-loop detection method and apparatus for charging device
TWI545863B (zh) 電池保護系統與電池保護方法
CN113595213A (zh) 功率分配装置
KR20220144381A (ko) 스마트폰과 애드온 장치의 전력전달 시스템
WO2020042723A1 (zh) 一种温控方法和装置
WO2016045350A1 (zh) 充电电池、充电电池的使用方法以及充电系统
CN110266088A (zh) 充电器的输出电压调节方法及其调节电路
CN220934885U (zh) 一种适配器兼容电路及平板电脑
US11309733B1 (en) Uninterruptible portable power bank
CN220873952U (zh) 直流墙壁插座

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23870048

Country of ref document: EP

Kind code of ref document: A1