WO2020042723A1 - 一种温控方法和装置 - Google Patents

一种温控方法和装置 Download PDF

Info

Publication number
WO2020042723A1
WO2020042723A1 PCT/CN2019/090991 CN2019090991W WO2020042723A1 WO 2020042723 A1 WO2020042723 A1 WO 2020042723A1 CN 2019090991 W CN2019090991 W CN 2019090991W WO 2020042723 A1 WO2020042723 A1 WO 2020042723A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
temperature
branch
battery branch
equal
Prior art date
Application number
PCT/CN2019/090991
Other languages
English (en)
French (fr)
Inventor
何志斌
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2020042723A1 publication Critical patent/WO2020042723A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the embodiments of the present application relate to, but are not limited to, battery technology.
  • Mobile terminals have become an indispensable product for people's work, life, entertainment and consumption. Terminals have multiple manifestations, such as the diversity of screens and the diversity of batteries. Among them, the diversity of batteries includes various connection methods, such as parallel, series, and hybrid connection.
  • the multi-battery design enriches the product form, but it also increases the difficulty of multi-battery management, such as charge and discharge efficiency, temperature equalization control, and so on. If the temperature of multiple batteries is monitored and managed accordingly, the abnormal temperature of the battery can also be effectively suppressed, and the battery's safe life and user experience can be improved.
  • the related technology is generally a temperature control treatment of a single battery or a series battery.
  • the battery When the battery is being charged, if the battery temperature rises, the battery charging current is gradually reduced until the charging ends.
  • CPU central processing unit
  • motherboard When using the battery for external power supply, monitor the temperature of the battery, central processing unit (CPU), motherboard, and other components; when the power supply current is too high and the battery temperature is too high, by limiting peripheral capabilities such as CPU frequency, Liquid crystal display (LCD, Liquid Crystal Display) brightness, RF parameters, etc. to reduce the total system load, to reduce battery power supply current, to reduce battery heat, improve battery safety and experience.
  • CPU central processing unit
  • LCD Liquid crystal display
  • RF Radio Frequed Crystal Display
  • the temperature control method of a single battery or a series battery cannot be simply used in a parallel battery, and the related technology has not proposed an effective temperature control method for a parallel battery; and, the temperature control method of a single battery or a series battery
  • the system load is reduced by limiting the capabilities of the peripherals, and the temperature of the battery returns slowly to a normal state, which affects the user experience.
  • high temperature limiting the charging current will affect the overall charging efficiency. affect.
  • the embodiments of the present application provide a temperature control method and device.
  • An embodiment of the present application provides a temperature control method, including:
  • the temperature of the xth battery branch is greater than or equal to the first temperature threshold, or the difference between the temperature of the xth battery branch and the temperature of the yth battery branch is greater than or equal to the difference threshold, reduce or disconnect the At least one of the following x battery branches: power supply current, charging current;
  • x and y are integers greater than or equal to 1 and less than or equal to n
  • n is the number of battery branches connected in parallel in the battery
  • the values of x and y are different.
  • the embodiment of the present application proposes a temperature control device, including:
  • a monitoring module configured to monitor the temperature of a battery branch
  • An adjustment module configured to, when the temperature of the xth battery branch is greater than or equal to the first temperature threshold, or when the difference between the temperature threshold of the xth battery branch and the temperature of the yth battery branch is greater than or equal to the difference threshold , Reduce or disconnect at least one of the following: the supply current, charging current of the xth battery branch;
  • x and y are integers greater than or equal to 1 and less than or equal to n
  • n is the number of battery branches connected in parallel in the battery
  • the values of x and y are different.
  • An embodiment of the present application provides a temperature control device including a processor and a computer-readable storage medium.
  • the computer-readable storage medium stores instructions. When the instructions are executed by the processor, any one of the foregoing is implemented.
  • a temperature control method is implemented.
  • An embodiment of the present application provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps of any of the foregoing temperature control methods are implemented.
  • the solution of the embodiment of the present application monitors the temperature of the battery branch; when the temperature of the xth battery branch is greater than or equal to the first temperature threshold, or between the temperature of the xth battery branch and the temperature of the yth battery branch When the difference is greater than or equal to the difference threshold, reduce or disconnect at least one of the following: the supply current, the charging current; where x, y are integers greater than or equal to 1, and less than or equal to n, n is the number of parallel battery branches in the battery, and the values of x and y are different.
  • FIG. 1 is a schematic diagram of a model in which multiple batteries are connected in parallel according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of an internal structure of a multi-battery parallel connection according to an embodiment of the present application
  • FIG. 3 is a flowchart of a temperature control method according to an embodiment of the present application.
  • Example 4 is a flowchart of a temperature control method according to Example 1 of the embodiment of the present application.
  • Example 5 is a flowchart of a temperature control method according to Example 2 of the embodiment of the present application.
  • Example 6 is a flowchart of a temperature control method according to Example 3 of the embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a temperature control device according to another embodiment of the present application.
  • FIG. 1 is a schematic diagram of a multi-battery parallel model according to an embodiment of the present application.
  • the battery is connected by n battery branches in parallel, and each battery branch is connected in series with m sub-cells, where n is an integer greater than or equal to 2 and m is an integer greater than or equal to 1.
  • n is an integer greater than or equal to 2
  • m is an integer greater than or equal to 1.
  • Each battery branch The number of sub-cells connected in series can be the same or different, depending on the specific situation.
  • FIG. 2 is a schematic diagram of an internal structure of multiple batteries connected in parallel according to an embodiment of the present application.
  • each battery branch includes a charging module, m series-connected sub-batteries, and a power supply module.
  • a schematic diagram is shown in FIG. 2 by taking two battery branches as an example.
  • the first battery branch includes a first charging module and m first sub-cells connected in series (that is, the first battery in FIG. 2).
  • the second battery branch includes a second charging module and m second sub-batteries connected in series (Ie, the second battery in FIG. 2) and a second power supply module, wherein the second charging module is connected in series with the second sub-battery, and the second sub-battery is connected in series with the second power supply module.
  • the first power supply module and the second power supply module can both be implemented by the LTC4412 chip and the transistor.
  • the first power supply module and the second power supply module can also be implemented by other methods.
  • the specific implementation of the power supply module and the second power supply module is not limited.
  • the first charging module and m first sub-cells connected in series, the negative electrodes of the m first sub-cells connected in series are grounded, and the positive electrodes of the m first sub-cells connected in series are connected to the D pole (drain) of the triode.
  • the input (Vin) pin of the LTC4412 chip, the S pole (source) of the transistor is connected to the output (Vout) pin of the LTC4412 chip, and the LTC4412 chip controls the G pole (gate) of the transistor to control the on and off of the transistor.
  • the negative electrodes of m series of second sub-cells are grounded, and the positive electrodes of m series of second sub-cells and the D pole (drain) of the transistor are connected to the input of the LTC4412 chip ( Vin) pin, the S pole (source) of the transistor is connected to the output (Vout) pin of the LTC4412 chip, and the LTC4412 chip controls the G pole (gate) of the transistor to control the on and off of the transistor.
  • the battery charging process shown in Figure 2 is as follows:
  • the charger When the charger is connected to USB_IN, the charger charges m first sub-cells connected in series through the first charging module, and charges m second sub-batteries connected in series through the second charging module;
  • the current amount of the first battery branch during the charging process can also be measured by the first fuel gauge, and the current amount of the second battery branch during the charging process can be measured by the second fuel gauge.
  • the m first sub-cells or second sub-cells in series supply power to the peripherals through the output pins of the LTC4412 chip; when the enable pin of the LTC4412 chip When the pin is not enabled, m first or second sub-batteries connected in series cannot supply power to peripherals through the output pins of the LTC4412 chip.
  • an embodiment of the present application provides a temperature control method, including:
  • Step 300 Monitor the temperature of the battery branch.
  • the temperature of the battery branch can be monitored in various ways.
  • the temperature of the sub-battery in the battery branch can be monitored through a temperature sensor, or the temperature of the sub-battery can be obtained indirectly through the resistance change of the negative temperature coefficient (NTC, Negative Temperature Coefficient) resistance in the sub-battery.
  • NTC Negative Temperature Coefficient
  • the temperature of the sub-battery is taken as the temperature of the battery branch; when there are m series of sub-cells in the battery branch, the highest temperature sub-battery is used. The temperature is used as the temperature of the battery branch.
  • Step 301 When the temperature of the xth battery branch is greater than or equal to the first temperature threshold, or the difference between the temperature of the xth battery branch and the temperature of the yth battery branch is greater than or equal to the difference threshold, reduce or Disconnect at least one of the xth battery branch: supply current, charging current; where x, y are integers greater than or equal to 1 and less than or equal to n, and n is the number of parallel battery branches in the battery , X, y have different values.
  • the charging current of the xth battery branch when the battery is in the charging state, reduce or disconnect the charging current of the xth battery branch; when the battery is in the power supply state, reduce or disconnect the power supply current of the xth battery branch; when When the battery is in the charging state and the power supply state at the same time, the charging current of the xth battery branch can be reduced or disconnected, or the power supply current of the xth battery branch can be reduced or disconnected, or the xth battery branch can be reduced or disconnected. Charging current and power supply current.
  • the embodiment of the present application does not limit the range of the reduced charging current or power supply current, and the specific reduced range is not used to limit the protection scope of the embodiment of the present application.
  • the embodiment of the present application emphasizes the temperature in a certain battery branch When the temperature is greater than or equal to the first temperature threshold, or the temperature difference between the two battery branches is greater than or equal to the difference threshold, the power supply current and / or charging current of the battery branch with a higher temperature is reduced or disconnected, so that the battery quickly The temperature is reduced, thereby achieving temperature control of the parallel battery and protecting the safety of the battery.
  • the method may further include:
  • the charging current of at least one battery branch except the xth battery branch when the battery is in the charging state, increase or open the charging current of at least one battery branch except the xth battery branch; when the battery is in the power supply state, increase or open at least one except the xth battery branch.
  • the supply current of battery branches other than the battery branch; when the battery is in the charging state and the power supply state at the same time, the charging current of at least one battery branch other than the xth battery branch may be increased or turned on, or Increase or open the supply current of at least one battery branch other than the xth battery branch, or increase or open the charging current and supply current of at least one other battery branch except the xth battery branch.
  • the embodiment of the present application does not limit the amplitude of the increased charging current or power supply current, and the specific increased amplitude is not used to limit the protection scope of the embodiment of the present application.
  • the embodiment of the present application emphasizes that when the temperature of a certain battery branch is greater than or equal to At the first temperature threshold, while reducing or disconnecting the power supply current and / or charging current of the battery branch, increase or open the power supply current and / or of at least one battery branch other than the xth battery branch.
  • the charging current reduces the limitation on the total charging current, thereby improving the charging efficiency, and reduces the limitation on the capabilities of peripheral devices, thereby improving the user experience.
  • the adding or opening at least one of the following battery branches other than the xth battery branch includes at least one of the following: the power supply current and the charging current include:
  • the state of the other battery branches includes at least one of the following: temperature, voltage, capacity, and remaining service life.
  • the embodiment of the present application does not limit the specific strategy of increasing or opening the power supply current and / or charging current of at least one battery branch other than the xth battery branch according to the status of other battery branches, and what kind of specific strategy is adopted
  • the policy is not used to limit the protection scope of the embodiments of the present application.
  • the method when a difference between a temperature threshold of the x-th battery branch and a temperature of the y-th battery branch is greater than or equal to the difference threshold, the method further includes:
  • the charging current of the yth battery branch when the battery is in the charging state, increase or open the charging current of the yth battery branch; when the battery is in the power supply state, increase or open the power supply current of the yth battery branch; when the battery is in the charging state at the same time In the power supply state, the charging current of the yth battery branch can be increased or turned on, or the power supply current of the yth battery branch can be increased or turned on, or the charging current and power supply current of the yth battery branch can be increased or turned on.
  • the embodiment of the present application does not limit the magnitude of the increased charging current or power supply current, and the specific increase is not used to limit the protection scope of the embodiment of the present application.
  • the embodiment of the present application emphasizes that when the temperature difference between two battery branches is greater than Or equal to the difference threshold, at the same time reduce or disconnect at least one of the supply current and the charge current of the battery branch at a higher temperature, and increase or open at least one of the supply current and the charge current of the battery branch at a lower temperature First, the limitation on the total charging current is reduced, thereby improving the charging efficiency; the limitation on the capabilities of peripheral devices is reduced, thereby improving the user experience.
  • the method may further include:
  • the method also includes:
  • the charging current of the xth battery branch when the battery is in the charging state, the charging current of the xth battery branch is turned on; when the battery is in the power supply state, the power supply current of the xth battery branch is turned on; when the battery is in the charging state and the power supply state at the same time , Turn on the charging current and the supply current of the xth battery branch.
  • the method when the temperature of the xth battery branch is less than or equal to a second temperature threshold, the method further includes:
  • the charging current of at least one battery branch except the xth battery branch when the battery is in the charging state, reduce or disconnect the charging current of at least one battery branch except the xth battery branch; when the battery is in the power supply state, reduce or disconnect at least one except the first battery branch.
  • Power supply current of other battery branches other than the x battery branches; when the battery is in the charging state and the power supply state at the same time, the charging of at least one other battery branch except the xth battery branch can be reduced or disconnected Current, or reduce or disconnect the supply current of at least one battery branch other than the xth battery branch, or reduce or disconnect the charging of at least one battery branch other than the xth battery branch Current and supply current.
  • the method includes:
  • Step 400 When an external charger is inserted, the system receives an interruption and starts a charging process to charge the sub-battery T1 of the battery branch 1 and the sub-battery T2 of the battery branch 2.
  • Step 401 Simultaneously monitor the temperatures of the sub-cell T1 of the battery branch 1 and the sub-cell T2 of the battery branch 2.
  • the battery branch 1 and the battery branch 2 each have a device that monitors the temperature of the sub-battery, that is, the NTC resistance, which reflects the battery temperature in real time through the NTC resistance value change.
  • Step 402 Determine whether the temperature of the sub-battery T1 is greater than or equal to the first temperature threshold (for example, 40 degrees).
  • the first temperature threshold for example, 40 degrees.
  • reduce the charging current of the battery branch 1 When the temperature of T1 is greater than or equal to the first temperature threshold, reduce the charging current of the battery branch 1; When the temperature of T1 is less than the first temperature threshold, it is determined whether the difference between the temperature of the sub-cell T1 and the temperature of the sub-cell T2 is greater than or equal to the difference threshold.
  • step 401 is continued.
  • Step 403 After the charging current of the battery branch 1 is reduced, when the temperature of the battery branch 1 is still greater than or equal to the first temperature threshold, the charging current of the battery branch 1 is disconnected, that is, the battery branch is disconnected. Charging of circuit 1; when the temperature of battery branch 1 is less than the first temperature threshold, determine whether the difference between the temperature of the sub-battery T1 and the temperature of the sub-battery T2 is greater than or equal to the difference threshold (such as 6 degrees).
  • the difference threshold such as 6 degrees
  • step 401 is continued.
  • Step 404 After the battery branch 1 is disconnected, the temperature of the sub-battery T1 of the battery branch 1 will gradually decrease. When the temperature of the sub-battery T1 of the battery branch 1 is less than or equal to the second temperature threshold (such as returning to 35 degrees) When the charging current of the battery branch 1 is turned on (that is, the charging of the battery branch 1 is restarted), the previous charging strategy is restored; when the temperature of the sub-battery T1 of the battery branch 1 is greater than the second temperature threshold, the step is continued. 401.
  • the second temperature threshold such as returning to 35 degrees
  • the method includes:
  • Step 500 When supplying power externally, supply power through the battery branch 1.
  • Step 501 Simultaneously monitor the temperatures of the sub-cell T1 of the battery branch 1 and the sub-cell T2 of the battery branch 2.
  • the battery branch 1 and the battery branch 2 each have a device that monitors the temperature of the sub-battery, that is, the NTC resistance, which reflects the battery temperature in real time through the NTC resistance value change.
  • Step 502 Determine whether the temperature of the sub-battery T1 is greater than or equal to the first temperature threshold. When the temperature of the sub-battery T1 is greater than or equal to the first temperature threshold, disconnect the power supply current of the battery branch 1 and open the battery branch 2 at the same time. Power supply current; when the temperature of the sub-battery T1 is less than the first temperature threshold, step 501 is continued.
  • Step 503 After the battery branch 1 is disconnected, the temperature of the sub-battery T1 of the battery branch 1 will gradually decrease.
  • the second temperature threshold such as returning to 35 degrees
  • step 501 is continued.
  • the power supply current of the battery branch 2 may not be disconnected.
  • the method includes:
  • Step 600 When power is supplied to the outside, power is supplied through the battery branch 1 and the battery branch 2 at the same time.
  • Step 601 Simultaneously monitor the temperatures of the sub-cell T1 of the battery branch 1 and the sub-cell T2 of the battery branch 2.
  • the battery branch 1 and the battery branch 2 each have a device that monitors the temperature of the sub-battery, that is, the NTC resistance, which reflects the battery temperature in real time through the NTC resistance value change.
  • Step 602 Determine whether the temperature of the sub-battery T1 is greater than or equal to the first temperature threshold.
  • the power supply current of the battery branch 1 is disconnected; At the first temperature threshold, it is judged whether the difference between the temperature of the sub-battery T1 and the temperature of the sub-battery T2 is greater than or equal to the difference threshold.
  • step 601 is continued.
  • Step 603 After the battery branch 1 is disconnected, the temperature of the sub-battery T1 of the battery branch 1 will gradually decrease. When the temperature of the sub-battery T1 of the battery branch 1 is less than or equal to the second temperature threshold (such as recovering to 35 degrees) When the supply current of the battery branch 1 is turned on; when the temperature of the sub-battery T1 of the battery branch 1 is greater than the second temperature threshold, step 601 is continued.
  • the second temperature threshold such as recovering to 35 degrees
  • a temperature control device including:
  • a monitoring module 701 configured to monitor the temperature of a battery branch
  • the adjusting module 702 is configured to: when the temperature of the xth battery branch is greater than or equal to the first temperature threshold, or the difference between the temperature threshold of the xth battery branch and the temperature of the yth battery branch is greater than or equal to the difference threshold , Reduce or disconnect at least one of the following: the power supply current, the charging current;
  • x and y are integers greater than or equal to 1 and less than or equal to n
  • n is the number of battery branches connected in parallel in the battery
  • the values of x and y are different.
  • the adjustment module 702 when the temperature of the xth battery branch is greater than or equal to the first temperature threshold, the adjustment module 702 is further configured to:
  • the adjustment module 702 is configured to implement at least one of the following ways to increase or open at least one battery branch other than the xth battery branch: the power supply current, the charging current :
  • the states of the other battery branches include at least one of the following: temperature, voltage, capacity, and remaining service life.
  • the adjustment module 702 is further configured to:
  • the adjustment module 702 is further configured to:
  • the temperature of all the battery branches is greater than or equal to the first temperature threshold, at least one of the following is disconnected from all battery branches: the power supply current and the charging current.
  • the adjustment module 702 is further configured to:
  • the temperature of the xth battery branch is less than or equal to the second temperature threshold, at least one of the following: the power supply current and the charging current are turned on.
  • the adjustment module 702 when the temperature of the xth battery branch is less than or equal to the second temperature threshold, the adjustment module 702 is further configured to:
  • the monitoring module 701 and the adjustment module 702 can be implemented by the CPU of the terminal. After the CPU makes an adjustment strategy, the adjustment is issued to the first charging module or the second charging module or the first power supply module or the second power supply module. Instruction, the first charging module or the second charging module or the first power supply module or the second power supply module executes a corresponding adjustment strategy according to the adjustment instruction.
  • a specific implementation manner of the temperature control device is the same as the temperature control method of the foregoing embodiment, and details are not described herein again.
  • a temperature control device including a processor and a computer-readable storage medium.
  • the computer-readable storage medium stores instructions. When the instructions are executed by the processor, the foregoing is implemented. Either temperature control method.
  • Another embodiment of the present application proposes a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the steps of any one of the foregoing temperature control methods are implemented.
  • computer storage medium includes volatile and non-volatile implemented in any method or technology used to store information such as computer-readable instructions, data structures, program modules or other data.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technologies, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, magnetic tape, disk storage or other magnetic storage devices, or Any other medium used to store desired information and which can be accessed by a computer.
  • a communication medium typically contains computer-readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transmission mechanism, and may include any information delivery medium .

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请实施例公开了一种温控方法和装置,所述温控方法包括:监测电池支路的温度;当第x个电池支路的温度大于或等于第一温度阈值,或第x个电池支路的温度和第y个电池支路的温度之差大于或等于差值阈值时,降低或断开第x个电池支路的以下至少之一:供电电流、充电电流;其中,x,y为大于或等于1,且小于或等于n的整数,n为电池中并联的电池支路的数量,x,y的取值不同。

Description

一种温控方法和装置
相关申请的交叉引用
本申请基于申请号为201810980174.7、申请日为2018年08月27日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请实施例涉及但不限于电池技术。
背景技术
移动终端现在已经成为人们工作、生活、娱乐、消费不可或缺的产品。终端有多种表现形态,如屏幕的多样性、电池的多样性等等。其中,电池的多样性包括各种连接方式,如并联、串联、混合联接等等。多电池的设计丰富了产品形态,但也增加了多电池管理的难度,如充放电效率,温度均衡控制等等。如果对多电池的温度进行监控和相应的管理,也能有效抑制电池的异常温度,提高电池的安全使用寿命和用户体验。
相关技术一般是单电池或串联电池的温控处理。在对电池进行充电时,如果电池温度升高,则逐渐降低电池充电电流直至充电截止。在使用电池对外供电时,监测电池、中央处理器(CPU,Central Processing Unit)、主板等各个部件的温度;当供电电流过大,电池温度过高时,通过限制外设能力,如CPU频率、液晶显示器(LCD,Liquid Crystal Display)亮度、射频参数等来降低系统总的负荷,来降低电池供电电流,以降低电池发热、改善电池使用安全和体验。
相关技术中单电池或串联电池的温控方法无法简单的在并联电池中使用,而相关技术也未提出有效的温控方法应用于并联电池中;并且,单电池或串联电池的温控方法中,在使用电池对外供电时,通过限制外设能力 来降低系统负荷,电池的温度回到正常状态也较慢,从而影响用户体验;在对电池进行充电时,高温限制充电电流会对整个充电效率带来影响。
发明内容
本申请实施例提供了一种温控方法和装置。
本申请实施例提供了一种温控方法,包括:
监测电池支路的温度;
当第x个电池支路的温度大于或等于第一温度阈值,或第x个电池支路的温度和第y个电池支路的温度之差大于或等于差值阈值时,降低或断开第x个电池支路的以下至少之一:供电电流、充电电流;
其中,x,y为大于或等于1,且小于或等于n的整数,n为电池中并联的电池支路的数量,x,y的取值不同。
本申请实施例提出了一种温控装置,包括:
监测模块,配置为监测电池支路的温度;
调整模块,配置为当第x个电池支路的温度大于或等于第一温度阈值,或第x个电池支路的温度阈值和第y个电池支路的温度之差大于或等于差值阈值时,降低或断开第x个电池支路的以下至少之一:供电电流、充电电流;
其中,x,y为大于或等于1,且小于或等于n的整数,n为电池中并联的电池支路的数量,x,y的取值不同。
本申请实施例提出了一种温控装置,包括处理器和计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令被所述处理器执行时,实现上述任一种温控方法。
本申请实施例提出了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述任一种温控方法的步骤。
本申请实施例的方案,监测电池支路的温度;当第x个电池支路的温度大于或等于第一温度阈值,或第x个电池支路的温度和第y个电池支路的温度之差大于或等于差值阈值时,降低或断开第x个电池支路的以下至 少之一:供电电流、充电电流;其中,x,y为大于或等于1,且小于或等于n的整数,n为电池中并联的电池支路的数量,x,y的取值不同。本申请实施例在某一个电池支路的温度大于或等于第一温度阈值,或两个电池支路的温度之差大于或等于差值阈值时,将温度较高的电池支路的供电电流和/或充电电流降低或断开,使得电池快速降温,从而实现了对并联电池进行温度控制,保护了电池的安全。
本申请实施例的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请实施例而了解。本申请实施例的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本申请实施例技术方案的进一步理解,并且构成说明书的一部分,与本申请实施例的实施例一起用于解释本申请实施例的技术方案。
图1为本申请实施例多电池并联的模型示意图;
图2为本申请实施例多电池并联的内部结构示意图;
图3为本申请一个实施例提出的温控方法的流程图;
图4为本申请实施例示例1温控方法的流程图;
图5为本申请实施例示例2温控方法的流程图;
图6为本申请实施例示例3温控方法的流程图;
图7为本申请另一个实施例提出的温控装置的结构组成示意图。
具体实施方式
下文中将结合附图对本申请实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况 下,可以以不同于此处的顺序执行所示出或描述的步骤。
图1为本申请实施例多电池并联的模型示意图。如图1所示,该电池由n个电池支路并联,每一个电池支路由m个子电池串联,其中,n为大于或等于2的整数,m为大于或等于1的整数,每一个电池支路串联的子电池的数量可以相同,也可以不同,是具体情况而定。
图2为本申请实施例多电池并联的内部结构示意图。如图2所示,每一个电池支路包括充电模块、m个串联的子电池和供电模块。图2中以两个电池支路为例给出了示意图,如图2所示,第一电池支路包括第一充电模块、m个串联的第一子电池(即图2中的第一电池)和第一供电模块,其中,第一充电模块和第一子电池串联,第一子电池和第一供电模块串联;第二电池支路包括第二充电模块、m个串联的第二子电池(即图2中的第二电池)和第二供电模块,其中,第二充电模块和第二子电池串联,第二子电池和第二供电模块串联。其中,图2中,第一供电模块和第二供电模块均可以由LTC4412芯片和三极管实现,当然,第一供电模块和第二供电模块也可以采用其他的方式实现,本申请实施例对第一供电模块和第二供电模块的具体实现不作限定。
图2中,第一充电模块和m个串联的第一子电池,m个串联的第一子电池的负极接地,m个串联的第一子电池的正极和三极管的D极(漏极)连接LTC4412芯片的输入(Vin)管脚,三极管的S极(源极)连接LTC4412芯片的输出(Vout)管脚,LTC4412芯片控制三极管的G极(栅极)来控制三极管的导通、关闭;第二充电模块和m个串联的第二子电池,m个串联的第二子电池的负极接地,m个串联的第二子电池的正极和三极管的D极(漏极)连接LTC4412芯片的输入(Vin)管脚,三极管的S极(源极)连接LTC4412芯片的输出(Vout)管脚,LTC4412芯片控制三极管的G极(栅极)来控制三极管的导通、关闭。
图2所示的电池充电过程如下:
当充电器连接USB_IN时,充电器通过第一充电模块对m个串联的第一子电池充电,通过第二充电模块对m个串联的第二子电池充电;
另外,还可以通过第一电量计测量充电过程中第一电池支路的电流量, 通过第二电量计测量充电过程中第二电池支路的电流量。
图2所示的电池供电过程如下:
当LTC4412芯片的使能(Enable)管脚使能时,m个串联的第一子电池或第二子电池通过LTC4412芯片的输出管脚为外设供电;当LTC4412芯片的使能(Enable)管脚不使能时,m个串联的第一子电池或第二子电池无法通过LTC4412芯片的输出管脚为外设供电。
参见图3,本申请一个实施例提出了一种温控方法,包括:
步骤300、监测电池支路的温度。
在本申请实施例中,可以通过多种方式监测电池支路的温度。例如,可以通过温度传感器来监测电池支路中的子电池的温度,或者,通过子电池中的负的温度系数(NTC,Negative Temperature Coefficient)电阻的阻值变化来间接获得子电池的温度。
在本申请实施例中,当电池支路中只有一个子电池时,将子电池的温度作为电池支路的温度;当电池支路中有m个串联的子电池时,将温度最高的子电池的温度作为电池支路的温度。
步骤301、当第x个电池支路的温度大于或等于第一温度阈值,或第x个电池支路的温度和第y个电池支路的温度之差大于或等于差值阈值时,降低或断开第x个电池支路的以下至少之一:供电电流、充电电流;其中,x,y为大于或等于1,且小于或等于n的整数,n为电池中并联的电池支路的数量,x,y的取值不同。
在本申请实施例中,当电池处于充电状态时,降低或断开第x个电池支路的充电电流;当电池处于供电状态时,降低或断开第x个电池支路的供电电流;当电池同时处于充电状态和供电状态时,可以降低或断开第x个电池支路的充电电流,或降低或断开第x个电池支路的供电电流,或降低或断开第x个电池支路的充电电流和供电电流。
本申请实施例对降低的充电电流或供电电流的幅度不作限定,具体降低的幅度不用于限定本申请实施例的保护范围,本申请实施例强调的是在某一路在某一个电池支路的温度大于或等于第一温度阈值,或两个电池支 路的温度之差大于或等于差值阈值时,将温度较高的电池支路的供电电流和/或充电电流降低或断开,使得电池快速降温,从而实现了对并联电池进行温度控制,保护了电池的安全。
在本申请另一个实施例中,当所述第x个电池支路的温度大于或等于所述第一温度阈值时,该方法还可以包括:
增加或打开至少一个除第x个电池支路之外的其他电池支路的以下至少之一:所述供电电流、所述充电电流。
具体实现时,当电池处于充电状态时,增加或打开至少一个除第x个电池支路之外的其他电池支路的充电电流;当电池处于供电状态时,增加或打开至少一个除第x个电池支路之外的其他电池支路的供电电流;当电池同时处于充电状态和供电状态时,可以增加或打开至少一个除第x个电池支路之外的其他电池支路的充电电流,或增加或打开至少一个除第x个电池支路之外的其他电池支路的供电电流,或增加或打开至少一个除第x个电池支路之外的其他电池支路的充电电流和供电电流。
本申请实施例对增加的充电电流或供电电流的幅度不作限定,具体增加的幅度不用于限定本申请实施例的保护范围,本申请实施例强调的是当某一个电池支路的温度大于或等于第一温度阈值时,降低或断开该电池支路的供电电流和/或充电电流的同时,增加或打开至少一个除第x个电池支路之外的其他电池支路的供电电流和/或充电电流,减小了对总的充电电流的限制,从而提高了充电效率;减小了对外设能力的限制,从而提高了用户体验。
在本申请实施例中,所述增加或打开至少一个除第x个电池支路之外的其他电池支路的以下至少之一:所述供电电流、所述充电电流包括:
根据所述其他电池支路的状态增加或打开至少一个所述其他电池支路的以下至少之一:所述供电电流、所述充电电流。
其中,所述其他电池支路的状态包括以下至少之一:温度、电压、容量、剩余使用寿命。
本申请实施例对根据其他电池支路的状态增加或打开至少一个除第x 个电池支路之外的其他电池支路的供电电流和/或充电电流的具体策略不作限定,具体采用什么样的策略不用于限定本申请实施例的保护范围。
在本申请另一个实施例中,当所述第x个电池支路的温度阈值和所述第y个电池支路的温度之差大于或等于所述差值阈值时,该方法还包括:
增加或打开所述第y个电池支路的以下至少之一:所述供电电流、所述充电电流。
具体实现时,当电池处于充电状态时,增加或打开第y个电池支路的充电电流;当电池处于供电状态时,增加或打开第y个电池支路的供电电流;当电池同时处于充电状态和供电状态时,可以增加或打开第y个电池支路的充电电流,或者增加或打开第y个电池支路的供电电流,或者增加或打开第y个电池支路的充电电流和供电电流。
本申请实施例对增加的充电电流或供电电流的幅度不作限定,具体增加的幅度不用于限定本申请实施例的保护范围,本申请实施例强调的是当两个电池支路的温度之差大于或等于差值阈值时,降低或断开温度较高的电池支路的供电电流和充电电流中至少之一的同时,增加或打开温度较低的电池支路的供电电流和充电电流中至少之一,减小了对总的充电电流的限制,从而提高了充电效率;减小了对外设能力的限制,从而提高了用户体验。
在本申请另一个实施例中,当所有电池支路的温度均大于或等于所述第一温度阈值时,该方法还可以包括:
断开所有电池支路的以下至少之一:所述供电电流、所述充电电流。
具体实现时,当电池处于充电状态时,断开所有电池支路的充电电流;当电池处于供电状态时,断开所有电池支路的供电电流;当电池同时处于充电状态和供电状态时,断开所有电池支路的充电电流和供电电流。
在本申请另一个实施例中,所述断开第x个电池支路的以下至少之一:供电电流、充电电流后,当所述第x个电池支路的温度小于或等于第二温度阈值时,该方法还包括:
打开所述第x个电池支路的以下至少之一:所述供电电流、所述充电 电流。
具体实现时,当电池处于充电状态时,打开第x个电池支路的充电电流;当电池处于供电状态时,打开第x个电池支路的供电电流;当电池同时处于充电状态和供电状态时,打开第x个电池支路的充电电流和供电电流。
在本申请另一个实施例中,当所述第x个电池支路的温度小于或等于第二温度阈值时,该方法还包括:
降低或断开至少一个除第x个电池支路之外的其他电池支路的以下至少之一:所述供电电流、所述充电电流。
具体实现时,当电池处于充电状态时,降低或断开至少一个除第x个电池支路之外的其他电池支路的充电电流;当电池处于供电状态时,降低或断开至少一个除第x个电池支路之外的其他电池支路的供电电流;当电池同时处于充电状态和供电状态时,可以降低或断开至少一个除第x个电池支路之外的其他电池支路的充电电流,或者降低或断开至少一个除第x个电池支路之外的其他电池支路的供电电流,或者降低或断开至少一个除第x个电池支路之外的其他电池支路的充电电流和供电电流。
下面以两个电池支路为例对本申请实施例的温控方法进行举例说明,n个电池支路的温控方法以此类推,所列举的例子不用于限定本申请实施例的保护范围。
示例1
参见图4,该方法包括:
步骤400、当有外部充电器插入时,系统收到中断,启动充电流程,对电池支路1的子电池T1和电池支路2的子电池T2充电。
步骤401、同时监测电池支路1的子电池T1和电池支路2的子电池T2的温度。
本示例中,电池支路1和电池支路2分别有一个监测子电池的温度的器件,即NTC电阻,通过NTC阻值变化实时反映电池温度。
步骤402、判断子电池T1的温度是否大于或等于第一温度阈值(如40 度),当子电池T1的温度大于或等于第一温度阈值时,降低电池支路1的充电电流;当子电池T1的温度小于第一温度阈值时,判断子电池T1的温度和子电池T2的温度之差是否大于或等于差值阈值,当子电池T1的温度和子电池T2的温度之差大于或等于差值阈值时,降低电池支路1的充电电流,并增加电池支路2的充电电流;当子电池T1的温度和子电池T2的温度之差小于差值阈值时,继续执行步骤401。
步骤403、降低电池支路1的充电电流后的预设时间内,当电池支路1的温度仍大于或等于第一温度阈值时,断开电池支路1的充电电流,即断开电池支路1的充电;当电池支路1的温度小于第一温度阈值时,判断子电池T1的温度和子电池T2的温度之差是否大于或等于差值阈值(如6度),当子电池T1的温度和子电池T2的温度之差大于或等于差值阈值时,降低电池支路1的充电电流,并增加电池支路2的充电电流;当子电池T1的温度和子电池T2的温度之差小于差值阈值时,继续执行步骤401。
步骤404、电池支路1断开后,电池支路1的子电池T1的温度会逐渐下降,当电池支路1的子电池T1的温度小于或等于第二温度阈值(如恢复到35度)时,打开电池支路1的充电电流(即重新开启对电池支路1的充电),恢复之前的充电策略;当电池支路1的子电池T1的温度大于第二温度阈值时,继续执行步骤401。
示例2
参见图5,该方法包括:
步骤500、当对外供电时,通过电池支路1对外供电。
步骤501、同时监测电池支路1的子电池T1和电池支路2的子电池T2的温度。
本示例中,电池支路1和电池支路2分别有一个监测子电池的温度的器件,即NTC电阻,通过NTC阻值变化实时反映电池温度。
步骤502、判断子电池T1的温度是否大于或等于第一温度阈值,当子电池T1的温度大于或等于第一温度阈值时,断开电池支路1的供电电流,同时打开电池支路2的供电电流;当子电池T1的温度小于第一温度阈值时, 继续执行步骤501。
步骤503、电池支路1断开后,电池支路1的子电池T1的温度会逐渐下降,当电池支路1的子电池T1的温度小于或等于第二温度阈值(如恢复到35度)时,打开电池支路1的供电电流,并断开电池支路2的供电电流;当电池支路1的子电池T1的温度大于第二温度阈值时,继续执行步骤501。
本步骤中,当电池支路2的温度小于第一温度阈值时,也可以不断开电池支路2的供电电流。
示例3
参见图6,该方法包括:
步骤600、当对外供电时,同时通过电池支路1和电池支路2对外供电。
步骤601、同时监测电池支路1的子电池T1和电池支路2的子电池T2的温度。
本示例中,电池支路1和电池支路2分别有一个监测子电池的温度的器件,即NTC电阻,通过NTC阻值变化实时反映电池温度。
步骤602、判断子电池T1的温度是否大于或等于第一温度阈值,当子电池T1的温度大于或等于第一温度阈值时,断开电池支路1的供电电流;当子电池T1的温度小于第一温度阈值时,判断子电池T1的温度和子电池T2的温度之差是否大于或等于差值阈值,当子电池T1的温度和子电池T2的温度之差大于或等于差值阈值时,断开电池支路1的供电电流,同时增加电池支路2的供电电流;当子电池T1的温度和子电池T2的温度之差小于差值阈值时,继续执行步骤601。
步骤603、电池支路1断开后,电池支路1的子电池T1的温度会逐渐下降,当电池支路1的子电池T1的温度小于或等于第二温度阈值(如恢复到35度)时,打开电池支路1的供电电流;当电池支路1的子电池T1的温度大于第二温度阈值时,继续执行步骤601。
参见图7,本申请另一个实施例提出了一种温控装置,包括:
监测模块701,配置为监测电池支路的温度;
调整模块702,配置为当第x个电池支路的温度大于或等于第一温度阈 值,或第x个电池支路的温度阈值和第y个电池支路的温度之差大于或等于差值阈值时,降低或断开第x个电池支路的以下至少之一:供电电流、充电电流;
其中,x,y为大于或等于1,且小于或等于n的整数,n为电池中并联的电池支路的数量,x,y的取值不同。
在本申请实施例中,当所述第x个电池支路的温度大于或等于所述第一温度阈值时,调整模块702还配置为:
增加或打开至少一个除第x个电池支路之外的其他电池支路的以下至少之一:所述供电电流、所述充电电流。
在本申请实施例中,调整模块702配置为采用以下方式实现增加或打开至少一个除第x个电池支路之外的其他电池支路的以下至少之一:所述供电电流、所述充电电流:
根据所述其他电池支路的状态增加或打开至少一个所述其他电池支路的以下至少之一:所述供电电流、所述充电电流。
在本申请实施例中,所述其他电池支路的状态包括以下至少之一:温度、电压、容量、剩余使用寿命。
在本申请实施例中,当所述第x个电池支路的温度阈值和所述第y个电池支路的温度之差大于或等于所述差值阈值时,调整模块702还配置为:
增加或打开所述第y个电池支路的以下至少之一:所述供电电流、所述充电电流。
在本申请实施例中,调整模块702还配置为:
当所有电池支路的温度均大于或等于所述第一温度阈值时,断开所有电池支路的以下至少之一:所述供电电流、所述充电电流。
在本申请实施例中,调整模块702还配置为:
当所述第x个电池支路的温度小于或等于第二温度阈值时,打开所述第x个电池支路的以下至少之一:所述供电电流、所述充电电流。
在本申请实施例中,当所述第x个电池支路的温度小于或等于第二温度阈值时,调整模块702还配置为:
降低或断开至少一个除第x个电池支路之外的其他电池支路的以下至少之一:所述供电电流、所述充电电流。
在本申请实施例中,监测模块701和调整模块702可以通过终端的CPU实现,CPU做出调整策略后,向第一充电模块或第二充电模块或第一供电模块或第二供电模块发出调整指令,第一充电模块或第二充电模块或第一供电模块或第二供电模块根据调整指令执行相应的调整策略。
上述温控装置的具体实现方式与前述实施例的温控方法相同,这里不再赘述。
本申请另一个实施例提出了一种温控装置,包括处理器和计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令被所述处理器执行时,实现上述任一种温控方法。
本申请另一个实施例提出了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述任一种温控方法的步骤。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。 此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
虽然本申请实施例所揭露的实施方式如上,但所述的内容仅为便于理解本申请实施例而采用的实施方式,并非用以限定本申请实施例。任何本申请实施例所属领域内的技术人员,在不脱离本申请实施例所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本申请实施例的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (10)

  1. 一种温控方法,包括:
    监测电池支路的温度;
    当第x个电池支路的温度大于或等于第一温度阈值,或第x个电池支路的温度和第y个电池支路的温度之差大于或等于差值阈值时,降低或断开第x个电池支路的以下至少之一:供电电流、充电电流;
    其中,x,y为大于或等于1,且小于或等于n的整数,n为电池中并联的电池支路的数量,x,y的取值不同。
  2. 根据权利要求1所述的温控方法,其中,当所述第x个电池支路的温度大于或等于所述第一温度阈值时,该方法还包括:
    增加或打开至少一个除第x个电池支路之外的其他电池支路的以下至少之一:所述供电电流、所述充电电流。
  3. 根据权利要求2所述的温控方法,其中,所述增加或打开至少一个除第x个电池支路之外的其他电池支路的以下至少之一:所述供电电流、所述充电电流包括:
    根据所述其他电池支路的状态增加或打开至少一个所述其他电池支路的以下至少之一:所述供电电流、所述充电电流;
    所述其他电池支路的状态包括以下至少之一:温度、电压、容量、剩余使用寿命。
  4. 根据权利要求1所述的温控方法,其中,当所述第x个电池支路的温度阈值和所述第y个电池支路的温度之差大于或等于所述差值阈值时,该方法还包括:
    增加或打开所述第y个电池支路的以下至少之一:所述供电电流、所述充电电流。
  5. 根据权利要求1至4任一项所述的温控方法,其中,当所有电池支路的温度均大于或等于所述第一温度阈值时,该方法还包括:
    断开所有电池支路的以下至少之一:所述供电电流、所述充电电流。
  6. 根据权利要求1至4任一项所述的温控方法,其中,所述断开第x个电池支路的以下至少之一:供电电流、充电电流后,当所述第x个电池支路的温度小于或等于第二温度阈值时,该方法还包括:
    打开所述第x个电池支路的以下至少之一:所述供电电流、所述充电电流。
  7. 根据权利要求6所述的温控方法,其中,当所述第x个电池支路的温度小于或等于第二温度阈值时,该方法还包括:
    降低或断开至少一个除第x个电池支路之外的其他电池支路的以下至少之一:所述供电电流、所述充电电流。
  8. 一种温控装置,包括:
    监测模块,配置为监测电池支路的温度;
    调整模块,配置为当第x个电池支路的温度大于或等于第一温度阈值,或第x个电池支路的温度阈值和第y个电池支路的温度之差大于或等于差值阈值时,降低或断开第x个电池支路的以下至少之一:供电电流、充电电流;
    其中,x,y为大于或等于1,且小于或等于n的整数,n为电池中并联的电池支路的数量,x,y的取值不同。
  9. 一种温控装置,包括处理器和计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令被所述处理器执行时,实现如权利要求1至7任一项所述的温控方法。
  10. 一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至7任一项所述的温控方法的步骤。
PCT/CN2019/090991 2018-08-27 2019-06-12 一种温控方法和装置 WO2020042723A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810980174.7 2018-08-27
CN201810980174.7A CN110867909A (zh) 2018-08-27 2018-08-27 一种温控方法和装置

Publications (1)

Publication Number Publication Date
WO2020042723A1 true WO2020042723A1 (zh) 2020-03-05

Family

ID=69643376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090991 WO2020042723A1 (zh) 2018-08-27 2019-06-12 一种温控方法和装置

Country Status (2)

Country Link
CN (1) CN110867909A (zh)
WO (1) WO2020042723A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113013946B (zh) * 2021-03-04 2022-06-14 湖北亿纬动力有限公司 一种电池系统的放电控制策略、装置和设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103094955A (zh) * 2011-11-07 2013-05-08 索尼公司 充电控制系统、装置及方法,以及放电控制装置
CN107528366A (zh) * 2017-08-23 2017-12-29 努比亚技术有限公司 电流分配充电方法、移动终端及计算机可读存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090208781A1 (en) * 2008-02-19 2009-08-20 Skinner George A Method for operating a fuel cell system
US8773068B2 (en) * 2011-01-20 2014-07-08 Valence Technology, Inc. Rechargeable battery systems and rechargeable battery system operational methods
CN204167880U (zh) * 2014-11-10 2015-02-18 深圳市卓能新能源科技有限公司 电池组过温保护供电电路
CN206313501U (zh) * 2016-12-31 2017-07-07 深圳市沃特玛电池有限公司 一种并联电池的充放电管理装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103094955A (zh) * 2011-11-07 2013-05-08 索尼公司 充电控制系统、装置及方法,以及放电控制装置
CN107528366A (zh) * 2017-08-23 2017-12-29 努比亚技术有限公司 电流分配充电方法、移动终端及计算机可读存储介质

Also Published As

Publication number Publication date
CN110867909A (zh) 2020-03-06

Similar Documents

Publication Publication Date Title
US10468900B2 (en) Management of high-voltage lithium-polymer batteries in portable electronic devices
WO2020244588A1 (zh) 电池管理系统、电池管理方法、电源模块及无人机
US8513919B2 (en) Swelling management in batteries for portable electronic devices
US9015514B2 (en) Systems and methods for implementing persistent battery shutdown for information handling systems
US8729862B2 (en) Controlled regeneration of solid electrolyte interface for prolonged cycling of lithium batteries
US11063306B2 (en) Lithium-ion battery cut-off voltage adjustment
US11909243B2 (en) Information handling systems and improved battery charge control methods
WO2020042723A1 (zh) 一种温控方法和装置
CN111864291A (zh) 一种锂电池辅热系统的控制方法及设备
WO2020015502A1 (zh) 跟踪电池过放电的方法和装置、芯片、电池及飞行器
WO2020024981A1 (zh) 一种充电方法、装置、充电终端及计算机可读存储介质
CN110492563A (zh) 电池管理方法、装置、设备及介质
WO2022061517A1 (zh) 电池的保护电路、方法、电池及介质
US20140354242A1 (en) Device and charge control method
CN113690960B (zh) 一种锂电池管理方法、装置及相关组件
WO2014190831A1 (zh) 一种电池控制方法、装置、终端及计算机存储介质
TWI833086B (zh) 供電控制方法及其相關可攜式電子裝置
TWI784800B (zh) 電子裝置及其負載調整方法
JP7286736B2 (ja) スマートバッテリー装置及びその操作方法
US20220037912A1 (en) Charging and discharging device, charging and discharging method and terminal device
WO2020233544A1 (zh) 电池测试系统和方法
US20230335809A1 (en) Charging method, electronic apparatus, and storage medium
TWM561955U (zh) 具過度放電保護機制之電子系統
TWM587397U (zh) 具有智能充電功能的電子裝置
WO2020097918A1 (zh) 充电电流调节方法、装置、终端及计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19853471

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29/06/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19853471

Country of ref document: EP

Kind code of ref document: A1