WO2022095013A1 - 一种充电器 - Google Patents

一种充电器 Download PDF

Info

Publication number
WO2022095013A1
WO2022095013A1 PCT/CN2020/127458 CN2020127458W WO2022095013A1 WO 2022095013 A1 WO2022095013 A1 WO 2022095013A1 CN 2020127458 W CN2020127458 W CN 2020127458W WO 2022095013 A1 WO2022095013 A1 WO 2022095013A1
Authority
WO
WIPO (PCT)
Prior art keywords
charger
power
main control
module
control module
Prior art date
Application number
PCT/CN2020/127458
Other languages
English (en)
French (fr)
Inventor
金军骞
林宋荣
李鹏
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2020/127458 priority Critical patent/WO2022095013A1/zh
Priority to CN202080071114.9A priority patent/CN114651379A/zh
Publication of WO2022095013A1 publication Critical patent/WO2022095013A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present disclosure relates to the technical field of charging, and in particular, to a charger.
  • the present disclosure provides a charger.
  • a charger for charging a battery including: a main control module and a plurality of power modules; each of the plurality of power modules Each power supply module includes an input interface, and the input interface of each power supply module is used to obtain power from different external power supplies and supply power to the power supply module to which the input interface belongs; the main control module is used to control the multiple power supply modules.
  • a power module charges the battery.
  • the battery is charged. Since each power supply module has a certain charging power, the integration of multiple power supply modules can realize the superposition of multiple charging powers, which can achieve the same level as that under high voltage under the condition of using civilian power lines and low voltage. charging efficiency. The charging efficiency for charging the batteries of high-power devices is improved.
  • FIG. 1 is a structural block diagram of a charger in an embodiment of the present invention.
  • FIG. 2 is another structural block diagram of a charger in an embodiment of the present invention.
  • FIG. 3 is a structural block diagram of a power module in an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the connection between the thermal pad, the main control module and the chassis according to an embodiment of the present invention
  • FIG. 5 is another structural block diagram of a charger in an embodiment of the present invention.
  • FIG. 6 is another structural block diagram of a charger in an embodiment of the present invention.
  • FIG. 7 is a schematic three-dimensional structure diagram of a charging box in an embodiment of the present application.
  • first, second, third, etc. may be used in this disclosure to describe various pieces of information, such information should not be limited by these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information, without departing from the scope of the present disclosure.
  • word "if” as used herein can be interpreted as "at the time of” or "when” or "in response to determining.”
  • the low charging power of the existing chargers makes the continuous operation of large drones impossible to guarantee, which has always been a pain point in the current industry.
  • high-power electric vehicles including agricultural unmanned vehicles, electric vehicles, logistics unmanned vehicles, etc.
  • the battery discharge power is large, and the existing chargers are used.
  • the charging speed is slow and the charging time is long, and a lot of time is spent on charging the battery, which in turn leads to very low operating efficiency of these devices.
  • the present disclosure proposes a charger.
  • description will be given with reference to specific embodiments.
  • FIG. 1 is a schematic block diagram of a charger according to an embodiment of the present disclosure: the charger 100 includes a main control module 101 and a plurality of power modules 102 , and each power module 102 includes an input interface 103 . Each input interface 103 obtains power from a plurality of external power sources 200 and supplies power to the power supply module 102 to which it belongs.
  • the main control module 101 controls some or all of the power modules in the charger 100 to charge the battery 300 to be rechargeable.
  • the main control module 101 includes a main control chip, and the main control chip includes a processor, and the processor may be a Micro-controller Unit (MCU), a Central Processing Unit (CPU) Or a digital signal processor (Digital Signal Processor, DSP), etc.
  • the main control module also includes a communication unit for communicating with other modules of the charger, and the communication unit can use wired communication or wireless communication. communication.
  • the power module 102 includes an AC-DC (Alternative Current-Direct Current) power module with a communication function, and the AC-DC power module may specifically include a communication logic interface circuit, a communication circuit and a communication logic interface circuit connected to the main control module 101. Communication transceiver self-test circuit and so on.
  • the power supply module 102 also has the feature of adjusting the magnitude of the output power signal, and can output voltages and/or currents of different magnitudes to meet user requirements.
  • the power supply module may be an AC-DC power supply module designed by those skilled in the art that can realize the above functions, or an AC-DC voltage module in the prior art, for example, an existing communication
  • the output power of the base station power supply is usually between 2000W and 5000W, which is not limited in this disclosure.
  • the battery to be charged 300 may be a power supply battery of the terminal device.
  • Terminal equipment can be high-power power supply equipment, such as agricultural drones, logistics drones, electric vehicles, logistics unmanned vehicles and other high-power electric vehicles, or other equipment that requires high-power batteries for power supply, which is not limited here. .
  • the high power described in the present disclosure may be more than 5000W of power.
  • the charger in the embodiment of the present disclosure has multiple power supply modules, which can allow multiple external power supplies to provide power to the corresponding power supply modules through the input interface, and finally achieve high power output.
  • Using the charger of the present disclosure to charge the battery to be recharged can solve the problem of low charging power of the charger in the prior art.
  • the external power supply 200 shown in FIG. 1 may be a residential charging power supply, for example, in China, it may be a residential power supply with an output voltage of 220V and a frequency of 50HZ; in the United States, it may be a residential power supply with an output voltage of 120V , Residential power supply with a frequency of 50HZ, etc.
  • each input interface of the plurality of power supply modules in the present disclosure is connected to a corresponding external power supply through a civil power supply line.
  • the household power cord may be a 16A AC power cord.
  • the charger of the present disclosure including two power modules as an example, when two 16A AC wires are used as the input wires of the charger of the present disclosure, two external power sources with an output current of 16A and an output power of 3500W are connected.
  • the charger described in the present disclosure can output a charging power of 7000W to the battery to be charged.
  • the domestic power cord as the charging input wire, it can be adapted to the household electric power supply with a wide distribution range.
  • the battery to be recharged is charged by the charger of the present disclosure, it has the advantages of convenient application, low cost and safe use.
  • the maximum power supported by a household plug is relatively small. Taking a 16A AC power cord as an example, when the household voltage is 220V, the maximum power supported by a household plug is the product of voltage and current, about 3500W.
  • the maximum power supported by a household plug is the product of voltage and current, about 3500W.
  • industrial plugs due to the reasons of material and safety performance, industrial plugs have the disadvantages of high price, few power supply places and small application scope.
  • the multiple power supply modules can obtain electrical energy from an external power supply in parallel, and the total input power of the charger is the superposition of the input powers of the multiple power supply modules, thereby improving the total input power of the charger. power, and can achieve the same charging efficiency as that under high voltage under the condition of using a domestic power supply line and low voltage. The charging efficiency for charging the batteries of high-power devices is improved.
  • the input interface of each power module includes a consumer socket adapted to a consumer power cord. Therefore, the residential power supply, which is the power supply of the battery to be charged, can be connected to the residential socket on the charger of the present disclosure through a residential power cord to realize the input of the power supply of the charger, and then charge the battery to be charged.
  • the domestic socket can be various standard sockets, for example, it can be a C20 socket, and can also be a type of sockets such as C13, C19, C22, and so on. The difference between these sockets is the current rating and the size of the plug and receptacle.
  • the type of civil socket can be appropriately selected in combination with the number of various types of plugs in a specific application site, parameters of commonly used batteries to be charged, etc., which is not limited in the present disclosure.
  • the charger of the embodiment of the present disclosure can obtain electrical energy from any civilian power source, which improves the charger's performance. Applicable scope, it is also convenient to move the charger to a suitable location for charging without the need to charge through a special industrial power supply. The advantages of a wide range and low cost.
  • the charger of the embodiment of the present disclosure can not only realize high-power charging, but also realize ordinary power (for example, below 3500W) charging.
  • ordinary power for example, below 3500W
  • only some of the power modules in the plurality of power modules can be connected to an external power source, thereby achieving compatibility with common power charging scenarios.
  • each power module of the plurality of power modules by controlling each power module of the plurality of power modules to gradually increase the output current value according to a preset step size, so as to avoid the damage of the charger and the tripping of the external power supply caused by the sudden change of the charging current and other security issues.
  • power modules include inductive impedances such as inductors.
  • the main control module of the charger can be used to control the power module to gradually increase the current value of the output current according to a preset step size.
  • the power supply module and the main control module have communication sub-modules, which can realize mutual communication between the power supply module and the main control module.
  • the power supply module may be a power supply module in the prior art, or a power supply module designed by those skilled in the art, which is not limited in the present disclosure.
  • the first step length value of the current increase of the power supply module may be set in advance through the main control module.
  • the first step length value may be directly set as an empirical value, or may be calculated and obtained according to the relationship between the charging current of the power module to the battery and the current charging environment parameters, etc., which is not limited in the present disclosure.
  • the main control module 101 communicates with the communication sub-module 104 of the power module 102 through its own communication sub-module C, and informs the power module 102 to gradually increase the output current according to the preset first step length value. value.
  • the communication may be wired communication or wireless communication, which is not limited in the present disclosure.
  • the second step value, the third step value and the first threshold can be set in advance through the main control module. , different step sizes can be used in different charging stages).
  • the main control module 101 communicates with the power supply module 102 to inform the power supply module 102 to gradually increase the current value of the output current according to the preset second step value.
  • the main control module detects whether the output current of the power module is greater than the first threshold.
  • the main control module 101 communicates with the power module 102 to inform the power module 102 to
  • the preset third step value gradually increases the current value of the output current to the rated charging current of the battery to be charged.
  • the third step size is greater than the second step size.
  • the preset step size values may be the same or different, which can be determined by those skilled in the art according to the actual situation, which is not limited in the present disclosure.
  • the power module of the charger controls the charging battery to be charged with a small charging current, and when the charging current reaches a certain level, the charging is further increased.
  • the size of the current is beneficial to avoid damage to the charger and battery caused by sudden changes in the charging current.
  • the main control module is configured to control the power module to gradually increase the current value of the output current according to a preset step size by adjusting the duty ratio of the switch control signal of the power module.
  • the power module 102 in addition to the input interface 103 and the communication sub-module 104 , the power module 102 also includes a switch control sub-module 105 .
  • the switch control sub-module can change the output current of the power module 102 by changing the duty ratio of its switch control signal.
  • the communication sub-module of the main control module 101 communicates with the communication sub-module of the power supply module 102 to inform the power supply module 102 to gradually follow the preset first step length value.
  • the communication sub-module 104 of the power module 102 sends the information to the switch control sub-module 105, and the switch control sub-module 105 changes the duty cycle of its switch control signal, thereby making the power module follow the preset
  • the step value gradually increases the current value of the output current.
  • the stepwise increase of the charging current is realized by adjusting the duty ratio of the switch control signal of the power module, which is beneficial to avoid damage to the charger and the battery caused by the sudden change of the charging current.
  • the main control module of the charger determines the aging state of the connecting wire of the charger by obtaining the relationship between the current and the voltage of the connecting wire of the charger, so as to eliminate the risk of burning during the charging process.
  • the connecting line of the charger includes the internal connecting line between the main control module of the charger and the power supply module, and also includes the first external connecting line between the input interface of the charger and the external power supply, and the power supply module and the to-be-charged. Second external connection wire between batteries.
  • the relationship between the current and the voltage of the connecting line can be characterized by the impedance of the connecting line or the relationship between the voltage of the connecting line and the current. Specific descriptions are given below with reference to different embodiments.
  • the main control module obtains the output voltage of the power supply module and the input voltage of the main control module at multiple different times, and then passes the input voltage and The voltage difference of the output voltages obtains the voltage on the internal connection lines. Based on the current on the corresponding internal connection line monitored by the main control module at the corresponding time, it is determined whether the voltage of the internal connection line decreases with the increase of the current. and other security risks.
  • the main control module obtains the input voltage and output voltage of the power supply module at multiple different times, which can be realized by a sampling circuit, and the sampling circuit can be a conventional circuit that realizes the sampling function, which will not be repeated here.
  • the multiple different moments may be moments at the same time interval, or may be moments at different time intervals, which are not limited in the present disclosure.
  • the main control module obtains the output voltage of the power supply module and the input voltage of the main control module, according to the input voltage and output voltage The difference between them, that is, the voltage on the internal wire, combined with the current on the internal wire monitored by the main control module, the impedance of the internal connecting line can be obtained. Compare the impedance on the internal connection line to determine whether the error between the impedance of the internal connection line and the impedance of the standard internal connection line is within the abnormal range. If so, it is determined that the connection line has been aged and has safety risks such as burning.
  • the obtained impedance on the internal connection line may be an impedance value obtained once or an average value of impedance obtained multiple times, which is not limited in the present disclosure.
  • the main control module obtains the voltage of the input interface of the charger at multiple different times, and obtains the first external connection line according to the output voltage of the external power supply. Voltage on an external connection line. Based on the current at the corresponding input interface monitored and obtained by the main control module at the corresponding time, it is determined whether the voltage on the first external connection line decreases with the increase of the current, and if so, it is determined that the first external connection line has Aging or inferior wires have safety risks such as burning.
  • the main control module obtains the voltage of the input interface of the charger, according to the input current of the charger when the charger first starts up (that is, the input current of the charger). When approximately equal to 0), the obtained input voltage of the charger is obtained, and the voltage on the first external connection line is obtained. Based on the current at the corresponding input interface obtained by monitoring by the main control module, the impedance on the first external connection line can be obtained, and the obtained impedance on the first external connection line is compared with the impedance on the standard first external connection line.
  • the obtained impedance on the first external connection line may be an impedance value obtained once or an average value of impedance obtained multiple times, which is not limited in the present disclosure.
  • the main control module obtains the output voltage of the main control module and the voltage of the battery to be charged at multiple different times, and based on the two voltages The difference of , obtains the voltage on the second external connection line. Based on the corresponding input current of the battery to be charged obtained by monitoring the main control module at the corresponding time, it is determined whether the voltage on the second external connection line decreases with the increase of the current, and if so, the second external connection line is determined.
  • the wires that have been aged or are of inferior quality have safety risks such as burning.
  • the main control module obtains the output voltage of the main control module and the voltage of the battery to be charged, and based on the difference between the two voltages, obtains: The output voltage of the second external connection line is obtained, and the voltage on the second external connection line is obtained. Based on the input current of the corresponding battery to be charged obtained by monitoring the main control module, the impedance on the second external connection line can be obtained, and the obtained impedance on the second external connection line is compared with the impedance on the standard second external connection line.
  • the obtained impedance on the second external connection line may be an impedance value obtained once or an average value of impedance obtained multiple times, which is not limited in the present disclosure.
  • the main control module of the charger determines the aging state of the connecting line of the charger by acquiring the relationship between the current and the voltage of the internal connecting line, the first external connecting line and the second external connecting line of the charger. . It should be understood by those skilled in the art that the aging state of only one of the internal connecting wire, the first external connecting wire and the second external connecting wire of the charger can be judged, or any two of them can be judged. and the aging states of the three connecting wires, and even the aging states of other connecting wires in the charger can be judged, which is not limited in the present disclosure.
  • the division of the above functional modules is only a logical function division.
  • the switch control sub-module is divided into the main control module for Realize the adjustment of the output current of the power module; for another example, use the input interface as an input module alone to receive power from an external power supply.
  • At least one of the plurality of power modules of the charger and/or the main control module is detachable.
  • some or all of the functional modules in the charger can be designed as detachable modules to facilitate replacement.
  • each power supply module has its own power supply fan to cool the power supply module.
  • the traditional chargers used for high-power charging do not make full use of the heat dissipation capacity of the power supply fan, but set up an additional system fan inside the charger to dissipate heat for the entire charging device. It also increases the size of the charger.
  • the charger of the present disclosure further includes a thermal pad, one end of the thermal pad is in contact with the main control module, and the other end is in contact with the chassis of the charger, so as to conduct heat generated by the main control module to the chassis superior.
  • FIG. 4 it is a structural block diagram of another embodiment of the charger of the present disclosure.
  • One end of the thermal pad 106 is connected to the main control module 101 , and the other end is connected to the chassis 107 of the charger.
  • the power module 102 Since the power module 102 has its own fan module, it is used to fan itself to ensure the normal operation of the power module.
  • the thermal pad connects the main control module to the chassis, and can conduct heat generated by the main control module to the chassis. When the charger is working, the fan module of the power module starts to work, which can dissipate heat for the chassis, thereby realizing the heat dissipation of the main control module.
  • the thermal conductive pad may be a silicone thermal conductive pad, or a synthetic graphite sheet, or other materials with good thermal conductivity, which are not limited in the present disclosure.
  • the heat on the main control module is conducted to the chassis of the charger through the thermal pad, and the charger is dissipated by the fan provided with the power module, which can reduce the cost of the charger while reducing the cost of the charger.
  • the bulk of the charger and improve the overall reliability of the system.
  • the working environment is often harsh.
  • the external power supply is prone to tripping, burning wires, etc., which in turn causes the power supply module of the charger to have problems such as open circuit and short circuit, and even irreversible damage to the rechargeable battery.
  • the user can configure the voltage threshold corresponding to each current value on the main control module in advance, or configure the mathematical relationship between the current value and the voltage threshold, and obtain the voltage threshold corresponding to the current value from a certain current value.
  • Other information may also be configured to obtain a voltage threshold corresponding to the current value according to the current value, which is not limited in the present disclosure.
  • the main control module of the charger first obtains the voltage of the input power line of the charger, and then compares the obtained voltage value with the voltage threshold corresponding to the current current of the input power line.
  • the main control module When the voltage of the input wire is greater than the voltage threshold corresponding to the current current of the input power wire, the main control module sends a control command to the power module corresponding to the power wire, so that the output current of the power module corresponding to the power wire is reduced, so that the charger Power reduction is achieved to ensure the safety of the charger and the battery to be charged.
  • the reduction of the output current of the power supply module corresponding to the power line may be that the aforementioned main control module sends a control command to the corresponding power supply module to change the duty cycle of the switch control signal of the power supply module, thereby reducing the power supply module's output current.
  • the output current may also be in other manners, which are not limited in the present disclosure.
  • the voltage threshold may be determined based on an amount of temperature rise of the main control module. In extreme scenarios, when the power supply trips or burns wires, it will be accompanied by changes in the temperature of the main control module. Therefore, the voltage threshold can be set to increase or decrease by a certain amount according to the temperature change of the main control module, so as to limit the input power of the charger.
  • the voltage threshold is positively correlated with the temperature rise of the main control module.
  • the temperature of the main control module tends to rise, and the resistance of the power line increases. Therefore, the voltage value corresponding to the power line also increases. Therefore, when the voltage threshold is preconfigured, it can be set to be positively correlated with the temperature increase of the main control module.
  • the input power of the charger can be adjusted in time, so as to limit the input power of the charger. Therefore, even in some extreme scenarios, the external power supply trips, burns wires, etc., it can try to avoid damage to the charger and the battery to be charged.
  • the charger further includes a voltage conversion module. As shown in FIG. 5 , the input end of the voltage conversion module 108 is connected to one power supply module 102 among the plurality of power supply modules, so as to perform step-down processing on the voltage output by the power supply module, and output the processed voltage to the main controller
  • the module 101 is used to supply power to the main control module.
  • the voltage output by the power module 102 is generally higher than the power supply voltage required by the main control module 101 .
  • an additional power supply module is usually used to provide the main control module 101 with a working voltage.
  • a voltage conversion module 108 is introduced into the main control module 101 and the power supply module 102 to perform step-down processing on the output voltage of the power supply module 102 , so that the processed voltage can supply power to the main control module 108 .
  • the voltage conversion module may be a step-down module in the prior art, or a voltage conversion module designed according to step-down parameters, which is not limited in the present disclosure.
  • the voltage conversion module directly steps down the output voltage of the power module to realize the power supply of the main control module, which not only ensures that the charger can charge the rechargeable battery with high power, but also supplies power to the main control module, reducing the
  • the introduction of an additional auxiliary power module reduces the cost of the charger and improves the overall reliability of the charger.
  • the charger 100 further includes an interaction module 109, and the interaction module 109 is respectively connected with the main control module 101 and each power supply module 102 in the plurality of power supply modules, using The switch control signal is sent to the main control module 101 and each power module 102 respectively.
  • the interaction module includes a switch circuit
  • the switch circuit is a general switch of the charger for controlling the switch of the main control module and each of the plurality of power supply modules.
  • the switch circuit When the user performs the first interactive action with the interaction module, the switch circuit is turned on, or sends a turn-on signal to the main control module and each power supply module, and the main control module and each power supply module are in an ON state; when the user interacts with all power supply modules
  • the interaction module performs the second interaction action, the switch circuit is disconnected, or a shutdown signal is sent to the main control module and each power supply module, and the main control module and each of the plurality of power supply modules are in a shutdown state.
  • the first interaction action may be pressing the "ON” button on the interaction module, and the second interaction action may be pressing the "OFF” button on the interaction module in response.
  • the first interaction action may be switching the button on the interaction module to the first state
  • the second interaction action may be switching the button on the interaction module to the second state.
  • the current information is saved.
  • the main control module when the main control module receives the switch control signal to turn off the main control module, the main control module saves the current setting information.
  • the setting information can be the step size of the current increase when charging is started, or it can be used for safe charging. Preset voltage thresholds for input ports, etc.
  • the interaction module includes an indication unit, and the indication unit is configured to output different indication states based on the state information output by the main control module.
  • the indicating unit is an indicator light, for example, an LED display unit may be included.
  • the LED display unit may include a plurality of LED indicator lights, and the plurality of LEDs may use the same color or different colors. In this way, a plurality of different lighting modes are combined with a plurality of LEDs of the LED display unit, and the status information currently output by the main control module is indicated by the multiple lighting modes.
  • the state information may be charging power information, for example, charging is in progress and charging is completed, and may also be information on the number of power modules used for charging, and the like.
  • the LED display unit may include three LED lights, each of which corresponds to a different label, such as LED1, LED2, and LED3, respectively, and the three LED lights can be combined to form different lighting
  • the status information output by the main control module is indicated, wherein the charger includes two power modules as an example for description.
  • Table 1 shows the corresponding relationship between the lighting mode of the indicating unit and the status information output by the main control module
  • the LEDs can also display different colors to represent different status information output by the main control module. I won't go into details here.
  • the indicated indicating unit may also be a buzzer.
  • the sounding mode of the buzzer is preset by technicians or users, including sounding time, sounding frequency and sounding interval, etc., which are used to indicate different status information output by the main control module.
  • the above LED display unit can also be combined with a buzzer and other devices to jointly represent different status information output by the main control module. It will not be repeated here.
  • the output state information of the main control module can be clearly indicated, which is helpful for the user to judge the current charging state of the high-power charging of the battery to be recharged.
  • users can find it in time to avoid equipment damage and waste of resources.
  • the main control module of the charger is further configured to control the output current of each of the plurality of power modules based on the environmental information and/or the state information of the battery.
  • the output current of the power module can be adjusted by controlling the duty ratio of the switch control signal of the power module.
  • some sensor modules may be integrated in the charger to obtain the charging environment information.
  • the environmental information may include: environmental temperature, environmental humidity, and the like.
  • the environmental temperature, environmental humidity and other information can be obtained through a temperature sensor and a humidity sensor, respectively.
  • the main control module when the main control module obtains the temperature information of the current charging environment through a temperature sensor, etc., the main control module determines whether the ambient temperature is lower than a preset temperature, and when it is lower than the preset temperature, the main control module controls Each of the power modules outputs an output current smaller than a preset current value.
  • the main control module controls the output current of each power supply module in the plurality of power supply modules based on the state information of the battery to be charged, wherein the state information of the battery includes the current voltage of the battery, At least one of a current temperature of the battery and an output current requested by the battery.
  • the battery to be charged has a communication function, which can establish communication with the charger, and send the current voltage of the battery and the requested output current value to the main control module of the charger.
  • the to-be-charged battery may also have a temperature sensing module, and the to-be-charged battery obtains its own current temperature and uses its own communication function to send the obtained temperature information to the main control module.
  • the main control module obtains status information such as the current voltage of the battery, the current temperature, and the output current requested by the battery, the main control module can charge the to-be-rechargeable battery based on a preset charging strategy.
  • the main control module controls each power supply module of the plurality of power supply modules to The lower output current charges the battery to be recharged.
  • the main control module receives the output current request sent by the battery to be recharged, the main control module charges the rechargeable battery with the output current requested by the battery to be recharged.
  • the charger controls the output current of each power module in the multiple power modules based on the environmental information and/or the status information of the battery, it can charge the battery to be rechargeable with high power with a safer and more reasonable charging power, which is beneficial to ensure charging The safety of the device and the battery to be recharged to avoid damage to the device.
  • the charger further includes a plurality of slots, each slot for placing a power module.
  • the power module is placed in the slot, which is convenient for the installation and removal of the charger.
  • the damaged or faulty power module can be conveniently taken out from the corresponding slot position for replacement or maintenance.
  • At least one of the plurality of power modules is hot-pluggable in a corresponding slot.
  • the so-called hot swap means that the module power supply can also be replaced when the charger is working. For example, if a module power supply fails during the working process of the charger, the user can unplug and replace one of the faulty module power supplies while the charger is charging the battery; this can greatly save the user's charging time.
  • the power module can be screwed into the slot. When a power module fails, the faulty power module can be pulled out and replaced by rotating the screw while the charger is charging the battery, thereby effectively saving the user's charging time.
  • an ID resistor is set on the main control module of the charger, and the main control module is further configured to call a charging control strategy based on the resistance value of the ID resistor to control the output current of the plurality of power modules Take control.
  • the corresponding relationship between the ID resistance and the charging control strategy can be stored in the storage unit in advance. After detecting the resistance value of the ID resistance, the main control module can find the corresponding charging control strategy and call the found charging control strategy.
  • the charging control strategy may include control parameters for controlling the output currents of the plurality of power modules, and each charging control strategy corresponds to a set of control parameters.
  • the ID resistors are removable and replaceable. By replacing the ID resistor, the same charger can output different output currents, so as to adapt to different types of batteries to be charged.
  • the main control module is provided with a storage unit for storing a plurality of charging control strategies for the main control module to call.
  • the storage unit may be an internal storage unit of the charger, such as a hard disk or a memory of the charger.
  • the storage unit may also be an external storage device of the charger, such as a plug-in hard disk, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card, and a flash memory card equipped on the charger. (Flash Card) etc.
  • the storage unit may also include both an internal storage device of the charger and an external storage device.
  • the storage unit is used to store the computer program and other programs and data required by the device.
  • the storage unit may also be used to temporarily store data that has been output or will be output.
  • the storage unit further includes a storage medium, and the storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM) or a random access memory (Random Access Memory, RAM) or the like.
  • the charging control strategy includes: controlling the charging current during the charging startup process; in extreme environments, controlling the charging current according to the voltage value of the input interface; control, etc. These control strategies have been described in detail above, and will not be repeated here.
  • the main control module of the charger can charge the to-be-charged battery by calling the appropriate charging strategy stored in the storage unit, which can allow the to-be-charged battery to be charged with a more appropriate charging current, and can avoid the charger and the to-be-charged battery caused by improper charging parameters. Damage to the battery.
  • the main control module is further configured to output alarm information when the state of the charger and/or the battery is abnormal.
  • the main control module communicates with each module in the charger (such as a power module, a communication sub-module, an input power line, etc.) and the battery, and can obtain the status information of the charger and the battery.
  • the main control module judges that there is an abnormal situation, the main control module can output alarm information to remind the user, so as to check the problems of the charger and the battery in time and avoid safety accidents.
  • the alarm information can be displayed through the LED display unit of the interactive module of the charger, for example, through a specific lighting method of the LED display unit for warning; it can also emit a specific alarm sound through the buzzer of the interactive module. alert.
  • the charger may also include an LCD panel, and the main control module directly sends the alarm information to the LCD panel, and after being encoded by the LCD coding module, the alarm information is displayed on the LCD panel in the form of text.
  • the main control module outputting alarm information when the charger and/or the battery to be charged are abnormal, the user can be reminded in time of potential safety hazards in the current equipment, so that the user can troubleshoot the problem in time and avoid the occurrence of various safety accidents.
  • the charger is a charging box, that is, the charger is integrated into a box type and can be moved to an external power source to charge the battery to be recharged.
  • the charger is integrated into a box type and can be moved to an external power source to charge the battery to be recharged.
  • the charger is integrated into a box type and can be moved to an external power source to charge the battery to be recharged.
  • most of the charging stations use the charging pile to charge the high-power battery, while the embodiment of the present disclosure uses the charging box. In the problem that it can only be charged at a fixed location.
  • the input interface of each power module is used to obtain commercial power from different external power sources.
  • the charger includes a plurality of power modules, and each power module can obtain commercial power from different external power sources through an input interface. Since the charging sites of the commercial power are widely distributed, the charger has a very wide application site. In addition, multiple different external power sources supply power to the charger at the same time, which can realize high-power charging of the battery to be recharged, thereby shortening the charging time of the battery, and improving the working time and work efficiency of the device using the battery to be recharged.
  • the charging box includes a main control module, two power modules (power module A and power module B), a chassis, a thermal pad, and the like.
  • the input of the two power modules can simultaneously obtain power from the external power supply to charge the battery to be rechargeable. High power charging, saving charging time.
  • the two power modules used may have their own power fans (not shown in FIG. 7 ) to dissipate heat for the chassis.
  • the charging box uses a thermal pad to connect the main control module to the chassis, and is used to transfer the heat generated by the main control module to the chassis.
  • the module conducts heat dissipation, reducing the volume of the charging box and reducing the cost.
  • the charging box integrates the main control module, the power module, etc. into a box-type structure, which is light and flexible, and is convenient for users to move the charging box to various charging places for charging, for example, charging at home.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种充电器(100),所述充电器(100)用于对电池(300)进行充电,所述充电器(100)包括:主控模块(101)和多个电源模块(102);所述多个电源模块(102)中每个电源模块(102)均包括一个输入接口(103),所述每个电源模块(102)的输入接口(103)用于从不同的外部电源(200)获取电量,并向所述输入接口(103)所属的电源模块(102)供电;所述主控模块(101)用于控制所述多个电源模块(102)对所述电池(300)充电。

Description

一种充电器 技术领域
本公开涉及充电技术领域,尤其涉及一种充电器。
背景技术
由于应用场景的特殊性,大型无人机、大功率电动车等设备对电池的容量要求较大,因此,这些设备的电池往往具有较大的额定充电功率。然而,相关技术中的充电器,对这类电池进行充电的充电速度慢,进而影响了大型无人机、大功率电动车等设备的作业效率及作业时间。
发明内容
为克服相关技术中存在的问题,实现对大型无人机、大功率电动车等设备的电池进行大功率充电,本公开提供了一种充电器。
根据本公开实施例的第一方面,提供一种充电器,所述充电器用于对电池进行充电,所述充电器包括:主控模块和多个电源模块;所述多个电源模块中每个电源模块均包括一个输入接口,所述每个电源模块的输入接口用于从不同的外部电源获取电量,并向所述输入接口所属的电源模块供电;所述主控模块用于控制所述多个电源模块对所述电池充电。
本公开的实施例提供的技术方案可以包括以下有益效果:
本公开实施例中,通过将多个电源模块和一个主控模块集成到同一个充电器中,由一个主控模块对多个电源模块进行输出功率控制,实现对电池进行充电。由于每个电源模块都具有一定的充电功率,因此多个电源模块的集成,能够实现多个充电功率的叠加,进而能够在采用民用电源线和低电压的情况下,实现与高电压下同等的充电效率。提高了对大功率设备的电池进行充电的充电效率。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一实施例中的充电器的一种结构框图;
图2是本发明一实施例中的充电器的另一种结构框图;
图3是本发明一实施例中的电源模块的一种结构框图;
图4是本发明一实施例中的导热垫与主控模块以及机框的连接示意图;
图5是本发明一实施例中的充电器的另一种结构框图;
图6是本发明一实施例中的充电器的另一种结构框图;
图7是本申请一实施例中的充电箱的一种立体结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
在本公开使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开说明书和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
目前,随着电池领域技术的不断发展与进步,许多专用电池具有较大的额定充电功率,允许以较大的充电功率对其进行充电。然而,现有技术中,充电器对电池的充电功率较小,导致电池充电速率较低,充电时间较长,影响了使用这些专用电池的设备的工作时间和作业效率。例如,在无人机领域,大型无人机,包括农业无人机(例如,植保机)、行业无人机、物流无人机等,在工作时具有较大的放大功率。因此,在无人机进行放电之后,需要以较高的充电功率对电池进行充电,以快速恢复大型无人机的工作,保证大型无人机的连续性工作。现有充电器较低的充电功率,导致大型无人机的连续性工作无法保证,一直是当前行业的一个痛点。又例如,在大功率电动车领域,大功率电动车,包括农业无人车、电动车、物流无人车等,往往一次性作业时间较长,且电池放电功率较大,采用现有充电器对其电池进行充电,往往充电速度慢、充电时间长,大量时间花费在对电池的充电上,进而导致这些设备的作业效率十分低下。
为了解决现有充电器中存在的充电功率较低的问题,本公开提出了一种充电器。下面,结合具体实施例进行说明。
请参见图1,图1是本公开一实施例提供的一种充电器的示意性框图:充电器100包括主控模块101和多个电源模块102,每个电源模块102都包含一个输入接口103。每个输入接口103从多个外部电源200获取电量,并向其所属的电源模块102供电。主控模块101控制充电器100中的部分电源模块或者全部电源模块对待充电电池300进行充电。
其中,所述主控模块101包括主控芯片,所述主控芯片包括处理器,所述处理器可以是微控制单元(Micro-controller Unit,MCU)、中央处理器(Central Processing Unit,CPU)或者数字信号处理器(Digital Signal Processor,DSP)等等,此外,主控模块还包括通信单元,用于与充电器的其他模块进行通信,所述通信单元可采用有线通信方式或者无线通信方式进行通信。
电源模块102包括具有通信功能的AC-DC(Alternative Current-Direct Current,交流-直流)电源模块,所述AC-DC电源模块具体可包括与主控模块101连接的通信逻辑接口电路、通信电路以及通信收发自检电路等等。此外,电源模块102还具备调节其输出的功率信号大小的特性,可输出不同大小的电压和/或电流,以满足用户需求。在本公开中,所述电源模块可以是本领域技术人员自己设计的能够实现上述功能的AC-DC电源模块,也可以采用现有技术中的AC-DC电压模块,例如可以采用现有的 通信基站电源,输出功率通常为2000W到5000W之间,本公开不做限制。
待充电电池300可以是终端设备的供电电池。终端设备可以是大功率供电设备,例如农业无人机、物流无人机、电动车、物流无人车等大功率电动车,也可以是其他需要大功率电池进行供电的设备,这里不做限制。在一些实施例中,本公开所述的大功率可以是5000W以上的功率。
本公开实施例中的充电器具有多个电源模块,能够允许多个外部电源通过输入接口向对应的电源模块提供供电,最终实现大功率输出。利用本公开的充电器对待充电电池进行充电,能够解决现有技术中充电器的充电功率较小的问题。
在一些实施例中,图1所示的外部电源200可以是民用充电电源,例如,在中国,可以是输出电压为220V,频率为50HZ的居民用电电源;在美国,可以是输出电压为120V、频率为50HZ的居民用电电源等等。相应地,本公开中的多个电源模块中的每个输入接口通过民用电源线与对应的外部电源相连接。例如,所述民用电源线可以是16A的AC电源线。
以本公开的充电器包含两个电源模块为例,当采用两路16A的AC电线作为本公开所述充电器的输入电线,通过外接两个输出电流为16A,输出功率为3500W的外部电源,本公开所述的充电器能够实现向待充电电池输出7000W的充电功率。在本公开中,通过采用民用电源线作为充电输入电线,能够适应于分布范围广泛的居民用电电源。当采用本公开的充电器对待充电电池进行充电时,具有应用方便、成本低廉、使用安全的优点。
现有技术中,民用插头支持的最大功率较小,以16A的AC电源线为例,在民用电压为220V的情况下,民用插头支持的最大功率为电压与电流的乘积,约为3500W。为了满足大功率设备的充电需求,往往需要采用具有较大输出电压的工业电源对大功率设备的电池进行充电。由于工业电源充电时的充电功率较大,已经远超民用插头所支持的功率上限,因此在充电过程中需要使用工业插头。但是工业插头由于材质、安全性能等方面的原因,具有价格高、供电场所少、应用范围小的缺点。本公开实施例通过采用多个电源模块,所述多个电源模块能够并行地从外部电源获取电能,充电器的总输入功率为多个电源模块的输入功率的叠加,提高了充电器的总输入功率,进而能够在采用民用电源线和低电压的情况下,实现与高电压下同等的充电效率。提高了对大功率设备的电池进行充电的充电效率。
在一些实施例中,每个电源模块的输入接口包括与民用电源线相适配的民用插座。因此,作为待充电电池的供电电源的居民用电电源,可以通过民用电源线与本公开的充电器上的民用插座进行连接,实现充电器供电电源的输入,进而向待充电电池进行充电。
在一些实施例中,民用插座可以为各种标准插座,例如可以是C20插座,也可以是C13、C19、C22等等类型的插座。这些插座的区别在于,额定电流以及插头和母座的规格不同。本领域技术人员应当理解,可以结合具体的应用场所的各类插头的多寡、常用待充电电池的参数等等,对民用插座的类型进行合适的选择,本公开不做限制。
通过上述在输入接口处设置民用插座,为民用电源线接入本公开的充电器提供了标准接入口,因此,本公开实施例的充电器可以从任意的民用电源获取电能,提高了充电器的适用范围,同时也便于将充电器移动至适宜的位置进行充电,而无需通过专门的工业电源进行充电,在使用本公开所述的充电器对待充电电池进行大功率充电时,具有使用方便、适用范围广、成本低廉的优点。
应当说明的是,本公开实施例的充电器不仅可以实现大功率充电,还可以实现普通功率(例如,3500W以下)充电。在使用过程中,可以根据待充电电池所需的充电功率,仅将所述多个电源模块中的部分电源模块接入外部电源,从而实现了对普通功率充电场景的兼容。
在采用充电器对电池进行大功率充电的过程中,由于充电电流较大,因此,充电安全问题是大功率充电器的难题。
在本公开的一些实施例中,通过控制所述多个电源模块中的每个电源模块按照预设的步长逐渐增加输出电流电流值,从而避免充电电流突然变化造成充电器损坏、外部电源跳闸等安全问题。
通常电源模块都包括如电感之类的感性阻抗。在使用充电器对待充电电池进行充电的过程中,如果突然通过输入接口向充电器输入较大的充电电流,电源模块容易产生尖峰电压,可能会造成充电器上元器件的损坏。为了解决该问题,本公开中,充电器的主控模块可以用于控制电源模块按照预设的步长逐渐增加输出电流的电流值。所述电源模块和主控模块,具有通信子模块,能够实现电源模块与主控模块之间的相互通信。所述电源模块可以是现有技术中的电源模块,也可以是本领域技术人员自己 设计的电源模块,本公开对此不作限制。
如图2所示,是本公开另一实施例中的充电器的结构框图。可选地,在利用本实施例的充电器100对待充电电池300进行充电前,可以预先通过主控模块设置电源模块电流增加的第一步长值。所述第一步长值可以直接设置为经验值,也可以根据电源模块对电池的充电电流与当前充电环境参数等的关系计算获得,本公开对此不作限制。在每次充电启动过程中,主控模块101通过自身的通信子模块C与电源模块102的通信子模块104进行通信,告知电源模块102按照预设的第一步长值逐渐增加输出电流的电流值。所述通信可以是有线通信,也可以是无线通信,本公开对此也不作限制。
或者可选地,在利用本实施例的充电器100对待充电电池300进行充电前,可以预先通过主控模块设置电源模块电流的第二步长值、第三步长值以及第一阈值(即,在不同的充电阶段可以采用不同的步长)。在每次充电启动过程中,主控模块101与电源模块102进行通信,告知电源模块102按照预设的第二步长值逐渐增加输出电流的电流值。在电流增加过程中,主控模块侦测电源模块的输出电流是否大于第一阈值,若当前电源模块的输出电流大于第一阈值,主控模块101与电源模块102进行通信,告知电源模块102按照预设的第三步长值逐渐增加输出电流的电流值至待充电电池的额定充电电流。其中,所述第三步长大于所述第二步长。
在一实施例中,对于充电电池的多个电源模块,预先设置的步长值可以相同,也可以不同,本领域技术人员可以根据实际情况确定,本公开不做限制。
在本公开中,通过步进式增加充电电流的方式,在充电启动初期,控制充电器的电源模块以较小的充电电流对待充电电池进行充电,当充电电流达到一定大小后,再进一步增加充电电流的大小,有利于避免由于充电电流的突然变化而引起的充电器和电池的损坏。
在一实施例中,主控模块用于通过调节电源模块的开关控制信号的占空比来控制电源模块按照预设的步长逐渐增加输出电流的电流值。
如图3所示,电源模块102除了包括输入接口103和通信子模块104,还包括开关控制子模块105。开关控制子模块通过改变其开关控制信号的占空比,可以改变电源模块102输出电流。在利用本实施例的充电器对待充电电池进行充电的过程中,主控模块101的通信子模块与电源模块102的通信子模块进行通信,告知电源模块102 按照预设的第一步长值逐渐增加输出电流的电流值,电源模块102的通信子模块104将该信息发送给开关控制子模块105,开关控制子模块105通过改变其开关控制信号的占空比,进而使得电源模块按照预设的步长值逐渐增加输出电流的电流值。
在本公开中,通过采用调节电源模块的开关控制信号的占空比来实现步进式增加充电电流,有利于避免由于充电电流的突然变化而引起的充电器和电池的损坏。
采用充电器对电池进行充电,当充电器的连接线老化时,在充电过程中会有燃烧的风险。在一实施例中,充电器的主控模块通过获取所述充电器的连接线的电流与电压之间的关系,确定充电器的连接线的老化状态,以消除充电过程中的燃烧风险。所述充电器的连接线,包括充电器的主控模块与电源模块之间的内部连接线,也包括充电器的输入接口与外部电源之间的第一外部连接线,以及电源模块与待充电电池之间的第二外部连接线。所述连接线的电流与电压之间的关系,可以通过连接线的阻抗或者连接线的电压随电流的变化关系来表征。下面结合不同的实施例进行具体的说明。
在一实施例中,对于充电器的主控模块与电源模块之间的内部连接线,主控模块在多个不同时刻获取电源模块的输出电压和主控模块的输入电压,进而通过输入电压和输出电压的电压差获得内部连接线上的电压。基于对应时刻,主控模块所监测获得的对应的内部连接线上的电流,判断内部连接线的电压是否随着电流的增大而减小,如果是,则确定内部连接线已经老化,具有燃烧等安全风险。
主控模块在多个不同时刻获取电源模块的输入电压和输出电压,可以通过采样电路来实现,采样电路可以是常规的实现采样功能的电路,这里不再赘述。所述多个不同时刻,可以是相同时间间隔的时刻,也可以是不同时间间隔的时刻,本公开不做限制。
在一实施例中,对于充电器的主控模块与电源模块之间的内部连接线,主控模块通过获取电源模块的输出电压和主控模块的输入电压,根据所述的输入电压和输出电压之间的差值,即内部电线上的电压,结合主控模块监测到的内部电线上的电流,可以得到内部连接线上的阻抗,将所获得的内部连接线上的阻抗与标准内部连接线上的阻抗进行比较,确定内部连接线上的阻抗与标准内部连接线上的阻抗的误差是否在异常范围内,如果是,则确定连接线已经老化,具有燃烧等安全风险。所述得到的内部连接线上的阻抗,可以是单次获得的阻抗值,也可以是多次获得的阻抗的平均值,本公开对此不作限制。
在一实施例中,对于充电器的输入接口与外部电源之间的第一外部连接线,主控模块在多个不同时刻获取充电器的输入接口的电压,根据外部电源的输出电压,获得第一外部连接线上的电压。基于对应时刻,主控模块所监测获得的对应的输入接口处的电流,判断第一外部连接线上的电压是否随着电流的增大而减小,如果是,则确定第一外部连接线已经老化或者为劣质电线,具有燃烧等安全风险。
在一实施例中,对于充电器的输入接口与外部电源之间的第一外部连接线,主控模块获取充电器的输入接口的电压,根据充电器刚开始启动时(即充电器的输入电流约等于0时)所获取的充电器的输入电压,获得第一外部连接线上的电压。基于主控模块所监测获得的对应的输入接口处的电流,可以获得第一外部连接线上的阻抗,将所获得的第一外部连接线上的阻抗与标准第一外部连接线上的阻抗进行比较,确定第一外部连接线上的阻抗与标准第一外部连接线上的阻抗的误差是否在异常范围内,如果是,则确定第一外部连接线已经老化或者是劣质电线,具有燃烧等安全风险。所述得到的第一外部连接线上的阻抗,可以是单次获得的阻抗值,也可以是多次获得的阻抗的平均值,本公开对此不作限制。
在一实施例中,对于电源模块与待充电电池之间的第二外部连接线,主控模块在多个不同时刻获取主控模块的输出电压以及待充电电池的电压,基于所述两个电压的差值,获得第二外部连接线上的电压。基于对应时刻,主控模块所监测获得的对应的待充电电池的输入电流,判断第二外部连接线上的电压是否随着电流的增大而减小,如果是,则确定第二外部连接线已经老化或者为劣质电线,具有燃烧等安全风险。
在一实施例中,对于电源模块与待充电电池之间的第二外部连接线,主控模块获取主控模块的输出电压以及待充电电池的电压,基于所述两个电压的差值,获得第二外部连接线的输出电压,获得第二外部连接线上的电压。基于主控模块所监测获得的对应的待充电电池的输入电流,可以获得第二外部连接线上的阻抗,将所获得的第二外部连接线上的阻抗与标准第二外部连接线上的阻抗进行比较,确定第二外部连接线上的阻抗与标准第二外部连接线上的阻抗的误差是否在异常范围内,如果是,则确定第二外部连接线已经老化或者是劣质电线,具有燃烧等安全风险。所述得到的第二外部连接线上的阻抗,可以是单次获得的阻抗值,也可以是多次获得的阻抗的平均值,本公开对此不作限制。
以上介绍了充电器的主控模块通过获取所述充电器的内部连接线、第一外部连接线以及第二外部连接线的电流与电压之间的关系,从而确定充电器的连接线的老化 状态。本领域技术人员应当理解,既可以只采取对充电器的内部连接线、第一外部连接线以及第二外部连接线中的一种连接线的老化状态进行判断,也可以对其中的任意两种以及三种连接线的老化状态进行判断,甚至可以对充电器中的其他连接线的老化状态进行判断,本公开不做限制。
通过上述对充电器内部以及外部的连接线的阻抗检测,包括阻抗值是否正常以及阻抗值是否变化等,能够确定充电器及其内部外部连接线是否老化损坏或者是否为劣质产品,从而在利用实施例的充电器对待充电电池进行大功率充电时,能够避免燃烧等风险,保证充电安全。
本领域技术人员应当理解,上述各个功能模块的划分,仅仅为一种逻辑功能划分,实际实现时可以由另外的划分方式,比如,将所述开关控制子模块划分在主控模块中,用于实现对电源模块输出电流的调节;再比如,把输入接口单独作为输入模块,用于接收外部电源的供电。
在一些实施例中,充电器的多个电源模块中的至少一个电源模块和/或所述主控模块可拆卸。对于该充电器的设计,可以将充电器中的部分或者全部功能模块设计成可拆卸的模块,以方便更换。
通常,每个电源模块都自带电源风扇,用于为电源模块散热。传统的用于大功率充电的充电器并没有充分利用电源风扇的散热能力,而是在充电器内部设置额外的系统风扇来为整个充电装置进行散热,这样,一方面增加了硬件成本,另一方面也增大了充电器的体积。
为了解决上述问题,本公开的充电器还包括导热垫,导热垫一端与主控模块接触,另一端与充电器的机框接触,以将所述主控模块产生的热量传导至所述机框上。
如图4所示,是本公开的又一充电器的实施例的结构框图。其中,导热垫106的一端与主控模块101连接,另一端与充电器的机框107连接。由于电源模块102自带风扇模块,用于为自身扇热,以保证电源模块的正常工作,导热垫将主控模块与机框相连,能够将主控模块产生的热量传导至机框。充电器工作时,电源模块的风扇模块开启工作,能够为机框散热,进而实现对主控模块的散热。
其中,导热垫可以为硅胶导热垫,也可以为人工合成石墨片,还可以是其他具有较好导热性能的材质,本公开对此不作限制。
在本公开中,通过导热垫,将主控模块上的热量传导到充电器的机框上,利用 电源模块自带的风扇对充电器进行散热,能够在降低充电器成本的前提下,减小充电器的体积,并提高系统的整体可靠性。
对于植保无人机等设备,其工作环境常常比较恶劣。在极端环境下,例如低温或者高温场景,外部的供电电源容易出现跳闸、烧线等问题,进而造成充电器的电源模块出现断路与短路等问题,甚至对待充电电池也带来不可逆转的损害。
在充电器工作之前,用户可以预先在主控模块上配置各个电流值对应的电压阈值,也可以配置电流值与电压阈值的数学关系,由某一电流值可以获得该电流值对应的电压阈值,也可以是配置其他信息,从而根据电流值获得该电流值对应的电压阈值,本公开不做限制。在一些实施例中,在充电器工作时,充电器的主控模块首先获取充电器的输入电源线的电压,然后将所获取的电压值与输入电源线当前电流对应的电压阈值进行比较。当输入电线的电压大于输入电源线当前电流对应的电压阈值,主控模块向电源线对应的电源模块发送控制指令,以使所述电源线对应的电源模块的输出电流减小,从而对充电器实现降功率,以保证充电器和待充电电池的安全。
所述使电源线对应的电源模块的输出电流减小,可以是前述主控模块向对应的电源模块发送控制指令,以改变电源模块的开关控制信号的占空比,进而实现减小电源模块的输出电流,也可以是其他方式,本公开不做限制。
在一些实施例中,所述电压阈值可以基于所述主控模块的温度升高量确定。在极端场景下,供电电源出现跳闸、烧线等问题时,会伴随着主控模块温度的变化。所以,所述电压阈值可以设置为随主控模块的温度变化量而升高或者降低一定的量,以实现充电器的输入功率的限制。
在一些实施例中,所述电压阈值与所述主控模块的温度升高量正相关。当供电电源出现跳闸、烧线等问题时,主控模块的温度往往升高,电源线的阻值变大,因此,电源线对应的电压值也升高。故所述电压阈值在预先配置时,可以设置为与所述主控模块的温度升高量正相关。
通过对充电器进行上述配置,能够实现对充电器的输入功率进行及时调节,从而实现充电器输入功率的限制。因此,即使在一些极端场景应用下,外部供电电源出现跳闸、烧线等情况,也能够尽量避免充电器及待充电电池的损坏。
在一些实施例中,所述充电器还包括电压转换模块。如图5所示,电压转换模块108的输入端与多个电源模块中的一个电源模块102相连,用以将该电源模块输出 的电压进行降压处理,并将处理后的电压输出至主控模块101,以对主控模块进行供电。
当本公开的充电器100接外部电源200以实现对待充电电池300进行大功率充电时,电源模块102输出的电压一般高于主控模块101所需要的供电电压。现有技术中,通常采用额外的供电电源模块,为主控模块101提供工作电压。在本公开中,通过在主控模块101与电源模块102引入一个电压转换模块108,对电源模块102的输出电压进行降压处理,使得处理后的电压能够为主控模块108供电。本领域技术人员应当理解,所述电压转换模块,可以为现有技术中的降压模块,也可以是根据降压参数设计的电压转换模块,本公开对此不作限制。
通过电压转换模块直接对电源模块的输出电压进行降压处理来实现主控模块的供电,既保证了所述充电器能够以大功率对待充电电池进行充电,也能对主控模块进行供电,减少了额外的辅助性电源模块的引入,降低了充电器的成本,提高了充电器的整体可靠性。
在一些实施例中,如图6所示,所述充电器100还包括交互模块109,所述交互模块109分别与主控模块101和多个电源模块中的每个电源模块102相连接,用于将开关控制信号分别发送至所述主控模块101和每个电源模块102。
在一些实施例中,该交互模块包括开关电路,所述开关电路为充电器的总开关,用于控制主控模块和多个电源模块中的每个电源模块的开关。当用户与所述交互模块进行第一交互动作,所述开关电路导通,或者向主控模块和每个电源模块发送开启信号,主控模块和每个电源模块处于开启状态;当用户与所述交互模块进行第二交互动作,所述开关电路断开,或者向主控模块和每个电源模块发送关闭信号,主控模块和多个电源模块中的每个电源模块处于关闭状态。所述第一交互动作可以为按下该交互模块上的“开启”按键,所述第二交互动作响应地可以是按下该交互模块上的“关闭”按键。此外,第一交互动作可以为将该交互模块上的按键切换为第一状态,第二交互动作可以为将该交互模块上的按键切换为第二状态。当然,本领域技术人员应当理解,以上仅为示例性说明,本公开对第一交互动作、第二交互动作并不限制。
在一些实施例中,当主控模块接收到所述开关控制信号的情况下,保存当前信息。例如,当主控模块接收到所述开关控制信号为关闭主控模块时,主控模块保存当前的设置信息,设置信息可以是充电启动时,电流增加的步长,还可以是为了安全充 电所预设的输入接口的电压阈值,等等。
在一些实施例中,所述交互模块包括指示单元,所述指示单元用于基于主控模块输出的状态信息,输出不同的指示状态。
所述指示单元为指示灯,例如可以包括LED显示单元。所述LED显示单元可以包括多个LED指示灯,多个LED可以使用相同的颜色,也可以使用不同的颜色。由此,利用该LED显示单元的多个LED等组合多种不同的亮灯方式,用所述多种亮灯方式指示当前主控模块输出的状态信息。所述状态信息可以是充电电量信息,例如正在充电和充电完成,还可以是充电所使用的电源模块的数量信息等等。
如表一所示,所述LED显示单元可以包括三个LED灯,每个LED灯分别对应不同的标号,例如分别为LED1、LED2和LED3,则可以用三个LED灯组合成不同的亮灯方式,对主控模块输出的状态信息进行指示,其中,以所述充电器包括两个电源模块为例进行说明。
表1为指示单元的亮灯方式与主控模块输出的状态信息的对应关系
Figure PCTCN2020127458-appb-000001
当然,所述LED还可以显示不同的颜色,以表示主控模块输出的不同状态信息。这里不再赘述。
此外,所示指示单元还可以是蜂鸣器。在该充电器出厂前,由技术人员或者用户预先设置好蜂鸣器的发声方式,包括发声时间、发声频率以及发声间隔等,用于指示主控模块所输出的不同状态信息。
当然,还可以将上述LED显示单元与蜂鸣器等装置进行组合,以联合表示主控模块所输出的不同状态信息。这里也不再赘述。
通过引入交互模块,能够对主控模块的输出状态信息进行明显的指示,有利于用户判断当前对待充电电池的大功率充电的充电状态。当出现问题时,能够使用户及时发现,避免设备的损坏和资源的浪费。
当处于恶劣环境时,环境信息对于充电器的充电电流、充电电压以及充电功率会产生影响。如果忽略这种影响,可能会造成充电器以及充电电池的损坏。
因此,在一些实施例中,充电器的主控模块还用于基于环境信息和/或所述电池的状态信息,控制所述多个电源模块中的每个电源模块的输出电流。所述控制每个电源模块的输出电流的方法,可以如前文所述,通过控制电源模块的开关控制信号的占空比,从而调节电源模块的输出电流。
在一些实施例中,可以在充电器中集成一些传感器模块,用以获取充电的环境信息。所述环境信息可以包括:环境温度、环境湿度等等。所述环境温度、环境湿度等信息,可以分别通过温度传感器、湿度传感器获得。
在一些实施例中,当主控模块通过温度传感器等方式获得当前充电环境的温度信息,主控模块判断所述环境温度是否低于预设温度,当低于预设温度时,主控模块控制所述每个电源模块输出小于预设电流值的输出电流。
通过根据环境温度调节充电器的电源模块的输出电流,能够有效地避免在由于环境参数的影响导致的充电电流过大,进而减少充电器和待充电电池的损伤。
在一些实施例中,主控模块基于待充电电池的状态信息,控制所述多个电源模块中的每个电源模块的输出电流,其中,所述电池的状态信息包括所述电池的当前电压、所述电池的当前温度和所述电池请求的输出电流中的至少一者。
在一些实施例中,待充电电池具有通信功能,可以与充电器建立通信,向充电器的主控模块发送电池当前的电压以及请求的输出电流值。此外,待充电电池还可以具有温度传感模块,待充电电池通过获取自身的当前温度,并利用自身的通信功能向主控模块发送所获取的温度信息。当主控模块获得电池的当前电压、当前温度以及电池所请求的输出电流等状态信息,主控模块可以基于预设的充电策略对待充电电池进行充电。例如,当待充电电池当前的电压高于在主控模块预设的电压阈值或者待充电电池的当前温度高于预设的温度阈值时,主控模块控制多个电源模块中每个电源模块以较低的输出电流对待充电电池进行充电。当主控模块接收到待充电电池所发送的输出电流请求,主控模块以待充电电池所请求的输出电流对待充电电池进行充电。
当充电器基于环境信息和/或电池的状态信息,控制多个电源模块中的每个电源模块的输出电流,从而能够以更加安全合理的充电功率对待充电电池进行大功率充电,有利于保证充电器以及待充电电池的安全,避免设备的损坏。
在一些实施例中,所述充电器还包括多个插槽,每个插槽用于放置一个电源模块。采用插槽放置电源模块,方便充电器的安装与拆卸。当多个电源模块中的某个电源模块损坏或者故障时,能够便捷地从对应的插槽位置取出损坏或者故障的电源模块进行替换或者维修。
在一些实施例中,多个电源模块中的至少一个电源模块在对应的插槽中可热插拔。所谓热插拔是指充电器在工作时,也可以进行模块电源更换。例如,假设充电器在工作过程中,有一个模块电源发生故障,则用户可以在充电器给电池充电过程中拔出其中一个故障模块电源并进行替换;这样可以大大节省用户的充电时间。电源模块可通过螺钉固定在插槽中。在某个电源模块发生故障时,可以在充电器给电池充电的过程中,通过旋转螺钉拔出故障的电源模块并进行替换,从而有效节省用户的充电时间。
在一些实施例中,充电器的主控模块上设置有ID电阻,所述主控模块还用于基于所述ID电阻的阻值,调用充电控制策略来对所述多个电源模块的输出电流进行控制。ID电阻与充电控制策略的对应关系可以预先存储在存储单元中,主控模块在检测到ID电阻的阻值之后,可以查找到对应的充电控制策略,并调用查找到的充电控制策略。所述充电控制策略中可以包括对所述多个电源模块的输出电流进行控制的控制参数,每种充电控制策略对应一组控制参数。在一些实施例中,ID电阻可拆卸和更换。通过更换ID电阻,可以使同一个充电器输出不同的输出电流,从而适配不同型号的待充电电池。
在一些实施例中,所述主控模块上设有存储单元,用于存储多个充电控制策略,以供所述主控模块进行调用。
所述存储单元可以是所述充电器的内部存储单元,例如充电器的硬盘或内存。所述存储单元也可以是充电器的外部存储设备,例如所述充电器上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,所述存储单元还可以既包括所述充电器的内部存储设备,也包括外部存储设备。所述存储单元用于存储所述计算机程序以及所述设备所需的其他程序 和数据。所述存储单元还可以用于暂时地存储已经输出或者将要输出的数据。其中,所述存储单元还包括存储介质,存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
所述充电控制策略包括:在充电启动过程中对充电电流的控制;在极端环境中,根据输入接口的电压值对充电电流的控制;基于环境信息以及待充电电池的状态信息,对充电电流的控制,等等。这些控制策略在前文已经详述,这里不再赘述。
充电器的主控模块通过调用存储单元中所存储的合适充电策略对待充电电池进行充电,能够允许以较合适的充电电流对待充电电池进行充电,能够避免充电参数不当所造成的充电器及待充电电池的损坏。
在一些实施例中,所述主控模块还用于在所述充电器和/或所述电池的状态异常时输出报警信息。主控模块与充电器中的各个模块(如电源模块、通信子模块、输入电源线等等)以及电池进行通信,能够获得充电器以及电池的状态信息。当主控模块判断存在异常状况时,主控模块可以输出报警信息对用户进行提醒,以便及时排查充电器及电池所存在的问题,避免安全事故。所述报警信息,可以通过充电器的交互模块的LED显示单元显示报警信息,例如通过LED显示单元的某种特定的亮灯方式进行警示;也可以通过交互模块的蜂鸣器发出特定的警报声音进行警示。此外,充电器还可以包括LCD面板,主控模块直接向LCD面板发送警报信息,经过LCD编码模块进行编码后,以文字的形式将警报信息显示在LCD面板上。
通过主控模块在充电器和/或待充电电池异常时输出报警信息,能够及时提醒用户当前设备存在安全隐患,以使用户及时排查问题,避免各类安全事故的发生。
在一实施例中,所述充电器为充电箱,即所述充电器被集成为箱式,可以移动至外部电源处对待充电电池进行充电。目前大部分的充电站都采用充电桩固定的方式对大功率电池进行充电,而本公开的实施例采用充电箱的方式,整机的重量较轻,方便移动,可以有效地解决在现有技术中只能能在固定地点充电的问题。
在一实施例中,所述每个电源模块的输入接口用于从不同的外部电源获取市电。在本公开中,所述充电器包含多个电源模块,每个电源模块可以通过输入接口从不同的外部电源获取市电。由于市电的充电地点分布较广,因此,所述充电器具有十分宽广的应用场所。此外,多个不同的外部电源同时为充电器供电,能够实现对待充电电池的大功率充电,进而能够缩短电池的充电时间,提高应用待充电电池的设备的 工作时间以及工作效率。
参见图7,给出了本公开的一个充电箱示例性立体结构示意图。所述充电箱包括主控模块、两个电源模块(电源模块A和电源模块B)、机框及导热垫等。
在使用该充电箱对待充电电池进行充电时,两个电源模块的输入可以同时从外部电源获取电能对待充电电池进行充电,充电功率为两个电源模块的输出功率之和,能够实现对待充电电池的大功率充电,节省充电时间。
所使用的两个电源模块可以自带电源风扇(图7未示出),用于为机框散热。针对主控模块的散热,所述充电箱利用导热垫,将主控模块与机框连接,用于将主控模块产生的热量传递至机框上,利用电源模块自带的电源风扇对主控模块进行散热,减小了充电箱的体积,降低了成本。
此外,所述充电箱将主控模块、电源模块等集成为箱式结构,轻巧灵活,方便用户移动该充电箱至多种充电场所进行充电,例如,在家庭中进行充电。
以上充电箱的结构仅为一示例性说明,本领域技术人员应当理解,本公开的充电箱还可以采用其他结构,本公开对此不作限制。
上述对本公开特定实施例进行了描述。其它实施例在所附权利要求书的范围内。在一些情况下,在权利要求书中记载的动作或步骤可以按照不同于实施例中的顺序来执行并且仍然可以实现期望的结果。另外,在附图中描绘的过程不一定要求示出的特定顺序或者连续顺序才能实现期望的结果。在某些实施方式中,多任务处理和并行处理也是可以的或者可能是有利的。
本领域技术人员在考虑说明书及实践这里申请的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未申请的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。
以上所述仅为本公开的较佳实施例而已,并不用以限制本公开,凡在本公开的 精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本公开保护的范围之内。

Claims (31)

  1. 一种充电器,其特征在于,所述充电器用于对电池进行充电,所述充电器包括:
    主控模块和多个电源模块;
    所述多个电源模块中每个电源模块均包括一个输入接口,所述每个电源模块的输入接口用于从不同的外部电源获取电量,并向所述输入接口所属的电源模块供电;
    所述主控模块用于控制所述多个电源模块对所述电池充电。
  2. 根据权利要求1所述的充电器,其特征在于,所述每个电源模块的输入接口通过民用电源线与对应的外部电源相连接。
  3. 根据权利要求2所述的充电器,其特征在于,所述每个电源模块的输入接口包括与所述民用电源线相适配的民用插座。
  4. 根据权利要求3所述的充电器,其特征在于,所述民用插座为C20插座。
  5. 根据权利要求1所述的充电器,其特征在于,所述主控模块用于:
    控制所述多个电源模块中的第一电源模块按照预设的步长逐渐增加输出电流的电流值。
  6. 根据权利要求5所述的充电器,其特征在于,所述主控模块用于:
    通过调节所述第一电源模块的开关控制信号的占空比来控制所述第一电源模块按照预设的步长逐渐增加输出电流的电流值。
  7. 根据权利要求1所述的充电器,其特征在于,所述主控模块还用于:
    获取所述充电器的连接线的电流与电压之间的关系;
    基于所述连接线的电流与电压之间的关系,确定所述连接线的老化状态。
  8. 根据权利要求7所述的充电器,其特征在于,所述主控模块还用于:
    若所述连接线的电压随着所述连接线的电流的增大而减小,判定所述连接线老化。
  9. 根据权利要求8所述的充电器,其特征在于,所述主控模块用于:
    基于所述充电器的连接线的电流与电压,确定所述连接线的阻抗;
    若所述连接线的阻抗随着所述连接线的电流的增大而增大,判定所述连接线老化。
  10. 根据权利要求8所述的充电器,其特征在于,所述充电器的阻抗包括所述充电器的外部连接线的阻抗和/或所述充电器的内部连接线的阻抗。
  11. 根据权利要求1所述的充电器,其特征在于,所述多个电源模块中的至少一个电源模块和/或所述主控模块可拆卸。
  12. 根据权利要求1所述的充电器,其特征在于,所述充电器还包括导热垫,所 述导热垫一端与所述主控模块接触,另一端与所述充电器的机框接触,以将所述主控模块产生的热量传导至所述机框上;
    所述多个电源模块中的每个电源模块包括电源风扇,用于为所述机框散热。
  13. 根据权利要求12所述的充电器,其特征在于,所述导热垫为硅胶导热垫。
  14. 根据权利要求1所述的充电器,其特征在于,所述主控模块还用于:
    获取所述充电器的输入电源线的电压;
    若所述输入电源线的电压大于所述输入电源线当前电流对应的电压阈值,向所述电源线对应的电源模块发送控制指令,以使所述电源线对应的电源模块的输出电流减小。
  15. 根据权利要求14所述的充电器,其特征在于,所述电压阈值基于所述主控模块的温度升高量确定。
  16. 根据权利要求15所述的充电器,其特征在于,所述电压阈值与所述主控模块的温度升高量正相关。
  17. 根据权利要求1所述的充电器,其特征在于,所述充电器还包括:
    电压转换模块,用于对所述多个电源模块中的第二电源模块输出的电压进行降压处理,并将处理后的电压输出至所述主控模块,以对所述主控模块供电。
  18. 根据权利要求1所述的充电器,其特征在于,所述充电器还包括:
    分别与所述主控模块和所述多个电源模块中的每个电源模块相连接的交互模块,用于将开关控制信号分别发送至所述主控模块和所述每个电源模块。
  19. 根据权利要求18所述的充电器,其特征在于,所述交互模块包括指示单元,所述指示单元用于:
    基于所述主控模块输出的状态信息,输出不同的指示状态。
  20. 根据权利要求19所述的充电器,其特征在于,所述指示单元为指示灯。
  21. 根据权利要求18所述的充电器,其特征在于,所述主控模块还用于:
    在接收到所述开关控制信号的情况下,保存当前信息。
  22. 根据权利要求1所述的充电器,其特征在于,所述主控模块还用于:
    基于环境信息和/或所述电池的状态信息,控制所述多个电源模块中的每个电源模块的输出电流。
  23. 根据权利要求22所述的充电器,其特征在于,所述环境信息包括环境温度;所述主控模块用于:
    在所述环境温度低于预设温度时,控制所述每个电源模块输出小于预设电流值的 输出电流。
  24. 根据权利要求22所述的充电器,其特征在于,所述电池的状态信息包括所述电池的当前电压、所述电池的当前温度和所述电池请求的输出电流中的至少一者。
  25. 根据权利要求1所述的充电器,其特征在于,所述充电器还包括:
    多个插槽,每个插槽用于放置一个电源模块。
  26. 根据权利要求25所述的充电器,其特征在于,所述多个电源模块中的至少一个电源模块在对应的插槽中可热插拔。
  27. 根据权利要求1所述的充电器,其特征在于,所述主控模块上设有ID电阻,所述主控模块还用于:
    基于所述ID电阻的阻值调用充电控制策略来对所述多个电源模块的输出电流进行控制。
  28. 根据权利要求27所述的充电器,其特征在于,所述主控模块上设有存储单元,用于存储多个充电控制策略,以供所述主控模块进行调用。
  29. 根据权利要求1所述的充电器,其特征在于,所述主控模块还用于:
    在所述充电器和/或所述电池的状态异常时输出报警信息。
  30. 根据权利要求1至29任意一项所述的充电器,其特征在于,所述充电器为充电箱。
  31. 根据权利要求1至29任意一项所述的充电器,其特征在于,所述每个电源模块的输入接口用于从不同的外部电源获取市电。
PCT/CN2020/127458 2020-11-09 2020-11-09 一种充电器 WO2022095013A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/127458 WO2022095013A1 (zh) 2020-11-09 2020-11-09 一种充电器
CN202080071114.9A CN114651379A (zh) 2020-11-09 2020-11-09 一种充电器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/127458 WO2022095013A1 (zh) 2020-11-09 2020-11-09 一种充电器

Publications (1)

Publication Number Publication Date
WO2022095013A1 true WO2022095013A1 (zh) 2022-05-12

Family

ID=81456885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/127458 WO2022095013A1 (zh) 2020-11-09 2020-11-09 一种充电器

Country Status (2)

Country Link
CN (1) CN114651379A (zh)
WO (1) WO2022095013A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220348083A1 (en) * 2019-06-28 2022-11-03 Man Truck & Bus Se Vehicle comprising an electrically conductive vehicle part that can be used as a resistor element for converting electrical energy into heat
CN115954993A (zh) * 2023-03-15 2023-04-11 北京国电光宇机电设备有限公司 一种多模块电源屏均流充电控制方法及系统
CN116404724A (zh) * 2023-05-29 2023-07-07 深圳市驰普科达科技有限公司 户外电源及其控制方法、并联连接线和户外电源组件

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040010649A1 (en) * 2002-07-12 2004-01-15 Weaver Jeffrey S User-configurable power architecture with hot-pluggable power modules
CN102222954A (zh) * 2011-06-16 2011-10-19 上海雷博新能源汽车技术有限公司 一种并联式大功率充电装置
CN103944238A (zh) * 2014-04-30 2014-07-23 深圳市睿德电子实业有限公司 高稳定便于维护的大功率动力电池
CN105591443A (zh) * 2016-03-08 2016-05-18 联想(北京)有限公司 一种供电装置及供电方法
CN207926258U (zh) * 2018-03-20 2018-09-28 深圳臻迪信息技术有限公司 一种冗余电源、供电装置以及使用该供电装置的无人船
CN111697672A (zh) * 2020-07-20 2020-09-22 广州极飞科技有限公司 充电控制方法、装置、充电装置及存储介质
CN211785885U (zh) * 2019-11-19 2020-10-27 南京优利肯电气有限公司 一种模块化操作台及变频谐振高压试验装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040010649A1 (en) * 2002-07-12 2004-01-15 Weaver Jeffrey S User-configurable power architecture with hot-pluggable power modules
CN102222954A (zh) * 2011-06-16 2011-10-19 上海雷博新能源汽车技术有限公司 一种并联式大功率充电装置
CN103944238A (zh) * 2014-04-30 2014-07-23 深圳市睿德电子实业有限公司 高稳定便于维护的大功率动力电池
CN105591443A (zh) * 2016-03-08 2016-05-18 联想(北京)有限公司 一种供电装置及供电方法
CN207926258U (zh) * 2018-03-20 2018-09-28 深圳臻迪信息技术有限公司 一种冗余电源、供电装置以及使用该供电装置的无人船
CN211785885U (zh) * 2019-11-19 2020-10-27 南京优利肯电气有限公司 一种模块化操作台及变频谐振高压试验装置
CN111697672A (zh) * 2020-07-20 2020-09-22 广州极飞科技有限公司 充电控制方法、装置、充电装置及存储介质

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220348083A1 (en) * 2019-06-28 2022-11-03 Man Truck & Bus Se Vehicle comprising an electrically conductive vehicle part that can be used as a resistor element for converting electrical energy into heat
CN115954993A (zh) * 2023-03-15 2023-04-11 北京国电光宇机电设备有限公司 一种多模块电源屏均流充电控制方法及系统
CN116404724A (zh) * 2023-05-29 2023-07-07 深圳市驰普科达科技有限公司 户外电源及其控制方法、并联连接线和户外电源组件
CN116404724B (zh) * 2023-05-29 2023-08-25 深圳市驰普科达科技有限公司 户外电源及其控制方法、并联连接线和户外电源组件

Also Published As

Publication number Publication date
CN114651379A (zh) 2022-06-21

Similar Documents

Publication Publication Date Title
WO2022095013A1 (zh) 一种充电器
US10468891B2 (en) Charger for vacuum cleaner and fast charging controlling method thereof
CN108054795B (zh) 终端及充电方法
CN106066435A (zh) 光伏逆变器老化测试系统
CN204407623U (zh) 一种安全型电源插座
WO2021218170A1 (zh) 充电箱及充电系统
US20140055143A1 (en) Battery testing system with energy circulation
CN105762898A (zh) 一种智能手机充电器
WO2022095059A1 (zh) 一种内燃充电系统
CN211148807U (zh) 一种拉载测试治具
CN207705819U (zh) 一种带快充的多功能安全汽车应急启动电源
CN105261896A (zh) 一种家居智能开关插座
CN210428357U (zh) 智能散热型电脑适配器
CN205691700U (zh) 光伏逆变器老化测试系统
CN107231030A (zh) 新型在线提醒的安全锂电池组
CN205178181U (zh) 一种家居智能开关插座
US20140225556A1 (en) Electronic Apparatus Charging Base and Power-Supply Control Method Thereof
CN210927793U (zh) 一种具有ac和dc双供电方式的电视
CN213043444U (zh) 一种智能逆变器控制管理电源
CN210428353U (zh) 能快速散热的笔记本电脑适配器
CN208782519U (zh) 用于多节锂电池均衡修复的设备
CN207765973U (zh) 一种充电柜的充电控制装置
CN203871910U (zh) 一种具有自动断电的充电器
CN209266751U (zh) 一种便携式充电器装置
CN206370678U (zh) 一种计算机usb接口输出电压检测保护电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20960471

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20960471

Country of ref document: EP

Kind code of ref document: A1