WO2022061677A1 - 充电控制方法、电路、设备及存储介质 - Google Patents

充电控制方法、电路、设备及存储介质 Download PDF

Info

Publication number
WO2022061677A1
WO2022061677A1 PCT/CN2020/117554 CN2020117554W WO2022061677A1 WO 2022061677 A1 WO2022061677 A1 WO 2022061677A1 CN 2020117554 W CN2020117554 W CN 2020117554W WO 2022061677 A1 WO2022061677 A1 WO 2022061677A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
battery
charger
circuit
voltage
Prior art date
Application number
PCT/CN2020/117554
Other languages
English (en)
French (fr)
Inventor
张伟鸿
周瑜
黄辉
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2020/117554 priority Critical patent/WO2022061677A1/zh
Priority to CN202080015944.XA priority patent/CN113508509A/zh
Publication of WO2022061677A1 publication Critical patent/WO2022061677A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with provisions for charging different types of batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00036Charger exchanging data with battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery

Definitions

  • the present application relates to the technical field of charging, and in particular, to a charging control circuit, a charging control method, a charging control device, a battery, a movable platform and a storage medium.
  • Fast chargers include PPS chargers and fast chargers using other fast charging protocols, such as QC4. 0.
  • Fast chargers with fast charging protocols such as SCP, FCP, PE3.0, and VOOC.
  • the PPS charger uses a programmable power supply (Programmable Power Supply, PPS) charging scheme, which belongs to one supported in USB PD3.0.
  • the power supply type uses the USB PD protocol to achieve voltage and current regulation, and is compatible with mainstream fast charging protocols (QC4.0, QC3.0, SCP, FCP, PE3.0, PE2.0, and VOOC protocols).
  • PPS programmable Power Supply
  • the power supply type uses the USB PD protocol to achieve voltage and current regulation, and is compatible with mainstream fast charging protocols (QC4.0, QC3.0, SCP, FCP, PE3.0, PE2.0, and VOOC protocols).
  • QC4.0, QC3.0, SCP, FCP, PE3.0, PE2.0, and VOOC protocols mainstream fast charging protocols
  • the embodiments of the present application provide a charging control circuit, a charging control method, a charging control device, a battery, a movable platform and a storage medium, which can realize charging the battery according to the type of the charger.
  • an embodiment of the present application provides a charging control circuit, where the charging control circuit includes:
  • a charging interface circuit which can be connected to different types of chargers
  • the charging circuits are used to connect between the charging interface circuit and the battery, and different charging circuits are used to adapt to different types of chargers;
  • the main control circuit when a charger is connected to the charging interface circuit, the main control circuit is used to: identify the type of the charger, and select a charging circuit suitable for the type of the charger as the charging circuit battery charging.
  • an embodiment of the present application provides a charging control method, which is applied to the main control circuit in any charging control circuit provided by the embodiment of the present application, and the method includes:
  • a charging circuit suitable for the type of the charger is selected to charge the battery.
  • an embodiment of the present application further provides a charging device, the charging device includes a charging control circuit, the charging control circuit is used to connect a charger and a battery, and the charging control circuit includes:
  • a charging interface circuit which can be connected to different types of chargers
  • the charging circuits are configured to be connected between the charging interface circuit and the battery, and different charging circuits are adapted to different types of chargers;
  • the main control circuit when a charger is connected to the charging interface circuit, the main control circuit is used to: identify the type of the charger, and select a charging circuit suitable for the type of the charger as the charging circuit battery charging.
  • an embodiment of the present application further provides a battery, the battery includes a charging control circuit, and the charging control circuit includes:
  • a charging interface circuit which can be connected to different types of chargers
  • the charging circuits are configured to be connected between the charging interface circuit and the battery, and different charging circuits are adapted to different types of chargers;
  • the main control circuit when a charger is connected to the charging interface circuit, the main control circuit is used to: identify the type of the charger, and select a charging circuit suitable for the type of the charger as the charging circuit battery charging.
  • an embodiment of the present application further provides a movable platform, where the movable platform includes a platform body and the charging control circuit according to any one of the embodiments of the present application, where the charging control circuit is used to control The charger charges the battery of the movable platform.
  • the embodiments of the present application further provide another charging control device, the charging control device comprising a memory and a processor;
  • the memory is used to store computer programs
  • the processor is configured to execute the computer program, and when executing the computer program, implement the steps of any charging control method provided by the embodiments of the present application.
  • an embodiment of the present application further provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the processor implements the implementation of the present application The steps of the charging control method described in any one of the examples provided.
  • FIG. 1 is a schematic diagram of a charging control circuit provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of another charging control circuit provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of another charging control circuit provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of another charging control circuit provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of another charging control circuit provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another charging control circuit provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another charging control circuit provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of steps of a charging control method provided by an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of steps of another charging control method provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a charging control device provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a charging system provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a battery provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of another charging system provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a movable platform provided by an embodiment of the present application.
  • FIG. 15 is a schematic block diagram of a charging control apparatus provided by an embodiment of the present application.
  • PPS Programmable Power Supply
  • USB PD3.0 is a Power Supply type supported in USB PD3.0. It is a power supply that uses the USB PD protocol output and can realize voltage and current regulation. PPS absorbs the current fast charging solution in the market and reintegrates it into a set of "big and comprehensive" fast charging solutions to achieve compatibility with mainstream fast charging protocols, such as QC4.0, QC3.0, SCP, FCP, PE3 .0, PE2.0 and VOOC and other fast charging protocols.
  • the PPS protocol can adjust the voltage and current, it can be directly connected to the battery for charging without adding an additional Charger module circuit, and the PPS charger can achieve an output voltage of up to 20V, and can directly charge the battery with a current of up to 5A. Charging efficiency, reducing charging time.
  • the mainstream fast chargers in the market are basically still based on the Charger charging scheme, that is, using the Changer module circuit to achieve voltage and current regulation during fast charging. For example, if the charger outputs a constant voltage, the Changer module circuit can adjust the voltage and current, and then charge the battery, regardless of whether the charger has a voltage and current adjustment function circuit.
  • the Charger module circuit itself will have efficiency loss, which will lead to a large amount of heat, thus limiting the further increase of the charging power.
  • the higher the charging power the higher the performance of components is required, and the larger the occupied area of the components, which affects the miniaturization design of the product.
  • the Charger module circuit can be omitted, the occupied area of the components can be minimized, and the charging power can be maximized.
  • the corresponding PPS charger must be used to complete the charging. Because the charging interface of the ordinary charger (non-PPS charger) is the same as the charging interface of the PPS charger, it can be a Type-C interface, for example, if the battery only supports ordinary If the PPS charger is connected at this time, the connected charger cannot charge the battery, which will cause confusion to the user and reduce the user experience.
  • the embodiments of the present application provide a charging control circuit, a charging control method, a charging control device, a battery, and a movable platform.
  • the charging control circuit can select a charging matching the charging type according to the type of the charger.
  • the circuit charges the charging, thereby solving the above problems and improving the user experience.
  • FIG. 1 is a schematic diagram of a circuit structure of a charging control circuit provided by an embodiment of the present application.
  • the charging control circuit 100 includes a main control circuit 11 , a charging interface circuit 12 and at least two charging circuits 13 , wherein the charging interface circuit 12 is used to connect the charger, and the charging circuit 13 is connected to the battery to realize the charging of the battery through the charger. Charge.
  • the main control circuit 11 includes a Microcontroller Unit (MCU), wherein the charging interface circuit 12 and the charging circuit 13 are both directly or indirectly connected to the micro-control unit, and the micro-control unit can obtain the charger through the charging interface circuit 12.
  • the corresponding information is obtained, and corresponding control is performed according to the obtained information. For example, the type of the connected charger is acquired, and one of the charging circuits is controlled to open according to the acquired type of the charger to charge the battery.
  • the charging interface circuit 12 can be connected to different types of chargers.
  • the interface of the charging interface circuit 12 can be, for example, a Type-C interface, and certainly can also be a Type-A interface, a USB interface, and the like.
  • the interfaces of the different types of chargers can also be, for example, Type-C interfaces, and certainly can also be Type-A interfaces and USB interfaces.
  • the different types of chargers include, for example, PPS-type chargers and non-PPS-type chargers.
  • non-PPS type chargers can include fast chargers or slow chargers, and fast chargers can be divided into fast chargers such as QC4.0, SCP, FCP, PE3.0 and VOOC according to the fast charging protocol used.
  • each charging circuit 13 is used to connect between the charging interface circuit 12 and the battery.
  • different charging circuits are used to adapt to different types of chargers.
  • the at least two charging circuits include a first charging circuit and a second charging circuit, wherein the first charging circuit is adapted to the PPS charger, and the second charging circuit is adapted to the non-PPS charger. adaptation.
  • the first charging circuit includes a charging switch 131 whose control terminal is connected to the main control circuit 11 ; and/or the second charging circuit includes a Charger module circuit 132 , which is connected to the main control circuit 11 . So that the main control circuit 11 selects a corresponding charging circuit to charge the battery.
  • the Charger module circuit 132 includes a built-in MOS switch or an external MOS switch, the built-in MOS switch is integrated in the Charger module, and the external MOS switch is disposed outside the Charger module. Selecting the built-in MOS switch can save the space of the Charger module, but the charging power is limited. If the external MOS switch is selected, the Charger module occupies a large space, but the charging power is large. Therefore, in the actual design, flexible selection and design can be performed according to the needs of charging power and occupied area.
  • the second charging circuit may include a Changer module circuit, or may not include a Changer module circuit.
  • the main control circuit 11 When a charger is connected to the charging interface circuit 12, such as when the user inserts the charger and intends to charge the battery, the main control circuit 11 is used to identify the type of the connected charger, and select the type suitable for the charger. The associated charging circuit charges the battery.
  • the main control circuit 11 when the main control circuit 11 recognizes that the type of the connected charger is a PPS charger, it controls the first charging circuit to charge the battery, and specifically can control the charging switch 131 to be turned on, thereby connecting the charger to the battery. battery, to charge the battery.
  • the type of charger can be identified through the communication protocol adopted by the charger, for example, whether it is a PPS charger or a non-PPS charger through the PPS protocol. Or, identify whether the charger is a fast charger or a slow charger according to the fast charging protocol.
  • the charging switch 131 may include a switch tube, such as a MOS tube.
  • the gate of the MOS tube is connected to the main control circuit 11.
  • the main control circuit 11 sends a high level to the MOS tube to control the MOS tube to be turned on, thereby realizing PPS.
  • the charger charges the battery.
  • the main control circuit 11 when the main control circuit 11 recognizes that the type of the charger is a non-PPS charger, it controls the second charging circuit to charge the battery. Specifically, sending the enable signal enables the Charger module circuit to charge the battery.
  • the non-PPS charger may be a fast charger or a slow charger
  • the main control circuit 11 when the main control circuit 11 recognizes that the type of the charger is a non-PPS charger, it can also determine the charging whether the charger is a fast charging charger; and adjusting the output voltage of the charger to meet the input voltage of the Charger module circuit 132 according to the determination result, and enabling the Charger module circuit 132 to charge the battery.
  • a voltage adjustment command is sent to the charger so that the charger adjusts the output voltage until it reaches the input voltage of the Charger module circuit 132; if the determined result is a non-fast charging charger, it is not sent.
  • the voltage adjustment command is sent to the charger, and the default output voltage of the charger is used, for example, the default output voltage of 5.0V is used for charging.
  • enabling the Charger module circuit to charge the battery specifically adjusting the output voltage and output current of the Charger module circuit 132, performing constant current charging on the battery, and when the battery voltage reaches a slow charging voltage Then, the battery is charged with constant voltage. As a result, the charging efficiency of the battery is improved.
  • the charging control circuit provided by the embodiment of the present application can select a corresponding charging circuit to charge the battery according to the type of the charger. For example, if a PPS charger is inserted, the charging circuit corresponding to the PPS charger is selected to charge the battery, thereby avoiding The situation that the battery cannot be charged due to the different types of connected chargers occurs, thereby improving the user experience.
  • the main control circuit 11 may also obtain battery parameters of the battery to determine whether the battery parameters meet the charging requirements. If the battery parameters meet the charging requirements, the step of identifying the type of the charger is performed, and then according to the identified type of the charger, a charging circuit suitable for the type is selected to charge the battery. Since the battery will be charged immediately after the charging circuit suitable for the charger type is determined, there will be potential safety hazards. By selecting a suitable charging circuit, the safety and reliability of battery charging can be improved.
  • the battery parameters include at least battery voltage and battery temperature.
  • the obtained battery parameters may also include other information, such as battery capacity, battery type, and the like.
  • the main control circuit 11 may specifically determine whether the battery voltage is within a preset voltage range, and whether the battery temperature is within a preset temperature range; If the battery voltage is within the preset voltage range and the battery temperature is within the preset temperature range, it is determined that the charging requirement is met.
  • the preset voltage range may be, for example, (2.5V ⁇ 4.4V), and the preset temperature range may be, for example, (0° ⁇ 45°), when the battery voltage is between (2.5V ⁇ 4.4V) 4.4V) and the battery temperature is within (0° ⁇ 45°), it is determined to meet the charging requirements. It can be understood that, the preset voltage range and the preset temperature range can also be other range values.
  • the main control circuit 11 may specifically determine whether the battery voltage is greater than a preset voltage and whether the battery temperature is lower than a preset temperature; If the battery voltage is greater than the preset voltage, and the battery temperature is lower than the preset temperature, it is determined that the charging requirement is met.
  • the preset voltage is 2.5V
  • the preset temperature is 45°.
  • the battery voltage is greater than 2.5V and the battery temperature is lower than 45°, it is determined that the charging requirements are met. It can be understood that the preset voltage and preset temperature can also be other values.
  • the charging control circuit 100 includes a fast charging protocol circuit 14, and the fast charging protocol circuit 14 is respectively connected to the charging interface circuit 12 and the main control circuit 11, that is, connected to the charging interface circuit 12 and the main control circuit 11. Between the control circuit 11, it is used for handshake communication with the connected charger to obtain the type of the charger.
  • the fast charging protocol circuit 14 includes a PD protocol chip, and the PD protocol chip is used for handshake communication with the connected charger to obtain the type of the charger, such as for determining whether the connected charger is PPS charger.
  • the charging control circuit 100 in order to supply power to the main control circuit 11 , includes a voltage conversion circuit 15 .
  • the voltage conversion circuit 15 is connected to the charging interface circuit 12 and the main control circuit 11 , that is, the voltage input end of the voltage conversion circuit 15 is connected to the charging interface circuit 12 , and the output end is connected to the main control circuit 11 for connecting the charging interface circuit
  • the output voltage of the charger connected to 12 is converted into the working voltage of the main control circuit 11 to provide the main control circuit 11 with a working voltage.
  • the charging control circuit 100 in order to supply power to the fast charging protocol circuit 14 , includes a voltage conversion circuit 15 .
  • the voltage conversion circuit 15 is connected to the charging interface circuit 12 and the fast charging protocol circuit 14 , that is, the voltage input terminal of the voltage conversion circuit 15 is connected to the charging interface circuit 12 , and the output terminal is connected to the fast charging protocol circuit 14 for charging
  • the output voltage of the charger connected to the interface circuit 12 is converted into the working voltage of the fast charging protocol circuit 14 to provide the working voltage for the fast charging protocol circuit 14 .
  • the charging control circuit 100 in order to supply power to the main control circuit 11 , includes a voltage conversion circuit 15 , and the voltage conversion circuit 15 is connected to the battery and the main control circuit 11 , and is used to provide power to the main control circuit 11 .
  • the output voltage of the battery is converted to provide the main control circuit 11 with an operating voltage.
  • the charging control circuit 100 in order to supply power to the fast charging protocol circuit 14 , the charging control circuit 100 includes a voltage conversion circuit 15 , and the voltage conversion circuit 15 is connected to the battery and the fast charging protocol circuit 14 for pairing The output voltage of the battery is converted to provide a working voltage for the fast charging protocol circuit 14 .
  • the The voltage conversion circuit 15 is specifically a step-down circuit.
  • the operating voltages of the main control circuit 11 and the fast charging protocol circuit 14 refer to the operating voltages of the micro-control unit and the PD protocol chip, respectively.
  • the operating voltage of the micro-control unit and the operating voltage of the PD protocol chip Equal for example, both are 3.5V, of course, they may not be equal.
  • the voltage conversion circuit 15 is specifically a step-down circuit, which is specifically used to convert 5.0V into 3.3V circuit.
  • a plurality of voltage conversion circuits 15 can be used to charge the main control circuit 11 and the fast charging protocol circuit 14. Specifically, one voltage conversion circuit 15 can be used to supply power to the main control circuit 11, and the other voltage conversion circuit 15 can be used for the fast charging protocol. Circuit 14 is powered. Of course, a plurality of voltage conversion circuits 15 may be connected in series to supply power to the main control circuit 11 and the fast charging protocol circuit 14 respectively, which is especially suitable for the case where the operating voltages of the main control circuit 11 and the fast charging protocol circuit 14 are not equal.
  • the main control circuit 11 may also obtain the battery voltage of the battery, and adjust the starting voltage of the charger through the PD protocol chip according to the battery voltage of the battery. , and control the first charging circuit to charge the battery according to the adjusted starting voltage. Wherein, the starting voltage is greater than the battery voltage.
  • the main control circuit 11 detects that the connected charger is a PPS charger, the main control circuit 11 will communicate with the charger through the PD protocol chip according to the battery voltage of the battery, and then adjust the initial voltage of the charger. After adjusting the starting voltage, turn on the charging switch 131 of the first charging circuit to charge the battery.
  • the output voltage of the charger can be adjusted to 12.1V, and then the charging switch 131 in the first charging circuit is controlled to be closed, thereby charging the battery. Adjust the output voltage of the charger to 12.1V, and you can gradually adjust the voltage to 12.1V.
  • the main control circuit 11 is configured to acquire the charging voltage in the first charging circuit, and acquire the battery voltage of the battery; and adjust the output of the charger according to the charging voltage and the battery voltage voltage and output current to charge the battery.
  • the output voltage and output current of the charger are adjusted to charge the battery.
  • the output voltage and output current of the charger can be adjusted, the battery is charged with constant current, and the battery is charged with a constant current.
  • the battery is charged with constant voltage.
  • the charging efficiency of the battery can be improved by first performing constant current charging and then performing constant voltage charging.
  • the main control circuit 11 continuously adjusts the output voltage and current of the charger through the PD protocol chip according to the charging voltage and the battery voltage, so as to maintain the constant current charging of the battery.
  • the battery voltage reaches the full charging voltage, the charging voltage is maintained not change, the battery enters the constant voltage charging stage until the battery is fully charged.
  • the main control circuit 11 determines the charging voltage and charging current by communicating with the PPS charger through the PD protocol chip, but if the output voltage (charging voltage) of the PPS charger is lower than the battery voltage, it may cause the battery current to flow back to the PPS charger, that is, to generate current flooding phenomenon.
  • the charging control circuit 100 includes an anti-backflow circuit 16, and the anti-backflow circuit 16 is connected in parallel with the charging switch 131.
  • the charging switch 131 is controlled to be turned on or off according to the voltage across the charging switch 131 .
  • the anti-backflow circuit 16 includes an ORing controller, and the ORing controller is used to realize the anti-backflow.
  • ORing controller is used to realize the anti-backflow.
  • other electronic components can also be used, for example, an ideal diode is used to realize the anti-backflow circuit.
  • a trigger signal is sent to the main The control circuit 11, the main control circuit 11 sends a shutdown signal to the charging switch 131 to turn off the charging switch 131, thereby realizing anti-backflow, wherein the shutdown signal can be, for example, a low-level signal.
  • the first end of the charging switch 131 is the end connected to the charging interface circuit, and the second end of the charging switch 131 is the end connected to the battery.
  • the average current meets the requirements. Because the charging current of the charger oscillates, that is, sometimes The peak value of the charging current will be large. For example, the average charging current is 5A, but the peak value of the charging current is higher than 5A, and the maximum peak value may reach 7.5A, which may exceed the maximum allowable charging current of the battery, thereby causing damage to the battery cells and affecting the life and safety of the battery.
  • the charging control circuit 100 includes a current detection circuit 17, which is connected to the first charging It is connected to the main control circuit 11 for detecting the charging current of the first charging circuit and sending it to the main control circuit 11, so that the main control circuit 11 controls the conduction of the charging switch 131 according to the oscillation of the charging current or off.
  • the current detection circuit 17 may include a current amplifier, and of course other circuits may also be used for implementation.
  • the main control circuit 11 determines that the detected amplitude of the charging current exceeds a preset threshold, the excess of the preset threshold indicates that the maximum charging current that the battery can withstand has exceeded, and a shutdown signal is sent to the charging switch 131 to turn off the charging switch 131 , thereby preventing damage caused by current oscillations, thereby improving battery life and safety, wherein the shutdown signal may be, for example, a low-level signal.
  • FIG. 8 is a schematic flowchart of a charging control method provided by an embodiment of the present application.
  • the method can be applied to a main control circuit in any one of the charging control circuits provided by the embodiment of the present application.
  • charging control method By executing the charging control method, charging can be achieved for different types of chargers, thereby improving user experience.
  • the charging control method includes step S101 and step S102.
  • different types of chargers include PPS chargers and non-PSS chargers, wherein the non-PPS chargers further include fast chargers and slow chargers.
  • the non-PPS chargers further include fast chargers and slow chargers.
  • other types of chargers may also be included, or other different types of battery divisions may be performed.
  • PPS chargers and non-PPS chargers can be identified by the communication protocol adopted by the charger, for example, whether it is a PPS charger or a non-PPS charger through the PPS protocol.
  • PPS charging identify whether it is a fast charger or a slow charger according to the fast charging protocol.
  • the at least two charging circuits of the charging control circuit specifically include a first charging circuit and a second charging circuit, wherein the first charging circuit is adapted to the PPS charger, and the second charging circuit is adapted to the non-PPS charger. match.
  • selecting a charging circuit suitable for the type of the charger to charge the battery specifically: when it is recognized that the type of the charger is a PPS charger, controlling the first charging circuit to be the The battery is charged; when the type of the charger is identified as a non-PPS charger, the second charging circuit is controlled to charge the battery. In this way, different types of chargers can be connected, and the battery can be charged.
  • the type of the charger is a non-PPS charger
  • a voltage adjustment command is sent to the charger so that the charger can adjust the output voltage until it reaches the input voltage of the Charger module circuit. If the determined result is a non-fast charging charger, no voltage is sent. Adjust the command to the charger to use the charger's default output voltage.
  • the input voltage of the Charger module circuit is, for example, 9V, 12V, or 15V, and the default output voltage is, for example, 5V.
  • the output voltage of the charger needs to be adjusted to meet the input voltage requirements of the Charger module circuit, such as adjusting to 9V.
  • the Charger module circuit is enabled to charge the battery, specifically, the output voltage and output current of the Charger module circuit can be adjusted, the battery is charged with constant current, and when the battery voltage reaches a slow When charging the voltage, the battery is charged with constant voltage.
  • the charging control circuit includes a fast charging protocol circuit
  • the fast charging protocol circuit includes a PD protocol chip.
  • the PD protocol chip can also adjust the battery voltage according to the battery voltage of the battery. starting voltage of the charger; and controlling the first charging circuit to charge the battery according to the adjusted starting voltage. Wherein, the starting voltage is greater than the battery voltage.
  • the output voltage of the charger can be adjusted to 12.1V, and then the first charging circuit is controlled to charge the battery. Adjust the output voltage of the charger to 12.1V, and the voltage can be adjusted gradually to 12.1V.
  • the charging voltage in the first charging circuit can be acquired, and the battery's charging voltage can be acquired.
  • the battery voltage is adjusted, and the output voltage and output current of the charger are adjusted according to the charging voltage and the battery voltage to charge the battery.
  • the output voltage and current of the charger can be adjusted in real time according to the real-time charging voltage and current, thereby improving the efficiency and safety of charging.
  • the adjusting the output voltage and output current of the charger to charge the battery may specifically adjust the output voltage and output current of the charger, charge the battery with constant current, and charge the battery with a constant current. When the voltage reaches the slow charging voltage, the battery is charged with constant voltage.
  • battery parameters of the battery can also be obtained to determine whether the battery parameters meet the charging requirements, if the battery parameters meet the charging requirements Charging requirements, then identify the type of charger. Therefore, after satisfying the charging requirements, the battery can be charged by identifying the type of the charger at the beginning, thereby improving the charging safety and reliability.
  • the battery parameters include at least battery voltage and battery temperature.
  • the acquired battery parameters may also include other information, such as battery capacity, battery type, and the like.
  • the battery voltage is within a preset voltage range, and whether the battery temperature is within a preset temperature range; if the battery voltage is within the preset voltage range If the voltage range is set, and the battery temperature is within the preset temperature range, it is determined that the charging requirement is met.
  • the preset voltage range may be (2.5V-4.4V), and the preset temperature range may be (0°-45°), when the battery voltage is within (2.5V-4.4V) and the battery temperature At (0° ⁇ 45°), it is determined that the charging requirement is met. It can be understood that, the preset voltage range and the preset temperature range can also be other range values.
  • a current detection circuit may be set in the charging control circuit.
  • the charging control method includes: receiving the first charging circuit detected by the current detection circuit The charging current is controlled; according to the oscillation of the charging current, the charging switch is controlled to be turned on or off. That is, when the battery oscillates, the charging switch can be turned off, thereby realizing the protection of the charger and the battery, thereby improving the service life and safety of the battery.
  • the main control circuit determines that the detected amplitude of the charging current exceeds a preset threshold
  • the excess of the preset threshold indicates that the maximum charging current that the battery can withstand has exceeded
  • a shutdown signal is sent to the charging switch to disconnect the charging switch, thereby preventing the hazards caused by current oscillations, thereby increasing the life and safety of the battery, wherein the shutdown signal may eg be a low-level signal.
  • FIG. 9 is a schematic flowchart of another charging control method provided by an embodiment of the present application.
  • the charging control method can realize charging the battery according to the type of the charger, so as to prevent the battery charger from being unable to be charged when the charger is connected. Therefore, the user experience is improved, and the safety and charging efficiency of battery charging can also be improved.
  • the charging control method includes step S201 and step S211.
  • the battery parameters include at least battery voltage and battery temperature.
  • the acquired battery parameters may also include other information, such as battery capacity, battery type, and the like.
  • the preset voltage range may be (2.5V-4.4V), and the preset temperature range may be (0°-45°), when the battery voltage is within (2.5V-4.4V) and the battery temperature At (0° ⁇ 45°), it is determined that the charging requirement is met. It can be understood that, the preset voltage range and the preset temperature range can also be other range values.
  • step S203 is performed; if the battery parameters do not meet the charging requirements, step S204 is performed.
  • the types of the chargers include PPS chargers and non-PPS chargers, which may, of course, also include other types, or be divided into other different types.
  • step S205 is executed; if the type of the charger is identified as a non-PPS charger, step S206 is executed.
  • the prompt information can be, for example, at least one of voice prompt information, buzzer prompt information, LED lights to form a lamp language, and text prompt information.
  • the at least two charging circuits of the charging control circuit specifically include a first charging circuit and a second charging circuit, wherein the first charging circuit is adapted to the PPS charger, and the second charging circuit is adapted to the non-PPS charger. match.
  • the first charging circuit when it is recognized that the type of the charger is a PPS charger, the first charging circuit is controlled to charge the battery; when it is recognized that the type of the charger is a non-PPS charger, the first charging circuit is controlled to charge the battery.
  • the second charging circuit charges the battery. In this way, different types of chargers can be connected, and the battery can be charged.
  • CC-CV charging is to perform constant current charging first and then perform constant voltage charging.
  • the charging voltage in the first charging circuit and the battery voltage of the battery can be obtained, and the output voltage and output current of the charger can be adjusted according to the charging voltage and the battery voltage, and the battery Constant current charging is performed, and when the battery voltage reaches a slow charging voltage, the battery is then subjected to constant voltage charging.
  • the charging efficiency is thereby improved.
  • the initial voltage of the charger may be adjusted through the PD protocol chip according to the battery voltage of the battery, and the adjusted initial voltage may be adjusted according to the adjusted battery voltage. starting voltage, and controlling the first charging circuit to charge the battery. Wherein, the starting voltage is greater than the battery voltage.
  • the output voltage of the charger can be adjusted to 12.1V, and then the first charging circuit is controlled to charge the battery. Adjust the output voltage of the charger to 12.1V, and you can gradually adjust the voltage to 12.1V.
  • the second charging circuit is controlled to charge the battery.
  • step S208 is performed; If it is determined that it is a slow charger, step S209 is executed.
  • a voltage adjustment command is sent to the charger so that the charger can adjust the output voltage until it reaches the input voltage of the Charger module circuit. If the determined result is a non-fast charging charger, no voltage is sent. Adjust the command to the charger to use the charger's default output voltage.
  • the input voltage of the Charger module circuit is, for example, 9V, 12V, or 15V, and the default output voltage is, for example, 5V. If the input voltage of the Charger module circuit is 9V, the output voltage of the charger is adjusted to 9V.
  • step S210 If it is a fast charger, when the output voltage of the charger meets the input voltage requirement of the Charger module circuit, an enable signal is sent to the Charger module circuit to enable the Charger module circuit to be in a working state, and step S210 is executed; if it is a slow charger, An enable signal is sent to the Charger module circuit to charge the battery, and step S211 is executed.
  • the output voltage and output current of the Charger module circuit can also be adjusted, the battery can be charged with constant current, and the battery can be charged when the battery voltage reaches the slow charging voltage. Perform constant voltage charging. Use constant current and constant voltage charging method to improve the charging efficiency of the battery.
  • the connected charger when it is determined that the battery is not fully charged, return to step S206, continue to adjust the output voltage and output current of the charger, and perform CC-CV charging for the battery; when it is determined that the battery is fully charged When the battery is charged, end charging.
  • the connected charger is a non-PPS charger and a fast charger, when it is determined that the battery is not fully charged, return to step S210, continue to adjust the output voltage and output current of the charger, and perform CC-CV charging for the battery; When you are sure the battery is fully charged, end charging.
  • the connected charger is a non-PPS charger and a slow charger, when it is determined that the battery is fully charged, the charging ends.
  • FIG. 10 is a schematic structural diagram of a charging control device provided by an embodiment of the present application.
  • the charging control device When charging a battery, the charging control device is connected between the battery and the charger, so that different types of chargers can The battery is charged, which in turn improves the user experience.
  • the charging control device 200 includes a casing 20 and a circuit board disposed in the casing 20 , and the circuit board includes the charging control circuit according to any one of the embodiments of the present application.
  • the housing 20 also has a charger interface 201 and a battery interface, the charger interface 201 is connected to the charging interface circuit, and the battery interface is used to connect the battery.
  • the battery is connected to the charging control device 200, and then the charger 300 is connected to the charging control device 200.
  • the charging control device 200 can select the corresponding charging control device according to the type of the charger.
  • the charging circuit charges the battery. For example, when the PPS charger is inserted, the charging circuit corresponding to the PPS charger is selected to charge the battery, so as to avoid the situation that the battery cannot be charged due to the different types of connected chargers, thereby improving the user experience. experience.
  • FIG. 12 is a schematic structural diagram of a battery provided by an embodiment of the present application.
  • the battery can be charged by different types of chargers, thereby improving user experience.
  • the battery 400 includes a casing 40 , a circuit board, a battery cell, and the like disposed in the casing 40 , and the circuit board includes the charging control circuit described in any one of the embodiments of the present application.
  • the housing 40 also has a charger interface 401, the charger interface is used to connect the charger, and the charger interface 401 is connected with the charging interface circuit.
  • any type of charger 300 can be connected to the battery 400, and the battery 400 can be charged by selecting a corresponding charging circuit according to the type of the charger.
  • the charging circuit corresponding to the PPS charger is selected for charging, so as to avoid the situation that the battery cannot be charged due to different types of connected chargers, thereby improving the user experience.
  • An embodiment of the present application further provides a movable platform, the movable platform includes a platform body and the charging control circuit according to any one of the embodiments of the present application, where the charging control circuit is used to identify the type of the charger , and then select a suitable charging circuit to charge the battery, so as to avoid the situation that the battery cannot be charged due to different types of connected chargers, thereby improving the user experience.
  • the movable platform is specifically an unmanned aerial vehicle, and the unmanned aerial vehicle 500 includes the charging control circuit described in any one of the embodiments of the present application.
  • the movable platform can also include robots, unmanned vehicles, and the like.
  • FIG. 15 is a schematic block diagram of another charging control apparatus provided by an embodiment of the present application.
  • the charging control device includes one or more processors 601 and a memory 602 .
  • the processor 601 may be, for example, a micro-controller unit (Micro-controller Unit, MCU), a central processing unit (Central Processing Unit, CPU), or a digital signal processor (Digital Signal Procesor, DSP) or the like.
  • MCU Micro-controller Unit
  • CPU Central Processing Unit
  • DSP Digital Signal Procesor
  • the memory 212 may be a Flash chip, a read-only memory (ROM, Read-Only Memory) magnetic disk, an optical disk, a U disk, or a mobile hard disk, and the like.
  • ROM Read-Only Memory
  • the memory 602 is used for storing a computer program; the processor 601 is used for executing the computer program, and when executing the computer program, executes the above-mentioned charging control method.
  • the charging control apparatus of the embodiments of the present application has similar beneficial technical effects as the charging control circuits of the above-mentioned embodiments, and thus will not be repeated here.
  • the embodiments of the present application further provide a computer-readable storage medium, where the computer-readable storage medium stores a computer program, the computer program includes program instructions, and the processor executes the program instructions to implement the above implementation The steps of any one of the charging control methods provided in the example.
  • the computer-readable storage medium may be the charging control device described in any of the foregoing embodiments, a battery, or an internal storage unit of a movable platform, such as a memory or internal memory of the battery.
  • the computer-readable storage medium may also be an external storage device of the battery, such as a plug-in hard disk equipped on the battery, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card , Flash Card (Flash Card) and so on.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种充电控制电路、充电控制方法、设备及存储介质,该充电控制电路(100)包括:主控电路(11)、充电接口电路(12)和至少两个充电电路(13),充电接口电路(12)能够接入不同类型的充电器,充电电路(13)用于连接在充电接口电路(12)和电池之间,不同的充电电路(13)用于适配不同类型的充电器;其中,在有充电器接入到充电接口电路(12)时,主控电路(11)用于:识别充电器的类型,并选择与充电器的类型相适配的充电电路(13)为电池充电。

Description

充电控制方法、电路、设备及存储介质 技术领域
本申请涉及充电技术领域,尤其涉及一种充电控制电路、充电控制方法、充电控制装置、电池、可移动平台及存储介质。
背景技术
目前,市场上的充电器类型较多,比如按照充电速率可以分为快速充电器和慢速充电器,快速充电器又包括PPS充电器和采用其他快充协议的快速充电器,比如采用QC4.0、SCP、FCP、PE3.0和VOOC等快充协议的快速充电器,其中PPS充电器采用的是可编程电源(Programmable Power Supply、PPS)充电方案,属于USB PD3.0中支持的一种电源类型,其使用USB PD协议实现电压电流调节,可以兼容主流的快充协议(QC4.0、QC3.0、SCP、FCP、PE3.0、PE2.0和VOOC等协议)。由于需要满足行业标准,因此不同类型的充电器均采用相同的充电接口(比如Type-C接口),但是其控制方式却不相同,因此有时会出现插入电池却无法充电,给用户带来困扰,降低了用户体验。
发明内容
基于此,本申请提实施例供了一种充电控制电路、充电控制方法、充电控制装置、电池、可移动平台及存储介质,可实现根据充电器的类型给电池进行充电。
第一方面,本申请实施例提供了一种充电控制电路,所述充电控制电路包括:
主控电路;
充电接口电路,所述充电接口电路能够接入不同类型的充电器;
至少两个充电电路,所述充电电路用于连接在所述充电接口电路和电池之间,不同的所述充电电路用于适配不同类型的充电器;
其中,在有充电器接入到所述充电接口电路时,所述主控电路用于:识别所述充电器的类型,并选择与所述充电器的类型相适配的充电电路为所述电池充电。
第二方面,本申请实施例提供了一种充电控制方法,应用于本申请实施例提供的任一项充电控制电路中的主控电路,所述方法包括:
识别所述充电器的类型;
选择与所述充电器的类型相适配的充电电路为电池充电。
第三方面,本申请实施例还提供了一种充电装置,所述充电装置包括充电控制电路,所述充电控制电路用于连接充电器和电池,所述充电控制电路包括:
主控电路;
充电接口电路,所述充电接口电路能够接入不同类型的充电器;
至少两个充电电路,所述充电电路用于连接在所述充电接口电路和电池之间,不同的所述充电电路适配不同类型的充电器;
其中,在有充电器接入到所述充电接口电路时,所述主控电路用于:识别所述充电器的类型,并选择与所述充电器的类型相适配的充电电路为所述电池充电。
第四方面,本申请实施例还提供了一种电池,所述电池包括充电控制电路,所述充电控制电路包括:
主控电路;
充电接口电路,所述充电接口电路能够接入不同类型的充电器;
至少两个充电电路,所述充电电路用于连接在所述充电接口电路和所述电池之间,不同的所述充电电路适配不同类型的充电器;
其中,在有充电器接入到所述充电接口电路时,所述主控电路用于:识别所述充电器的类型,并选择与所述充电器的类型相适配的充电电路为所述电池充电。
第五方面,本申请实施例还提供了一种可移动平台,所述可移动平台包括平台本体和如本申请实施例中任一项所述的充电控制电路,所述充电控制电路用于控制充电器给所述可移动平台的电池进行充电。
第六方面,本申请实施例还提供了另一种充电控制装置,所述充电控制装置包括存储器和处理器;
所述存储器用于存储计算机程序;
所述处理器,用于执行所述计算机程序并在执行所述计算机程序时,实现如本申请实施例提供的任一种充电控制方法的步骤。
第七方面,本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现如本申请实施例提供的任一项所述的充电控制方法的步骤。
本申请实施例公开的充电控制电路、充电控制方法、充电控制装置、电池、可移动平台及存储介质,其中,该充电控制电路可以设置在充电控制装置内,或者也可以设置在电池和可移动平台内,充电控制装置给在电池充电时连接在电池和充电器之间。可实现根据充电器的类型进行充电,以避免插入电池无法充电的情况出现,进而提高了用户体验。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
附图说明
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种充电控制电路的示意图;
图2是本申请实施例提供的另一种充电控制电路的示意图;
图3是本申请实施例提供的另一种充电控制电路的示意图;
图4是本申请实施例提供的另一种充电控制电路的示意图;
图5是本申请实施例提供的另一种充电控制电路的示意图;
图6是本申请实施例提供的另一种充电控制电路的示意图;
图7是本申请实施例提供的又一种充电控制电路的示意图;
图8是本申请实施例提供的一种充电控制方法的步骤流程示意图;
图9是本申请实施例提供的另一种充电控制方法的步骤流程示意图;
图10是本申请实施例提供的一种充电控制装置的结构示意图;
图11是本申请实施例提供的一种充电系统的结构示意图;
图12是本申请实施例提供的一种电池的结构示意图;
图13是本申请实施例提供的另一种充电系统的结构示意图;
图14是本申请实施例提供的一种可移动平台的结构示意图;
图15是本申请实施例提供的一种充电控制装置的示意框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
还应当理解,在此本申请说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本申请。如在本申请说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
还应当进一步理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
附图中所示的流程图仅是示例说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解、组合或部分合并,因此实际执行的顺序有可能根据实际情况改变。
可编程电源(Programmable Power Supply,PPS),属于USB PD3.0中支持的一种Power Supply类型,是一种使用USB PD协议输出的可以实现电压电流调节的电源。PPS吸取了目前市场快充的方案,重新整合成一套“大而全”的快充方案,以实现可以兼容主流的快充协议,比如可以兼容QC4.0、QC3.0、SCP、FCP、PE3.0、PE2.0和VOOC等快充协议。
由于PPS协议可以实现电压电流的调节,可以直接连接电池进行充电,无需增加额外的Charger模块电路,并且PPS充电器最高可以实现输出电压为20V,最高支持给电池进行5A电流直充,由此提高充电效率,降低充电时间。
目前,市场主流快速充电器基本上还是基于Charger充电方案,即使用Changer模块电路实现快速充电时的电压和电流调节。比如,充电器输出恒定的电压,Changer模块电路可以实现电压电流的调节,然后给电池充电,不依赖于充电器是否带电压电流调节功能电路。但是Charger模块电路本身会有效率损耗,会导致发热量大,由此限制了充电功率进一步做大。同时充电功率越大,就需要性能更优的元器件支持,同时也会加大元器件的占用面积,影响了产品的小型化设计。
使用PPS协议的快速充电方案,可以不使用Charger模块电路,最大化减小元器件的占用面积,以及最大化充电功率。但是必须使用对应的PPS充电器才可以完成充电,由于普通的充电器(非PPS充电器)的充电接口跟PPS充电器的充电接口一样,可例如为Type-C接口,比如若电池仅支持普通的快速充电器充电,如果此时接入的PPS充电器,那么接入的充电器却无法给电池充电,由此会给用户带来疑惑,进而降低了用户体验。
为此,本申请的实施例提供了一种充电控制电路、充电控制方法、充电控制装置、电池和可移动平台,该充电控制电路可以根据充电器的类型,选择与该充电类型相匹配的充电电路给充电充电,进而解决了上述问题,提高了用户体验。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
请参阅图1,图1是本申请实施例提供的一种充电控制电路的电路结构示意图。该充电控制电路100包括主控电路11、充电接口电路12和至少两个充电电路13,其中,充电接口电路12用于连接充电器,充电电路13与电池连接,用于实现通过充电器给电池充电。
主控电路11包括微控制单元(Microcontroller Unit,MCU),其中,充电接口电路12和充电电路13均直接或间接地与该微控制单元连接,微控制单元可以通过该充电接口电路12获取充电器的相应信息,根据获取的信息执行相应的控制。比如,获取接入的充电器的类型,根据获取的充电器的类型控制打开其中一个充电电路,为电池进行充电。
充电接口电路12能够接入不同类型的充电器。充电接口电路12的接口可例如为Type-C接口,当然也可以是Type-A接口、USB接口等等。相应地,所 述不同类型的充电器的接口也可例如为Type-C接口,当然也可以为Type-A接口、USB接口。
示例性的,不同类型的充电器比如包括PPS类型的充电器和非PPS类型的充电器。其中,非PPS类型的充电器可以包括快速充电器或慢速充电器,快速充电器根据使用的快充协议又可以分为QC4.0、SCP、FCP、PE3.0和VOOC等快速充电器。
至少两个充电电路13,每个充电电路13用于连接在充电接口电路12和电池之间。其中,不同的充电电路用于适配不同类型的充电器。
示例性的,如图2所示,至少两个充电电路包括第一充电电路和第二充电电路,其中,第一充电电路与PPS充电器相适配,第二充电电路与非PPS充电器相适配。
具体地,第一充电电路包括充电开关131,充电开关131的控制端与主控电路11连接;和/或,第二充电电路包括Charger模块电路132,Charger模块电路132与主控电路11连接。以便主控电路11选择相应的充电电路为所述电池充电。
在一些实施例中,Charger模块电路132包括内置MOS开关或外置MOS开关,所述内置MOS开关集成在Charger模块中,所述外置MOS开关设置Charger模块外。选择内置MOS开关可以节省Charger模块的空间,但是限定了充电功率,选择外置MOS开关,Charger模块占用空间大,但是充电功率较大。因此在实际设计中可以根据充电功率和占用面积的需要,进行灵活选择和设计。
可以理解的是,若非PPS充电器对应慢速充电器,第二充电电路可以包括Changer模块电路,也可以不包括Changer模块电路。
在有充电器接入到充电接口电路12时,比如用户插入充电器打算给电池充电时,主控电路11用于识别接入的充电器的类型,并选择与所述充电器的类型相适配的充电电路为所述电池充电。
示例性的,比如当主控电路11识别到接入的充电器的类型为PPS充电器,则控制第一充电电路为所述电池充电,具体可以控制充电开关131导通,进而连通充电器和电池,实现为电池充电。
可以通过充电器采用的通讯协议识别充电器的类型,比如通过PPS协议识 别是PPS充电器还是非PPS充电。或者,根据快充协议识别充电器是快速充电器,还是慢速充电器。
具体地,充电开关131可以包括开关管,比如MOS管等,该MOS管的栅极与主控电路11,主控电路11向MOS管发送高电平则控制该MOS管导通,进而实现PPS充电器为电池充电。
示例性的,比如当主控电路11识别到所述充电器的类型为非PPS充电器,则控制第二充电电路为所述电池充电。具体地,发送使能信号使能Charger模块电路给电池充电。
在一些实施例中,由于非PPS充电器可能是快速充电器,也可能是慢速充电器,主控电路11识别到所述充电器的类型为非PPS充电器时,还可以确定所述充电器是否为快充充电器;以及根据确定结果调整所述充电器的输出电压以满足Charger模块电路132的输入电压,并使能Charger模块电路132为所述电池充电。
具体地,若确定结果为快充充电器,则发送电压调节指令至充电器以使充电器调整输出电压直至达到Charger模块电路132的输入电压;若确定结果为非快充充电器,则不发送电压调节指令至充电器,使用所述充电器的默认输出电压,比如采用默认输出电压5.0V进行充电。
在一些实施例中,使能Charger模块电路为所述电池充电,具体为调整Charger模块电路132的输出电压和输出电流,对所述电池进行恒流充电,以及在所述电池电压达到慢充电压时再对所述电池进行恒压充电。由此提高了电池的充电效率。
本申请实施例提供的充电控制电路,能够实现根据充电器的类型选择相应的充电电路为电池进行充电,比如插入的是PPS充电器则选择与PPS充电器对应的充电电路为电池充电,从而避免因接入的充电器类型不同而无法给电池充电的情况出现,进而提高了用户体验。
在一些实施例中,为了提供电池充电的可靠性和安全性,主控电路11在识别所述充电器的类型之前,还可以获取电池的电池参数,确定电池参数是否满足充电要求,若确定所述电池参数满足充电要求,则执行所述识别所述充电器的类型的步骤,再根据识别到充电器的类型,选择与该类型相适配的充电电路给电池充电。由于在确定与充电器类型相适配的充电电路后会立刻给电池充电, 因此会存在安全隐患,通过在选择相适配的充电电路之前,可以提高电池充电安全性和可靠性。
在本申请的实施例中,电池参数至少包括电池电压和电池温度,当然获取的电池参数还可以包括其他信息,比如为电池容量、电池类型等等。
在一些实施例中,主控电路11在确定所述电池参数是否满足充电要求时,具体可以确定所述电池电压是否在预设电压范围内,以及所述电池温度是否在预设温度范围内;若所述电池电压在所述预设电压范围内,以及所述电池温度在所述预设温度范围内,则确定满足充电要求。
示例性的,在本申请的实施例中,预设电压范围可例如为(2.5V~4.4V),预设温度范围可例如为(0°~45°),当电池电压在(2.5V~4.4V)内且电池温度在(0°~45°)内,则确定满足充电要求。可以理解的是,该预设电压范围和预设温度范围也可以为其他范围值。
在另一些实施例中,主控电路11在确定所述电池参数是否满足充电要求时,具体可以确定所述电池电压是否大于预设电压,以及所述电池温度是否低于预设温度;若所述电池电压大于所述预设电压,且所述电池温度低于预设温度,则确定满足充电要求。
示例性的,比如预设电压为2.5V,预设温度为45°。当电池电压大于2.5V且电池温度低于45°,则确定满足充电要求。可以理解的是,该预设电压和预设温度也可以为其他值。
在一些实施例中,如图3所示,充电控制电路100包括快充协议电路14,快充协议电路14分别与充电接口电路12、主控电路11连接,即连接在充电接口电路12和主控电路11之间,用于与接入的充电器握手通信以获取所述充电器的类型。具体地,快充协议电路14包括PD协议芯片,所述PD协议芯片用于与接入的充电器握手通信以获取所述充电器的类型,比如用于确定的接入的充电器是否为PPS充电器。
在一些实施例中,如图4所示,为了给主控电路11供电,充电控制电路100包括电压转换电路15。具体地,电压转换电路15与充电接口电路12、主控电路11连接,即电压转换电路15的电压输入端与充电接口电路12连接,输出端与主控电路11连接,用于将充电接口电路12接入的充电器输出电压转换成主控电路11的工作电压,以给主控电路11提供工作电压。
在一些实施例中,如图4所示,为了给快充协议电路14供电,充电控制电路100包括电压转换电路15。具体地,电压转换电路15与充电接口电路12、快充协议电路14连接,即电压转换电路15的电压输入端与充电接口电路12连接,输出端与快充协议电路14连接,用于将充电接口电路12接入的充电器输出电压转换成快充协议电路14的工作电压,以给快充协议电路14提供工作电压。
在一些实施例中,如图5所示,为了给主控电路11供电,充电控制电路100包括电压转换电路15,电压转换电路15与所述电池、主控电路11连接,用于对所述电池的输出电压进行转换,以给主控电路11提供工作电压。
在一些实施例中,如图5所示,为了给快充协议电路14供电,充电控制电路100包括电压转换电路15,电压转换电路15与所述电池、快充协议电路14连接,用于对所述电池的输出电压进行转换,以给快充协议电路14提供工作电压。
在一些实施例中,若充电器的输出电压大于主控电路的工作电压和快充协议电路的工作电压,或者电池输出电压大于主控电路的工作电压和快充协议电路的工作电压,则设置电压转换电路15具体为降压电路。
其中,主控电路11和快充协议电路14的工作电压,分别是指微控制单元和PD协议芯片的工作电压,在本申请实施例中,微控制单元的工作电压和PD协议芯片的工作电压相等,比如均为3.5V,当然也可以不相等。
示例性的,充电器的输出电压为5V,而微控制单元的工作电压和PD协议芯片的工作电压均为3.3V,则电压转换电路15具体为降压电路,具体用于将5.0V转换为3.3V的电路。
可以理解的是,可以用多个电压转换电路15给主控电路11和快充协议电路14充电,具体可以一个电压转换电路15给主控电路11供电,另一个电压转换电路15给快充协议电路14供电。当然也可以是,多个电压转换电路15组成串联的方式分别给主控电路11和快充协议电路14供电,尤其适用主控电路11和快充协议电路14的工作电压不相等情况。
在一些实施例中,为了提高电池充电的安全性,主控电路11具体还可以获取电池的电池电压,根据所述电池的电池电压,通过所述PD协议芯片调整所述充电器的起始电压,以及根据调整后的起始电压,控制第一充电电路为所述 电池充电。其中,所述起始电压大于所述电池电压。
具体地,主控电路11若检测到接入的充电器为PPS充电器,主控电路11会根据电池的电池电压,通过PD协议芯片与充电器通信,进而调整充电器的起始电压,在调整好起始电压后打开第一充电电路的充电开关131为电池充电。
示例性的,确定电池的电池电压为12V,可以调整充电器的输出电压至12.1V,然后控制第一充电电路中的充电开关131闭合,进而为电池进行充电。调整充电器的输出电压至12.1V,具体可以逐步调整电压至12.1V。
在一些实施例中,主控电路11用于获取所述第一充电电路中充电电压,以及获取所述电池的电池电压;根据所述充电电压和所述电池电压,调整所述充电器的输出电压和输出电流,为所述电池充电。
示例性的,调整所述充电器的输出电压和输出电流,为所述电池充电,具体可以调整所述充电器的输出电压和输出电流,对所述电池进行恒流充电,以及在所述电池电压达到慢充电压时再对所述电池进行恒压充电。通过先进行恒流充电,再进行恒压充电可以提高电池的充电效率。
具体地,主控电路11根据该充电电压和电池电压,通过PD协议芯片不停地调整充电器输出电压和电流,维持电池恒流充电,当电池电压达到满充电压时,则维持充电电压不变,电池进入恒压充电阶段,直至电池充满。
主控电路11是通过PD协议芯片与PPS充电器通信确定充电电压和充电电流,但是如果PPS充电器输出电压(充电电压)低于电池电压,可能导致电池电流回流到PPS充电器,即产生电流倒灌现象。
在一些实施例中,为了解决该电流倒灌现象的问题,以提高充电的安全性,如图6所示,该充电控制电路100包括防倒灌电路16,防倒灌电路16与充电开关131并联,用于根据充电开关131两端的电压大小控制充电开关131导通或关闭。
在本申请的实施例中,防倒灌电路16包括ORing控制器,通过该ORing控制器实现防倒灌,当然在其他实施例中,也可以使用其他电子元器件使用,比如采用理想二极管等实现防倒灌电路。
具体地,比如当检测到充电开关131的第一端的端电压小于第二端的端电压时,或者,第一端的端电压小于第二端的端电压超过预设阈值时,发送触发信号给主控电路11,主控电路11发送关闭信号给充电开关131,以使充电开关 131断开,进而实现防反灌,其中,关闭信号可例如为低电平信号。
需要说明的是,充电开关131的第一端为与充电接口电路连接的一端,充电开关131的第二端为与电池连接的一端。
目前,市场上PPS充电器生产厂家较多,但是质量参差不齐,虽然都可以实现主控电路规定的电流进行充电,但是均是平均电流符合要求,由于充电器的充电电流存在振荡,即有时充电电流的峰值会很大。比如,平均充电电流是5A,但是充电电流的峰值高于5A,最大峰值可能会达到7.5A,可能会超过电池最大允许的充电电流,进而导致电芯损伤,影响电池的寿命和安全。
在一些实施例中,为了解决充电电流的振荡问题,以提高电池的寿命和安全性,如图7所示,充电控制电路100包括电流检测电路17,电流检测电路17连接在所述第一充电电路,并与主控电路11连接,用于检测所述第一充电电路的充电电流并发送给主控电路11,以使主控电路11根据所述充电电流的振荡控制充电开关131的导通或关闭。在本申请的实施例中,电流检测电路17可以包括电流放大器,当然也可以采用其他电路实现。
具体地,在主控电路11判定检测的充电电流的振幅超过预设阈值时,超过预设阈值表示已经超过电池最大可以承受的充电电流,向充电开关131发送关闭信号以使充电开关131断开,进而防止电流振荡造成的危害,由此提高了电池的寿命和安全性,其中,关闭信号可例如为低电平信号。
请参阅图8,图8是本申请实施例提供的一种充电控制方法的示意流程图,该方法可以应用于本申请实施例提供的任一项所述的充电控制电路中的主控电路,通过执行该充电控制方法,针对不同类型的充电器均可以实现充电,由此提高了用户的体验。
如图8所示,该充电控制方法包括步骤S101和步骤S102。
S101、识别所述充电器的类型;
S102、选择与所述充电器的类型相适配的充电电路为电池充电。
在本申请的实施例中,不同类型的充电器包括PPS充电器和非PSS充电器,其中,非PPS充电器又包括快速充电器和慢速充电器。当然也可以包括其他类型的充电器,或者对电池进行其他不同类型的划分。
其中,PPS充电器和非PPS充电器,或者非PPS充电器包括的快速充电器和慢速充电器,均可以通过充电器采用的通讯协议进行识别,比如通过PPS协 议识别是PPS充电器还是非PPS充电,根据快充协议识别是快速充电器还是慢速充电器。
示例性的,充电控制电路的至少两个充电电路具体包括第一充电电路和第二充电电路,其中,第一充电电路与PPS充电器相适配,第二充电电路与非PPS充电器相适配。
相应地,选择与所述充电器的类型相适配的充电电路为所述电池充电,具体为:当识别到所述充电器的类型为PPS充电器,则控制所述第一充电电路为所述电池充电;当识别到所述充电器的类型为非PPS充电器,则控制所述第二充电电路为所述电池充电。由此实现了接入不同类型的充电器,均可以实现对电池进行充电。
在一些实施例中,在识别到充电器的类型为非PPS充电器时,还可以确定充电器是否为快充充电器,并根据确定结果调整充电器的输出电压以满足Charger模块电路的输入电压,并使能Charger模块电路为电池充电。
具体地,若确定结果为快充充电器,则发送电压调节指令至充电器以使充电器调整输出电压直至达到Charger模块电路的输入电压,若确定结果为非快充充电器,则不发送电压调节指令至充电器,使用充电器的默认输出电压。
示例性的,快充时Charger模块电路的输入电压比如为9V、12V或15V等等,默认输出电压比如为5V。在充电时需要对充电器的输出电压进行调整,以满足Charger模块电路的输入电压要求,比如调整为9V。
其中,为了提高电池的充电效率,使能Charger模块电路为所述电池充电,具体可以调整Charger模块电路的输出电压和输出电流,对所述电池进行恒流充电,以及在所述电池电压达到慢充电压时再对所述电池进行恒压充电。
在一些实施例中,充电控制电路包括快充协议电路,快充协议电路包括PD协议芯片。为了提高充电的安全性以及充电效率,因此在识别充电器为PPS充电器时,控制第一充电电路为电池充电之前,还可以根据所述电池的电池电压,通过所述PD协议芯片调整所述充电器的起始电压;以及根据调整后的起始电压,控制所述第一充电电路为所述电池充电。其中,所述起始电压大于所述电池电压。
示例性的,比如确定电池的电池电压为12V,可以调整充电器的输出电压至12.1V,然后再控制第一充电电路为电池进行充电。调整充电器的输出电压 至12.1V,具体可以逐步调整电压至12.1V。
在一些实施例中,为了提高充电效率,在识别充电器为PPS充电器时,控制第一充电电路为电池充电过程中,可以获取所述第一充电电路中充电电压,以及获取所述电池的电池电压,并根据所述充电电压和所述电池电压,调整所述充电器的输出电压和输出电流,为所述电池充电。由此实现了根据实时充电电压和电流实时调整充电器的输出电压和电流,由此提高了充电的效率和安全性。
其中,所述调整所述充电器的输出电压和输出电流,为所述电池充电,具体可以调整所述充电器的输出电压和输出电流,对所述电池进行恒流充电,以及在所述电池电压达到慢充电压时再对所述电池进行恒压充电。
在一些实施例中,为了提高电池充电的安全性和可靠性,在识别所述充电器的类型之前,还可以获取电池的电池参数,确定该电池参数是否满足充电要求,若所述电池参数满足充电要求,则识别所述充电器的类型。因此可以实现在满足充电要求后,在开始通过识别充电器的类型,进而为电池充电,由此提高了充电安全性和可靠性。
其中,所述电池参数至少包括电池电压和电池温度。当然,获取的电池参数还可以包括其他信息,比如为电池容量、电池类型等等。
其中,确定所述电池参数是否满足充电要求,具体可以确定所述电池电压是否在预设电压范围内,以及确定所述电池温度是否在预设温度范围内;若所述电池电压在所述预设电压范围内,以及所述电池温度在所述预设温度范围内,则确定满足充电要求。
示例性的,比如预设电压范围可例如为(2.5V~4.4V),预设温度范围可例如为(0°~45°),当电池电压在(2.5V~4.4V)内且电池温度在(0°~45°),则确定满足充电要求。可以理解的是,该预设电压范围和预设温度范围也可以为其他范围值。
在一些实施例中,为了解决电流振荡给电池造成的危害,可以在充电控制电路中设置电流检测电路,相应地,充电控制方法包括:接收所述电流检测电路检测到的所述第一充电电路的充电电流;根据所述充电电流的振荡控制所述充电开关的导通或关闭。即可以实现在电池出现振荡时,关闭充电开关,进而实现对充电器和电池的保护,由此提高了电池使用寿命和安全性。
具体地,在主控电路判定检测的充电电流的振幅超过预设阈值时,超过预设阈值表示已经超过电池最大可以承受的充电电流,向充电开关发送关闭信号以使充电开关断开,进而防止电流振荡造成的危害,由此提高了电池的寿命和安全性,其中,关闭信号可例如为低电平信号。
请参阅图9,图9是本申请实施例提供的另一种充电控制方法的示意流程图,该充电控制方法可以实现根据充电器的类型给电池充电,避免接入充电器无法给电池充电器的情况,由此提高了用户的体验,同时还可以提高电池充电的安全性和充电效率。
如图9所示,该充电控制方法包括步骤S201和步骤S211。
S201、获取电池的电池参数。
其中,所述电池参数至少包括电池电压和电池温度,当然,获取的电池参数还可以包括其他信息,比如为电池容量、电池类型等等。
S202、确定所述电池参数是否满足充电要求。
可以确定所述电池电压是否在预设电压范围内,以及确定所述电池温度是否在预设温度范围内;若所述电池电压在所述预设电压范围内,以及所述电池温度在所述预设温度范围内,则确定满足充电要求。
示例性的,比如预设电压范围可例如为(2.5V~4.4V),预设温度范围可例如为(0°~45°),当电池电压在(2.5V~4.4V)内且电池温度在(0°~45°),则确定满足充电要求。可以理解的是,该预设电压范围和预设温度范围也可以为其他范围值。
具体地,若所述电池参数满足充电要求,则执行步骤S203;若所述电池参数不满足充电要求,则执行步骤S204。
S203、识别所述充电器的类型。
在本申请的实施例中,所述充电器的类型包括PPS充电器和非PPS充电器,具体可以根据当然也可以包括其他类型,或者进行其他不同类型的划分。
具体地,若识别出所述充电器的类型为PPS充电器,则执行步骤S205;若识别出所述充电器的类型为非PPS充电器,则执行步骤S206。
S204、输出提示信息。
若所述电池参数不满足充电要求,比如电池温度太高等,则输出提示信息以提示用户电池存在异常,暂时不能充电。提示信息可例如为语音提示信息、 蜂鸣提示信息、LED灯组成灯语、文字提示信息中的至少一种。
S205、若为PPS充电器,控制第一充电电路为电池充电。
示例性的,充电控制电路的至少两个充电电路具体包括第一充电电路和第二充电电路,其中,第一充电电路与PPS充电器相适配,第二充电电路与非PPS充电器相适配。
相应地,当识别到所述充电器的类型为PPS充电器,则控制所述第一充电电路为所述电池充电;当识别到所述充电器的类型为非PPS充电器,则控制所述第二充电电路为所述电池充电。由此实现了接入不同类型的充电器,均可以实现对电池进行充电。
S206、调整充电器的输出电压和电流,进行CC-CV充电。
其中,CC-CV充电为先进行恒流充电再进行恒压充电。
具体可以获取所述第一充电电路中充电电压,以及获取所述电池的电池电压,并根据所述充电电压和所述电池电压,调整所述充电器的输出电压和输出电流,对所述电池进行恒流充电,以及在所述电池电压达到慢充电压时再对所述电池进行恒压充电。由此提高了充电效率。
在一些实施例中,为了进一步提高充电效率,在控制第一充电电路给电池充电时,还可以根据电池的电池电压,通过PD协议芯片调整所述充电器的起始电压,以及根据调整后的起始电压,控制所述第一充电电路为所述电池充电。其中,所述起始电压大于所述电池电压。
示例性的,比如确定电池的电池电压为12V,可以调整充电器的输出电压至12.1V,然后再控制第一充电电路为电池进行充电。调整充电器的输出电压至12.1V,具体可以逐步调整电压至12.1V。
S207、若为非PPS充电器,确定是是否为快速充电器。
其中,当识别到所述充电器的类型为非PPS充电器,则控制所述第二充电电路为所述电池充电。
具体地,在识别到所述充电器的类型为非PPS充电器,还可以进一步地确定该充电器是快速充电器,还是慢速充电器;若确定是快速充电器,则执行步骤S208;若确定是慢速充电器,则执行步骤S209。
S208、调整充电器的输出电压。
具体地,若确定结果为快充充电器,则发送电压调节指令至充电器以使充 电器调整输出电压直至达到Charger模块电路的输入电压,若确定结果为非快充充电器,则不发送电压调节指令至充电器,使用充电器的默认输出电压。
示例性的,快充时Charger模块电路的输入电压比如为9V、12V或15V等等,默认输出电压比如为5V。若Charger模块电路的输入电压9V时,充电器的输出电压调整至9V。
S209、使能Charger模块电路。
若是快速充电器,在充电器的输出电压满足Charger模块电路的输入电压要求时,发送使能信号给Charger模块电路,使能Charger模块电路处于工作状态,并执行步骤S210;若是慢速充电器,发送使能信号给Charger模块电路,为电池进行充电,并执行步骤S211。
S210、调整Charger模块电路的输出电压和电流,进行CC-CV充电。
若是快速充电器,使能Charger模块电路时,还可以调整Charger模块电路的输出电压和输出电流,对所述电池进行恒流充电,以及在所述电池电压达到慢充电压时再对所述电池进行恒压充电。利用恒流恒压充电方式,提高电池的充电效率。
S211、确定电池是否充满电。
具体地,若接入的充电器是PPS充电器,在确定电池未充满电时,返回执行步骤S206,继续调整充电器的输出电压和输出电流,为电池进行CC-CV充电;在确定电池充满电时,结束充电。若接入的充电器是非PPS充电器,并且是快速充电器,在确定电池未充满电时,返回执行步骤S210,继续调整充电器的输出电压和输出电流,为电池进行CC-CV充电;在确定电池充满电时,结束充电。若接入的充电器是非PPS充电器,并且是慢速充电器,在确定电池充满电时,结束充电。
请参阅图10,图10是本申请实施例提供的一种充电控制装置的结构示意图,该充电控制装置给电池充电时,连接在电池和充电器之间,实现不同类型的充电器均可以给电池充电,进而提高了用户的体验。
如图10所示,该充电控制装置200包括壳体20和设置在壳体20内的电路板,该电路板包括本申请实施例提供的任一项所述的充电控制电路。其中,壳体20还有充电器接口201和电池接口,充电器接口201与充电接口电路连接,电池接口用于连接电池。
在实际使用中,具体如图11所示,将电池连接在充电控制装置200上,再将充电器300连接在该充电控制装置200上,该充电控制装置200能够根据充电器的类型选择相应的充电电路为电池进行充电,比如插入的PPS充电器则选择与PPS充电器对应的充电电路为电池充电,从而避免因接入的充电器类型不同而无法给电池充电的情况出现,进而提高了用户体验。
请参阅图12,图12是本申请实施例提供的一种电池的结构示意图,该电池可以实现不同类型的充电器均可充电,进而提高了用户的体验度。
如图12所示,该电池400包括壳体40和设置在壳体40内的电路板、电池电芯等,该电路板包括本申请实施例提供的任一项所述的充电控制电路。其中,壳体40还有充电器接口401,充电器接口用于接入充电器,充电器接口401与充电接口电路连接。
在实际使用中,具体如图12所示,可以将任意类型的充电器300连接在电池400上,该电池400能够根据充电器的类型选择相应的充电电路进行充电,比如插入的PPS充电器则选择与PPS充电器对应的充电电路进行充电,从而避免因接入的充电器类型不同而无法给电池充电的情况出现,进而提高了用户体验。
本申请的实施例还提供了一种可移动平台,所述可移动平台包括平台本体和本申请实施例提供任一项所述的充电控制电路,所述充电控制电路用于识别充电器的类型,进而选择合适充电电路给电池充电,从而避免因接入的充电器类型不同而无法给电池充电的情况出现,进而提高了用户体验。
示例性的,如图14所示,该可移动平台具体为无人机,该无人机500包括本申请实施例提供任一项所述的充电控制电路。
当然,可以理解的是,可移动平台还可以包括机器人、无人驾驶车辆等等。
请参阅图15,图15是本申请实施例提供的另一种充电控制装置的示意性框图。如图15所示,该充电控制装置包括一个或多个处理器601和存储器602。
处理器601例如可以是微控制单元(Micro-controller Unit,MCU)、中央处理单元(Central Processing Unit,CPU)或数字信号处理器(Digital Signal Procesor,DSP)等。
存储器212可以是Flash芯片、只读存储器(ROM,Read-Only Memory)磁盘、光盘、U盘或移动硬盘等。
其中,存储器602用于存储计算机程序;处理器601用于执行所述计算机程序并在执行所述计算机程序时,执行如上所述的充电控制方法。
本申请实施例的充电控制装置具有与上面所述各个实施例的充电控制电路相类似的有益技术效果,故,在此不再赘述。
本申请的实施例中还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序中包括程序指令,所述处理器执行所述程序指令,实现上述实施例提供的任一种所述的充电控制方法的步骤。
其中,所述计算机可读存储介质可以是前述任一实施例所述的充电控制装置、电池或可移动平台的内部存储单元,例如所述电池的存储器或内存。所述计算机可读存储介质也可以是所述电池的外部存储设备,例如所述电池上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (85)

  1. 一种充电控制电路,其特征在于,包括:
    主控电路;
    充电接口电路,所述充电接口电路能够接入不同类型的充电器;
    至少两个充电电路,所述充电电路用于连接在所述充电接口电路和电池之间,不同的所述充电电路用于适配不同类型的充电器;
    其中,在有充电器接入到所述充电接口电路时,所述主控电路用于:识别所述充电器的类型,并选择与所述充电器的类型相适配的充电电路为所述电池充电。
  2. 根据权利要求1所述的电路,其特征在于,所述主控电路在识别所述充电器的类型之前,还用于:
    获取电池的电池参数,若所述电池参数满足充电要求,则识别所述充电器的类型,其中,所述电池参数至少包括电池电压和电池温度。
  3. 根据权利要求2所述的电路,其特征在于,所述主控电路用于:确定所述电池参数是否满足充电要求;
    其中,所述确定所述电池参数是否满足充电要求,包括:
    确定所述电池电压是否在预设电压范围内,以及所述电池温度是否在预设温度范围内;
    若所述电池电压在所述预设电压范围内,以及所述电池温度在所述预设温度范围内,则确定满足充电要求。
  4. 根据权利要求1所述的电路,其特征在于,不同类型的充电器的包括PPS充电器和非PSS充电器。
  5. 根据权利要求4所述的电路,其特征在于,所述至少两个充电电路,包括:
    第一充电电路,与所述PPS充电器相适配,且包括充电开关,所述充电开关的控制端与所述主控电路连接;和/或,
    第二充电电路,与所述非PPS充电器相适配,且包括Charger模块电路, 所述Charger模块电路与所述主控电路连接。
  6. 根据权利要求4所述的电路,其特征在于,所述选择与所述充电器的类型相适配的充电电路为所述电池充电,包括
    当识别到所述充电器的类型为PPS充电器,则控制第一充电电路为所述电池充电;
    当识别到所述充电器的类型为非PPS充电器,则控制第二充电电路为所述电池充电。
  7. 根据权利要求5所述的电路,其特征在于,所述主控电路用于:
    当识别到所述充电器的类型为非PPS充电器,确定所述充电器是否为快充充电器;以及
    根据确定结果调整所述充电器的输出电压以满足所述Charger模块电路的输入电压,并使能所述Charger模块电路为所述电池充电。
  8. 根据权利要求7所述的电路,其特征在于,所述根据确定结果调整所述充电器的输出电压以满足所述Charger模块电路的输入电压,包括:
    若所述确定结果为快充充电器,则发送电压调节指令至所述充电器以使所述充电器调整输出电压直至达到所述Charger模块电路的输入电压;
    若所述确定结果为非快充充电器,则不发送电压调节指令至所述充电器,使用所述充电器的默认输出电压。
  9. 根据权利要求7所述的电路,其特征在于,所述使能所述Charger模块电路为所述电池充电,包括:
    调整所述Charger模块电路的输出电压和输出电流,对所述电池进行恒流充电,以及在所述电池电压达到慢充电压时再对所述电池进行恒压充电。
  10. 根据权利要求1所述的电路,其特征在于,所述充电控制电路包括:
    快充协议电路,所述快充协议电路分别与所述充电接口电路、主控电路连接,用于与接入的充电器握手通信以获取所述充电器的类型。
  11. 根据权利要求10所述的电路,其特征在于,所述快充协议电路包括PD协议芯片,所述PD协议芯片用于与接入的充电器握手通信以获取所述充电器的类型。
  12. 根据权利要求10所述的电路,其特征在于,所述充电控制电路包括:电压转换电路;
    所述电压转换电路与所述充电接口电路、主控电路连接,用于对所述充电器的输出电压进行转换,以给所述主控电路提供工作电压;和/或,
    所述电压转换电路与所述充电接口电路、快充协议电路连接,用于对所述充电器的输出电压进行转换,以给所述快充协议电路提供工作电压。
  13. 根据权利要求10所述的电路,其特征在于,所述充电控制电路包括:电压转换电路;
    所述电压转换电路与所述电池、主控电路连接,用于对所述电池的输出电压进行转换,以给所述主控电路提供工作电压;和/或,
    所述电压转换电路与所述电池、快充协议电路连接,用于对所述电池的输出电压进行转换,以给所述快充协议电路提供工作电压。
  14. 根据权利要求11所述的电路,其特征在于,所述主控电路用于:
    根据所述电池的电池电压,通过所述PD协议芯片调整所述充电器的起始电压;以及
    根据调整后的起始电压,控制第一充电电路为所述电池充电。
  15. 根据权利要求14所述的电路,其特征在于,所述起始电压大于所述电池电压。
  16. 根据权利要求5所述的电路,其特征在于,所述主控电路用于:
    获取所述第一充电电路中充电电压,获取所述电池的电池电压;
    根据所述充电电压和所述电池电压,调整所述充电器的输出电压和输出电流,为所述电池充电。
  17. 根据权利要求16所述的电路,其特征在于,所述调整所述充电器的输出电压和输出电流,为所述电池充电,包括:
    调整所述充电器的输出电压和输出电流,对所述电池进行恒流充电,以及在所述电池电压达到慢充电压时再对所述电池进行恒压充电。
  18. 根据权利要求5所述的电路,其特征在于,所述Charger模块电路包括内置MOS开关或外置MOS开关,所述内置MOS开关集成在Charger模块中,所述外置MOS开关设置Charger模块外。
  19. 根据权利要求5所述的电路,其特征在于,所述充电控制电路包括:
    防倒灌电路,所述防倒灌电路与所述充电开关并联,用于根据所述充电开关两端的电压大小控制所述充电开关导通或关闭。
  20. 根据权利要求19所述的电路,其特征在于,所述防倒灌电路包括ORing控制器。
  21. 根据权利要求5所述的电路,其特征在于,所述充电控制电路包括:
    电流检测电路,所述电流检测电路连接在所述第一充电电路,并与所述主控电路连接,用于检测所述第一充电电路的充电电流并发送给所述主控电路,以使所述主控电路根据所述充电电流的振荡控制所述充电开关的导通或关闭。
  22. 根据权利要求21所述的电路,其特征在于,所述电流检测电路包括电流放大器。
  23. 根据权利要求1所述的电路,其特征在于,所述充电接口电路的接口包括Type-C接口;和/或,所述不同类型的充电器的接口包括Type-C接口。
  24. 一种充电控制方法,其特征在于,应用于权利要求1至20任一项所述的充电控制电路中的主控电路,所述方法包括:
    识别所述充电器的类型;
    选择与所述充电器的类型相适配的充电电路为电池充电。
  25. 根据权利要求24所述的方法,其特征在于,在识别所述充电器的类型之前,所述方法包括:
    获取电池的电池参数,若所述电池参数满足充电要求,则识别所述充电器的类型,其中,所述电池参数至少包括电池电压和电池温度。
  26. 根据权利要求24所述的方法,其特征在于,所述方法包括:确定所述电池参数是否满足充电要求;
    其中,所述确定所述电池参数是否满足充电要求,包括:
    确定所述电池电压是否在预设电压范围内,以及所述电池温度是否在预设温度范围内;
    若所述电池电压在所述预设电压范围内,以及所述电池温度在所述预设温度范围内,则确定满足充电要求。
  27. 根据权利要求24所述的方法,其特征在于,不同类型的充电器的包括PPS充电器和非PSS充电器。
  28. 根据权利要求24所述的方法,其特征在于,所述至少两个充电电路包括第一充电电路和第二充电电路;所述选择与所述充电器的类型相适配的充电电路为所述电池充电,包括:
    当识别到所述充电器的类型为PPS充电器,则控制所述第一充电电路为所述电池充电;
    当识别到所述充电器的类型为非PPS充电器,则控制所述第二充电电路为所述电池充电。
  29. 根据权利要求28所述的方法,其特征在于,所述方法包括:
    当识别到所述充电器的类型为非PPS充电器,确定所述充电器是否为快充充电器;
    根据确定结果调整所述充电器的输出电压以满足所述Charger模块电路的输入电压,并使能所述Charger模块电路为所述电池充电。
  30. 根据权利要求29所述的方法,其特征在于,所述根据确定结果调整所述充电器的输出电压以满足所述Charger模块电路的输入电压,包括:
    若所述确定结果为快充充电器,则发送电压调节指令至所述充电器以使所述充电器调整输出电压直至达到所述Charger模块电路的输入电压;
    若所述确定结果为非快充充电器,则不发送电压调节指令至所述充电器,使用所述充电器的默认输出电压。
  31. 根据权利要求29所述的方法,其特征在于,所述使能所述Charger模块电路为所述电池充电,包括:
    调整所述Charger模块电路的输出电压和输出电流,对所述电池进行恒流充电,以及在所述电池电压达到慢充电压时再对所述电池进行恒压充电。
  32. 根据权利要求28所述的方法,其特征在于,所述充电控制电路包括快充协议电路,所述快充协议电路包括PD协议芯片;
    所述方法包括:
    根据所述电池的电池电压,通过所述PD协议芯片调整所述充电器的起始电压;以及
    根据调整后的起始电压,控制所述第一充电电路为所述电池充电。
  33. 根据权利要求32所述的方法,其特征在于,所述起始电压大于所述电池电压。
  34. 根据权利要求28所述的方法,其特征在于,所述方法包括:
    获取所述第一充电电路中充电电压,获取所述电池的电池电压;
    根据所述充电电压和所述电池电压,调整所述充电器的输出电压和输出电 流,为所述电池充电。
  35. 根据权利要求34所述的方法,其特征在于,所述调整所述充电器的输出电压和输出电流,为所述电池充电,包括:
    调整所述充电器的输出电压和输出电流,对所述电池进行恒流充电,以及在所述电池电压达到慢充电压时再对所述电池进行恒压充电。
  36. 根据权利要求24所述的方法,其特征在于,所述充电控制电路包括电流检测电路,所述方法包括:
    接收所述电流检测电路检测到的所述第一充电电路的充电电流;
    根据所述充电电流的振荡控制所述充电开关的导通或关闭。
  37. 一种充电装置,其特征在于,所述充电装置包括充电控制电路,所述充电控制电路用于连接充电器和电池,所述充电控制电路包括:
    主控电路;
    充电接口电路,所述充电接口电路能够接入不同类型的充电器;
    至少两个充电电路,所述充电电路用于连接在所述充电接口电路和电池之间,不同的所述充电电路适配不同类型的充电器;
    其中,在有充电器接入到所述充电接口电路时,所述主控电路用于:识别所述充电器的类型,并选择与所述充电器的类型相适配的充电电路为所述电池充电。
  38. 根据权利要求37所述的充电装置,其特征在于,所述主控电路在识别所述充电器的类型之前,还用于:
    获取电池的电池参数,若所述电池参数满足充电要求,则识别所述充电器的类型,其中,所述电池参数至少包括电池电压和电池温度。
  39. 根据权利要求38所述的充电装置,其特征在于,所述主控电路用于:确定所述电池参数是否满足充电要求;
    其中,所述确定所述电池参数是否满足充电要求,包括:
    确定所述电池电压是否在预设电压范围内,以及所述电池温度是否在预设温度范围内;
    若所述电池电压在所述预设电压范围内,以及所述电池温度在所述预设温度范围内,则确定满足充电要求。
  40. 根据权利要求37所述的充电装置,其特征在于,不同类型的充电器的 包括PPS充电器和非PSS充电器。
  41. 根据权利要求40所述的充电装置,其特征在于,所述至少两个充电电路,包括:
    第一充电电路,与所述PPS充电器相适配,且包括充电开关,所述充电开关的控制端与所述主控电路连接;和/或,
    第二充电电路,与所述非PPS充电器相适配,且包括Charger模块电路,所述Charger模块电路与所述主控电路连接。
  42. 根据权利要求40所述的充电装置,其特征在于,所述选择与所述充电器的类型相适配的充电电路为所述电池充电,包括
    当识别到所述充电器的类型为PPS充电器,则控制第一充电电路为所述电池充电;
    当识别到所述充电器的类型为非PPS充电器,则控制第二充电电路为所述电池充电。
  43. 根据权利要求41所述的充电装置,其特征在于,所述主控电路用于:
    当识别到所述充电器的类型为非PPS充电器,确定所述充电器是否为快充充电器;以及
    根据确定结果调整所述充电器的输出电压以满足所述Charger模块电路的输入电压,并使能所述Charger模块电路为所述电池充电。
  44. 根据权利要求43所述的充电装置,其特征在于,所述根据确定结果调整所述充电器的输出电压以满足所述Charger模块电路的输入电压,包括:
    若所述确定结果为快充充电器,则发送电压调节指令至所述充电器以使所述充电器调整输出电压直至达到所述Charger模块电路的输入电压;
    若所述确定结果为非快充充电器,则不发送电压调节指令至所述充电器,使用所述充电器的默认输出电压。
  45. 根据权利要求43所述的充电装置,其特征在于,所述使能所述Charger模块电路为所述电池充电,包括:
    调整所述Charger模块电路的输出电压和输出电流,对所述电池进行恒流充电,以及在所述电池电压达到慢充电压时再对所述电池进行恒压充电。
  46. 根据权利要求37所述的充电装置,其特征在于,所述充电控制电路包括:
    快充协议电路,所述快充协议电路分别与所述充电接口电路、主控电路连接,用于与接入的充电器握手通信以获取所述充电器的类型。
  47. 根据权利要求46所述的充电装置,其特征在于,所述快充协议电路包括PD协议芯片,所述PD协议芯片用于与接入的充电器握手通信以获取所述充电器的类型。
  48. 根据权利要求46所述的充电装置,其特征在于,所述充电控制电路包括:电压转换电路;
    所述电压转换电路与所述充电接口电路、主控电路连接,用于对所述充电器的输出电压进行转换,以给所述主控电路提供工作电压;和/或,
    所述电压转换电路与所述充电接口电路、快充协议电路连接,用于对所述充电器的输出电压进行转换,以给所述快充协议电路提供工作电压。
  49. 根据权利要求46所述的充电装置,其特征在于,所述充电控制电路包括:电压转换电路;
    所述电压转换电路与所述电池、主控电路连接,用于对所述电池的输出电压进行转换,以给所述主控电路提供工作电压;和/或,
    所述电压转换电路与所述电池、快充协议电路连接,用于对所述电池的输出电压进行转换,以给所述快充协议电路提供工作电压。
  50. 根据权利要求47所述的充电装置,其特征在于,所述主控电路用于:
    根据所述电池的电池电压,通过所述PD协议芯片调整所述充电器的起始电压;以及
    根据调整后的起始电压,控制第一充电电路为所述电池充电。
  51. 根据权利要求50所述的充电装置,其特征在于,所述起始电压大于所述电池电压。
  52. 根据权利要求51所述的充电装置,其特征在于,所述主控电路用于:
    获取所述第一充电电路中充电电压,获取所述电池的电池电压;
    根据所述充电电压和所述电池电压,调整所述充电器的输出电压和输出电流,为所述电池充电。
  53. 根据权利要求52所述的充电装置,其特征在于,所述调整所述充电器的输出电压和输出电流,为所述电池充电,包括:
    调整所述充电器的输出电压和输出电流,对所述电池进行恒流充电,以及 在所述电池电压达到慢充电压时再对所述电池进行恒压充电。
  54. 根据权利要求41所述的充电装置,其特征在于,所述Charger模块电路包括内置MOS开关或外置MOS开关,所述内置MOS开关集成在Charger模块中,所述外置MOS开关设置Charger模块外。
  55. 根据权利要求41所述的充电装置,其特征在于,所述充电控制电路包括:
    防倒灌电路,所述防倒灌电路与所述充电开关并联,用于根据所述充电开关两端的电压大小控制所述充电开关导通或关闭。
  56. 根据权利要求55所述的充电装置,其特征在于,所述防倒灌电路包括ORing控制器。
  57. 根据权利要求41所述的充电装置,其特征在于,所述充电控制电路包括:
    电流检测电路,所述电流检测电路连接在所述第一充电电路,并与所述主控电路连接,用于检测所述第一充电电路的充电电流并发送给所述主控电路,以使所述主控电路根据所述充电电流的振荡控制所述充电开关的导通或关闭。
  58. 根据权利要求57所述的充电装置,其特征在于,所述电流检测电路包括电流放大器。
  59. 根据权利要求37所述的充电装置,其特征在于,所述充电接口电路的接口包括Type-C接口;和/或,所述不同类型的充电器的接口包括Type-C接口。
  60. 一种电池,其特征在于,所述电池包括充电控制电路,所述充电控制电路包括:
    主控电路;
    充电接口电路,所述充电接口电路能够接入不同类型的充电器;
    至少两个充电电路,所述充电电路用于连接在所述充电接口电路和所述电池之间,不同的所述充电电路适配不同类型的充电器;
    其中,在有充电器接入到所述充电接口电路时,所述主控电路用于:识别所述充电器的类型,并选择与所述充电器的类型相适配的充电电路为所述电池充电。
  61. 根据权利要求60所述的电池,其特征在于,所述主控电路在识别所述充电器的类型之前,还用于:
    获取电池的电池参数,若所述电池参数满足充电要求,则识别所述充电器的类型,其中,所述电池参数至少包括电池电压和电池温度。
  62. 根据权利要求61所述的电池,其特征在于,所述主控电路用于:确定所述电池参数是否满足充电要求;
    其中,所述确定所述电池参数是否满足充电要求,包括:
    确定所述电池电压是否在预设电压范围内,以及所述电池温度是否在预设温度范围内;
    若所述电池电压在所述预设电压范围内,以及所述电池温度在所述预设温度范围内,则确定满足充电要求。
  63. 根据权利要求60所述的电池,其特征在于,不同类型的充电器的包括PPS充电器和非PSS充电器。
  64. 根据权利要求63所述的电池,其特征在于,所述至少两个充电电路,包括:
    第一充电电路,与所述PPS充电器相适配,且包括充电开关,所述充电开关的控制端与所述主控电路连接;和/或,
    第二充电电路,与所述非PPS充电器相适配,且包括Charger模块电路,所述Charger模块电路与所述主控电路连接。
  65. 根据权利要求63所述的电池,其特征在于,所述选择与所述充电器的类型相适配的充电电路为所述电池充电,包括
    当识别到所述充电器的类型为PPS充电器,则控制第一充电电路为所述电池充电;
    当识别到所述充电器的类型为非PPS充电器,则控制第二充电电路为所述电池充电。
  66. 根据权利要求64所述的电池,其特征在于,所述主控电路用于:
    当识别到所述充电器的类型为非PPS充电器,确定所述充电器是否为快充充电器;以及
    根据确定结果调整所述充电器的输出电压以满足所述Charger模块电路的输入电压,并使能所述Charger模块电路为所述电池充电。
  67. 根据权利要求66所述的电池,其特征在于,所述根据确定结果调整所述充电器的输出电压以满足所述Charger模块电路的输入电压,包括:
    若所述确定结果为快充充电器,则发送电压调节指令至所述充电器以使所述充电器调整输出电压直至达到所述Charger模块电路的输入电压;
    若所述确定结果为非快充充电器,则不发送电压调节指令至所述充电器,使用所述充电器的默认输出电压。
  68. 根据权利要求66所述的电池,其特征在于,所述使能所述Charger模块电路为所述电池充电,包括:
    调整所述Charger模块电路的输出电压和输出电流,对所述电池进行恒流充电,以及在所述电池电压达到慢充电压时再对所述电池进行恒压充电。
  69. 根据权利要求60所述的电池,其特征在于,所述充电控制电路包括:
    快充协议电路,所述快充协议电路分别与所述充电接口电路、主控电路连接,用于与接入的充电器握手通信以获取所述充电器的类型。
  70. 根据权利要求69所述的电池,其特征在于,所述快充协议电路包括PD协议芯片,所述PD协议芯片用于与接入的充电器握手通信以获取所述充电器的类型。
  71. 根据权利要求69所述的电池,其特征在于,所述充电控制电路包括:电压转换电路;
    所述电压转换电路与所述充电接口电路、主控电路连接,用于对所述充电器的输出电压进行转换,以给所述主控电路提供工作电压;和/或,
    所述电压转换电路与所述充电接口电路、快充协议电路连接,用于对所述充电器的输出电压进行转换,以给所述快充协议电路提供工作电压。
  72. 根据权利要求69所述的电池,其特征在于,所述充电控制电路包括:电压转换电路;
    所述电压转换电路与所述电池、主控电路连接,用于对所述电池的输出电压进行转换,以给所述主控电路提供工作电压;和/或,
    所述电压转换电路与所述电池、快充协议电路连接,用于对所述电池的输出电压进行转换,以给所述快充协议电路提供工作电压。
  73. 根据权利要求70所述的电池,其特征在于,所述主控电路用于:
    根据所述电池的电池电压,通过所述PD协议芯片调整所述充电器的起始电压;以及
    根据调整后的起始电压,控制第一充电电路为所述电池充电。
  74. 根据权利要求73所述的电池,其特征在于,所述起始电压大于所述电池电压。
  75. 根据权利要求64所述的电池,其特征在于,所述主控电路用于:
    获取所述第一充电电路中充电电压,获取所述电池的电池电压;
    根据所述充电电压和所述电池电压,调整所述充电器的输出电压和输出电流,为所述电池充电。
  76. 根据权利要求75所述的电池,其特征在于,所述调整所述充电器的输出电压和输出电流,为所述电池充电,包括:
    调整所述充电器的输出电压和输出电流,对所述电池进行恒流充电,以及在所述电池电压达到慢充电压时再对所述电池进行恒压充电。
  77. 根据权利要求64所述的电池,其特征在于,所述Charger模块电路包括内置MOS开关或外置MOS开关,所述内置MOS开关集成在Charger模块中,所述外置MOS开关设置Charger模块外。
  78. 根据权利要求64所述的电池,其特征在于,所述充电控制电路包括:
    防倒灌电路,所述防倒灌电路与所述充电开关并联,用于根据所述充电开关两端的电压大小控制所述充电开关导通或关闭。
  79. 根据权利要求78所述的电池,其特征在于,所述防倒灌电路包括ORing控制器。
  80. 根据权利要求64所述的电池,其特征在于,所述充电控制电路包括:
    电流检测电路,所述电流检测电路连接在所述第一充电电路,并与所述主控电路连接,用于检测所述第一充电电路的充电电流并发送给所述主控电路,以使所述主控电路根据所述充电电流的振荡控制所述充电开关的导通或关闭。
  81. 根据权利要求80所述的电池,其特征在于,所述电流检测电路包括电流放大器。
  82. 根据权利要求60所述的电池,其特征在于,所述充电接口电路的接口包括Type-C接口;和/或,所述不同类型的充电器的接口包括Type-C接口。
  83. 一种可移动平台,其特征在于,所述可移动平台包括平台本体和如权利要求1至23任一项所述的充电控制电路,所述充电控制电路用于控制充电器给所述可移动平台的电池进行充电。
  84. 一种充电控制装置,其特征在于,所述充电控制装置包括存储器和处 理器;
    所述存储器用于存储计算机程序;
    所述处理器,用于执行所述计算机程序并在执行所述计算机程序时,实现如权利要求24至36的充电控制方法的步骤。
  85. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现如权利要求24至36任一项所述的充电控制方法的步骤。
PCT/CN2020/117554 2020-09-24 2020-09-24 充电控制方法、电路、设备及存储介质 WO2022061677A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/117554 WO2022061677A1 (zh) 2020-09-24 2020-09-24 充电控制方法、电路、设备及存储介质
CN202080015944.XA CN113508509A (zh) 2020-09-24 2020-09-24 充电控制方法、电路、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/117554 WO2022061677A1 (zh) 2020-09-24 2020-09-24 充电控制方法、电路、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2022061677A1 true WO2022061677A1 (zh) 2022-03-31

Family

ID=78009175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/117554 WO2022061677A1 (zh) 2020-09-24 2020-09-24 充电控制方法、电路、设备及存储介质

Country Status (2)

Country Link
CN (1) CN113508509A (zh)
WO (1) WO2022061677A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116505627A (zh) * 2023-06-28 2023-07-28 珠海智融科技股份有限公司 一种多口快充系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114498865B (zh) * 2022-04-14 2022-09-20 荣耀终端有限公司 充电电路、充电控制方法和电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106537719A (zh) * 2016-08-15 2017-03-22 北京小米移动软件有限公司 电子设备、充电器、充电系统及充电方法
CN106786838A (zh) * 2016-11-11 2017-05-31 深圳天珑无线科技有限公司 充电系统及方法
CN206878505U (zh) * 2017-05-27 2018-01-12 维沃移动通信有限公司 一种充电电路及移动终端
US20180254650A1 (en) * 2014-08-05 2018-09-06 Texas Instruments Incorporated Methods, electronic devices, and charger apparatus for quick usb charging
CN209963778U (zh) * 2019-04-30 2020-01-17 芯海科技(深圳)股份有限公司 快充输入电路、移动终端、可穿戴设备、体脂称及电子烟

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110739752B (zh) * 2019-10-28 2024-03-19 深圳英集芯科技股份有限公司 一种根据电池电压自动调整电压输入的充电电路及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180254650A1 (en) * 2014-08-05 2018-09-06 Texas Instruments Incorporated Methods, electronic devices, and charger apparatus for quick usb charging
CN106537719A (zh) * 2016-08-15 2017-03-22 北京小米移动软件有限公司 电子设备、充电器、充电系统及充电方法
CN106786838A (zh) * 2016-11-11 2017-05-31 深圳天珑无线科技有限公司 充电系统及方法
CN206878505U (zh) * 2017-05-27 2018-01-12 维沃移动通信有限公司 一种充电电路及移动终端
CN209963778U (zh) * 2019-04-30 2020-01-17 芯海科技(深圳)股份有限公司 快充输入电路、移动终端、可穿戴设备、体脂称及电子烟

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116505627A (zh) * 2023-06-28 2023-07-28 珠海智融科技股份有限公司 一种多口快充系统
CN116505627B (zh) * 2023-06-28 2024-05-14 珠海智融科技股份有限公司 一种多口快充系统

Also Published As

Publication number Publication date
CN113508509A (zh) 2021-10-15

Similar Documents

Publication Publication Date Title
EP3282550B1 (en) Adapter and charging control method
WO2016106996A1 (zh) 快速充电的移动终端及方法、系统
CN104885328A (zh) 用于动态调整适配器的充电电流的方法、装置及适配器,以实现热保护和快速充电
TWI427892B (zh) 具省電功能之供電系統及供電方法
US20160099608A1 (en) Power adapter with built-in battery and power storage and supply method thereof
US20130113417A1 (en) Charge control device and charge control method
US20110074360A1 (en) Power adapter with internal battery
CN108347089B (zh) 电能传输控制器、电能传输系统和电能传输方法
JP2008211966A (ja) 電力供給のための回路および動作方法
WO2022061677A1 (zh) 充电控制方法、电路、设备及存储介质
CN107643998B (zh) 基于智能模块实现otg和充电双功能的系统
TWI676333B (zh) 電子裝置及其充電方法
WO2017128619A1 (zh) 一种支持多电池快速充电的设备、装置及方法
CN114448010A (zh) 一种充放电的控制系统、方法及电池包
WO2021027882A1 (zh) 一种充电管理系统、方法、装置和存储介质
TWI511405B (zh) 調變攜帶式裝置之電源裝置充電電流的方法以及相關的電源裝置
CN117762231A (zh) 一种供电装置及供电方法
US20180145525A1 (en) Charging managment method and system thereof
TWI559125B (zh) 行動電源裝置及其電源控制方法
WO2021238683A1 (zh) 终端、终端的充电方法、电子设备和存储介质
WO2019128603A1 (zh) 充电器
WO2020124549A1 (zh) 一种无线充电方法、待充电设备、电源设备及存储介质
WO2020078167A1 (zh) 用于智能终端的充电控制方法、系统及计算机可读存储介质
EP2852021B1 (en) Charging circuit and control method therefor
CN215733552U (zh) 充电器、终端及充电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20954529

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20954529

Country of ref document: EP

Kind code of ref document: A1