WO2019128603A1 - 充电器 - Google Patents

充电器 Download PDF

Info

Publication number
WO2019128603A1
WO2019128603A1 PCT/CN2018/117894 CN2018117894W WO2019128603A1 WO 2019128603 A1 WO2019128603 A1 WO 2019128603A1 CN 2018117894 W CN2018117894 W CN 2018117894W WO 2019128603 A1 WO2019128603 A1 WO 2019128603A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
power
charger
charged
rated
Prior art date
Application number
PCT/CN2018/117894
Other languages
English (en)
French (fr)
Inventor
张国强
Original Assignee
施耐德电气(澳大利亚)有限公司
张国强
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 施耐德电气(澳大利亚)有限公司, 张国强 filed Critical 施耐德电气(澳大利亚)有限公司
Publication of WO2019128603A1 publication Critical patent/WO2019128603A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J5/00Circuit arrangements for transfer of electric power between ac networks and dc networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters

Definitions

  • Embodiments of the present disclosure relate to a charger.
  • An embodiment of the present disclosure provides a charger.
  • the charger includes: a plurality of charging ports; an AC to DC converter configured to provide a first rated charging power when one of the plurality of charging ports is connected to the device to be charged, and at least one of the plurality of charging ports Providing a second rated charging power when the two devices are connected to the device to be charged, the first rated charging power being higher than the second rated charging power; a controller coupled between the plurality of charging ports and the alternating current to direct current converter And being configured to control the AC to DC converter to select the first rated charging power or the second rated charging power according to a connection condition of the device to be charged and the plurality of charging ports, and provide the AC to DC converter The total rated charging power is controlled below the threshold power.
  • a plurality of charging ports can each support fast charging by the charger according to the present disclosure. Through dynamic power distribution, multiple charging ports ensure that the total output power is limited to a safe range while supporting fast charging.
  • the controller is further configured to identify a charging protocol supported by the first device to be charged and to charge according to the identification when the first charging port of the plurality of charging ports is connected to the first device to be charged
  • the protocol selects the first rated charging power of the AC to DC converter to provide to the first charging port.
  • the controller is further configured to select a nominal charging voltage and/or a nominal charging current of the AC to DC converter in accordance with the identified charging protocol.
  • the controller is further configured to connect the second to-be-charged device in response to the second one of the plurality of charging ports, in a case where the first charging port is connected to the first device to be charged.
  • the AC to DC converter is suspended, the AC to DC converter being configured to provide a second nominal charging power after the shutdown operation to provide to the first charging port and the second charging port, respectively.
  • the controller is further configured to respond to the plurality of charging ports if the first charging port is connected to the first device to be charged and the second charging port is connected to the second device to be charged
  • the third charging port is connected to the third device to be charged, so that the AC to DC converter is suspended, and the AC to DC converter is configured to provide a third rated charging power after the operation is suspended to respectively provide the first charging.
  • the controller includes a plurality of control modules associated with the plurality of charging ports and communicatively coupled to each other.
  • the charger is configured as a wall-mounted charger.
  • FIG. 1 shows a block diagram of a charger 100 in accordance with an embodiment of the present disclosure
  • FIG. 2 shows a block diagram of a charger 100 in accordance with another embodiment of the present disclosure
  • FIG. 3 shows a block diagram of a charger 100 in accordance with another embodiment of the present disclosure.
  • the term "comprise” and its various variants are to be understood as open-ended terms, which mean “including but not limited to”.
  • the term “based on” should be understood to mean “based at least in part.”
  • the term “one embodiment” should be taken to mean “at least one embodiment.”
  • the term “another embodiment” is to be understood as “at least one other embodiment.”
  • the terms “first,” “second,” and the like may refer to different or identical objects. Clear or implied definitions of other terms may also be included below. Unless otherwise stated, the meaning of the terms is consistent in the context of the present disclosure.
  • the charging power marks the charging speed when the battery power is constant.
  • the generalized fast charging technique increases the charging power of the battery to shorten the charging time.
  • the charging process of the battery can be mainly divided into a charger end and a mobile phone end.
  • the charger terminal converts a conventional mains voltage such as AC 220V into a DC low voltage and supplies it to an integrated circuit (IC) on the mobile terminal.
  • the voltage may be, for example, 5V, 9V, 12V, etc., depending on different fast charging schemes.
  • the mobile terminal IC further converts the received DC voltage into a charging voltage suitable for charging the mobile phone battery. For example, for a lithium ion battery currently in common use, the mobile terminal IC further reduces the voltage of 5V, 9V, and 12V received from the charger side of the mobile phone to a voltage of 4.4V or less for use.
  • the charger side still basically adopts the traditional design scheme, that is, it expands on the basis of a conventional charger with a single charging port to support fast charging.
  • the inventor has noticed that the main reason for not providing multiple charging ports for fast charging on the charger is: on the one hand, because the charging power is improved under the fast charging technology, if the charger has multiple charging ports and simultaneously gives more When charging an electronic product, it will cause the charging power to increase exponentially. On the other hand, since the charger is usually packaged in a small housing and is not conducive to heat dissipation, when the charging power is greatly increased, a large amount of waste heat is generated. The charger housing heats up and even a fire accident.
  • the inventors skillfully extended the dynamic power allocation function for chargers having multiple charging ports, so that each port of the charger can still limit the total power within a safe range while supporting fast charging.
  • FIG. 1 shows a block diagram of a charger 100 in accordance with an embodiment of the present disclosure.
  • charger 100 includes two charging ports, namely, a first charging port 101 and a second charging port 102, which are respectively connectable to an electronic device to be charged, such as a smart phone, tablet, or the like.
  • the charger 100 also includes an AC to DC converter 103 for converting a commercial power source, such as a 220V AC voltage, into a low voltage suitable for charging a battery of an electronic product.
  • the AC to DC converter 103 can provide at least two rated charging powers, one of which is, for example, the maximum power that can be provided for fast charging, ie, the first rated charging power, and the other, for example, relative The second rated charging power at which the maximum power is reduced.
  • the controller 104 is coupled between the first charging port 101, the second charging port 102, and the AC to DC converter 103 for dynamically adjusting the power distribution of the charger 100.
  • the controller 104 adjusts the AC to DC converter 103 to provide the first charging power to the first charging port 101.
  • the first rated charging power represents, for example, the maximum charging power that the charger 100 can provide to the first device to be charged via the first charging port 101.
  • the rated power can be, for example, 18W.
  • the controller 104 adjusts the AC to DC converter 103 to provide the first rating to the second charging port 102.
  • the charging power is, for example, 18W.
  • each of the charging ports 101 and 102 of the charger 100 can be set to be the maximum that can be provided by the AC to DC converter 103 when used alone to charge the device to be charged. The rated power is charged.
  • the first charging port 101 is connected to the first device to be charged and the second charging port 102 is connected to the second device to be charged, if the charging is continued at the first rated charging power (for example, 18 W), the AC to DC conversion is performed.
  • the charger typically has a preset threshold power to prevent the charger from overheating and causing a safety incident.
  • the controller 104 adjusts the AC to DC converter 103 to charge the first charging port 101 and the second.
  • Port 102 provides a second nominal charging power that is lower than the first rated charging power, respectively.
  • the second rated charging power may be, for example, 10 W. This ensures that the total charging power provided by the AC to DC converter 103 does not exceed the threshold power when multiple charging ports are used simultaneously, improving the safety of the charger 100.
  • the charger 100 can provide the maximum charging power to the device to be charged while ensuring safety, thereby achieving an optimal balance between increasing the charging speed and ensuring safety. .
  • FIG. 2 shows a block diagram of a charger 100 in accordance with another embodiment of the present disclosure.
  • the charger 100 shown in FIG. 2 is substantially the same as in FIG. 1, except that the charger 100 in FIG. 2 further includes a third charging port 107.
  • the controller 104 is coupled between the first charging port 101, the second charging port 102, the third charging port 107, and the AC to DC converter 103 for dynamically adjusting the power distribution of the charger 100 between the three ports.
  • the controller 104 adjusts the AC to DC converter 103 to provide the first charging port 101.
  • the first rated charging power for example 18W.
  • the controller 104 adjusts the AC to DC converter 103 to be the first The charging port 101 and the second charging port 102 respectively provide a second rated charging power that is lower than the first rated charging power.
  • the controller 104 can optionally adjust the AC to DC converter 103 directly to provide a lower rated charging power, such as 5 W, to ensure that when the third charging port 107 is also connected to the third device to be charged,
  • the controller 104 can also adjust the nominal charging power provided by the AC to DC converter 103 step by step. Specifically, when the first charging port 101 is connected to the first device to be charged and the second charging port 102 is connected to the second device to be charged and the third charging port 107 is not used, the controller 104 first converts the alternating current to the direct current.
  • the device 103 adjusts to the intermediate rated charging power, for example 10W; and when the first charging port 101 is connected to the first device to be charged, the second charging port 102 is connected to the second device to be charged, and the third charging port 107 is also connected to the first
  • the controller 104 adjusts the AC to DC converter 103 to provide a first rated charging power (eg, 18 W) and a first charging port 101, a second charging port 102, and a third charging port 107, respectively.
  • the second rated charging power (for example, 5W) is low at two rated charging powers (for example, 10W). This makes it possible to adjust the nominal charging power of the AC to DC converter 103 step by step depending on the number of charging ports used, and to ensure that the total charging power does not exceed the threshold power.
  • FIG. 1 and FIG. 2 respectively illustrate two charging ports and three charging ports, it is not excluded that there may be more charging ports. Accordingly, when the number of charging ports actually used for charging among the plurality of charging ports is increased, the rated charging power supplied from the AC to DC converter 103 to these charging ports will be lowered similarly to the above.
  • the controller 104 is further configured to identify a charging protocol supported by the first device to be charged when the first charging port 101 is connected to the first device to be charged, and in accordance with the identified charging protocol, The rated charging power of the AC to DC converter 103 is selected to be supplied to the first charging port 101.
  • the controller 104 first identifies the protocol supported by the device to be charged connected to the charging port and then selects the nominal charging power of the AC to DC converter 103 for the protocol. For example, when the device to be charged only supports a charging power of up to 15 W, the controller 104 adjusts the DC converter 103 accordingly to provide a rated charging power of 15 W, thereby matching the charging power of the charger end and the mobile terminal.
  • the selection of the rated charging power of the DC converter 103 can be achieved by selecting the rated charging voltage and/or the rated charging current of the DC converter 103.
  • the controller 104 is further configured to cause AC to DC when the second charging port 102 is connected to the second device to be charged, in a case where the first charging port 101 has been connected to the first device to be charged.
  • the converter 103 first suspends operation, that is, stops supplying charging power to the first charging port 101. After a brief period of time, controller 104 adjusts AC to DC converter 103 to provide a second rated charging power for supply to first charging port 101 and second charging port 102, respectively. In this way, it is possible to prevent a voltage jump or a current jump on the charging port (here, for example, the first charging port) from damaging the battery of the device to be charged.
  • FIG. 3 shows a block diagram of a charger 100 in accordance with another embodiment of the present disclosure.
  • the charger 100 shown in FIG. 3 is substantially the same as in FIG. 1, and the following description is only for the difference between the two.
  • the controller 104 is configured to include a plurality of control modules and are respectively assigned to charging ports.
  • the first control module 105 is assigned to the first port 101 and the second control module 106 is assigned to the second port 102.
  • the advantage of this design is that the controller 104 can be modularly partitioned so that only the control module in which the assigned port is occupied is activated.
  • the first charging port 101 when the first charging port 101 is connected to the first device to be charged and the second charging port 102 is not used, only the first control module 105 is activated and the second control module 106 is caused to process the standby state. In this way, the total power consumption of the controller 104 can be reduced.
  • both the first charging port 101 and the second charging port 102 are connected to the device to be charged, both the first control module 105 and the second control module 106 are activated and communicate with each other.
  • the charger 100 is configured as a wall-mounted charger.
  • the recessed charger can be fixed, for example, in a wall or floor in a room.
  • Such a wall-mounted charger is particularly concerned with heat dissipation problems due to lack of air circulation.
  • the charger 100 according to an embodiment of the present disclosure can simultaneously optimize the charging power distribution while supporting fast charging, so that the total charging power of the charger 100 is limited to a safe range, thereby reducing the amount of waste heat generation. This fundamentally solves the problem of heat dissipation of the recessed charger.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本公开涉及一种充电器。该充电器包括:多个充电端口;交流至直流转换器,被配置为当该多个充电端口中之一连接到待充电设备时提供第一额定充电功率,以及该多个充电端口中的至少两个连接到待充电设备时提供第二额定充电功率,该第一额定充电功率高于该第二额定充电功率;控制器,被耦合在该多个充电端口和该交流至直流转换器之间,并且被设置为根据待充电设备与该多个充电端口的连接情况而控制该交流至直流转换器选择该第一额定充电功率或者第二额定充电功率,并且将该交流至直流转换器提供的总额定充电功率控制在阈值功率以下。

Description

充电器
相关申请的交叉引用
本申请要求申请日为2017年12月29日、申请号为201721901178.9的中国实用新型专利申请的优先权。
技术领域
本公开的实施例涉及一种充电器。
背景技术
随着电池技术的发展,在电子产品例如智能电话、平板电脑等中使用的电池容量不断增加,伴随而来使得越来越关注电池的充电时间问题。
为了缩短充电时间,快充技术解决方案应运而生。目前,市场上的智能电子产品大多支持快充功能。然而,为了实现快充功能通常需要支持快充的专用充电器。
现有的带快充功能的充电器通常仅提供单个输出端口,从而不能满足同时对多个电子设备充电的特殊需要。
现有的一种解决方案是,充电器的两个输出端口仅一个支持快速充电,另一个仅支持普通充电。这种方法的缺点在于,当用户希望使用快充时必须首先找出支持快充的相应端口,使得整体操作不够智能化而影响用户体验。
发明内容
本公开的实施例提供了一种充电器。该充电器包括:多个充电端口;交流至直流转换器,被配置为当该多个充电端口中之一连接到待充电设备时提供第一额定充电功率,以及该多个充电端口中的 至少两个连接到待充电设备时提供第二额定充电功率,该第一额定充电功率高于该第二额定充电功率;控制器,被耦合在该多个充电端口和该交流至直流转换器之间,并且被设置为根据待充电设备与该多个充电端口的连接情况而控制该交流至直流转换器选择该第一额定充电功率或者第二额定充电功率,并且将该交流至直流转换器提供的总额定充电功率控制在阈值功率以下。
通过根据本公开的充电器能够实现多个充电端口都分别支持快速充电。通过动态功率分配,使得多个充电端口在支持快速充电的同时,保证总输出功率被限制在安全的范围内。
在一些实施例中,该控制器进一步被设置为当该多个充电端口中的第一充电端口连接第一待充电设备时,识别该第一待充电设备支持的充电协议并根据所识别的充电协议选择该交流至直流转换器的第一额定充电功率,以提供给该第一充电端口。
在一些实施例中,该控制器进一步被设置为根据所识别的充电协议选择该交流至直流转换器的额定充电电压和/或额定充电电流。
在一些实施例中,该控制器进一步被设置为在该第一充电端口连接该第一待充电设备的情况下,响应于该多个充电端口中的第二充电端口连接第二待充电设备,使得该交流至直流转换器暂停工作,该交流至直流转换器被配置为在暂停工作后提供第二额定充电功率以分别提供给该第一充电端口和该第二充电端口。
在一些实施例中,该控制器进一步被设置为在该第一充电端口连接该第一待充电设备并且该第二充电端口连接该第二待充电设备的情况下,响应于该多个充电端口中的第三充电端口连接第三待充电设备,使得该交流至直流转换器暂停工作,该交流至直流转换器被配置为在暂停工作后提供第三额定充电功率以分别提供给该第一充电端口、该第二充电端口和该第三充电端口,其中该第三额定充电功率低于该第一额定充电功率和该第二额定充电功率。
在一些实施例中,该控制器包括多个控制模块,该多个控制模块分别与该多个充电端口关联并且彼此通信地耦合。
在一些实施例中,该充电器被构造为嵌壁式充电器。
附图说明
通过结合附图对本公开示例性实施例进行更详细的描述,本公开的上述以及其它目的、特征和优势将变得更加明显,其中,在本公开示例性实施例中,相同的附图标记通常表示相同的部件。
图1示出了根据本公开的实施例的充电器100的框图;
图2示出了根据本公开的另一实施例的充电器100的框图;
图3示出了根据本公开的另一实施例的充电器100的框图。
具体实施方式
以下结合一些实施例更详细地阐释本公开的技术方案。应当理解,这些实施例仅是为了更好地说明和理解本公开,而不是对本公开的限制。本领域技术人员在以下给出的实施例的基础上,可以对实施例的特征进行任意的组合和调整,这些都应当属于本公开的保护范围。
在本公开中,术语“包括”及其各种变体应理解为开放式术语,其表示“包括但不限于”。术语“基于”应理解为“至少部分地基于”。术语“一个实施例”应理解为“至少一个实施例”。术语“另一实施例”应理解为“至少一个其它实施例”。术语“第一”、“第二”等可以指代不同的或相同的对象。下文中还可能包括对其他术语的明确或隐含的定义。除非另有说明,术语的含义在本公开的上下文中是一致的。
目前,由于智能电子产品、如智能手机的兴起使得耗电量急速上升,使得智能电子产品的电池充电频率不断提高。
另一方面,随着电池技术的发展,单位体积的电池的总容量不断提升,使得智能电子产品的内置电池具有相比过去大得多的电池容量,进而使得从电池空电量到电池满电量的充电时间不断延长。
为了满足日益增长的对于缩短充电时间的需求,当前广泛采用 快充技术来解决。从物理方面来说,在电池电量一定的情况下,充电功率即标志着充电速度。换言之,广义的快充技术即提高电池的充电功率以缩短充电时间。
以手机充电为例,电池的充电过程主要可以划分为充电器端和手机端。充电器端将常规的市电电压例如交流220V转换为直流低电压,并输送给手机端的集成电路(IC)。根据不同的快充方案,该电压可以例如是5V、9V、12V等。手机端IC将所接收到的直流电压进一步转换为适合手机电池充电的充电电压。例如对于目前普遍使用的锂离子电池,手机端IC例如将从手机充电器端接收到的5V、9V、12V的电压进一步降低到4.4V以下的电压以供使用。
目前,手机生产商主要致力于对于手机端的改进,以迎合快充的需要。相对而言,充电器端仍然基本采用传统的设计方案,即,在传统的具有单个充电端口的充电器的基础上进行扩展以支持快充。
发明人注意到,在充电器上不提供多个支持快充的充电端口的主要原因在于:一方面,由于在快充技术下充电功率的提高,如果充电器具有多个充电端口并同时给多个电子产品充电时,将会导致充电功率成倍的增加;另一方面,由于充电器通常被封装在较小的壳体内而不利于散热,当充电功率大幅度提高时,大量产生的废热导致充电器壳体升温,甚至出现火灾事故。
基于该认知,发明人巧妙地对于具有多个充电端口的充电器扩展动态功率分配功能,从而使得充电器的各个端口在支持快充的同时,仍然能够将总功率限定在安全范围内。
图1示出了根据本公开的实施例的充电器100的框图。在图1的示例中,充电器100包括两个充电端口,即,第一充电端口101和第二充电端口102,其分别能够与待充电的电子设备如智能电话、平板电脑等连接。
充电器100还包括交流至直流转换器103,用于将市电的例如220V交流电压转换成适合给电子产品的电池充电的低电压。在根据 本公开的实施例中,交流至直流转换器103可提供至少两个额定充电功率,其中一个例如是针对快速充电的可提供的最大功率,即第一额定充电功率,另一个例如是相对于该最大功率降低的第二额定充电功率。
控制器104连接在第一充电端口101、第二充电端口102与交流至直流转换器103之间,以用于动态调整充电器100的功率分配。
当例如第一充电端口101连接有第一待充电设备而第二充电端口102未被使用时,控制器104将交流至直流转换器103调节为向第一充电端口101提供第一额定充电功率。
在此,第一额定充电功率例如表示充电器100经由第一充电端口101可提供给第一待充电设备的最大充电功率。例如在支持快速充电下,该额定功率例如可以是18W。
同理,当例如第二充电端口102连接有第二待充电设备而第一充电端口101未被使用时,控制器104将交流至直流转换器103调节为向第二充电端口102提供第一额定充电功率,例如是18W。
也就是说,根据本公开的实施例的充电器100的每个充电端口101和102在单独被用于向待充电设备充电时,能够被设定为以交流至直流转换器103可提供的最大额定功率进行充电。
现在,当第一充电端口101连接有第一待充电设备并且第二充电端口102连接有第二待充电设备时,如果继续以第一额定充电功率(例如18W)进行充电,则交流至直流转换器103为两个充电端口101和102提供的总额定充电功率为18W+18W=36W。
这对于某些小型化封装的充电器来说会导致散热问题,尤其是针对被封装在壳体110中并嵌入墙壁或地板的嵌壁式充电器。因此,充电器通常具有预先设定的阈值功率,以防止充电器过热而引发安全事故。
当第一充电端口101连接有第一待充电设备并且第二充电端口102连接有第二待充电设备时,控制器104将交流至直流转换器103调节为向第一充电端口101和第二充电端口102分别提供比第一额 定充电功率低的第二额定充电功率。
在假定充电器100的阈值功率为20W的情况下,第二额定充电功率例如可以为10W。由此确保当多个充电端口同时被使用时仍能保证交流至直流转换器103提供的总充电功率不超过阈值功率,提高了充电器100的安全性。
以这种方式,根据本公开的实施例的充电器100能够在确保安全性的前提下向待充电设备提供最大的充电功率,从而在提高充电速度与保证安全两者之间得到最优的平衡。
图2示出了根据本公开的另一实施例的充电器100的框图。图2中所示的充电器100与图1中基本相同,区别在于图2中的充电器100还包括第三充电端口107。
控制器104连接在第一充电端口101、第二充电端口102、第三充电端口107与交流至直流转换器103之间,以用于在三个端口之间动态调整充电器100的功率分配。
当例如第一充电端口101连接有第一待充电设备而第二充电端口102和第三充电端口107未被使用时,控制器104将交流至直流转换器103调节为向第一充电端口101提供第一额定充电功率,例如18W。
在第一充电端口101已经连接有第一待充电设备的情况下,此时如果第二充电端口102又连接第二待充电设备,则控制器104将交流至直流转换器103调节为向第一充电端口101和第二充电端口102分别提供比第一额定充电功率低的第二额定充电功率。
此时,控制器104可选地能够将交流至直流转换器103直接调节为提供较低的额定充电功率,例如5W,以确保之后当第三充电端口107也连接至第三待充电设备时,交流至直流转换器103提供的总功率(5W+5W+5W=15W)也不会超过阈值功率(例如20W)。
可选地,控制器104也能够逐级地调节由交流至直流转换器103提供的额定充电功率。具体而言,当第一充电端口101连接有第一待充电设备并且第二充电端口102连接有第二待充电设备而第三充 电端口107未被使用时,控制器104首先将交流至直流转换器103调节至中间的额定充电功率,例如10W;而当第一充电端口101连接有第一待充电设备、第二充电端口102连接有第二待充电设备并且第三充电端口107也连接有第三待充电设备时,控制器104将交流至直流转换器103调节为向第一充电端口101、第二充电端口102和第三充电端口107分别提供比第一额定充电功率(例如18W)和第二额定充电功率(例如10W)都低的第三额定充电功率(例如5W)。由此实现根据所使用的充电端口的数量来逐级地调节交流至直流转换器103的额定充电功率,并且保证总充电功率不超过阈值功率。
应当理解,虽然图1和图2中分别以两个充电端口和三个充电端口为例进行了说明,但是不排除可以具有更多的充电端口。相应地,当多个充电端口中被实际用于充电的充电端口数量增加时,交流至直流转换器103向这些充电端口提供的额定充电功率将类似于上述方式被降低。
在某些实施例中,控制器104进一步被设置为,当第一充电端口101被连接到第一待充电设备时,识别第一待充电设备支持的充电协议,并且根据所识别的充电协议,选择交流至直流转换器103的额定充电功率,以提供给第一充电端口101。
由于电池的快充技术仍处于发展初期,所以市场上还没有形成相对统一的标准和协议。目前,较为成熟的快充解决方案例如包括QuickCharge(QC)、USB Power Delivery Specification(PD)、VOOC闪充、Super Charge Protocol(SCP)和Fast Charging Protocol(FCP)等。
为此,控制器104首先识别连接在充电端口上的待充电设备所支持的协议,然后针对该协议选择交流至直流转换器103的额定充电功率。例如当待充电设备仅支持最大15W的充电功率时,控制器104则相应地将直流转换器103调整为提供15W的额定充电功率,从而使充电器端与手机端的充电功率互相匹配。其中,选择直流转换器103的额定充电功率可以通过选择直流转换器103的额定充电 电压和/或额定充电电流来实现。
在某些实施例中,控制器104进一步被设置为,在第一充电端口101已经连接第一待充电设备的情况下,当第二充电端口102连接第二待充电设备时,使得交流至直流转换器103首先暂停工作,即,停止向第一充电端口101提供充电功率。在一短暂的时间段之后,控制器104将交流至直流转换器103调节至提供第二额定充电功率,以分别提供给第一充电端口101和第二充电端口102。通过这种方式,能够防止充电端口(这里例如是第一充电端口)上发生电压跃变或电流跃变而损坏待充电设备的电池。
图3示出了根据本公开的另一实施例的充电器100的框图。图3中所示的充电器100与图1中基本相同,以下仅针对两者的区别进行描述。
在图3所示的示例中,控制器104被构造为包括多个控制模块,并分别分配给充电端口。图3中,第一控制模块105被分配给第一端口101,第二控制模块106被分配给第二端口102。这样设计的好处在于,可以将控制器104进行模块化划分,从而仅使所分配的端口被占用的控制模块被激活。
例如当第一充电端口101连接有第一待充电设备而第二充电端口102未被使用时,则仅激活第一控制模块105而使第二控制模块106处理待机状态。通过这种方式能够降低控制器104的总消耗功率。
当第一充电端口101和第二充电端口102都连接有待充电设备时,则第一控制模块105和第二控制模块106都被激活且彼此通信。
在某些实施例中,充电器100被构造为嵌壁式充电器。嵌壁式充电器例如可以被固定在室内的墙壁或地板中。这样的嵌壁式充电器由于缺少空气流通,所以对于散热问题尤其关注。根据本公开的实施例的充电器100能够在支持快充的前提下同时优化了充电功率分配,使得充电器100的总充电功率被限定在安全范围内,从而降低了废热产生量。这从根本上解决了嵌壁式充电器的散热问题。
以上已经描述了本公开的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中技术的技术改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。

Claims (7)

  1. 一种充电器(100),其特征在于,包括:
    多个充电端口(101,102);
    交流至直流转换器(103),被配置为当所述多个充电端口(101,102)中之一连接到待充电设备时提供第一额定充电功率,以及所述多个充电端口(101,102)中的至少两个连接到待充电设备时提供第二额定充电功率,所述第一额定充电功率高于所述第二额定充电功率;
    控制器(104),被耦合在所述多个充电端口(101,102)和所述交流至直流转换器(103)之间,并且被设置为根据待充电设备与所述多个充电端口(101,102)的连接情况而控制所述交流至直流转换器(103)选择所述第一额定充电功率或者第二额定充电功率,并且将所述交流至直流转换器(103)提供的总额定充电功率控制在阈值功率以下。
  2. 根据权利要求1所述的充电器(100),其特征在于,所述控制器(104)进一步被设置为当所述多个充电端口中的第一充电端口(101)连接第一待充电设备时,识别所述第一待充电设备支持的充电协议并根据所识别的充电协议选择所述交流至直流转换器(103)的第一额定充电功率,以提供给所述第一充电端口(101)。
  3. 根据权利要求2所述的充电器(100),其特征在于,所述控制器(104)进一步被设置为根据所识别的充电协议选择所述交流至直流转换器(103)的额定充电电压和/或额定充电电流。
  4. 根据权利要求1所述的充电器(100),其特征在于,
    所述控制器(104)进一步被设置为在所述第一充电端口(101)连接所述第一待充电设备的情况下,响应于所述多个充电端口中的第二充电端口(102)连接第二待充电设备,使得所述交流至直流转换器(103)暂停工作,
    所述交流至直流转换器(103)被配置为在暂停工作后提供第二 额定充电功率以分别提供给所述第一充电端口(101)和所述第二充电端口(102)。
  5. 根据权利要求4所述的充电器(100),其特征在于,所述控制器(104)进一步被设置为在所述第一充电端口(101)连接所述第一待充电设备并且所述第二充电端口(102)连接所述第二待充电设备的情况下,响应于所述多个充电端口中的第三充电端口(107)连接第三待充电设备,使得所述交流至直流转换器(103)暂停工作,
    所述交流至直流转换器(103)被配置为在暂停工作后提供第三额定充电功率以分别提供给所述第一充电端口(101)、所述第二充电端口(102)和所述第三充电端口(107),其中所述第三额定充电功率低于所述第一额定充电功率和所述第二额定充电功率。
  6. 根据权利要求1至5中任一项所述的充电器(100),其特征在于,所述控制器(104)包括多个控制模块(105,106),所述多个控制模块(105,106)分别与所述多个充电端口(101,102)关联并且彼此通信地耦合。
  7. 根据权利要求1至5中任一项所述的充电器(100),其特征在于,所述充电器(100)被构造为嵌壁式充电器。
PCT/CN2018/117894 2017-12-29 2018-11-28 充电器 WO2019128603A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201721901178.9 2017-12-29
CN201721901178.9U CN208461525U (zh) 2017-12-29 2017-12-29 充电器

Publications (1)

Publication Number Publication Date
WO2019128603A1 true WO2019128603A1 (zh) 2019-07-04

Family

ID=65139521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117894 WO2019128603A1 (zh) 2017-12-29 2018-11-28 充电器

Country Status (4)

Country Link
CN (1) CN208461525U (zh)
HK (1) HK1255527A2 (zh)
TW (1) TWM575930U (zh)
WO (1) WO2019128603A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210320515A1 (en) * 2020-04-14 2021-10-14 Silergy Semiconductor Technology (Hangzhou) Ltd Charging device and charging method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113285517B (zh) * 2021-07-23 2021-10-01 深圳英集芯科技股份有限公司 电源适配器及充电控制方法
US12015298B2 (en) 2022-07-14 2024-06-18 Silanna Asia Pte Ltd Configurable integrated power delivery module with adaptive power sharing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150263550A1 (en) * 2014-03-14 2015-09-17 Yun-Feng Han Multi-port charging device
CN106329741A (zh) * 2016-10-17 2017-01-11 南京信息职业技术学院 一种多负载自适应无线充电系统及其充电方法
CN106899056A (zh) * 2017-02-25 2017-06-27 吴钰淳 随机快充装置及方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150263550A1 (en) * 2014-03-14 2015-09-17 Yun-Feng Han Multi-port charging device
CN106329741A (zh) * 2016-10-17 2017-01-11 南京信息职业技术学院 一种多负载自适应无线充电系统及其充电方法
CN106899056A (zh) * 2017-02-25 2017-06-27 吴钰淳 随机快充装置及方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210320515A1 (en) * 2020-04-14 2021-10-14 Silergy Semiconductor Technology (Hangzhou) Ltd Charging device and charging method

Also Published As

Publication number Publication date
HK1255527A2 (zh) 2019-08-16
TWM575930U (zh) 2019-03-21
CN208461525U (zh) 2019-02-01

Similar Documents

Publication Publication Date Title
TWI661646B (zh) 充電系統、充電方法及電源適配器、充電裝置
TWI625912B (zh) 行動終端
CN105098945B (zh) 一种可直充电源适配器
CN104993565B (zh) 可直充电源适配器
CN104993562B (zh) 可直充电源适配器
WO2019128603A1 (zh) 充电器
EP2232349A1 (en) Powering an electrical device through a legacy adapter capable of digital communication
CN105140985A (zh) 移动终端、可直充电源适配器及充电方法
WO2009086566A1 (en) Power adapter capable of communicating digitally with electronic devices
CN211508661U (zh) 一种便携式电源设备
WO2023213315A1 (zh) 一种充电装置、充电方法以及车辆
WO2018032509A1 (zh) 一种具有Type-C接口的充电器
WO2022061677A1 (zh) 充电控制方法、电路、设备及存储介质
CN210898617U (zh) 一种双口快充充电器
WO2020114028A1 (zh) 插座
CN211880144U (zh) 充电器及充电系统
WO2017166265A1 (en) Reducing idle-time energy consumption in universal serial bus power delivery circuitry of power adapters
CN111064267A (zh) 一种便携式电源设备及基于市电的负载供电方法
CN111193304A (zh) 一种便携式电源设备及基于市电的负载供电方法
TW201815005A (zh) 行動終端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18893902

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18893902

Country of ref document: EP

Kind code of ref document: A1