WO2018163262A1 - バッテリユニット、香味吸引器、バッテリユニットを制御する方法、及びプログラム - Google Patents
バッテリユニット、香味吸引器、バッテリユニットを制御する方法、及びプログラム Download PDFInfo
- Publication number
- WO2018163262A1 WO2018163262A1 PCT/JP2017/008858 JP2017008858W WO2018163262A1 WO 2018163262 A1 WO2018163262 A1 WO 2018163262A1 JP 2017008858 W JP2017008858 W JP 2017008858W WO 2018163262 A1 WO2018163262 A1 WO 2018163262A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- load
- power supply
- output voltage
- battery unit
- mode
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/50—Control or monitoring
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B1/00—Details of electric heating devices
- H05B1/02—Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
- H05B1/0227—Applications
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F47/00—Smokers' requisites not otherwise provided for
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/40—Constructional details, e.g. connection of cartridges and battery parts
- A24F40/46—Shape or structure of electric heating means
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/50—Control or monitoring
- A24F40/53—Monitoring, e.g. fault detection
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/90—Arrangements or methods specially adapted for charging batteries thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M11/00—Sprayers or atomisers specially adapted for therapeutic purposes
- A61M11/04—Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised
- A61M11/041—Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised using heaters
- A61M11/042—Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised using heaters electrical
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/0031—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/0036—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using connection detecting circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0047—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0063—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0068—Battery or charger load switching, e.g. concurrent charging and load supply
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/40—Heating elements having the shape of rods or tubes
- H05B3/42—Heating elements having the shape of rods or tubes non-flexible
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/10—Devices using liquid inhalable precursors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/82—Internal energy supply devices
- A61M2205/8206—Internal energy supply devices battery-operated
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/007—Regulation of charging or discharging current or voltage
- H02J7/007188—Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
Definitions
- the present invention relates to a battery unit including a connecting portion connectable to an atomizer for atomizing an aerosol source, a flavor inhaler including the battery unit, a method for controlling the battery unit, and a program for executing the method.
- Non-combustion type flavor inhalers electro cigarettes
- the flavor aspirator controls the atomizer, which is an electric load that atomizes the taste components contained in at least one of the aerosol source and the flavor source, and at least one of the aerosol source and the flavor source, the power source that supplies power to the atomizer, and the atomizer and power source
- a control unit is provided.
- Patent Document 1 describes that the atomizer is configured to be detachable from a battery unit including a power source and a control unit. Patent Document 1 discloses that an atomizer connected to a battery unit can be identified using identification information such as an ID.
- Patent Document 2 discloses an electronic smoking device that can alternatively connect an atomizer and a charger to a common connection (interface) of battery units.
- Patent Document 3 discloses detecting an overcurrent or a short circuit flowing in an electronic circuit in an electronic cigarette.
- Patent Document 4 discloses a fuse for preventing overheating of an atomizer in an electronic cigarette.
- Patent Document 5 discloses disabling the system by blowing a fuse in an electronic circuit when a system abnormality occurs in an aerosol generating device such as an electric smoking device.
- Patent document 6 discloses detecting an overcurrent or an overvoltage during charging of a battery unit of an electronic cigarette.
- Patent Document 7 discloses a charge monitoring device that monitors the state of charge of a battery when the battery is charged. This charge monitoring device is used to monitor the change of the voltage of the battery to be charged with time or the change of the voltage of the battery to be charged to the amount of charge electricity, as well as monitoring the measured voltage value of the battery obtained by the voltage measuring means. By doing so, an abnormality in the state of charge is detected.
- Cited Document 8 discloses a user authentication technique based on a suction pressure during a user's puff operation in a flavor inhaler.
- Citation 9 discloses a technique for making a flavor inhaler simply unusable.
- the first feature is that a power source, a detection unit that detects an output voltage of the power source, a connection unit that can connect a load that atomizes an aerosol source or heats a flavor source, and power feeding that feeds power from the power source to the load
- a control unit capable of executing a mode, wherein the control unit executes specific control different from power supply to the load based on a change amount per predetermined period of the output voltage in the power supply mode.
- the gist is the unit.
- the second feature is summarized in that, in the first feature, the specific control is authentication of the load.
- the third feature is summarized in that, in the second feature, when the change amount of the output voltage per predetermined period is included in a predetermined range, authentication of the load is continued.
- the gist of the fourth feature is that, in the second feature or the third feature, when the change amount of the output voltage per predetermined period is not included in a predetermined range, the authentication of the load is canceled. .
- the control unit when the authentication of the load is canceled, is configured to detect the return operation based on a change amount of the output voltage per predetermined period. The gist is to determine whether or not to perform the authentication.
- a sixth feature is any one of the first feature to the fifth feature, wherein the connection unit is capable of connecting a charger for charging the power source and the load, and the control unit is configured to supply the power supply mode.
- the charging mode for charging the power source from the charger can be executed, and the specific control is a control for determining an abnormality in the charging mode.
- a seventh feature is that, in the sixth feature, the amount of decrease in the output voltage in the charging mode per predetermined period is set based on the amount of decrease in the output voltage in the power supply mode per predetermined period. When it is 1 threshold value or less, the gist of the control unit is to determine an abnormality in the charging mode.
- the eighth feature is summarized in that, in the seventh feature, the first threshold value is set to be equal to or less than the amount of change per predetermined period of the output voltage in the power supply mode.
- the battery unit can be electrically connected to and disconnected from the power source with respect to the load or the charger connected to the connection portion.
- the controller includes turning on the switch when the first condition is satisfied in the power supply mode, and turning on the switch when a second condition different from the first condition is satisfied in the charging mode.
- the gist is to turn it ON.
- a tenth feature is characterized in that, in the ninth feature, the battery unit includes a detection unit that detects an operation for using the load, and the first condition is a condition based on detection of the operation. .
- the eleventh feature is summarized in that, in the ninth feature or the tenth feature, the second condition is a condition based on connection of the charger to the connection portion.
- the gist of the twelfth feature is a flavor inhaler including the battery unit of any one of the first feature to the eleventh feature and the load.
- the thirteenth feature controls a battery unit including a control unit capable of executing a power supply mode for supplying power from a power source to the load via a connection unit capable of connecting a load for atomizing an aerosol source or heating a flavor source.
- the gist of the fourteenth feature is a program that causes a battery unit to execute the method according to the thirteenth feature.
- the “decrease amount of the output voltage per predetermined period” is an amount indicating how much the output voltage has decreased in the predetermined period. In other words, it is an amount indicating how much the output voltage at the end of the predetermined period is smaller than the output voltage at the start of the predetermined period.
- the “decrease amount of the output voltage per predetermined period” is obtained, for example, by subtracting the output voltage at the beginning of the predetermined period from the output voltage at the end of the predetermined period.
- the “decrease amount of the output voltage per predetermined period” shows a negative value, the output voltage decreases in the predetermined period.
- the smaller “decrease amount of output voltage per predetermined period” means that the output voltage in the predetermined period has decreased more, in other words, In this case, the output voltage at the end of the predetermined period is smaller than the output voltage at the start of the predetermined period.
- FIG. 1 is an exploded view showing a flavor inhaler according to one embodiment.
- FIG. 2 is a diagram illustrating an atomization unit according to an embodiment.
- FIG. 3 is a diagram illustrating an electric circuit provided in the battery unit.
- FIG. 4 is a diagram illustrating an electric circuit of the atomizing unit and the battery unit in a state where a load is connected.
- FIG. 5 is a diagram illustrating an electric circuit of the charger and the battery unit in a state where the charger is connected.
- FIG. 6 is a flowchart showing a control flow for shifting to the power feeding mode and the charging mode.
- FIG. 7 is a flowchart illustrating a power supply mode according to an embodiment.
- FIG. 8 is a flowchart illustrating an example of a load authentication process according to an embodiment.
- FIG. 9 is a flowchart illustrating a charging mode according to an embodiment.
- FIG. 10 is a graph showing an example of the relationship between power supply degradation and power supply output voltage.
- FIG. 11 is a flowchart illustrating an example of the abnormality process according to the embodiment.
- FIG. 12 is a flowchart illustrating another example of the abnormality process according to the embodiment.
- FIG. 13 is a diagram illustrating an electrical circuit of the flavor inhaler according to the second embodiment.
- a flavor inhaler such as an electronic cigarette, includes an electrical load that atomizes the aerosol source or heats the flavor source.
- the electric load uses the electric power supplied from the power source to atomize the aerosol source or heat the flavor source. Since power from the power source is supplied to the electrical load electrically connected to the electronic circuit in the flavor inhaler, the output voltage of the power source decreases.
- the inventor of the present application pays attention to the fact that the amount of change in the output voltage changes according to the specifications of the electrical load, etc., and can be effectively used for controlling the battery unit and the flavor inhaler using the amount of change in the output voltage of the power source. I found.
- the battery unit includes a power source, a detection unit that detects an output voltage of the power source, a connection unit that can connect a load that atomizes the aerosol source or heats the flavor source, and supplies power from the power source to the load. And a control unit capable of executing a power supply mode. The control unit executes specific control different from the power supply to the load based on the amount of change of the output voltage per predetermined period in the power supply mode.
- FIG. 1 is an exploded view showing a flavor inhaler according to one embodiment.
- FIG. 2 is a diagram illustrating an atomization unit according to an embodiment.
- FIG. 3 is a diagram illustrating an electric circuit provided in the battery unit.
- FIG. 4 is a diagram illustrating an electric circuit of the load and the battery unit in a state where the load is connected.
- FIG. 5 is a diagram illustrating an electric circuit of the charger and the battery unit in a state where the charger is connected.
- the flavor inhaler 100 may be a non-combustion type flavor inhaler for sucking inhalation components (flavoring components) without combustion.
- the flavor inhaler 100 may have a shape extending along a predetermined direction A that is a direction from the non-suction end E2 toward the suction end E1.
- the flavor suction device 100 may have a battery unit 112 and an atomization unit 111.
- the atomization unit 111 may include an aerosol source that generates an aerosol and / or a flavor source that generates a flavor component, and an electrical load 111R that atomizes the aerosol source or heats the flavor source.
- the load 111 ⁇ / b> R may be any element that can generate aerosol and / or flavor components from an aerosol source and / or flavor source by receiving electric power.
- the battery unit 112 includes a power supply 40 and a control unit 51.
- the power source 40 stores electric power necessary for the operation of the flavor inhaler 100.
- the power supply 40 supplies power to the control unit 51 and the load of the atomization assembly 120.
- the power source 40 may be a rechargeable battery such as a lithium ion secondary battery.
- the battery unit 112 has a connection part 120 that can connect the load 111R of the atomization unit 111 and the charger 200 that charges the power supply 40.
- the connection unit 120 of the battery unit 112 is configured to be able to connect the load 111R and the charger 200 alternatively.
- the charger 200 or the load 111R is exclusively connected to the connection unit 120 of the battery unit 112, and the charger 200 and the load 111R are not simultaneously connected.
- this is not the case when the battery unit 112 has a plurality of connection portions 120.
- the connection unit 120 of the battery unit 112 includes an electric terminal 120t for electrically connecting to the load 111R of the atomization unit 111 and the charger 200.
- the electric terminal 120t is electrically connected to the power supply 40 and the control unit 51 (see FIG. 3).
- the load 111R provided in the atomization unit 111 is electrically connected to the power source 40 of the battery unit 112 via the electric terminal 120t ( (See FIG. 4). Further, when the charger 200 is connected to the connection portion 120 of the battery unit 112, the charger 200 is electrically connected to the power source 40 of the battery unit 112 via the electric terminal 120t (see FIG. 5).
- the battery unit 112 may have an inflow hole 112A for inflowing air from the outside.
- the air flowing in from the inflow hole 112 ⁇ / b> A reaches the suction port provided at the suction end E ⁇ b> 1 of the flavor suction device 100 via the flow path provided in the atomization unit 111.
- another inflow hole may be provided in the atomization unit 111 in order to use instead of the inflow hole 112A or together with the inflow hole 112A.
- the atomizing unit 111 and the battery unit 112 are configured such that an inflow hole is formed at the connection location (boundary location). May be.
- the atomization unit 111 may include a reservoir 111P, a wick 111Q, and a load 111R.
- the reservoir 111P stores a liquid aerosol source.
- the reservoir 111P may be a porous body made of a material such as a resin web.
- the wick 111Q is a liquid holding member that draws an aerosol source from the reservoir 111P by using a capillary phenomenon or the like.
- the wick 111Q is made of glass fiber or porous ceramic.
- the load 111R may be a resistance heating element.
- This resistance heating element atomizes the aerosol source held by the wick 111Q.
- the resistance heating element is constituted by, for example, a resistance heating element (for example, a heating wire) wound around the wick 111Q.
- the air that flows in from the inflow hole 112A passes through the vicinity of the load 111R in the atomizing unit 111.
- the aerosol generated by the load 111R flows toward the suction port together with air.
- the aerosol source may be a liquid at room temperature.
- a polyhydric alcohol can be used as the aerosol source.
- the aerosol source itself may have a flavor component.
- the aerosol source may include a tobacco raw material that releases a flavor component by heating or an extract derived from the tobacco raw material.
- an aerosol source that is liquid at room temperature has been described in detail, but instead, an aerosol source that is solid at room temperature can be used.
- the atomization unit 111 may include a flavor unit 130 configured to be replaceable.
- the flavor unit 130 may include a cylindrical body 131, a flavor source 132, a mesh 133A, and a filter 133B.
- the cylinder 131 has a cylindrical shape extending along the predetermined direction A.
- the cylinder 131 has a holding part 134 that holds the flavor source 132.
- the flavor source 132 is provided on the suction side of the atomization unit 111 on the flow path of the air sucked from the suction port.
- the flavor source 132 imparts a flavor component to the aerosol atomized by the load 111R of the atomization unit 111.
- the flavor imparted to the aerosol by the flavor source 132 is carried to the mouthpiece of the flavor inhaler 100.
- the flavor source 132 may be solid at room temperature.
- the flavor source 132 is configured by a raw material piece of plant material that imparts a flavor component to the aerosol.
- a raw material piece which comprises the flavor source 132 the molded object which shape
- the flavor source 132 may be a molded body obtained by molding a tobacco material into a sheet shape.
- the raw material piece which comprises the flavor source 132 may be comprised by plants (for example, mint, an herb, etc.) other than tobacco.
- the flavor source 132 may be provided with a fragrance such as menthol.
- the mesh 133A is provided so as to close the opening of the cylindrical body 131 on the non-suction side with respect to the flavor source 132.
- the filter 133 ⁇ / b> B is provided so as to close the opening of the cylindrical body 131 on the suction side with respect to the flavor source 132.
- the mesh 133A has such a roughness that the raw material pieces constituting the flavor source 132 do not pass therethrough.
- the filter 133B is made of a material having air permeability. The filter 133B has such a roughness that the raw material pieces constituting the flavor source 132 do not pass through.
- the atomization unit 111 has both an aerosol source and a flavor source.
- the atomization unit 111 may have only one of an aerosol source and a flavor source.
- the flavor unit 130 plays the role of a so-called mouthpiece. Instead, a mouthpiece separate from the flavor unit 130 may be provided.
- the load 111R is provided as an element for atomizing the aerosol source.
- the load 111 ⁇ / b> R may be provided as an element that heats the flavor source 132.
- the load 111R may be provided as an element that atomizes the aerosol source and heats the flavor source 132.
- the load 111R is provided in the vicinity of the reservoir 111P that stores the aerosol source.
- the load 111 ⁇ / b> R may be provided in the vicinity of the flavor unit 130 that houses the flavor source 132.
- the number of loads 111R is not limited to one, and may be provided in the vicinity of the reservoir 111P and the flavor unit 130, respectively.
- the load 111R is not limited to a resistance heating element, and may be any element that can atomize an aerosol source or heat a flavor source.
- the load 111R may be a heating element such as a heater or an element such as an ultrasonic generator.
- the heating element include a heating resistor, a ceramic heater, and an induction heating type heater.
- the battery unit 112 includes a switch 140 that can be electrically connected to and disconnected from the power supply 40 with respect to the load 111 ⁇ / b> R or the charger 200 connected to the connection unit 120.
- the switch 140 is opened and closed by the control unit 51.
- the switch 140 may be composed of, for example, a MOSFET.
- the battery unit 112 includes a determination unit that determines whether or not the charger 200 is connected to the connection unit 120.
- the determination unit may be a unit that determines whether or not the charger is connected based on a potential difference between the electric terminals 120 t provided in the connection unit 120.
- the determination unit includes a pair of electric resistors 150 and 152 arranged in series. One of the pair of electric resistors 150 is provided at a position where the connection terminals 120t are connected to each other. The other 152 of the pair of electric resistors is connected to one terminal of the control module constituting the control unit 51.
- the electric resistance values 150 and 152 of the pair of electric resistors may be known.
- the electric resistance value of the pair of electric resistors 150 and 152 is sufficiently higher than the load 111R, and may be, for example, 10 k ⁇ .
- the potential at the point between the pair of electric resistors 150 and 152 differs between the case where nothing is connected to the electric terminal 120t and the case where the charger 200 is connected to the electric terminal 120t. Therefore, the control unit 51 receives a signal from the other 152 of the pair of electric resistors (hereinafter referred to as “WAKE signal”), and is connected to the connection unit 120 in a state in which nothing is connected.
- WAKE signal a signal from the other 152 of the pair of electric resistors
- the control unit 51 detects the voltage drop in the electric resistors 150 and 152 as the first level WAKE signal.
- the charger 200 when the charger 200 is connected to the connection unit 120, the current charged from the charger 200 to the power source 40 is a resistance of a parallel circuit of the electric resistor 150 and the power source 40.
- the power supply 40 having a low value is preferentially charged.
- the control unit 51 detects the second level WAKE signal. To do.
- the first level and the second level may be values having a predetermined range that do not overlap each other.
- the determination unit determines whether or not the charger 200 is connected to the connection unit 120. Instead, the determination unit includes a state in which neither the charger 200 nor the load 111R is connected to the connection unit 120, a state in which the charger 200 is connected to the connection unit 120, and a load 111R to the connection unit 120. May be determined as a connected state. By making the electrical resistance value of the load 111R sufficiently larger than that of the electrical resistor 150, the WAKE signal detected by the control unit 51 shows different levels in these three states.
- the control unit 51 detects the voltage drop in the load 111R and the electric resistor 152 as a third level WAKE signal that does not overlap the first level and the second level.
- the battery unit 112 may include a detection unit 160 that detects the output voltage of the power supply 40.
- the detection unit 160 may be provided in an electric circuit in the battery unit 112.
- the detection unit 160 may be configured by any well-known electric module.
- the control unit 51 and the detection unit 160 are configured by separate modules. Instead, the control unit 51 and the detection unit 160 may be configured by one module.
- the battery unit 112 may include a cutting unit 170 that at least temporarily disables power supply from the power supply 40 to the load 111R.
- the cutting means 170 may be provided between the power supply 40 and the electric terminal 120t in the electric circuit of the battery unit 112.
- the cutting means 170 is irreversible so that power supply from the power supply 40 to the load 111R can be resumed by the control unit 51 temporarily and power supply from the power supply 40 to the load 111R cannot be resumed by the control unit 51. It is preferable that the second mode can be switched to the second mode.
- the control unit 51 may be configured to be able to control the cutting unit 170 in the first mode and the second mode.
- the cutting unit 170 may include a fuse 172.
- the cutting means 170 may branch in parallel from the line L1 provided with the fuse 172 to the normal line L2 and the abnormal line L3.
- the first electrical resistor 174 and the first switch 175 may be connected in series with each other.
- the second electrical resistor 176 and the second switch 177 may be connected to each other in series.
- both the first switch 175 and the second switch 177 are OFF. Thereby, since the power supply 40 and the load 111R connected to the connection unit 120 are electrically disconnected, power supply from the power supply 40 to the load 111R is temporarily disabled.
- the first switch 175 and the second switch 177 are turned on. As a result, a current flows through both the normal line L2 and the abnormal line L3, and a current larger than that during normal operation flows through the fuse 172. As a result, the fuse 172 is blown. When the fuse 172 is blown, power supply from the power source 40 to the load 111R is irreversibly disabled so that the control unit 51 cannot resume power supply.
- the first switch 175 may be turned off and the second switch 177 may be turned on instead of the above-described mode. Even in this case, if the resistance value of the second electrical resistor 176 is sufficiently smaller than the resistance value of the first electrical resistor 174, a larger current flows through the fuse 172 than during normal operation, and as a result. The fuse 172 can be blown.
- the resistance value of the first electric resistor 174 and the resistance value of the second electric resistor 176 are set so that the fuse 172 is blown in the second mode without blowing the fuse 172 in the first mode. That's fine.
- the abnormal line L3 may be a so-called short-circuit line that does not have the second resistor 176 and has only the lead wire resistance.
- the disconnecting unit 170 is a unit capable of executing only the first mode in which power supply from the power source 40 to the load 111R is temporarily disabled so that the control unit 51 can resume power supply. May be.
- the cutting means 170 is constituted by only a single switch and does not need to include the fuse 172.
- the disconnecting unit 170 may be a unit capable of executing only the second mode in which power supply from the power supply 40 to the load 111R is irreversibly disabled so that it cannot be resumed by the control unit 51. In this case, the cutting means 170 does not need to include the first switch 175.
- a DC-DC converter may be used as another example of the cutting means 170.
- the output current of the DC-DC converter is controlled so that a current equal to or greater than the current value at which the fuse 172 is blown flows through the fuse 172.
- the flavor inhaler 100 may have power supply deterioration estimation means for estimating the deterioration state (life) of the power supply 40.
- the power supply deterioration detecting means may be any known means such as a current integration method.
- the deterioration state of the power supply 40 can be estimated by calculating the total integrated value of the current charged and discharged by the power supply 40.
- the power supply deterioration estimation means replaces the current integration method, and the deterioration of the power supply 40 is caused by a change accompanying an increase in impedance of the power supply 40 such as an increase in the internal temperature of the power supply 40 or a decrease in the power value or voltage value output from the power supply 40.
- the state may be estimated.
- the control unit 51 may be configured to be able to execute a plurality of operation modes.
- Examples of the operation mode include a power supply mode and a charge mode.
- the power supply mode is a mode in which power can be supplied from the power supply 40 to the load 111R.
- the charging mode is a mode in which charging from the charger 200 to the power source 40 is possible.
- the flavor suction device 100 may include a detection unit 20 that detects an operation for using the load 111R.
- the detection unit 20 is preferably provided in the battery unit 112. A signal from the detection unit 20 can be detected by the control unit 51.
- the detection unit 20 may be a suction sensor that detects suction from the mouth of the flavor suction device 100 by the user, for example.
- the suction sensor may be a MEMS (Micro Electro Mechanical Systems) sensor having a capacitor, and outputs a value (for example, a voltage value) indicating the capacitance of the capacitor according to the differential pressure generated in the flow path by the suction operation. .
- the output value may be recognized as a pressure, or may be recognized as a flow rate or a flow rate per unit time.
- the detection unit 20 may be configured by a push button that detects, for example, a button press by the user.
- the flavor suction device 100 may have a notification means 30.
- the notification unit 30 is preferably provided in the battery unit 112.
- Examples of the notification unit 30 include a light emitting element such as an LED, an audio output device, a sensory feedback device such as Haptics, and the like.
- a sensory feedback device is used as the notification means, for example, an oscillation element or the like is provided, and notification can be performed by transmitting vibration to the user.
- the control unit 51 can control the notification unit 30 so as to notify the user of a difference in the operation mode of the flavor inhaler, an abnormality occurring in the flavor inhaler, or the like.
- FIG. 6 shows an example of a control flow for shifting to the power supply mode M1 and the charging mode M2.
- the control unit 51 monitors the WAKE signal, and when the WAKE signal is at the first level, the control unit 51 proceeds to step S30 (step S10). Then, it is determined whether or not the detection unit 20 has detected an operation for using the load 111R (step S30), and when the detection unit 20 has detected an operation for using the load 111R, the process proceeds to the power supply mode M1. When the detection unit 20 does not detect an operation for using the load 111R (when Step S30 is Yes), the process returns to the determination at Step S10 (when Step S30 is No).
- control unit 51 shifts to the charging mode M2 (step S20).
- control unit 51 may shift to the power supply mode M1 based on an arbitrary signal indicating that the load 111R is attached to the connection unit 120 of the battery unit 112. Similarly, the control part 51 should just transfer to charging mode M2 based on the arbitrary signals which show that the charger 200 was attached to the connection part 120 of the battery unit 112.
- FIG. 1 the control unit 51 may shift to the power supply mode M1 based on an arbitrary signal indicating that the load 111R is attached to the connection unit 120 of the battery unit 112.
- control part 51 should just transfer to charging mode M2 based on the arbitrary signals which show that the charger 200 was attached to the connection part 120 of the battery unit 112.
- FIG. 7 is a flowchart illustrating a power supply mode according to an embodiment.
- the control unit 51 turns on the switch 140 when the first condition is satisfied in the power supply mode M1 (step S102). By turning on the switch 140, power supply from the power supply 40 to the load 111R is started. Further, the output voltage of the power supply 40 may be stored in the control unit 51 before turning on the switch 140 (step S100).
- the amount of power supplied from the power source 40 to the load 111R may be arbitrarily controlled. For example, the amount of power supplied from the power supply 40 to the load 111R may be adjusted by pulse width control. The duty ratio related to the pulse width may be a value smaller than 100%. Note that the amount of power supplied from the power supply 40 to the load 111R may be adjusted by pulse frequency control instead of pulse width control.
- the first condition may be a condition based on detection of an operation for using the load 111R.
- the first condition may be detecting the operation for using the load 111R itself. That is, when the detection unit 20 detects an operation for using the load 111R, the control unit 51 may turn on the switch 140.
- the control unit 51 may turn on the switch 140 when the suction sensor detects the user's suction operation.
- the control unit 51 may turn on the switch 140 when it detects that the user has pressed the push button.
- the first condition may be a condition that detects an operation for using the load 111R and further satisfies another condition.
- the control unit 51 may turn on the switch 140.
- the control unit 51 sets the switch 140 to Turn it on.
- the output voltage of the power supply 40 is detected at predetermined time intervals by the detection unit 160, and the detected power supply
- the output voltage of 40 is stored in the control unit 51 (steps S100, S104, S106, S108).
- the output voltage of the power supply 40 detected by the detection unit 160 during the power supply mode M1 is stored in a memory provided in the control unit 51.
- control unit 51 executes specific control different from the power supply to the load 111R based on the amount of change per predetermined period of the output voltage of the power supply 40 in the power supply mode M1 during the power supply mode M1. Also good.
- the specific control may be, for example, an authentication process (step S110) for the load 111R.
- the control unit 51 determines whether or not the amount of change per predetermined period of the output voltage of the power source 40 is included in a predetermined range (step). S200).
- the amount of change per predetermined period of the output voltage of the power supply 40 may correspond to the difference between the output voltage when the load 111R is energized and the output voltage when the load 111R is not energized. .
- step S202 the authentication of the load 111R is continued (step S202), and the process proceeds to step S112 in the power supply mode.
- the switch 140 When the change amount of the output voltage of the power supply 40 per predetermined period is not included in the predetermined range, the switch 140 is turned off (step S206), and the authentication of the load 111R is canceled (step S208). When the authentication of the load 111R is canceled, the control unit 51 may notify the user to that effect (step S210). Notification to the user can be performed by the notification means 30.
- the control unit 51 does not turn on the switch 140, that is, does not supply power to the load 111R even if the detection unit 20 detects an operation for using the load 111R. Is preferred.
- the control unit 51 may perform a re-authentication process of the load 111R in response to detection of a return operation (return signal) (step S214). Specifically, when the control unit 51 detects a return signal (step S212), the switch 140 is turned on (step S213), and the output voltage of the power source 40 is detected at predetermined intervals. Then, when the change amount of the output voltage of the power supply 40 per predetermined period is not included in the predetermined range, the user is notified with the authentication of the load 111R being canceled (step S210).
- a return operation return signal
- the switch 140 When the switch is turned on in step S213 to detect a change in the output voltage of the power supply 40, the energization time is shortened or pulsed so that the aerosol source is not atomized by the current flowing through the load 111R. It is preferable to limit the power supplied from the power source 40 to the load 111R by width control or pulse frequency control. In other words, the switch 140 is preferably turned on for a short time so as to supply power smaller than the power supplied to the load 111R when atomizing the aerosol source in the power supply mode.
- the load 111R is authenticated (step S216), and the process proceeds to the start of the power supply mode.
- the amount of change per predetermined period of the output voltage of the power supply 40 corresponds to the difference between the output voltage when the load 111R is energized and the output voltage when the load 111R is not energized after detection of the return signal. Please note that this is fine.
- the return operation is a signal for detecting reconnection of the load 111R, a signal for detecting pressing of a push button in a predetermined pattern, a signal for detecting suction operation in a predetermined pattern, or the end of one puff operation. It may be a detected signal or the like.
- the load authentication 111R may be performed, for example, to determine whether or not the atomization unit 111 connected to the battery unit 112 is usable.
- the control unit 51 determines that the load 111R connected to the battery unit 112 cannot be used, and can prompt the replacement of the load 111R.
- the control unit 51 can determine that the load 111R has deteriorated, cancel the authentication, and prompt the replacement of the load 111R. .
- control unit 51 cancels the authentication and applies the non-normal load. It can be urged to replace the load with a regular load 111R.
- step S2 the control unit 51 determines whether the end timing of power supply to the load 111R has been detected. When detecting the end timing, the controller 51 turns off the switch 140 and stands by until the start of power supply to the next load 111R while maintaining the power supply mode M1. When the first condition is satisfied again, the control unit 51 turns on the switch 140 (steps S100 and S102), and repeats the processes after steps S100 and S102.
- the end timing of power supply to the load 111R may be a timing at which a predetermined time has been detected since the start of power supply to the load 111R.
- the end timing of power supply to the load 111R may be a timing at which the detection unit 20 detects the end of an operation for using the load 111R.
- the detection unit 20 is a suction sensor
- the end timing of power supply to the load 111R may be a timing when the end of the suction operation by the user is detected.
- the predetermined range described above is set based on the normal voltage drop amount of the load 111R.
- the lower limit value in the predetermined range may be set to a value smaller than the difference (voltage drop amount) between the voltage when power is not supplied to the load 111R and the voltage when power is supplied to the load 111R.
- the lower limit value in the predetermined range is set to a value smaller than the decrease amount of the output voltage of the power source for each predetermined period in the power supply mode in a state where the normal normal load 111R is connected to the connection unit 120. May be.
- the amount of change in the output voltage of the power supply is larger than the lower limit value in the predetermined range, and thus is included in the predetermined range. The mode can be continued.
- the amount of change in the output voltage of the power supply is the same as when the normal normal load 111R is connected to the connection unit 120.
- Tend to show different values For example, when a non-regular load is used, the amount of change in the output voltage of the power supply shows a unique value due to the difference between the resistance value of the load itself and that of the regular load or due to poor contact at the connection 120. These specific values are excluded, and in a state where a normal normal load 111R is connected to the connection unit 120, a reduction amount of the output voltage of the power source for each predetermined period in the power supply mode is included.
- a load that has deteriorated drastically shows an abnormal value whose resistance value is significantly different from a normal load in spite of a normal load.
- a predetermined range is included so that the decrease amount of the output voltage of the power source for each predetermined period in the power supply mode is included.
- FIG. 9 is a flowchart illustrating a charging mode according to an embodiment. It is preferable that the controller 51 turns on the switch when the second condition different from the first condition is satisfied in the charging mode M2. That is, the conditions for turning on the switch are different between the charging mode and the power feeding mode. Since the conditions for turning on the switch 140 are different between the charging mode and the power feeding mode, malfunctions can be easily suppressed.
- the second condition may be a condition based on the connection of the charger 200 to the connection unit 120.
- the condition based on the connection of the charger 200 to the connection unit 120 may be the condition itself that a signal indicating the connection of the charger 200 to the connection unit 120 (second level WAKE signal) is detected.
- the condition based on the connection of the charger 200 to the connection unit 120 may be a condition that the second level WAKE signal is detected once or continuously several times.
- the condition based on the connection of the charger 200 to the connection unit 120 is that a signal indicating the connection of the charger 200 to the connection unit 120 (second level WAKE signal) is detected and a further signal is detected. It may be a combination. Still another signal may be, for example, a signal for detecting that the user presses the push button.
- the push button may be provided on either the battery unit 112 or the charger 200, or may be provided on both the battery unit 112 and the charger 200.
- Step S300 If the charger 200 is connected to the connection unit 120 of the battery unit 112 when the control unit 51 turns on the switch 140, electricity flows from the charger 200 to the power source 40, and the power source 40 is charged.
- the control unit 51 turns on the switch 140 and activates a timer built in the battery unit (step S302).
- the timer is set to “0” at startup. The timer measures the time from startup.
- the control unit 51 determines whether or not a predetermined period has elapsed since the start of the timer (step S304), and turns off the switch 140 when the predetermined period has elapsed (step S306).
- This predetermined period may be 100 ms, for example.
- the control unit 51 turns on the switch 140 again (step S310) when a predetermined standby time elapses after the switch 140 is turned off (step S308).
- the predetermined waiting time may be 400 ⁇ s, for example.
- the control unit 51 stores the value of the WAKE signal between step S308 and step S310 (step S309).
- the control unit 51 repeats steps S306 to S310 a predetermined number of times.
- the predetermined number of times is ten.
- the control unit 51 determines whether or not the WAKE signal is not at the second level at all consecutive predetermined times (here, 10 times) (step S314).
- the control unit 51 recognizes that the charger 200 has been removed from the battery unit 112, turns off the switch 140 (step S316), and then performs a series of controls. End the flow.
- the control unit 51 continues the charging mode M2.
- the control unit 51 performs a step of determining an abnormality in the charging mode (step S318).
- the determination may be incorrect.
- Step S318 for determining an abnormality in the charging mode M2 assumes that the abnormality is determined when the charging mode is erroneously shifted to the charging mode.
- the amount of decrease in the output voltage of the power supply 40 in the charging mode M2 per predetermined period is set based on the amount of decrease in the output voltage in the power feeding mode M1 per predetermined period. If it is equal to or less than the first threshold, the control unit 51 determines an abnormality in the charging mode. That is, in this case, the control unit 51 estimates that the load 111R connected to the connection unit 120 is erroneously determined as the charger 200. In other words, the control unit 51 determines that the charging mode is being executed with the load 111R connected to the connection unit 120. Note that the output voltage of the power supply 40 may be measured and stored every predetermined period in the charging mode.
- control unit 51 determines that there is an abnormality in the charging mode, the process proceeds to a specific process, for example, a specific process described later shown in FIGS. Instead, when the control unit determines that there is an abnormality in the 51 charge mode, the control unit 51 may stop the switch 140 and notify the user of the abnormality using the notification unit.
- control unit 51 When the control unit determines that there is no abnormality in the 51 charge mode, the control unit 51 continues the charge mode. Specifically, the control unit 51 resets and restarts the timer, and repeats the processes after step S302.
- the first threshold value may be equal to or less than a decrease amount per predetermined period of the output voltage in the charging mode executed in a state where the charger 200 is connected to the connection unit 120.
- the first threshold value is preferably larger than a value corresponding to a voltage drop due to dark current. Furthermore, it is preferable that the first threshold value is set in consideration of an error in the value of the detected output voltage.
- the load 111R when the load 111R is connected to the charging mode by mistake even though the load 111R is connected, a larger power than the power supplied to the load 111R in the power supply mode M1 can be supplied to the load 111R.
- the amount of decrease in the output voltage per predetermined period is smaller than the amount of decrease in the output voltage in the power supply mode per predetermined period.
- the first threshold value may be set to the same value as the amount of decrease of the output voltage per predetermined period in the power supply mode or smaller.
- the first threshold value may be set in advance when the battery unit 112 is manufactured. However, the first threshold value does not need to be permanently maintained at a preset value.
- the first threshold value may be changed according to the deterioration of the power supply 40 or the charge / discharge history.
- the power supply 40 deteriorates, that is, the number of charge / discharge cycles increases, the output voltage of the power supply 40 decreases, and the amount of voltage drop also increases. This is due to a decrease in the storage capacity due to irreversible decomposition of the electrolytic solution and an increase in internal resistance due to a change in the electrode structure due to aggregation of the active material and the conductive additive. Therefore, when the load 111R is connected to the connection unit 120, the power supply 40 deteriorates and the amount of decrease in the output voltage of the power supply 40 during the predetermined period becomes smaller. Considering this, it is possible to improve the accuracy of determination of abnormality in the charging mode by appropriately changing the first threshold according to the deterioration of the power supply 40.
- the first threshold value As the power supply 40 deteriorates.
- the amount of decrease in output voltage during a predetermined period when the load 111R is connected to the connection unit 120 increases. Therefore, even if the first threshold value is made smaller, an abnormality in the charging mode can be determined.
- the charger 200 is connected to the connection unit 120, the amount of decrease in the output voltage of the power source 40 in the predetermined period detected in the charging mode is the first threshold value due to an error in the detected value of the output voltage. Can be suppressed by reducing the first threshold value.
- SEI Solid Electrolyte Interface, interphase solid electrolyte
- the first threshold value may be changed based on a decrease amount per predetermined period of the output voltage in the power supply mode.
- the output voltage in the power supply mode is stored in the control unit 51 every predetermined period. Accordingly, it is possible to calculate the decrease amount per predetermined period of the output voltage in the power supply mode using the output voltage of the power supply 40 stored in the power supply mode.
- the control unit 51 can feed back the decrease amount per predetermined period of the output voltage in the power supply mode to the first threshold value.
- an appropriate first threshold value can be set based on the value of the voltage drop related to the replaced new load 111R.
- the first threshold value reflecting the output voltage drop amount accompanying the deterioration of the power supply 40 can be set. The accuracy of detection can be improved.
- the control unit 51 determines The erroneous detection can be determined in the charging mode. Therefore, it is possible to prevent the switch 140 in the battery unit 112 from being kept ON by mistake, and to reduce unnecessary power consumption of the power source.
- step S318 for determining abnormality in the charging mode
- the control unit 51 Determines an abnormality in the charging mode.
- the output voltage of the power supply 40 is detected every predetermined period in the charging mode.
- step S318 the decrease amount per predetermined period of the output voltage in the charging mode is determined by the difference between the value of the output voltage in the latest detection and the value of the output voltage in the detection immediately before the latest detection. Calculated. That is, in step S318, the difference between the latest detection value and the previous detection value is compared with the first threshold value.
- the detection value that takes a difference from the latest detection value does not necessarily have to be the latest detection value one time before, may be a detection value before the latest one time, and starts the charging mode.
- the detected value before the switch 140 is turned on may be used.
- the decrease amount per predetermined period of the output voltage in the charging mode is a predicted value derived from a plurality of output voltage values of the power source detected every predetermined period, that is, a prediction obtained from an approximate line or an approximate curve. It may be defined by a value. For example, from the value of a plurality of output voltages of the power source detected every predetermined period, approximate the decrease in the output voltage by a straight line by the least square method, and the amount of decrease in the output voltage in the charging mode per predetermined period from the approximate line The predicted value can be calculated.
- the number of data (output voltage values) for using the least square method is arbitrary, and is preferably large enough to sufficiently reduce the influence of detection errors.
- the slope of the approximate line or the differential value of the approximate curve is not “0”. Since the value is likely to be caused by dark current due to self-discharge of the power supply 40 when there is no load, the influence of detection error can be reduced.
- the amount of decrease in the output voltage in the charging mode per predetermined period is less than the predetermined number of times that the output voltage calculated from the start of the charging mode is less than the predetermined number of times.
- the number of times of detecting the output voltage calculated from the above may be changed depending on the case where the number of times is equal to or more than a predetermined number. For example, when the number of times the output voltage calculated from the start of the charging mode is detected is less than the predetermined number, as described above, the amount of decrease in the output voltage in the charging mode per predetermined period is the value of the output voltage in the latest detection. And the difference between the output voltage value in the detection one time before the latest detection.
- the amount of decrease in the output voltage in the charging mode per predetermined period is the value of the output voltage in the latest detection and the charging mode. You may calculate by the difference with the estimated value obtained based on the some output voltage detected from the start. Examples of the predicted value include the least square method as described above.
- the predetermined number of times is arbitrary but is preferably large enough to sufficiently reduce the influence of the output voltage detection error. Thereby, the influence of the detection error of the output voltage of a power supply can be suppressed in the determination in step S318.
- a slope is derived from a plurality of output voltage values of the power supply detected every predetermined period without using the above-described approximate straight line or approximate curve, and this slope is calculated per predetermined period of the output voltage in the charging mode. It may be used for the amount of decrease.
- the reduction amount per predetermined period of the output voltage of the power supply in the charging mode may be estimated based on a moving average value derived from a plurality of output voltage values.
- step S318 for determining an abnormality in the charging mode when the control unit 51 determines that the abnormality is in the charging mode, the control unit 51 can at least selectively execute power supply from the power source 40 to the load 111R at least temporarily. Is performed (FIG. 11).
- FIG. 11 shows an example of such specific processing.
- the value of a specific variable is set to “1” (step S400).
- the specific variable indicates the number of times that the specific condition is satisfied.
- the specific condition is a condition that the decrease amount of the output voltage per predetermined period in the charging mode is equal to or less than the first threshold value described above.
- the second threshold may be any natural number greater than or equal to one.
- the second threshold value may be “1”.
- the second threshold value may be a natural number of 2 or more.
- the control unit 51 may reconfirm whether the load 111R is connected to the connection unit 120 before at least temporarily disabling power supply from the power supply 40 to the load 111R in a specific process. it can. The reconfirmation of whether or not the load 111R is connected to the connection unit 120 can be determined again based on whether or not a specific condition is satisfied.
- the output voltage of the power supply 40 is measured (step S404), and the decrease amount of the output voltage per predetermined period is calculated again. Then, it is determined whether or not the above-described specific condition is satisfied, here, whether or not the amount of decrease in the output voltage of the power supply 40 per predetermined period is equal to or less than the first threshold value (step S406).
- the amount of decrease in the output voltage of the power supply 40 per predetermined period exceeds the first threshold value, there is a possibility that there is no abnormality in the charging mode, so it is possible to start over from the start of the charging mode.
- the charging mode may be restarted from the middle. As an example, you may return to step S302 which starts the timer in charge mode.
- step S408 the value of the specific variable is increased by “1” (step S408), and then the value of the specific variable is the second value. It is determined whether or not the threshold value is exceeded (step S402).
- the control unit 51 When the value of the specific variable is greater than or equal to the second threshold value, the control unit 51 temporarily determines that there is an abnormality in the charging mode, and temporarily allows the control unit 51 to resume power supply from the power supply 40 to the load 111R.
- the first mode is disabled (step S410).
- the first mode can be realized by controlling the cutting means 170 described above by the control unit 51.
- the control unit 51 notifies the user that the first mode has been implemented (step S412). Notification to the user can be performed by the notification means 30.
- the switch 140 and the switch 175 are turned on (step S413), the output voltage of the power supply 40 is measured (step S414), and again whether or not the above-described specific condition is satisfied, here the power supply It may be determined whether or not the amount of decrease in the output voltage of 40 per predetermined period is equal to or less than the first threshold value (step S416).
- the output voltage of the power supply 40 may be measured (step S414).
- step S408 if the decrease amount of the output voltage of the power supply 40 per predetermined period is larger than the first threshold value, there is a possibility that the abnormality in the charging mode does not exist or the abnormality has been eliminated after the first mode is performed. 1 mode is canceled (step S418), and it can restart from the start of charge mode. Further, instead of starting over from the start of the charging mode, the processing may be started from the middle of the charging mode.
- the value of the specific variable is increased by “1” (step S420), and then the value of the specific variable is the third threshold value. It is determined whether or not this is the case (step S422).
- the third threshold value is a natural number larger than the second threshold value.
- the third threshold value may be a natural number that is “1” greater than the second threshold value.
- the output voltage of the power supply 40 is measured (step S414), and again whether or not the specific condition is satisfied, here, for a predetermined period of the output voltage of the power supply 40 It is determined whether the decrease amount is less than or equal to the first threshold value (step S416).
- the control unit 51 determines that it is difficult to determine or resolve the abnormality when there is an abnormality in the charging mode, and the control unit 51 resumes power supply from the power supply 40 to the load 111R.
- a second mode for making it impossible to do so irreversibly is performed (step S424).
- the second mode can be realized by controlling the cutting means 170 described above by the control unit 51.
- the control unit 51 notifies the user that the second mode has been implemented (step S426). Notification to the user can be performed by the notification means 30.
- a first condition (step S402) and a second condition (step S422) for determining whether to execute each of the first mode and the second mode may be provided.
- the second condition is stricter than the first condition.
- the second condition is less likely to be satisfied than the first condition.
- the control unit 51 performs the first mode in which power supply from the power source to the load is temporarily disabled when the possibility of the presence of an abnormality is found, and the possibility that the abnormality exists is extremely high.
- the second mode in which power supply from the power source to the load is irreversibly disabled can be implemented.
- FIG. 12 shows another example of the specific process replacing FIG.
- a value of a specific variable is set to “a decrease amount of the latest output voltage per predetermined period” (step S500).
- the specific variable includes a decrease amount per predetermined period of the output voltage.
- the fourth threshold value may be, for example, the same value as the first threshold value described above, and may be set based on a decrease amount per predetermined period of the output voltage of the power supply 40 in the power supply mode.
- the processing may be started from the middle of the charging mode.
- the fifth threshold value is smaller than the fourth threshold value.
- the fifth threshold value is, for example, a value that is lower than the lower limit of the decrease amount per predetermined period of the output voltage of the power supply 40 when the normal normal load 111R is used, for example, the power supply 40 is fully charged and the load 111R has a duty ratio of 100%.
- the amount of decrease in the output voltage of the power supply 40 per predetermined period when power is supplied may be set.
- the control unit 51 can temporarily determine that there is an abnormality in the charging mode, and the control unit 51 can resume power supply from the power supply 40 to the load 111R.
- the first mode is temporarily disabled (step S510). Then, the control unit 51 notifies the user that the first mode has been implemented (step S512).
- the control unit 51 determines that there is an abnormality in the charging mode, and irreversibly disables the power supply from the power supply 40 to the load 111R so that the control unit 51 cannot resume power supply.
- the second mode is executed (step S524). Then, the control unit 51 notifies the user that the second mode has been implemented (step S526).
- a first condition (step S502) and a second condition (step S504) for determining whether to execute each of the first mode and the second mode may be provided.
- the second condition is stricter than the first condition.
- the second condition is less likely to be satisfied than the first condition.
- the value of a specific variable is equal to or less than the fourth threshold and greater than the fifth threshold.
- the control unit 51 at least selectively executes power supply from the power supply 40 to the load 111R at least temporarily when an abnormality in the load 111R or the power supply 40 is detected.
- Specific processing that is possible may be performed.
- Examples of the abnormality of the load 111R or the power supply 40 include connection of an unauthorized load to the connection unit 120, use of a battery unit by an unauthorized user (cancellation of user authentication), other battery unit failures, and the like. Connection of an irregular load to the connection unit 120 can be detected by, for example, the load authentication process described above.
- User authentication can be performed by, for example, pressing a push button in a predetermined pattern when the detection unit 20 is a push button.
- user authentication can be performed by pressing a suction operation in a predetermined pattern.
- control unit 51 may include a program that causes the battery unit 112 and the flavor inhaler 100 to execute the above-described method, and a storage medium that stores the program.
- the cutting means 170 described above is provided not in the battery unit 112 but in the atomization assembly 111, that is, the load 111R.
- the first switch 175 and the second switch 177 constituting the cutting means 170 are configured to be electrically connected to the control unit 51 via an electric terminal (not shown) provided in the connection unit 120. Good.
- the control unit 51 can control the first switch 175 and the second switch 177 of the cutting unit 170 when the load 111R is connected to the connection terminal 120t. Thereby, the control part 51 can perform the specific process shown in FIG.11 and FIG.12.
- the load 111R that is, the atomization assembly 111 is made new.
- the flavor inhaler 100 can be returned to a usable state.
- the atomization assembly 111 tends to be cheaper than the battery unit 112 having expensive components such as the power source 40. Therefore, this embodiment is particularly advantageous from the viewpoint of cost.
- the cutting means 170 may be provided on both the battery unit 112 and the atomizing assembly 111.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Health & Medical Sciences (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Hematology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
- Protection Of Static Devices (AREA)
Abstract
Description
電子シガレットのような香味吸引器は、エアロゾル源を霧化又は香味源を加熱する電気負荷を備える。電気負荷は、電源から供給された電力を利用してエアロゾル源を霧化又は香味源を加熱する。香味吸引器内の電子回路中に電気的に接続された電気負荷に、電源からの電力が供給されるため、電源の出力電圧が下がる。本願発明者は、この出力電圧の変化量が電気負荷の仕様等に応じて変化することに着目し、電源の出力電圧の変化量を利用してバッテリユニット及び香味吸引器の制御に有効活用できることを見出した。
(非燃焼型香味吸引器)
以下において、第1実施形態に係る香味吸引器について説明する。図1は、一実施形態に係る香味吸引器を示す分解図である。図2は、一実施形態に係る霧化ユニットを示す図である。図3は、バッテリユニットに設けられた電気回路を示す図である。図4は、負荷が接続された状態の負荷及びバッテリユニットの電気回路を示す図である。図5は、充電器が接続された状態の充電器及びバッテリユニットの電気回路を示す図である。
図6は、給電モードM1及び充電モードM2へ移行する制御フローの一例を示している。
図7は、一実施形態に係る給電モードを示すフローチャートである。制御部51は、給電モードM1で第1条件が満たされた場合にスイッチ140をONにする(ステップS102)。スイッチ140をONにすることで、電源40から負荷111Rへの給電が開始される。また、スイッチ140をONにする前に、電源40の出力電圧を制御部51に記憶してもよい(ステップS100)。なお、電源40から負荷111Rへ供給する電力量は、任意に制御されていてよい。例えば、電源40から負荷111Rへ供給する電力量は、パルス幅制御によって調整されていてよい。パルス幅に関するデューティ比は、100%よりも小さい値であってよい。なお、パルス幅制御に代えてパルス周波数制御によって、電源40から負荷111Rへ供給する電力量を調整してもよい。
前述した所定の範囲は、負荷111Rの通常時の電圧降下量に基づき設定される。具体的には、所定の範囲における下限値は、負荷111Rへの非給電時の電圧と負荷111Rへの給電時の電圧との差(電圧降下量)よりも小さい値に設定されていてもよい。その代わりに、所定の範囲における下限値は、正規の正常な負荷111Rが接続部120に接続されている状態において給電モードにおける所定の期間ごとの電源の出力電圧の減少量よりも小さい値に設定されていてもよい。この場合、正規の正常な負荷111Rが接続部120に接続されている場合、電源の出力電圧の変化量は所定の範囲における下限値より大きな値となることから所定の範囲に含まれるため、給電モードを継続することができる。
図9は、一実施形態に係る充電モードを示すフローチャートである。制御部51は、充電モードM2で、上記の第1条件と異なる第2条件が満たされた場合にスイッチをONにすることが好ましい。すなわち、充電モードと給電モードでスイッチをONにするための条件が異なる。スイッチ140をONにするための条件が、充電モードと給電モードにおいて互いに異なるため、誤動作を抑制し易くなる。
接続部120に負荷111Rが接続されている場合、スイッチ140がONの時の所定期間あたりの電源40の出力電圧は、負荷111Rの電気抵抗値に応じて低下していく。一方、接続部120に充電器200が接続されている場合、所定期間あたりの電源40の出力電圧は、理想的には減少しない。なぜならば、接続部120に充電器200が接続されている場合、電源40は充電器200による充電状態か無負荷状態にあり、前者であれば電源40の端子間電圧は増大し、後者であれば電源40の端子間電圧は理想的には変化しないからである。したがって、第1閾値は、接続部120に充電器200が接続された状態で実行される充電モードにおける出力電圧の所定期間あたりの減少量以下であってよい。
充電モードにおける異常を判定するステップでは、充電モードにおける出力電圧の所定期間あたりの減少量が、給電モードにおける出力電圧の所定期間あたりの減少量に基づき設定される閾値以下である場合、制御部51は、充電モードにおける異常を判断する。充電モードにおける電源の出力電圧の所定期間あたりの減少量を算出するため、充電モードにおいて電源40の出力電圧が所定期間おきに検知されている。
制御部51は、充電モードにおける異常を判定するステップS318において、充電モードにおける異常と判定すると、電源40から負荷111Rへの給電を少なくとも一時的に不能にすることを少なくとも選択的に実行可能な特定の処理を行う(図11)。図11は、そのような特定の処理の一例を示している。
図12は、図11に代わる特定の処理の別の例を示している。まず、特定の処理が開始されると、特定の変数の値を「最新の出力電圧の所定期間あたりの減少量」に設定する(ステップS500)。このように、本例において、特定の変数は、出力電圧の所定期間あたりの減少量を含む。
前述した例では、接続部120への負荷111Rの接続時に充電モードを実行する場合、言い換えると、接続部120に接続された負荷111Rを誤って充電器200と判定した場合に、制御部51は、電源40から負荷111Rへの給電を少なくとも一時的に不能にすることを少なくとも選択的に実行可能な特定の処理を行う(図11及び図12参照)。
図6~図9,図11及び図12に示された前述のフローは、制御部51が実行することができる。すなわち、制御部51は、バッテリユニット112及び香味吸引器100に前述の方法を実行させるプログラム、及び当該プログラムが格納された記憶媒体を有していてよい。
次に、第2実施形態に係る香味吸引器について図13を参照して説明する。なお、前述の実施形態と同様の構成については、同様の符号が付されており、その説明を省略することがある。以下では、前述の実施形態と異なる構成について詳細に説明する。
本発明は上述した実施形態によって説明したが、この開示の一部をなす論述及び図面は、この発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
Claims (14)
- 電源と、
前記電源の出力電圧を検出する検出部と、
エアロゾル源を霧化又は香味源を加熱する負荷を接続可能な接続部と、
前記電源から前記負荷へ給電する給電モードを実行可能な制御部と、を含み、
前記制御部は、前記給電モードにおける前記出力電圧の所定期間あたりの変化量に基づき、前記負荷への給電とは異なる特定の制御を実行する、バッテリユニット。 - 前記特定の制御は、前記負荷の認証である、請求項1に記載のバッテリユニット。
- 前記出力電圧の前記所定期間あたりの変化量が所定の範囲に含まれる場合、前記負荷の認証を継続する、請求項2に記載のバッテリユニット。
- 前記出力電圧の前記所定期間あたりの変化量が所定の範囲に含まれない場合、前記負荷の認証を解除する、請求項2又は3に記載のバッテリユニット。
- 前記負荷の認証を解除した場合、前記制御部は、復帰動作の検出を契機として、前記出力電圧の前記所定期間あたりの変化量に基づき、前記負荷の認証を行うか否かを判断する、請求項4に記載のバッテリユニット。
- 前記接続部は、前記電源を充電する充電器と前記負荷とを接続可能であり、
前記制御部は、前記給電モード及び前記充電器から前記電源へ充電する充電モードを実行可能であり、
前記特定の制御は、前記充電モードにおける異常を判断する制御である、請求項1から5のいずれか1項に記載のバッテリユニット。 - 前記充電モードにおける前記出力電圧の前記所定期間あたりの減少量が、前記給電モードにおける前記出力電圧の前記所定期間あたりの減少量に基づき設定される第1閾値以下である場合、前記制御部は、前記充電モードにおける異常を判断する、請求項6に記載のバッテリユニット。
- 前記第1閾値は、前記給電モードにおける前記出力電圧の前記所定期間あたりの前記変化量以下に設定される、請求項7に記載のバッテリユニット。
- 前記接続部に接続された前記負荷又は前記充電器に対し、前記電源と電気的に接続及び切断可能なスイッチを含み、
前記制御部は、前記給電モードで第1条件が満たされた場合に前記スイッチをONにし、前記充電モードで前記第1条件と異なる第2条件が満たされた場合に前記スイッチをONにする、請求項6から8のいずれか1項に記載のバッテリユニット。 - 前記負荷の使用のための操作を検知する検知部を含み、
前記第1条件は前記操作の検知に基づく条件である、請求項9に記載のバッテリユニット。 - 前記第2条件は、前記接続部に対する前記充電器の接続に基づく条件である、請求項9又は10に記載のバッテリユニット。
- 請求項1から11のいずれか1項に記載のバッテリユニットと、前記負荷と、を含む香味吸引器。
- エアロゾル源を霧化又は香味源を加熱する負荷を接続可能な接続部を介して、電源から前記負荷へ給電する給電モードを実行可能な制御部を含むバッテリユニットを制御する方法であって、
前記電源の出力電圧を検出するステップと、
前記給電モードにおける前記出力電圧の所定期間あたりの変化量に基づき、前記負荷への給電とは異なる特定の制御を実行するステップと、を含む方法。 - 請求項13に記載の方法をバッテリユニットに実行させるプログラム。
Priority Applications (14)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020197025839A KR102401719B1 (ko) | 2017-03-06 | 2017-03-06 | 배터리 유닛, 향미 흡인기, 배터리 유닛을 제어하는 방법, 및 프로그램 |
EA201992105A EA201992105A1 (ru) | 2017-03-06 | 2017-03-06 | Аккумуляторный блок, ингалятор для вкусоароматического вещества, способ управления аккумуляторным блоком и программа |
CA3054492A CA3054492C (en) | 2017-03-06 | 2017-03-06 | Battery unit, flavor inhaler, method of controlling battery unit, and program |
PCT/JP2017/008858 WO2018163262A1 (ja) | 2017-03-06 | 2017-03-06 | バッテリユニット、香味吸引器、バッテリユニットを制御する方法、及びプログラム |
JP2018540497A JP7038058B2 (ja) | 2017-03-06 | 2017-03-06 | バッテリユニット、香味吸引器、バッテリユニットを制御する方法、及びプログラム |
CN201780020117.8A CN109068736B (zh) | 2017-03-06 | 2017-03-06 | 电池组件、香味吸入器、控制电池组件的方法、及记录介质 |
EP17899394.5A EP3581038A4 (en) | 2017-03-06 | 2017-03-06 | BATTERY UNIT, FLAVOR VACUUM, METHOD OF CONTROLLING THE BATTERY UNIT AND PROGRAM |
TW107106168A TWI707516B (zh) | 2017-03-06 | 2018-02-23 | 電池單元、香味吸嚐器、控制電池單元的方法及程式 |
US16/554,226 US11202342B2 (en) | 2017-03-06 | 2019-08-28 | Battery unit, flavor inhaler, method of controlling battery unit, and program |
US16/878,622 US11503670B2 (en) | 2017-03-06 | 2020-05-20 | Battery unit, flavor inhaler, method of controlling battery unit, and program |
US16/878,623 US11412579B2 (en) | 2017-03-06 | 2020-05-20 | Battery unit, flavor inhaler, method of controlling battery unit, and program |
JP2021113995A JP7165786B2 (ja) | 2017-03-06 | 2021-07-09 | バッテリユニット、香味吸引器、バッテリユニットを制御する方法、及びプログラム |
US17/956,825 US11729865B2 (en) | 2017-03-06 | 2022-09-30 | Battery unit, flavor inhaler, method of controlling battery unit, and program |
JP2022169722A JP7550829B2 (ja) | 2017-03-06 | 2022-10-24 | バッテリユニット、香味吸引器、バッテリユニットを制御する方法、及びプログラム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/008858 WO2018163262A1 (ja) | 2017-03-06 | 2017-03-06 | バッテリユニット、香味吸引器、バッテリユニットを制御する方法、及びプログラム |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/554,226 Continuation US11202342B2 (en) | 2017-03-06 | 2019-08-28 | Battery unit, flavor inhaler, method of controlling battery unit, and program |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018163262A1 true WO2018163262A1 (ja) | 2018-09-13 |
Family
ID=63447559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/008858 WO2018163262A1 (ja) | 2017-03-06 | 2017-03-06 | バッテリユニット、香味吸引器、バッテリユニットを制御する方法、及びプログラム |
Country Status (9)
Country | Link |
---|---|
US (4) | US11202342B2 (ja) |
EP (1) | EP3581038A4 (ja) |
JP (3) | JP7038058B2 (ja) |
KR (1) | KR102401719B1 (ja) |
CN (1) | CN109068736B (ja) |
CA (1) | CA3054492C (ja) |
EA (1) | EA201992105A1 (ja) |
TW (1) | TWI707516B (ja) |
WO (1) | WO2018163262A1 (ja) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020058306A (ja) * | 2018-10-11 | 2020-04-16 | 日本たばこ産業株式会社 | 吸引成分生成装置、制御回路、吸引成分生成装置の制御方法および制御プログラム |
JP2020068762A (ja) * | 2018-10-30 | 2020-05-07 | 日本たばこ産業株式会社 | エアロゾル生成装置の電源ユニット、制御方法、プログラム、および、吸引器の電源ユニット |
WO2020090374A1 (ja) * | 2018-10-30 | 2020-05-07 | 日本たばこ産業株式会社 | エアロゾル生成装置の電源ユニット、エアロゾル生成装置の電源ユニットの制御方法、およびエアロゾル生成装置の電源ユニット用プログラム |
JP2020115738A (ja) * | 2019-01-17 | 2020-07-30 | 日本たばこ産業株式会社 | エアロゾル吸引器用の電源ユニット |
WO2020213450A1 (ja) * | 2019-04-19 | 2020-10-22 | 株式会社村田製作所 | 電池パック、非燃焼式吸引器、電子機器、電動工具及び無人飛行体 |
US10869974B2 (en) | 2018-10-04 | 2020-12-22 | Japan Tobacco Inc. | Inhalation component generating device, control circuit, and control method and control program of inhalation component generating device |
WO2021149126A1 (ja) * | 2020-01-21 | 2021-07-29 | 日本たばこ産業株式会社 | エアロゾル生成装置の電源ユニット及びカートリッジ、並びにカートリッジの種別を判定する方法 |
WO2021149125A1 (ja) * | 2020-01-21 | 2021-07-29 | 日本たばこ産業株式会社 | エアロゾル生成装置の電源ユニット及びカートリッジ、並びにカートリッジの種別を判定する方法 |
JPWO2021149124A1 (ja) * | 2020-01-21 | 2021-07-29 | ||
EP3892130A1 (en) * | 2018-10-31 | 2021-10-13 | Japan Tobacco Inc. | Power supply unit for aerosol inhaler, aerosol inhaler, power supply control method of aerosol inhaler, and power supply control program of aerosol inhaler |
JP2022510870A (ja) * | 2018-12-21 | 2022-01-28 | ジェイティー インターナショナル エス.エイ. | バッテリーの健康状態の推定を伴う充電器 |
JP2022518237A (ja) * | 2019-01-21 | 2022-03-14 | ブリティッシュ アメリカン タバコ (インヴェストメンツ) リミテッド | タバコ産業製品およびタバコ産業製品に関する方法 |
EP3987956A4 (en) * | 2019-06-18 | 2023-01-11 | Japan Tobacco Inc. | INHALATION DEVICE, POWER SUPPLY AND METHOD |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EA201992106A1 (ru) * | 2017-03-06 | 2020-02-03 | Джапан Тобакко Инк. | Аккумуляторный блок, ингалятор для вкусоароматического вещества, способ управления аккумуляторным блоком и программа |
EA201992105A1 (ru) | 2017-03-06 | 2020-02-03 | Джапан Тобакко Инк. | Аккумуляторный блок, ингалятор для вкусоароматического вещества, способ управления аккумуляторным блоком и программа |
EP3808197A4 (en) * | 2018-06-14 | 2022-01-12 | Japan Tobacco Inc. | POWER SUPPLY UNIT AND DEVICE, METHOD AND PROGRAM FOR AROMA GENERATION |
JP6564922B1 (ja) * | 2018-10-31 | 2019-08-21 | 日本たばこ産業株式会社 | エアロゾル吸引器用の電源ユニット、その制御方法及び制御プログラム |
JP6609687B1 (ja) * | 2018-12-27 | 2019-11-20 | 日本たばこ産業株式会社 | エアロゾル吸引器用の電源ユニット、その制御方法及び制御プログラム |
US11935350B2 (en) * | 2019-04-02 | 2024-03-19 | Rai Strategic Holdings, Inc. | Functional control and age verification of electronic devices through speaker communication |
JP6749513B1 (ja) * | 2020-03-05 | 2020-09-02 | 日本たばこ産業株式会社 | 吸引器用コントローラ |
US11265722B2 (en) * | 2020-03-19 | 2022-03-01 | Jinan University | Peripheral-free secure pairing protocol by randomly switching power |
CN111578271A (zh) * | 2020-05-09 | 2020-08-25 | 苏州北美国际高级中学 | 一种新型安全酒精灯及制备方法 |
JP6905134B1 (ja) * | 2020-09-07 | 2021-07-21 | 日本たばこ産業株式会社 | エアロゾル生成装置の電源ユニット |
JP6856810B1 (ja) * | 2020-09-07 | 2021-04-14 | 日本たばこ産業株式会社 | エアロゾル生成装置の電源ユニット |
JP6856811B1 (ja) | 2020-09-07 | 2021-04-14 | 日本たばこ産業株式会社 | エアロゾル生成装置の電源ユニット |
EP4112108A1 (de) * | 2020-09-09 | 2023-01-04 | Pulmotree Medical GmbH | Verneblersystem |
JP6890203B1 (ja) * | 2020-09-30 | 2021-06-18 | 日本たばこ産業株式会社 | エアロゾル生成装置の電源ユニット |
KR102608972B1 (ko) * | 2021-04-30 | 2023-12-01 | 주식회사 케이티앤지 | 에어로졸 생성 장치 |
KR102607161B1 (ko) * | 2021-06-22 | 2023-11-30 | 주식회사 케이티앤지 | 에어로졸 생성장치 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11507718A (ja) | 1995-06-07 | 1999-07-06 | フイリップ モーリス プロダクツ インコーポレイテッド | 電気ライターのための保護及びシガレット排出システム |
JP2003317811A (ja) | 2002-04-24 | 2003-11-07 | Japan Storage Battery Co Ltd | 充電監視装置 |
JP2014501106A (ja) | 2010-12-24 | 2014-01-20 | フィリップ・モーリス・プロダクツ・ソシエテ・アノニム | 消耗品を無効化する手段を備えたエアロゾル生成システム |
US20140254055A1 (en) | 2013-03-05 | 2014-09-11 | Zhiyong Xiang | Over Current and Short Circuit Protection Device and Method For Electronic Cigarette |
US20140283856A1 (en) | 2013-03-20 | 2014-09-25 | Zhiyong Xiang | Overheating protection device for electronic cigarette and smoke cartridge |
US20150036250A1 (en) | 2013-07-31 | 2015-02-05 | Zhiyong Xiang | Over-current and over-voltage protection circuit and method for an electronic cigarette |
WO2015167000A1 (ja) | 2014-05-02 | 2015-11-05 | 日本たばこ産業株式会社 | 非燃焼型香味吸引器 |
WO2015166952A1 (ja) * | 2014-05-02 | 2015-11-05 | 日本たばこ産業株式会社 | 非燃焼型香味吸引器及びコンピュータ読取り可能媒体 |
US20160174076A1 (en) | 2014-08-15 | 2016-06-16 | Shenzhen Jieshibo Technology Co., Ltd. | Matching device and method for electronic atomization device based on mobile terminal |
WO2016119626A1 (en) | 2015-01-26 | 2016-08-04 | Xmart Chip Microelectronic Co. Limited | Electronic smoking apparatus and circuitry |
US20160345627A1 (en) * | 2014-01-14 | 2016-12-01 | Kimree Hi-Tech Inc. | Electronic cigarette identification device, electronic cigarette case, and method for identifying electronic cigarette |
Family Cites Families (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0237268A (ja) * | 1988-07-26 | 1990-02-07 | Mitsubishi Electric Corp | 貯蔵庫の制御装置 |
JP3872134B2 (ja) * | 1996-06-07 | 2007-01-24 | 松下電器産業株式会社 | 二次電池の保護装置 |
US6040560A (en) | 1996-10-22 | 2000-03-21 | Philip Morris Incorporated | Power controller and method of operating an electrical smoking system |
CN100381083C (zh) | 2003-04-29 | 2008-04-16 | 韩力 | 一种非可燃性电子喷雾香烟 |
JP2005224013A (ja) | 2004-02-05 | 2005-08-18 | Honda Motor Co Ltd | 電源装置 |
CN2719043Y (zh) | 2004-04-14 | 2005-08-24 | 韩力 | 雾化电子烟 |
US7521896B2 (en) | 2004-07-20 | 2009-04-21 | Panasonic Ev Energy Co., Ltd. | Abnormal voltage detector apparatus for detecting voltage abnormality in assembled battery |
CN201067079Y (zh) | 2006-05-16 | 2008-06-04 | 韩力 | 仿真气溶胶吸入器 |
US7726320B2 (en) | 2006-10-18 | 2010-06-01 | R. J. Reynolds Tobacco Company | Tobacco-containing smoking article |
AT507187B1 (de) | 2008-10-23 | 2010-03-15 | Helmut Dr Buchberger | Inhalator |
CN201379072Y (zh) | 2009-02-11 | 2010-01-13 | 韩力 | 一种改进的雾化电子烟 |
US8897628B2 (en) | 2009-07-27 | 2014-11-25 | Gregory D. Conley | Electronic vaporizer |
JP5338552B2 (ja) * | 2009-08-07 | 2013-11-13 | 日立工機株式会社 | 電池パックおよび電動工具 |
US8757147B2 (en) | 2010-05-15 | 2014-06-24 | Minusa Holdings Llc | Personal vaporizing inhaler with internal light source |
JP2012007508A (ja) * | 2010-06-23 | 2012-01-12 | Yamabiko Corp | エンジン駆動発電機 |
JP5170482B2 (ja) * | 2011-08-30 | 2013-03-27 | トヨタ自動車株式会社 | 車両と外部との間での充電/給電システムにおける動作モードの識別方法、及び同識別方法によって同システムの動作モードを識別する識別装置 |
EP2574247B1 (de) * | 2011-09-28 | 2019-08-28 | Philip Morris Products S.A. | Permeable elektrische Heizwiderstandsfolie zum Verdampfen von Flüssigkeiten aus Einwegmundstücken mit Verdampfermembranen |
GB2507103A (en) | 2012-10-19 | 2014-04-23 | Nicoventures Holdings Ltd | Electronic inhalation device |
JP6347212B2 (ja) | 2012-11-28 | 2018-06-27 | 株式会社村田製作所 | 制御装置、蓄電モジュール、電動車両、電源システムおよび制御方法 |
CN103165927B (zh) * | 2013-01-31 | 2016-01-20 | 中国东方电气集团有限公司 | Bop供电的控制方法、装置及设备 |
GB2510821B (en) | 2013-02-13 | 2015-08-19 | Jaguar Land Rover Ltd | Charging Method |
CN104037720B (zh) | 2013-03-05 | 2018-09-07 | 惠州市吉瑞科技有限公司 | 电子烟中防止微控制器电源电压跌落的保护装置和方法 |
US9423152B2 (en) * | 2013-03-15 | 2016-08-23 | R. J. Reynolds Tobacco Company | Heating control arrangement for an electronic smoking article and associated system and method |
US20140299137A1 (en) * | 2013-04-05 | 2014-10-09 | Johnson Creek Enterprises, LLC | Electronic cigarette and method and apparatus for controlling the same |
JP2015001411A (ja) * | 2013-06-14 | 2015-01-05 | コニカミノルタ株式会社 | 電子機器および充電システム |
CN203434232U (zh) | 2013-08-30 | 2014-02-12 | 刘秋明 | 一种电子烟及其电池组件 |
WO2015046420A1 (ja) | 2013-09-30 | 2015-04-02 | 日本たばこ産業株式会社 | 非燃焼型香味吸引器 |
US10039321B2 (en) | 2013-11-12 | 2018-08-07 | Vmr Products Llc | Vaporizer |
US20150305409A1 (en) * | 2013-11-12 | 2015-10-29 | VMR Products, LLC | Vaporizer |
US10131532B2 (en) | 2014-02-28 | 2018-11-20 | Beyond Twenty Ltd. | Electronic vaporiser system |
JP5922168B2 (ja) | 2014-03-04 | 2016-05-24 | 株式会社三井住友銀行 | 電子記録債権の譲渡担保管理自動化システム、方法、およびプログラム |
WO2015175568A1 (en) | 2014-05-12 | 2015-11-19 | Loto Labs, Inc. | Improved vaporizer device |
CN204120221U (zh) | 2014-05-21 | 2015-01-28 | 刘水根 | 电子水烟 |
ES2958716T3 (es) * | 2014-06-27 | 2024-02-13 | Fontem Ventures Bv | Dispositivo electrónico para fumar y sistema de cápsula |
CN106104903B (zh) * | 2014-07-11 | 2019-01-04 | 松下知识产权经营株式会社 | 蓄电池组和蓄电池组的工作方法 |
BR112017001449A2 (pt) | 2014-08-21 | 2017-12-05 | Philip Morris Products Sa | dispositivo e sistema geradores de aerossol |
US20160089508A1 (en) * | 2014-09-25 | 2016-03-31 | ALTR, Inc. | Vapor inhalation device |
TWI656848B (zh) * | 2014-11-10 | 2019-04-21 | 日商日本煙草產業股份有限公司 | 非燃燒型香味吸嚐器及包裝體 |
JP6441068B2 (ja) | 2014-12-22 | 2018-12-19 | セコム株式会社 | 監視システム |
WO2016143079A1 (ja) * | 2015-03-10 | 2016-09-15 | 日本たばこ産業株式会社 | 霧化ユニットの製造方法、非燃焼型香味吸引器、霧化ユニット及び霧化ユニットパッケージ |
US10226073B2 (en) * | 2015-06-09 | 2019-03-12 | Rai Strategic Holdings, Inc. | Electronic smoking article including a heating apparatus implementing a solid aerosol generating source, and associated apparatus and method |
US10736356B2 (en) * | 2015-06-25 | 2020-08-11 | Altria Client Services Llc | Electronic vaping device having pressure sensor |
US10966460B2 (en) * | 2015-07-17 | 2021-04-06 | Rai Strategic Holdings, Inc. | Load-based detection of an aerosol delivery device in an assembled arrangement |
US10524505B2 (en) | 2015-08-06 | 2020-01-07 | Altria Client Services Llc. | Method for measuring a vapor precursor level in a cartomizer of an electronic vaping device and/or an electronic vaping device configured to perform the method |
CN204969478U (zh) * | 2015-09-21 | 2016-01-20 | 深圳瀚星翔科技有限公司 | 一种电子烟 |
GB201517089D0 (en) * | 2015-09-28 | 2015-11-11 | Nicoventures Holdings Ltd | Vaping heat map system and method for electronic vapour provision systems |
US10524508B2 (en) * | 2016-11-15 | 2020-01-07 | Rai Strategic Holdings, Inc. | Induction-based aerosol delivery device |
EA201992105A1 (ru) | 2017-03-06 | 2020-02-03 | Джапан Тобакко Инк. | Аккумуляторный блок, ингалятор для вкусоароматического вещества, способ управления аккумуляторным блоком и программа |
-
2017
- 2017-03-06 EA EA201992105A patent/EA201992105A1/ru unknown
- 2017-03-06 WO PCT/JP2017/008858 patent/WO2018163262A1/ja unknown
- 2017-03-06 CN CN201780020117.8A patent/CN109068736B/zh active Active
- 2017-03-06 CA CA3054492A patent/CA3054492C/en active Active
- 2017-03-06 EP EP17899394.5A patent/EP3581038A4/en active Pending
- 2017-03-06 JP JP2018540497A patent/JP7038058B2/ja active Active
- 2017-03-06 KR KR1020197025839A patent/KR102401719B1/ko active IP Right Grant
-
2018
- 2018-02-23 TW TW107106168A patent/TWI707516B/zh active
-
2019
- 2019-08-28 US US16/554,226 patent/US11202342B2/en active Active
-
2020
- 2020-05-20 US US16/878,622 patent/US11503670B2/en active Active
- 2020-05-20 US US16/878,623 patent/US11412579B2/en active Active
-
2021
- 2021-07-09 JP JP2021113995A patent/JP7165786B2/ja active Active
-
2022
- 2022-09-30 US US17/956,825 patent/US11729865B2/en active Active
- 2022-10-24 JP JP2022169722A patent/JP7550829B2/ja active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11507718A (ja) | 1995-06-07 | 1999-07-06 | フイリップ モーリス プロダクツ インコーポレイテッド | 電気ライターのための保護及びシガレット排出システム |
JP2003317811A (ja) | 2002-04-24 | 2003-11-07 | Japan Storage Battery Co Ltd | 充電監視装置 |
JP2014501106A (ja) | 2010-12-24 | 2014-01-20 | フィリップ・モーリス・プロダクツ・ソシエテ・アノニム | 消耗品を無効化する手段を備えたエアロゾル生成システム |
US20140254055A1 (en) | 2013-03-05 | 2014-09-11 | Zhiyong Xiang | Over Current and Short Circuit Protection Device and Method For Electronic Cigarette |
US20140283856A1 (en) | 2013-03-20 | 2014-09-25 | Zhiyong Xiang | Overheating protection device for electronic cigarette and smoke cartridge |
US20150036250A1 (en) | 2013-07-31 | 2015-02-05 | Zhiyong Xiang | Over-current and over-voltage protection circuit and method for an electronic cigarette |
US20160345627A1 (en) * | 2014-01-14 | 2016-12-01 | Kimree Hi-Tech Inc. | Electronic cigarette identification device, electronic cigarette case, and method for identifying electronic cigarette |
WO2015167000A1 (ja) | 2014-05-02 | 2015-11-05 | 日本たばこ産業株式会社 | 非燃焼型香味吸引器 |
WO2015166952A1 (ja) * | 2014-05-02 | 2015-11-05 | 日本たばこ産業株式会社 | 非燃焼型香味吸引器及びコンピュータ読取り可能媒体 |
US20160174076A1 (en) | 2014-08-15 | 2016-06-16 | Shenzhen Jieshibo Technology Co., Ltd. | Matching device and method for electronic atomization device based on mobile terminal |
WO2016119626A1 (en) | 2015-01-26 | 2016-08-04 | Xmart Chip Microelectronic Co. Limited | Electronic smoking apparatus and circuitry |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12042600B2 (en) | 2018-10-04 | 2024-07-23 | Japan Tobacco Inc. | Inhalation component generating device, control circuit, and control method and control program of inhalation component generating device |
US10869974B2 (en) | 2018-10-04 | 2020-12-22 | Japan Tobacco Inc. | Inhalation component generating device, control circuit, and control method and control program of inhalation component generating device |
JP2020058306A (ja) * | 2018-10-11 | 2020-04-16 | 日本たばこ産業株式会社 | 吸引成分生成装置、制御回路、吸引成分生成装置の制御方法および制御プログラム |
US12063977B2 (en) | 2018-10-30 | 2024-08-20 | Japan Tobacco Inc. | Power supply unit of aerosol generation device, control method of power supply unit of aerosol generation device, and program for power supply unit of aerosol generation device |
WO2020090374A1 (ja) * | 2018-10-30 | 2020-05-07 | 日本たばこ産業株式会社 | エアロゾル生成装置の電源ユニット、エアロゾル生成装置の電源ユニットの制御方法、およびエアロゾル生成装置の電源ユニット用プログラム |
JP2023091024A (ja) * | 2018-10-30 | 2023-06-29 | 日本たばこ産業株式会社 | エアロゾル生成装置の電源ユニット、制御方法、プログラム、および、吸引器の電源ユニット |
JP7312641B2 (ja) | 2018-10-30 | 2023-07-21 | 日本たばこ産業株式会社 | エアロゾル生成装置の電源ユニット、制御方法、プログラム、および、吸引器の電源ユニット |
JP2020068762A (ja) * | 2018-10-30 | 2020-05-07 | 日本たばこ産業株式会社 | エアロゾル生成装置の電源ユニット、制御方法、プログラム、および、吸引器の電源ユニット |
JP7371295B2 (ja) | 2018-10-30 | 2023-10-30 | 日本たばこ産業株式会社 | エアロゾル生成装置の電源ユニット、制御方法、プログラム、および、吸引器の電源ユニット |
US11824379B2 (en) | 2018-10-31 | 2023-11-21 | Japan Tobacco Inc. | Power supply unit for aerosol inhaler, aerosol inhaler, power supply control method of aerosol inhaler, and power supply control program of aerosol inhaler |
US11862997B2 (en) | 2018-10-31 | 2024-01-02 | Japan Tobacco Inc. | Power supply unit for aerosol inhaler, aerosol inhaler, power supply control method of aerosol inhaler, and power supply control program of aerosol inhaler |
EP4256986A3 (en) * | 2018-10-31 | 2024-01-24 | Japan Tobacco Inc. | Power supply unit for aerosol inhaler, aerosol inhaler, power supply control method of aerosol inhaler, and power supply control program of aerosol inhaler |
US12046928B2 (en) | 2018-10-31 | 2024-07-23 | Japan Tobacco Inc. | Power supply unit for aerosol inhaler, aerosol inhaler, power supply control method of aerosol inhaler, and power supply control program of aerosol inhaler |
EP3892130A1 (en) * | 2018-10-31 | 2021-10-13 | Japan Tobacco Inc. | Power supply unit for aerosol inhaler, aerosol inhaler, power supply control method of aerosol inhaler, and power supply control program of aerosol inhaler |
EP3892131A1 (en) * | 2018-10-31 | 2021-10-13 | Japan Tobacco Inc. | Power supply unit for aerosol inhaler, aerosol inhaler, power supply control method of aerosol inhaler, and power supply control program of aerosol inhaler |
JP7365413B2 (ja) | 2018-12-21 | 2023-10-19 | ジェイティー インターナショナル エスエイ | バッテリーの健康状態の推定を伴う充電器 |
JP2022510870A (ja) * | 2018-12-21 | 2022-01-28 | ジェイティー インターナショナル エス.エイ. | バッテリーの健康状態の推定を伴う充電器 |
JP7359685B2 (ja) | 2019-01-17 | 2023-10-11 | 日本たばこ産業株式会社 | エアロゾル吸引器用の電源ユニット |
TWI720786B (zh) * | 2019-01-17 | 2021-03-01 | 日商日本煙草產業股份有限公司 | 用於氣霧吸嚐器之電力供應單元 |
US11658500B2 (en) | 2019-01-17 | 2023-05-23 | Japan Tobacco Inc. | Power supply unit for aerosol inhaler |
JP2020115738A (ja) * | 2019-01-17 | 2020-07-30 | 日本たばこ産業株式会社 | エアロゾル吸引器用の電源ユニット |
JP2020115734A (ja) * | 2019-01-17 | 2020-07-30 | 日本たばこ産業株式会社 | エアロゾル吸引器用の電源ユニット |
JP2020114200A (ja) * | 2019-01-17 | 2020-07-30 | 日本たばこ産業株式会社 | エアロゾル吸引器用の電源ユニット |
JP2022518237A (ja) * | 2019-01-21 | 2022-03-14 | ブリティッシュ アメリカン タバコ (インヴェストメンツ) リミテッド | タバコ産業製品およびタバコ産業製品に関する方法 |
WO2020213450A1 (ja) * | 2019-04-19 | 2020-10-22 | 株式会社村田製作所 | 電池パック、非燃焼式吸引器、電子機器、電動工具及び無人飛行体 |
CN113678307A (zh) * | 2019-04-19 | 2021-11-19 | 株式会社村田制作所 | 电池包、非燃烧式吸引器、电子设备、电动工具及无人飞行器 |
EP3987956A4 (en) * | 2019-06-18 | 2023-01-11 | Japan Tobacco Inc. | INHALATION DEVICE, POWER SUPPLY AND METHOD |
JP7348314B2 (ja) | 2020-01-21 | 2023-09-20 | 日本たばこ産業株式会社 | エアロゾル生成装置の電源ユニット及びカートリッジ、並びにカートリッジの種別を判定する方法 |
JPWO2021149124A1 (ja) * | 2020-01-21 | 2021-07-29 | ||
WO2021149125A1 (ja) * | 2020-01-21 | 2021-07-29 | 日本たばこ産業株式会社 | エアロゾル生成装置の電源ユニット及びカートリッジ、並びにカートリッジの種別を判定する方法 |
WO2021149126A1 (ja) * | 2020-01-21 | 2021-07-29 | 日本たばこ産業株式会社 | エアロゾル生成装置の電源ユニット及びカートリッジ、並びにカートリッジの種別を判定する方法 |
WO2021149124A1 (ja) * | 2020-01-21 | 2021-07-29 | 日本たばこ産業株式会社 | エアロゾル生成装置の電源ユニット及びカートリッジ、並びにカートリッジの種別を判定する方法 |
JP7348313B2 (ja) | 2020-01-21 | 2023-09-20 | 日本たばこ産業株式会社 | エアロゾル生成装置の電源ユニット及びカートリッジ、並びにカートリッジの種別を判定する方法 |
JPWO2021149125A1 (ja) * | 2020-01-21 | 2021-07-29 | ||
JPWO2021149126A1 (ja) * | 2020-01-21 | 2021-07-29 | ||
JP7300526B2 (ja) | 2020-01-21 | 2023-06-29 | 日本たばこ産業株式会社 | エアロゾル生成装置の電源ユニット及びカートリッジ、並びにカートリッジの種別を判定する方法 |
Also Published As
Publication number | Publication date |
---|---|
US20200275704A1 (en) | 2020-09-03 |
US20230020117A1 (en) | 2023-01-19 |
EP3581038A4 (en) | 2020-12-23 |
KR102401719B1 (ko) | 2022-05-25 |
JP2023011706A (ja) | 2023-01-24 |
CA3054492C (en) | 2022-11-29 |
JP7038058B2 (ja) | 2022-03-17 |
US11412579B2 (en) | 2022-08-09 |
US20200275703A1 (en) | 2020-09-03 |
EP3581038A1 (en) | 2019-12-18 |
US20190380394A1 (en) | 2019-12-19 |
JPWO2018163262A1 (ja) | 2019-03-22 |
EA201992105A1 (ru) | 2020-02-03 |
JP7550829B2 (ja) | 2024-09-13 |
JP7165786B2 (ja) | 2022-11-04 |
TWI707516B (zh) | 2020-10-11 |
US11729865B2 (en) | 2023-08-15 |
TW201838279A (zh) | 2018-10-16 |
KR20190113906A (ko) | 2019-10-08 |
US11503670B2 (en) | 2022-11-15 |
CN109068736B (zh) | 2021-12-21 |
CN109068736A (zh) | 2018-12-21 |
CA3054492A1 (en) | 2018-09-13 |
US11202342B2 (en) | 2021-12-14 |
JP2021182918A (ja) | 2021-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7165786B2 (ja) | バッテリユニット、香味吸引器、バッテリユニットを制御する方法、及びプログラム | |
JP6498849B2 (ja) | バッテリユニット、香味吸引器、バッテリユニットを制御する方法、及びプログラム | |
WO2018163263A1 (ja) | バッテリユニット、香味吸引器、バッテリユニットを制御する方法、及びプログラム | |
JP6577106B2 (ja) | バッテリユニット | |
EA040538B1 (ru) | Аккумуляторный блок, ингалятор для вкусоароматического вещества и способ управления аккумуляторным блоком |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018540497 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17899394 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3054492 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 20197025839 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017899394 Country of ref document: EP Effective date: 20190909 |