WO2014133327A1 - 인슐린 위치 특이적 결합체 - Google Patents

인슐린 위치 특이적 결합체 Download PDF

Info

Publication number
WO2014133327A1
WO2014133327A1 PCT/KR2014/001597 KR2014001597W WO2014133327A1 WO 2014133327 A1 WO2014133327 A1 WO 2014133327A1 KR 2014001597 W KR2014001597 W KR 2014001597W WO 2014133327 A1 WO2014133327 A1 WO 2014133327A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulin
region
immunoglobulin
amino acid
peptidyl polymer
Prior art date
Application number
PCT/KR2014/001597
Other languages
English (en)
French (fr)
Inventor
장명현
김대진
황상연
김현욱
정성엽
권세창
Original Assignee
한미약품 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to RU2015133462A priority Critical patent/RU2677800C2/ru
Priority to NZ710564A priority patent/NZ710564A/en
Application filed by 한미약품 주식회사 filed Critical 한미약품 주식회사
Priority to US14/770,214 priority patent/US10046061B2/en
Priority to EP14757574.0A priority patent/EP2963055B1/en
Priority to BR112015018828-1A priority patent/BR112015018828B1/pt
Priority to JP2015559200A priority patent/JP6465817B2/ja
Priority to CA2899418A priority patent/CA2899418C/en
Priority to AU2014221534A priority patent/AU2014221534B2/en
Priority to CN201480009429.5A priority patent/CN105229025B/zh
Priority to ES14757574T priority patent/ES2738676T3/es
Priority to SG11201505615PA priority patent/SG11201505615PA/en
Priority to MX2015009799A priority patent/MX361083B/es
Publication of WO2014133327A1 publication Critical patent/WO2014133327A1/ko
Priority to SA515360887A priority patent/SA515360887B1/ar
Priority to PH12015501815A priority patent/PH12015501815A1/en
Priority to IL240714A priority patent/IL240714B/en
Priority to ZA2015/07105A priority patent/ZA201507105B/en
Priority to HK16104800.4A priority patent/HK1217202A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6849Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a receptor, a cell surface antigen or a cell surface determinant
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • A61K38/28Insulins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6801Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
    • A61K47/6803Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
    • A61K47/6811Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates the drug being a protein or peptide, e.g. transferrin or bleomycin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6889Conjugates wherein the antibody being the modifying agent and wherein the linker, binder or spacer confers particular properties to the conjugates, e.g. peptidic enzyme-labile linkers or acid-labile linkers, providing for an acid-labile immuno conjugate wherein the drug may be released from its antibody conjugated part in an acidic, e.g. tumoural or environment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/62Insulins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K17/00Carrier-bound or immobilised peptides; Preparation thereof
    • C07K17/02Peptides being immobilised on, or in, an organic carrier
    • C07K17/08Peptides being immobilised on, or in, an organic carrier the carrier being a synthetic polymer
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/30Non-immunoglobulin-derived peptide or protein having an immunoglobulin constant or Fc region, or a fragment thereof, attached thereto

Definitions

  • the present invention relates to a conjugate in which a non-peptidyl polymer linker and an immunoglobulin constant region are covalently linked to amino acid residues other than the N terminus of the insulin beta chain, and a method of preparing the same.
  • Insulin is a peptide secreted by beta cells of the human pancreas and plays a very important role in regulating blood glucose in the body. If the insulin is not secreted properly or secreted insulin does not work properly in the body blood sugar in the body is not controlled and rises, this condition is called diabetes. The above-mentioned cases are called type 2 diabetes, and the pancreas fails to secrete insulin to increase blood sugar type 1 diabetes. Type 2 diabetes is treated with oral hypoglycemic drugs, which are primarily chemicals, and some patients are treated with insulin. On the other hand, in the case of type 1 diabetes, administration of insulin is essential.
  • the present inventors have developed a method for modifying a non-peptidyl polymer and an immunoglobulin constant region at an amino acid residue of the beta chain C terminal region of insulin after repeated studies.
  • the present invention was completed by confirming that the binding force with the insulin receptor is increased rather than preparing the conjugate by modifying it at other positions.
  • the present invention is an insulin and immunoglobulin Fc region is polyethylene glycol, polypropylene glycol, ethylene glycol-propylene glycol copolymer, polyoxyethylated polyol, polyvinyl alcohol, polysaccharide, Dextran, polyvinylethyl ether, biodegradable polymer, lipid polymer, chitin, hyaluronic acid, and a combination of the non-peptidyl polymer linker selected from the group consisting of a combination thereof, the non-peptidyl polymer is one end of the insulin beta
  • an insulin conjugate characterized by being bound to amino acid residues other than the N terminus of the chain and the other terminus bound to the immunoglobulin Fc region.
  • the non-peptidyl polymer may be linked to the amino acid residue of any one of 20 to 29 of the insulin beta chain.
  • non-peptidyl polymer may be linked to the amino acid residue of any one of 25 to 29 of the insulin beta chain.
  • the non-peptidyl polymer may be linked to the lysine residue at No. 29 of the insulin beta chain.
  • the amino acid residue of the insulin beta chain to which the non-peptidyl polymer binds may have an amine group or a thiol group.
  • the insulin is prepared by the method of any one or combination of methods, such as substitution, addition, removal and modification of some amino acids in native insulin, native insulin Variants, insulin derivatives, insulin agonists or fragments thereof.
  • both ends of the non-peptidyl polymer may be bound to an amine group or a thiol group of an immunoglobulin Fc region and an insulin beta chain amino acid residue side chain, respectively.
  • the amino acid may be a natural or unnatural amino acid.
  • the immunoglobulin Fc region may be unglycosylated.
  • the immunoglobulin Fc region may be comprised of one to four domains selected from the group consisting of CH1, CH2, CH3 and CH4 domains.
  • the immunoglobulin Fc region may further comprise a hinge region.
  • the immunoglobulin Fc region may be an Fc region derived from IgG, IgA, IgD, IgE or IgM.
  • each domain of the immunoglobulin Fc region may be a hybrid of domains with different origins derived from immunoglobulins selected from the group consisting of IgG, IgA, IgD, IgE, IgM.
  • the immunoglobulin Fc region may be a dimer or multimer consisting of short chain immunoglobulins consisting of domains of the same origin.
  • the immunoglobulin Fc region may be an IgG4 Fc region.
  • the immunoglobulin Fc region may be a human nonglycosylated IgG4 Fc region.
  • the non-peptidyl polymer is combined with an amine group or thiol group of the amino acid residue side chain of the insulin beta chain.
  • Peptides, hemithioacetals, imines or thiodioxopyrrolidinyl bonds can be formed.
  • the non-peptidyl polymer may have a reactor at each end independently selected from the group consisting of aldehyde group, propionaldehyde group, butylaldehyde group, maleimide group and succinimide derivative.
  • the succinimide derivatives are succinimidyl carboxymethyl, succinimidyl valerate, succinimidyl methylbutanoate, succinimidyl methylpropionate, succinimidyl butanoate, succinimidyl propionate, N- Hydroxysuccinimide or succinimidyl carbonate.
  • the non-peptidyl polymer may be one having a butylaldehyde group and a succinimidyl valerate reactor at each end.
  • the present invention provides a sustained preparation of insulin with increased sustained and stable in vivo comprising the insulin conjugate.
  • the agent may be for treating diabetes.
  • the present invention provides a method for preparing a non-peptidyl polymer comprising: (1) covalently linking a non-peptidyl polymer to an amino acid residue except for the N terminus of an insulin beta chain; (2) separating the insulin linker in which the non-peptidyl polymer is covalently bonded to the amino acid residue except for the N terminus of the insulin beta chain from the reaction mixture of (1); And (3) covalently linking an immunoglobulin Fc region to the other end of the non-peptidyl polymer of the isolated linker to produce an insulin conjugate in which both ends of the non-peptidyl polymer are bound to the immunoglobulin Fc region and insulin, respectively. It provides a method of producing an insulin conjugate, comprising the step of.
  • the non-peptidyl polymer is combined with an amine group or thiol group of the amino acid residue side chain of the insulin beta chain.
  • Peptides, hemithioacetals, imines or thiodioxopyrrolidinyl bonds can be formed.
  • the non-peptidyl polymer may have an aldehyde derivative, a maleimide derivative, or a succinimide derivative at each end independently of the reactor.
  • both ends of the non-peptidyl polymer may be bound via an amino acid residue except for the N terminus of the insulin beta chain and a thiol group or an amine group of the immunoglobulin Fc region.
  • the non-peptidyl polymer may have an aldehyde derivative and a succinimide derivative at each end independently of the reactor.
  • step (1) may be carried out in an alkaline environment of pH 9.0 ⁇ 2.
  • the molar ratio of the insulin and the non-peptidyl polymer of step (1) may be 1: 1.5 to 1:10.
  • the molar ratio of the insulin linker and the immunoglobulin Fc region of step (3) may be 1: 1 to 1:10.
  • Insulin conjugates of the present invention can be usefully used for the development of high-efficiency long-acting insulin, since the binding force to the insulin receptor is significantly increased and the in vivo activity of insulin is significantly improved.
  • 1a to 1b are profiles and SDS-PAGE gel images of mono-pegylated insulin purified using a Source 15S column.
  • Figure 4 is a binding sensogram of the insulin conjugate to the insulin receptor.
  • A) is the N terminal insulin conjugate
  • B) is the B29 insulin conjugate
  • the concentration of each substance from top to bottom is 1000, 500, 250, 125 , 62.5 nM.
  • the present invention is an insulin and immunoglobulin Fc region is polyethylene glycol, polypropylene glycol, ethylene glycol-propylene glycol copolymer, polyoxyethylated polyol, polyvinyl alcohol, polysaccharide, Dextran, polyvinylethyl ether, biodegradable polymer, lipid polymer, chitin, hyaluronic acid, and a combination of the non-peptidyl polymer linker selected from the group consisting of a combination thereof, the non-peptidyl polymer is one end of the insulin beta
  • an insulin conjugate characterized by being bound to amino acid residues other than the N terminus of the chain and the other terminus bound to the immunoglobulin Fc region.
  • insulin is secreted from the pancreas when the blood sugar in the body is high to absorb sugar from the liver, muscle, and adipose tissue and store it as glycogen, and inhibits the use of energy as a source of energy by breaking down fat to regulate blood sugar.
  • Eggplant is a type of bioactive peptide.
  • the term 'insulin' includes not only natural insulin but also insulin agonists, precursors, derivatives, fragments, variants, and the like, preferably Natural insulin, fast-acting insulin, sustained insulin, and the like, without limitation.
  • Natural insulin is a hormone secreted by the pancreas and generally regulates blood glucose in the body by promoting glucose uptake in cells and inhibiting breakdown of fat. Insulin is processed in the form of a proinsulin precursor that has no glycemic control function and becomes insulin having glycemic control function.
  • the amino acid sequence of native insulin is as follows.
  • the insulin is prepared by the method of any one or combination of methods, such as substitution, addition, removal and modification of some amino acids in native insulin, native insulin Variants, insulin derivatives, insulin agonists or fragments thereof.
  • Insulin agonist refers to a substance that binds to the in vivo receptor of insulin and exhibits the same biological activity as insulin, regardless of the structure of insulin.
  • Insulin derivatives exhibit at least 80% homology to amino acid sequences compared to native insulin, with some groups of amino acid residues chemically substituted (eg, alpha-methylation, alpha-hydroxylation), removal (eg, deamination) or modification (Eg, N-methylation, glycosylation, fatty acid) refers to a peptide having a function of regulating blood sugar in the body.
  • An insulin fragment means a form in which one or more amino acids are added or deleted at the amino or carboxy terminus of insulin, and the added amino acid may be an amino acid (eg, a D-type amino acid) that does not exist in nature, and such insulin fragment is It has a glycemic control function in the body.
  • Insulin variant refers to a peptide having a glycemic control function in the body as a peptide having one or more different amino acid sequences from insulin.
  • the preparation methods used in insulin agonists, derivatives, fragments and variants, respectively, may be used independently and may be combined.
  • the insulin peptide of the present invention also includes peptides having a glycemic control function in the body in which at least one amino acid sequence differs from the native insulin and deamination of the N-terminal amino acid residue.
  • the insulin used in the present invention may be produced through a recombinant method, and may also be produced by a method synthesized through a solid phase synthesis method.
  • Insulin conjugates of the present invention are characterized in that the non-peptidyl polymer having a reactor at both ends is used as a linker, and each end of the polymer is covalently bonded to the insulin beta chain and the immunoglobulin Fc region, respectively.
  • both ends of the non-peptidyl polymer may be bound to an amine group or a thiol group of an immunoglobulin Fc region and an insulin beta chain amino acid residue side chain, respectively.
  • the amino acid may be a natural or unnatural amino acid, but is not limited as long as it can form a covalent bond with the non-peptidyl polymer, including an amine group or a thiol group.
  • the present invention provides a combination of polyethylene glycol (PEG) and immunoglobulin constant region (hereinafter referred to as immunoglobulin Fc or Fc) to improve the blood stability of insulin. Therefore, it is confirmed that the binding force to the insulin receptor is changed, and furthermore, it is characterized by identifying the binding sites that can increase the activity of the insulin binding ability is improved. For example, it was confirmed that the binding to PEG-Fc improves blood stability, but the binding does not reduce the activity by inhibiting the binding to the insulin receptor. In the case of insulin alpha chains, it is known that the activity is markedly reduced when forming a conjugate, so the optimal binding position on the beta chain of insulin was searched. As a result, it was confirmed that the binding position of the non-peptidyl polymer may be any amino acid residue having an amine group or a thiol group except for the N terminal of the insulin beta chain.
  • the non-peptidyl polymer may be linked to the amino acid residue of any one of 20 to 29 of the insulin beta chain. More preferably, the non-peptidyl polymer may be linked to the amino acid residue of any one of 25 to 29 of the insulin beta chain. Even more preferably, the non-peptidyl polymer may be linked to the lysine residue at No. 29 of the insulin beta chain.
  • the amino acid residue of the insulin beta chain to which the non-peptidyl polymer binds may have an amine group or a thiol group.
  • it may be, but is not limited to, lysine, cysteine or derivatives thereof.
  • a PEG-Fc conjugated conjugate was prepared at the N-terminus and lysine positions 29 of the insulin beta chain, and the binding force to the insulin receptor of each insulin conjugate was confirmed. It was confirmed that the PEG-Fc-coupled insulin conjugate at the lysine position 29 showed a higher binding force (about 3.6-fold) than the insulin conjugate at which the N-terminal PEG-Fc conjugated (Example 4, Table 1). As such, an increase in the binding force to the insulin receptor means an increase in the activity of the insulin conjugate.
  • the binding position of the non-peptidyl polymer for maintaining the activity of the insulin and improving the stability is not limited to No. 29 of the insulin beta chain.
  • native insulin can covalently bind non-peptidyl polymers through the ⁇ -amine group of the only lysine located at No. 29 of the beta chain.
  • the non-peptidyl polymer may bind to the corresponding amino acid positions, and these conjugates are also included in the scope of the present invention.
  • Amino acid residues of the insulin beta chain may be substituted with lysine or cysteine residues for ease of preparation in preparing a conjugate that maintains the activity of the insulin.
  • an insulin conjugate can be more easily prepared using an insulin derivative in which the amino acid residue of the insulin beta chain C terminal region is substituted with a lysine or cysteine residue, and the insulin conjugate prepared using the insulin derivative is also within the scope of the present invention.
  • non-peptidyl polymer refers to a biocompatible polymer having two or more repeating units linked thereto, and the repeating units are linked to each other through any covalent bonds, not peptide bonds.
  • Non-peptidyl polymers usable in the present invention include polyethylene glycol, polypropylene glycol, copolymers of ethylene glycol and propylene glycol, polyoxy ethylated polyols, polyvinyl alcohol, polysaccharides, dextran, polyvinyl ethyl ether, PLA ( Biodegradable polymers such as polylactic acid, polylactic acid) and PLGA (polylactic-glycolic acid), lipid polymers, chitins, hyaluronic acid, and combinations thereof, preferably Polyethylene glycol (PEG). Derivatives thereof known in the art and derivatives which can be easily prepared at the technical level in the art are also included in the scope of the present invention.
  • the disadvantage of the peptidic linker used in the fusion protein prepared by the conventional inframe fusion method is that it is easily cleaved by protease in vivo, and thus the blood half-life increase effect of the active drug by the carrier cannot be achieved as expected. will be.
  • the non-peptidyl polymer that can be used in the present invention can be used without limitation as long as it can play such a role, that is, a polymer that is resistant to proteolytic enzymes in vivo.
  • Non-peptidyl polymers preferably have a molecular weight in the range of 1 to 100 kDa, preferably 1 to 20 kDa.
  • the non-peptidyl polymer of the present invention to be combined with the bioactive polypeptide may be used not only one kind of polymer but also a combination of different kinds of polymers.
  • Non-peptidyl polymers used in the present invention have a reactor that can be combined with immunoglobulin Fc regions and protein drugs.
  • the non-peptidyl polymer comprises an amine group or thiol group of the amino acid residue side chain of the insulin beta chain.
  • Peptides, hemithioacetals, imines or thiodioxopyrrolidinyl bonds can be formed.
  • Non-limiting examples of both terminal reactors of the non-peptidyl polymer include propionaldehyde groups, aldehyde groups such as butylaldehyde groups, maleimide groups, and succinimide derivatives.
  • succinimide derivatives include succinimidyl carboxymethyl, succinimidyl valerate, succinimidyl methylbutanoate, succinimidyl methylpropionate, succinimidyl butanoate, succinimidyl propionate, and N-hydride.
  • Roxysuccinimide or succinimidyl carbonate may be used, but is not limited thereto.
  • a reactor capable of selectively covalently bonding an immunoglobulin Fc region with an amine group or a thiol group of an insulin beta chain amino acid residue is provided. Can be used without limitation.
  • Both terminal reactors of the non-peptidyl polymer may be the same or different from each other.
  • one end may have a succinimide group
  • the other end may have an aldehyde group such as propionaldehyde group or butylaldehyde group.
  • polyethylene glycol having a hydroxy reactor at both ends is used as a non-peptidyl polymer, it is possible to activate the hydroxy group to the various reactors by a known chemical reaction, or to use polyethylene glycol having a commercially available modified reactor.
  • the protein conjugates of the invention can be prepared.
  • the non-peptidyl polymer may have a butylaldehyde group and a succinimidyl valerate reactor at each end.
  • the immunoglobulin Fc region refers to the heavy chain constant region 2 (CH2) and the heavy chain constant region 3, except for the heavy and light chain variable regions, heavy chain constant region 1 (CH1) and light chain constant region (CL1) of the immunoglobulin (CH3) portion, and may include a hinge portion in the heavy chain constant region.
  • the immunoglobulin Fc region of the present invention has a substantially equivalent or improved effect as the natural type, except for the heavy and light chain variable regions of the immunoglobulin, some or all heavy chain constant region 1 (CH1) and / or light chain constant region It may be an extended Fc region including 1 (CL1).
  • the immunoglobulin Fc region of the present invention comprises (1) CH1 domain, CH2 domain, CH3 domain and CH4 domain, (2) CH1 domain and CH2 domain, (3) CH1 domain and CH3 domain, (4) CH2 domain and CH3 Domain, (5) a combination of one or two or more domains with an immunoglobulin hinge region (or a portion of the hinge region), (6) heavy chain constant region and a dimer of each domain and light chain constant region.
  • the immunoglobulin Fc region is a biodegradable polypeptide that is metabolized in vivo, it is safe to use as a carrier for drugs.
  • the immunoglobulin Fc region is advantageous in terms of preparation, purification and yield of the conjugate because of its relatively low molecular weight compared to the whole immunoglobulin molecule, as well as eliminating Fab moieties that exhibit high heterogeneity because the amino acid sequence varies from antibody to antibody. This can be expected to increase significantly and to reduce the likelihood of inducing blood antigenicity.
  • the immunoglobulin Fc region may be human or animal origin such as cow, goat, pig, mouse, rabbit, hamster, rat, guinea pig, etc., preferably human origin.
  • the immunoglobulin Fc region may be an Fc region by IgG, IgA, IgD, IgE, IgM derived or combinations thereof or hybrids thereof. It is preferably derived from IgG or IgM, which is most abundant in human blood and most preferably from IgG known to enhance the half-life of ligand binding proteins.
  • dimer or multimer when forming a dimer or multimer, means that the polypeptide encoding the single-chain immunoglobulin Fc region of the same origin forms a bond with single-chain polypeptides of different origin. do. That is, it is possible to prepare dimers or multimers from two or more fragments selected from the group consisting of Fc fragments of IgG Fc, IgA Fc, IgM Fc, IgD Fc and IgE.
  • hybrid is a term used to mean that there is a sequence corresponding to two or more immunoglobulin Fc fragments of different origins within an immunoglobulin Fc region of a single chain.
  • various types of hybrids are possible. That is, hybridization of a domain consisting of 1 to 4 domains from the group consisting of CH1, CH2, CH3 and CH4 of IgG Fc, IgM Fc, IgA Fc, IgE Fc and IgD Fc is possible, and may include a hinge.
  • IgG can also be divided into subclasses of IgG1, IgG2, IgG3 and IgG4 and combinations or hybridization thereof are also possible in the present invention.
  • the most preferred immunoglobulin Fc region for a carrier of the drug of the present invention is a non-glycosylated Fc region derived from human IgG4.
  • Human-derived Fc regions are preferred over non-human-derived Fc regions that can cause undesirable immune responses, such as acting as antigens in human living organisms to produce new antibodies against them.
  • the immunoglobulin Fc region may be a natural sugar chain, an increased sugar chain compared to the natural form, a reduced sugar chain or a sugar chain removed from the natural form.
  • Conventional methods such as chemical methods, enzymatic methods, and genetic engineering methods using microorganisms can be used to increase or decrease such immunoglobulin Fc sugar chains.
  • the immunoglobulin Fc region in which the sugar chain is removed from the Fc has a significant decrease in the binding capacity of the complement (c1q), and the antibody-dependent cytotoxicity or the complement-dependent cytotoxicity is reduced or eliminated, thereby not causing an unnecessary immune response in vivo. Do not.
  • a form more consistent with the original purpose as a carrier of the drug would be the immunoglobulin Fc region from which the sugar chains have been removed or unglycosylated.
  • “Deglycosylation” refers to the removal of sugar from the Fc region by using an enzyme
  • “Aglycosylation” refers to the Fc region that is not glycosylated in prokaryotes, preferably E. coli. Means to produce.
  • immunoglobulin Fc regions of the present invention include naturally occurring amino acid sequences as well as their sequence derivatives.
  • Amino acid sequence derivatives mean that one or more amino acid residues in a natural amino acid sequence have different sequences by deletion, insertion, non-conservative or conservative substitution, or a combination thereof.
  • IgG Fc amino acid residues 214 to 238, 297 to 299, 318 to 322 or 327 to 331 which are known to be important for binding can be used as suitable sites for modification.
  • various kinds of derivatives are possible, such as a site capable of forming disulfide bonds, a few amino acids at the N-terminus in the native Fc, or a methionine residue may be added at the N-terminus of the native Fc. Do.
  • complement binding sites such as C1q binding sites may be removed or ADCC sites may be removed to eliminate effector function.
  • it may be modified by phosphorylation, sulfation, acrylation, glycosylation, methylation, farnesylation, acetylation, amylation, etc. may be modified.
  • immunoglobulin Fc derivatives described above may be derivatives that exhibit the same biological activity as the immunoglobulin Fc region of the present invention but increase structural stability against heat, pH, etc. of the immunoglobulin Fc region.
  • immunoglobulin constant regions may be obtained from natural forms isolated from humans and animals, such as cattle, goats, pigs, mice, rabbits, hamsters, rats, and guinea pigs, or may be transformed animal cells or microorganisms. It may be a recombinant or derivative thereof obtained from.
  • the method obtained from the natural form can be obtained by separating the whole immunoglobulin from the human or animal living body, and then treating the protease. Papain is cleaved into Fab and Fc, and pepsin is cleaved into pF'c and F (ab) 2. This may be separated by Fc or pF'c using size-exclusion chromatography.
  • the immunoglobulin Fc region derived from a human may be a recombinant immunoglobulin constant region obtained from a microorganism.
  • the binding of the immunoglobulin Fc region to the non-peptidyl polymer is similar to that of the insulin beta chain and the non-peptidyl polymer. It is formed by covalent bonds between amine groups or thiol groups.
  • the non-peptidyl polymer binds to the N terminus of the immunoglobulin Fc region or the amine group of the lysine residue in the immunoglobulin Fc region or the thiol group of the cysteine residue.
  • the position of the amino acid residue to which the non-peptidyl polymer is bound on the immunoglobulin Fc region is not limited.
  • the present invention provides a sustained preparation of insulin with increased activity in vivo comprising the insulin conjugate.
  • the insulin sustaining agent may be for treating diabetes.
  • the present invention also provides a method of treating diabetes by administering the insulin-sustaining agent to a subject in need thereof.
  • administration means introducing a predetermined substance into a patient by any suitable method, and the route of administration of the conjugate may be administered through any general route as long as the drug can reach the target tissue.
  • Intraperitoneal administration intravenous administration, intramuscular administration, subcutaneous administration, intradermal administration, oral administration, topical administration, intranasal administration, pulmonary administration, rectal administration and the like, but is not limited thereto.
  • oral administration since the peptide is digested, it is desirable to formulate the oral composition to coat the active agent or to protect it from degradation in the stomach. It may preferably be administered in the form of an injection.
  • long-acting formulations may be administered by any device in which the active agent may migrate to target cells.
  • Sustained formulations comprising a conjugate of the invention may include a pharmaceutically acceptable carrier.
  • Pharmaceutically acceptable carriers can be used as oral administration binders, lubricants, disintegrants, excipients, solubilizers, dispersants, stabilizers, suspending agents, pigments, flavors, etc., in the case of injections, buffers, preservatives, analgesic
  • a topical agent, a solubilizer, an isotonicity agent, a stabilizer, etc. can be mixed and used, and in case of topical administration, a base, an excipient, a lubricating agent, a preservative, etc. can be used.
  • formulations of the long-acting formulations of the present invention can be prepared in a variety of mixtures with the pharmaceutically acceptable carriers described above.
  • oral administration it may be prepared in the form of tablets, troches, capsules, elixirs, suspensions, syrups, wafers, etc., and in the case of injections, they may be prepared in unit dosage ampoules or multiple dosage forms. And other solutions, suspensions, tablets, pills, capsules, sustained release preparations and the like.
  • suitable carriers, excipients and diluents suitable for formulation include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, acacia, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, methyl Cellulose, microcrystalline cellulose, polyvinylpyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate or mineral oil and the like can be used.
  • fillers, anti-coagulants, lubricants, wetting agents, fragrances, preservatives and the like may be further included.
  • the long-acting formulations of the present invention are determined by the type of drug that is the active ingredient, along with several related factors such as the disease to be treated, the route of administration, the age, sex and weight of the patient and the severity of the disease. Since the pharmaceutical composition of the present invention has excellent persistence and titer in vivo, the frequency and frequency of administration of the pharmaceutical preparations of the present invention can be significantly reduced.
  • the long-acting formulations of the present invention are effective in the treatment of diabetes by insulin because they enhance the in vivo stability of the insulin and maintain its activity.
  • the present invention provides a method for preparing a non-peptidyl polymer comprising: (1) covalently linking a non-peptidyl polymer to an amino acid residue except for the N terminus of an insulin beta chain; (2) separating the insulin linker in which the non-peptidyl polymer is covalently bonded to the amino acid residue except for the N terminus of the insulin beta chain from the reaction mixture of (1); And (3) covalently linking an immunoglobulin Fc region to the other end of the non-peptidyl polymer of the isolated linker to produce an insulin conjugate in which both ends of the non-peptidyl polymer are bound to the immunoglobulin Fc region and insulin, respectively. It provides a method of producing an insulin conjugate, comprising the step of.
  • the non-peptidyl polymer is an amine group or thiol group of the amino acid residue side chain of the insulin beta chain and a peptide, hemithioacetal, imine or thiodioxopyrrolidinyl (thiodioxopyrrolidinyl) bonds can be formed.
  • the non-peptidyl polymer may be one having an aldehyde derivative, a maleimide derivative, or a succinimide derivative at each end independently, but is not limited thereto.
  • both ends of the non-peptidyl polymer will bind via an amine group or thiol group of the amino acid residue side chain of the immunoglobulin Fc region and the amino acid residue except the N terminus of the insulin beta chain, respectively.
  • the non-peptidyl polymer may have an aldehyde derivative and a succinimide derivative at each end independently of the reactor.
  • step (1) may be performed in an alkaline environment of pH 9.0 ⁇ 2.
  • the reaction is performed in an acidic environment with a pH of less than 7, the non-peptidyl polymer may bind to the N-terminal amine group.
  • the pH range can be adjusted according to the type of reactor of the non-peptidyl polymer and the type of reactor of the amino acid residues of the insulin beta chain reacting with it, such as an amine group or a thiol group.
  • a PEG having a succinimide derivative as a reactor as a non-peptidyl polymer is bound to an amine group of lysine in insulin, it is adjusted to pH 9.0 to form an insulin linker selectively bound to an amine group of lysine rather than an N-terminal amine group.
  • a PEG having a succinimide derivative as a reactor as a non-peptidyl polymer is bound to an amine group of lysine in insulin, it is adjusted to pH 9.0 to form an insulin linker selectively bound to an amine group of lysine rather than an N-terminal amine group.
  • the reaction molar ratio of insulin to the polymer may be 1: 2, more preferably 1: 2.
  • the molar ratio of the insulin linker and the immunoglobulin Fc region is 1: 1 to 1. More preferably, it may be 1: 1.2.
  • a PEG linker comprising a succinimide and an aldehyde reactor independently at each end was selectively PEGylated in high yield in insulin, and the PEGylated position was expressed using a mapping method. It was confirmed that it is residue 29 of the beta chain (Figs. 2-3).
  • an insulin-non-peptidyl polymer-immunoglobulin constant region conjugate was prepared.
  • the binding force is about 3.6 times higher than that of the PEG-Fc conjugated conjugate at the N-terminus of insulin, which is more effective in the conjugate of the present invention. To show.
  • insulin beta chains with 3.4K butyraldehyde-PEG-succinimidyl valerate (PEG, Laysan Bio, Inc., USA, each having butyl aldehyde and succinimidyl valerate as functional groups)
  • PEG 3.4K butyraldehyde-PEG-succinimidyl valerate
  • the molar ratio of insulin: PEG at 1: 2 and the insulin concentration at 1.5 mg / ml were reacted at room temperature for about 1 hour.
  • the reaction was performed at 60.8 mM sodium borate pH 9.0, 45% isopropanol, and a source S column (GE Healthcare) using a buffer containing sodium citrate (pH 3.0), 45% ethanol and a gradient of KCl concentration was used.
  • Mono PEGylated insulin was purified from the reaction solution (FIGS. 1A-1B).
  • Glu-C mapping method was used to identify the binding site of 3.4K PEG in PEGylated insulin according to Example 1.
  • the reaction solution was 50 mM HEPES, pH 7.5 and reacted at 25 ° C. for 8 hours. Then 50 ⁇ l of 1 N HCl was added to terminate the reaction. Mapping was performed using HPLC reversed phase chromatography and the results are shown in FIG. 2.
  • the peak including amino acid number 29 of the insulin beta chain was shifted, and it was confirmed that 3.4K PEG was bound to the amino acid residue of insulin beta chain 29.
  • the molar ratio of mono-PEGylated insulin and immunoglobulin Fc fragment obtained using the method of Example 1 was 1: 1.2 and the total protein concentration was reacted at 25 ° C. for 13 hours at 20 mg / ml.
  • the reaction solution was 100 mM HEPES, 2M sodium chloride (NaCl), pH 8.2, 20 mM sodium cyanoborohydride was added as a reducing agent.
  • Source ISO GE Healthcare
  • Source ISO GE Healthcare
  • the prepared conjugates were analyzed for purity on HPLC using reverse phase chromatography, ion exchange chromatography, size exclusion chromatography (FIG. 3).
  • both the N-terminal and B29 insulin conjugate was confirmed to bind to the insulin receptor in proportion to the concentration.
  • the binding force of these insulin conjugates to the insulin receptor is shown in Table 1.
  • the B29 insulin conjugate shows a high binding rate constant value of about 1.8 times that of the N-terminal insulin conjugate. This means that the B29 insulin conjugate can bind faster with the insulin receptor compared to the N terminal insulin conjugate.
  • the dissociation rate constant it can be seen that the B29 insulin conjugate is about 1.8 times slower than the N terminal insulin conjugate. This means that the B29 insulin conjugate binds more stably after binding to the insulin receptor.
  • the binding force of the N-terminal and B29 insulin conjugate it was confirmed that the B29 insulin conjugate is about 3.6 times higher than the N-terminal insulin conjugate.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Diabetes (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Endocrinology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Toxicology (AREA)
  • Cell Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Obesity (AREA)
  • Hematology (AREA)
  • Emergency Medicine (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Medicinal Preparation (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 발명은 비펩타이드성 중합체 및 면역글로불린 Fc 영역이 상호 공유결합에 의해 인슐린 베타 체인 N 말단을 제외한 영역의 아미노산 잔기에 부위 선택적으로 연결되어 있어 인슐린 수용체와의 결합력이 향상되고 이에 따라 활성이 증가된 인슐린 결합체, 이를 포함하는 지속성 제제, 및 이의 제조방법에 관한 것이다. 본 발명의 인슐린 결합체는 펩타이드의 생체 내 활성이 현저히 증가된 인슐린 제제를 제공할 수 있다.

Description

인슐린 위치 특이적 결합체
본 발명은 인슐린 베타 체인의 N 말단을 제외한 아미노산 잔기에 특이적으로 비펩타이드성 중합체 링커 및 면역글로불린 불변영역이 공유결합에 의해 연결된 결합체 및 이를 제조하는 방법에 관한 것이다.
인슐린은 사람의 췌장의 베타세포에서 분비되는 펩타이드로서 체내의 혈당을 조절하는데 매우 중요한 역할을 담당하는 물질이다. 이러한 인슐린이 제대로 분비되지 않거나 분비된 인슐린이 체내에서 제대로 작용하지 못하는 경우 체내의 혈당이 조절되지 못하고 상승하며 이러한 상태를 당뇨병이라고 한다. 앞에서 언급한 경우를 제2형 당뇨병이라고 하며, 췌장에서 인슐린을 분비하지 못하여 혈당이 상승하는 경우를 제1형 당뇨병이라고 한다. 제2형 당뇨병의 경우 화학물질을 주성분으로 하는 경구용 혈당 강하제를 이용하여 치료를 하며 일부 환자에는 인슐린을 사용하여 치료하기도 한다. 반면, 제1형 당뇨병의 경우에는 인슐린의 투여가 필수적으로 요구된다.
현재 많이 사용되고 있는 인슐린 치료법은 식사 전, 후에 주사를 통하여 인슐린을 투여하는 방법이다. 하지만, 이러한 인슐린 치료법은 하루에 3번씩 지속적으로 투여되어야하기 때문에 환자들에게 많은 고통과 불편을 야기한다. 이러한 문제점을 극복하기 위하여 다양한 시도가 있어왔으며, 그 중 하나로서, 펩타이드의 약물의 생체막 투과도를 증가시켜 구강 또는 비강을 통한 흡입으로 펩타이드의 약물을 체내로 전달하는 시도가 있었다. 그러나 이러한 방법은 주사제에 비해 펩타이드의 체내 전달 효율이 현저히 낮으며 따라서 펩타이드 약물의 체내 활성을 요구되는 조건으로 유지하는데 아직까지는 어려움이 많다.
또한, 과량의 약물을 피하에 투여한 후 흡수가 지연되도록 하는 방법이 있었으며 이를 통하여 하루에 한 번 투여로 지속적인 혈중농도를 유지하는 방법이 있었다. 그 중 일부는 의약품(예, Lantus, Sanofi-aventis)으로 허가를 받아 현재 환자에게 투여되고 있다. 또한, 인슐린에 지방산을 수식하여 인슐린 중합체의 결합을 강하게 하며 투여부위 및 혈중의 알부민과 결합하여 지속시간을 늘리는 연구가 진행되었으며, 그 중 일부는 의약품(예, Levemir, NovoNordisk)으로 허가를 받았다. 하지만, 이러한 방법은 투여부위에서 통증이 나타나는 부작용이 있으며, 아직도 주사를 통한 투여간격이 하루 한 번으로서 여전히 환자에게 큰 부담이 되고 있다.
한편, 인슐린 베타 체인의 N 말단 및 C 말단 부분 예컨대, 29번 위치의 아미노산은 인슐린 수용체와의 결합에 대해 상대적으로 영향이 적음이 보고된 바 있다(Jens Brange and Aage Volund, Adv. Drug Deliv. Rev., 35(2-3): 307-335 (1999); Peter Kurtzhals et al., Diabetes, 49(6): 999-1005 (2000)).
이에 본 발명자는 연구를 거듭한 끝에 인슐린의 베타 체인 C 말단 영역의 아미노산 잔기에 비펩타이드성 중합체와 면역글로불린 불변영역을 수식하는 방법을 개발하였으며, 이와 같이 제조하는 방법을 사용하는 경우 인슐린의 N 말단 등 다른 위치에 수식하여 결합체를 제조하는 것보다 인슐린 수용체와의 결합력이 상승됨을 확인하여 본 발명을 완성하였다.
본 발명의 목적은 면역글로불린 Fc 영역이 비펩타이드성 중합체를 통하여 인슐린 베타 체인의 N 말단을 제외한 아미노산 잔기에 위치 선택적으로 연결된 인슐린 결합체 및 그의 제조 방법을 제공하는 것이다.
상기 목적을 달성하기 위한 하나의 양태로서, 본 발명은 인슐린 및 면역글로불린 Fc 영역이 폴리에틸렌글리콜, 폴리프로필렌글리콜, 에틸렌 글리콜-프로필렌 글리콜 공중합체, 폴리옥시에틸화폴리올, 폴리비닐알콜, 폴리사카라이드, 덱스트란, 폴리비닐에틸에테르, 생분해성 고분자, 지질 중합체, 키틴류, 히아루론산 및 이들의 조합으로 이루어진 군으로부터 선택되는 비펩타이드성 중합체 링커를 통해 연결되고, 상기 비펩타이드성 중합체는 일 말단이 인슐린 베타 체인의 N 말단을 제외한 아미노산 잔기에 결합되고 다른 말단이 면역글로불린 Fc 영역에 결합된 것을 특징으로 하는 인슐린 결합체를 제공한다.
바람직하게, 상기 비펩타이드성 중합체는 인슐린 베타 체인의 20 내지 29번 중 어느 하나의 아미노산 잔기에 결합된 것일 수 있다.
보다 바람직하게, 상기 비펩타이드성 중합체는 인슐린 베타 체인의 25 내지 29번 중 어느 하나의 아미노산 잔기에 결합된 것일 수 있다.
보다 더 바람직하게, 상기 비펩타이드성 중합체는 인슐린 베타 체인의 29번 라이신 잔기에 결합된 것일 수 있다.
바람직하게, 상기 비펩타이드성 중합체가 결합하는 인슐린 베타 체인의 아미노산 잔기는 아민 그룹 또는 티올 그룹을 갖는 것일 수 있다.
바람직하게, 상기 인슐린은 천연형 인슐린, 천연형 인슐린에서 일부 아미노산이 치환(substitution), 추가(addition), 제거(deletion) 및 수식(modification) 중에 어느 하나의 방법 또는 이들 방법의 조합을 통해 제조된 변이체, 인슐린 유도체, 인슐린 아고니스트 또는 이들의 단편일 수 있다.
바람직하게, 비펩타이드성 중합체의 양 말단이 각각 면역글로불린 Fc 영역과 인슐린 베타 체인 아미노산 잔기 측쇄의 아민 그룹 또는 티올 그룹(thiol group)에 결합된 것일 수 있다.
바람직하게, 아미노산은 천연 또는 비천연 아미노산일 수 있다.
바람직하게, 면역글로불린 Fc 영역이 비당쇄화된 것일 수 있다.
바람직하게, 면역글로불린 Fc 영역이 CH1, CH2, CH3 및 CH4 도메인으로 이루어진 군으로부터 선택되는 1개 내지 4개 도메인으로 이루어진 것일 수 있다.
바람직하게, 면역글로불린 Fc 영역이 힌지영역을 추가로 포함할 수 있다.
바람직하게, 면역글로불린 Fc 영역이 IgG, IgA, IgD, IgE 또는 IgM에서 유래된 Fc 영역일 수 있다.
바람직하게, 면역글로불린 Fc 영역의 각각의 도메인이 IgG, IgA, IgD, IgE, IgM로 이루어진 군에서 선택되는 면역글로불린에서 유래된 상이한 기원을 가진 도메인의 하이브리드일 수 있다.
바람직하게, 면역글로불린 Fc 영역이 동일한 기원의 도메인으로 이루어진 단쇄 면역글로불린으로 구성된 이량체 또는 다량체일 수 있다.
바람직하게, 면역글로불린 Fc 영역이 IgG4 Fc 영역일 수 있다.
바람직하게, 면역글로불린 Fc 영역이 인간 비당쇄화 IgG4 Fc 영역일 수 있다.
바람직하게, 비펩타이드성 중합체는 인슐린 베타 체인의 아미노산 잔기 측쇄의 아민 그룹 또는 티올 그룹과 펩티드(peptide), 헤미티오아세탈(hemithioacetal), 이민(imine) 또는 티오디옥소피롤리디닐(thiodioxopyrrolidinyl) 결합을 형성할 수 있다.
바람직하게, 비펩타이드성 중합체가 양 말단에 각각 독립적으로 알데히드 그룹, 프로피온알데히드 그룹, 부틸알데히드 그룹, 말레이미드 그룹 및 석신이미드 유도체로 이루어진 군으로부터 선택되는 반응기를 갖는 것일 수 있다.
바람직하게, 석신이미드 유도체가 석신이미딜 카르복시메틸, 석신이미딜 발레르에이트, 석신이미딜 메틸부타노에이트, 석신이미딜 메틸프로피온에이트, 석신이미딜 부타노에이트, 석신이미딜 프로피온에이트, N-하이드록시석신이미드인 또는 석신이미딜 카보네이트일 수 있다.
바람직하게, 비펩타이드성 중합체가 양 말단에 각각 부틸알데히드 그룹과 석신이미딜 발레르에이트 반응기를 갖는 것일 수 있다.
다른 하나의 양태로서, 본 발명은 상기 인슐린 결합체를 포함하는 생체 내 지속성 및 안정성이 증가된 인슐린의 지속성 제제를 제공한다.
바람직하게, 상기 제제는 당뇨병 치료용일 수 있다.
또 하나의 양태로서, 본 발명은 (1) 비펩타이드성 중합체를 인슐린 베타 체인의 N 말단을 제외한 아미노산 잔기에 공유결합으로 연결하는 단계; (2) 상기 (1)의 반응 혼합물로부터 인슐린 베타 체인의 N 말단을 제외한 아미노산 잔기에 비펩타이드성 중합체가 공유결합된 인슐린 연결체를 분리하는 단계; 및 (3) 분리된 연결체의 비펩타이드성 중합체의 다른 쪽 말단에 면역글로불린 Fc 영역을 공유결합으로 연결하여 비펩타이드성 중합체의 양쪽 말단이 각각 면역글로불린 Fc 영역 및 인슐린과 결합된 인슐린 결합체를 생성하는 단계를 포함하는, 인슐린 결합체의 제조방법을 제공한다.
바람직하게, 비펩타이드성 중합체는 인슐린 베타 체인의 아미노산 잔기 측쇄의 아민 그룹 또는 티올 그룹과 펩티드(peptide), 헤미티오아세탈(hemithioacetal), 이민(imine) 또는 티오디옥소피롤리디닐(thiodioxopyrrolidinyl) 결합을 형성할 수 있다.
바람직하게, 상기 비펩타이드성 중합체는 양 말단에 각각 독립적으로 알데히드 유도체, 말레이미드 유도체, 또는 석신이미드 유도체를 반응기로 가질 수 있다.
바람직하게, 상기 비펩타이드성 중합체의 양 말단은 각각 인슐린 베타 체인의 N 말단을 제외한 아미노산 잔기 및 면역글로불린 Fc 영역의 아민 그룹 또는 티올 그룹(thiol group)을 통해 결합할 수 있다.
바람직하게, 비펩타이드성 중합체는 양 말단에 각각 독립적으로 알데히드 유도체 및 석신이미드 유도체를 반응기로 가질 수 있다.
바람직하게, 상기 (1) 단계는 pH 9.0±2의 알칼리 환경에서 수행할 수 있다.
바람직하게, 상기 (1) 단계의 인슐린과 비펩타이드성 중합체의 몰 비는 1:1.5 내지 1:10일 수 있다.
바람직하게, 상기 (3) 단계의 인슐린 연결체와 면역글로불린 Fc 영역의 몰 비는 1:1 내지 1:10일 수 있다.
본 발명의 인슐린 결합체는 인슐린 수용체에 대한 결합력이 현저히 증가되어 인슐린의 생체 내 활성이 현저히 향상되므로, 고효율의 인슐린의 지속형 제형 개발에 유용하게 이용될 수 있다.
도 1a 내지 도1b는 Source 15S 컬럼을 이용하여 모노 페길화 인슐린을 정제한 프로파일과 SDS-PAGE gel 사진이다.
도 2 내지 도3은 인슐린-PEG 페길화가 베타 체인 29번 아미노산 잔기에 특이적으로 이루어졌음을 나타낸 결과이다.
도 3은 최종 정제된 결합체의 순도 분석 결과이다.
도 4는 인슐린 수용체에 대한 인슐린 결합체의 결합 센소 그람이다.(A)는 N 말단 인슐린 결합체이고, (B)는 B29 인슐린 결합체이며, 위쪽에서부터 아래쪽으로 각 물질의 농도는 1000, 500, 250, 125, 62.5 nM이다.
상기 목적을 달성하기 위한 하나의 양태로서, 본 발명은 인슐린 및 면역글로불린 Fc 영역이 폴리에틸렌글리콜, 폴리프로필렌글리콜, 에틸렌 글리콜-프로필렌 글리콜 공중합체, 폴리옥시에틸화폴리올, 폴리비닐알콜, 폴리사카라이드, 덱스트란, 폴리비닐에틸에테르, 생분해성 고분자, 지질 중합체, 키틴류, 히아루론산 및 이들의 조합으로 이루어진 군으로부터 선택되는 비펩타이드성 중합체 링커를 통해 연결되고, 상기 비펩타이드성 중합체는 일 말단이 인슐린 베타 체인의 N 말단을 제외한 아미노산 잔기에 결합되고 다른 말단이 면역글로불린 Fc 영역에 결합된 것을 특징으로 하는 인슐린 결합체를 제공한다.
본 발명에서 인슐린은 체내의 혈당이 높을 때 췌장에서 분비되어 간, 근육, 지방 조직에서 당을 흡수하여 글리코겐으로 저장하도록 하며, 지방을 분해하여 에너지원으로 사용되는 것을 억제하여 혈당을 조절하는 기능을 가지는 생리활성 펩타이드의 일종이다. 본 발명에 있어서, 용어 '인슐린'은 천연형 인슐린 뿐만 아니라, 인슐린 아고니스트(agonist), 전구물질(precursors), 유도체(derivatives), 단편(fragments), 변이체(variants) 등을 포함하며 바람직하게는 천연형 인슐린, 속효성 인슐린, 지속형 인슐린 등을 제한없이 포함한다.
천연형 인슐린은 췌장에서 분비되는 호르몬으로서 일반적으로 세포 내 글루코스 흡수를 촉진하고 지방의 분해를 억제하여 체내의 혈당을 조절하는 역할을 한다. 인슐린은 혈당조절 기능이 없는 프로인슐린(proinsulin) 전구체의 형태에서 프로세싱을 거쳐 혈당조절 기능을 가지는 인슐린이 된다. 천연형 인슐린의 아미노산 서열은 하기와 같다.
-알파 체인 :
Gly-Ile-Val-Glu-Gln-Cys-Cys-Thr-Ser-Ile-Cys-Ser-Leu-Tyr-Gln-Leu-Glu-Asn-Tyr-Cys-Asn(서열번호 1)
-베타 체인 :
Phe-Val-Asn-Gln-His-Leu-Cys-Gly-Ser-His-Leu-Val-Glu-Ala-Leu-Tyr-Leu-Val-Cys-Gly-Glu-Arg-Gly-Phe-Phe-Tyr-Thr-Pro-Lys-Thr(서열번호 2)
바람직하게, 상기 인슐린은 천연형 인슐린, 천연형 인슐린에서 일부 아미노산이 치환(substitution), 추가(addition), 제거(deletion) 및 수식(modification) 중에 어느 하나의 방법 또는 이들 방법의 조합을 통해 제조된 변이체, 인슐린 유도체, 인슐린 아고니스트 또는 이들의 단편일 수 있다.
인슐린 아고니스트는 인슐린의 구조와 상관없이 인슐린의 생체 내 수용체에 결합하여 인슐린과 동일한 생물학적 활성을 나타내는 물질을 의미한다.
인슐린 유도체는 천연형 인슐린과 비교시 최소한 80% 이상 아미노산 서열에서 상동성을 보이며, 아미노산 잔기의 일부 그룹이 화학적으로 치환(예; alpha-methylation, alpha-hydroxylation), 제거(예; deamination) 또는 수식(예; N-methylation, glycosylation, fatty acid)된 형태일 수 있고, 체내에서 혈당을 조절하는 기능을 보유한 펩타이드를 의미한다.
인슐린 단편은 인슐린의 아미노 말단 또는 카르복시 말단에 하나 또는 그 이상 아미노산이 추가 또는 삭제된 형태를 의미하며 추가된 아미노산은 천연에 존재하지 않는 아미노산(예; D형 아미노산)일 수 있고, 이러한 인슐린 단편은 체내에서 혈당조절 기능을 보유한다.
인슐린 변이체는, 인슐린과 아미노산 서열이 하나 이상 다른 펩타이드로서, 체내에서 혈당조절 기능을 보유한 펩타이드를 의미한다.
또한, 인슐린 아고니스트, 유도체, 단편 및 변이체에서 각각 사용된 제조방법은 독립적으로 사용될 수 있고 조합도 가능하다. 예를 들어, 본 발명의 인슐린 펩타이드는 천연형 인슐린과 아미노산 서열이 하나 이상 다르고 N-말단 아미노산 잔기가 탈아미노화(deamination)된, 체내에서 혈당조절 기능을 보유한 펩타이드도 포함된다.
구체적인 일 양태로서 본 발명에서 사용한 인슐린은 재조합 방법을 통하여 생산될 수 있으며, Solid phase 합성법을 통하여 합성하는 방법으로도 생산 가능하다.
본 발명의 인슐린 결합체는 양 말단에 반응기를 갖는 비펩타이드성 중합체를 링커로 사용하여 중합체의 각 말단을 인슐린 베타 체인 및 면역글로불린 Fc 영역에 각각 공유결합시켜 제조한 것이 특징이다. 바람직하게, 비펩타이드성 중합체의 양 말단이 각각 면역글로불린 Fc 영역과 인슐린 베타 체인 아미노산 잔기 측쇄의 아민 그룹 또는 티올 그룹(thiol group)에 결합된 것일 수 있다.
이때, 아미노산은 천연 또는 비천연 아미노산일 수 있으나, 아민 그룹 또는 티올 그룹을 포함하여 비펩타이드성 중합체와 공유결합을 형성할 수 있는 한 제한되지 않는다.
본 발명은 인슐린의 혈중 안정성을 향상시키기 위하여 폴리에틸렌글리콜(PEG) 및 면역글로불린 불변 영역(이하, 면역글로불린 Fc 또는 Fc로 기재)와의 결합체를 제조함에 있어서, 인슐린 베타 체인 상에서 PEG-Fc의 결합 위치에 따라 인슐린 수용체에 대한 결합력이 변화함을 확인하고, 나아가 인슐린 결합력이 증가되어 활성을 향상시킬 수 있는 결합자리를 규명한 것이 특징이다. 예컨대, PEG-Fc와의 결합에 의해 혈중 안정성을 향상시키되 상기 결합이 인슐린 수용체와의 결합을 저해하여 활성을 감소시키지 않는 위치를 확인하였다. 인슐린 알파 체인의 경우 결합체를 형성할 때 활성이 현저히 감소한다는 사실이 알려져 있으므로, 인슐린의 베타 체인 상에서 최적의 결합 위치를 탐색하였다. 그 결과, 비펩타이드성 중합체의 결합위치는 인슐린 베타 체인의 N 말단ㅇ르 제외한, 아민기 또는 티올기를 가진 임의의 아미노산 잔기일 수 있음을 확인하였다.
바람직하게, 상기 비펩타이드성 중합체는 인슐린 베타 체인의 20 내지 29번 중 어느 하나의 아미노산 잔기에 결합된 것일 수 있다. 보다 바람직하게, 상기 비펩타이드성 중합체는 인슐린 베타 체인의 25 내지 29번 중 어느 하나의 아미노산 잔기에 결합된 것일 수 있다. 보다 더 바람직하게, 상기 비펩타이드성 중합체는 인슐린 베타 체인의 29번 라이신 잔기에 결합된 것일 수 있다.
바람직하게, 상기 비펩타이드성 중합체가 결합하는 인슐린 베타 체인의 아미노산 잔기는 아민 그룹 또는 티올 그룹을 갖는 것일 수 있다. 예컨대, 라이신, 시스테인 또는 이들의 유도체일 수 있으나, 이에 제한되지 않는다.
본 발명의 구체적인 실시예에서는 인슐린 베타 체인의 N 말단과 29번 라이신 위치에 각각 PEG-Fc가 결합된 결합체를 제조하여, 각각의 인슐린 결합체의 인슐린 수용체에 대한 결합력을 확인하였으며, 그 결과 인슐린 베타 체인의 N 말단에 PEG-Fc가 결합된 인슐린 결합체에 비해 29번 라이신 위치에 PEG-Fc가 결합된 인슐린 결합체가 보다 높은 결합력(약 3.6배)을 나타냄을 확인하였다(실시예 4, 표 1). 이와 같이 인슐린 수용체에 대한 결합력의 증가는 해당 인슐린 결합체의 활성 증가를 의미한다.
그러나, 상기 인슐린의 활성을 유지하고 안정성이 향상된 결합체를 제조하기 위한 비펩타이드성 중합체의 결합 위치는 인슐린 베타 체인의 29번에 한정되지 않는다. 인슐린 베타 체인, 바람직하게는 C 말단 영역, 보다 바람직하게는 20 내지 29번 중 어느 하나의 아미노산 잔기에, 보다 더 바람직하게는 25 내지 29번 중 어느 하나의 아미노산 잔기에 비펩타이드성 중합체가 연결된 결합체도 모두 본 발명의 범주에 포함된다. 예컨대, 천연형 인슐린은 베타 체인의 29번에 위치한 유일한 라이신의 ε-아민기를 통해 비펩타이드성 중합체와 공유결합할 수 있다. 이 외의 위치에 아민기 또는 티올기를 갖는 아미노산 잔기를 포함하는 인슐린 변이체, 유도체 등의 경우 해당 아미노산 위치에 비펩타이드성 중합체가 결합할 수 있으며, 이들 결합체 또한 본 발명의 범주에 포함된다.
상기 인슐린의 활성을 유지하는 결합체 제조시 인슐린 베타 체인의 아미노산 잔기는 제조상의 용이성을 위하여 라이신 또는 시스테인 잔기로 치환될 수 있다. 예컨대, 인슐린 베타 체인 C 말단 영역의 아미노산 잔기가 라이신 또는 시스테인 잔기로 치환된 인슐린 유도체를 이용하여 보다 용이하게 인슐린 결합체를 제조할 수 있으며, 상기 인슐린 유도체를 이용하여 제조한 인슐린 결합체 또한 본 발명의 범주에 포함된다.
본 발명에서 "비펩타이드성 중합체"는 반복 단위가 2개 이상 결합된 생체 적합성 중합체를 의미하며, 상기 반복 단위들은 펩타이드 결합이 아닌 임의의 공유결합을 통해 서로 연결된다. 본 발명에 사용가능한 비펩타이드성 중합체는 폴리에틸렌 글리콜, 폴리프로필렌 글리콜, 에틸렌 글리콜과 프로필렌 글리콜의 공중합체, 폴리옥시 에틸화 폴리올, 폴리비닐 알콜, 폴리사카라이드, 덱스트란, 폴리비닐 에틸 에테르, PLA(폴리락트산, polylactic acid) 및 PLGA(폴리락틱-글리콜산, polylactic-glycolic acid)와 같은 생분해성 고분자, 지질 중합체, 키틴류, 히알루론산 및 이들의 조합으로 구성된 군으로부터 선택될 수 있으며, 바람직하게는 폴리에틸렌 글리콜(PEG)일 수 있다. 당해 분야에 알려진 이들의 유도체 및 당해 분야의 기술 수준에서 용이하게 제조할 수 있는 유도체들도 본 발명의 범위에 포함된다.
기존 인프레임 퓨전(inframe fusion) 방법으로 제조된 융합 단백질에서 사용된 펩타이드성 링커의 단점은 생체 내에서 단백질분해효소에 의해 쉽게 절단되어 캐리어에 의한 활성약물의 혈중반감기 증가 효과를 기대만큼 얻을 수 없다는 것이다. 그러나, 본 발명에서는 단백질분해효소에 저항성 있는 중합체를 사용하여 캐리어와 유사하게 펩타이드의 혈중반감기를 유지할 수 있다. 그러므로, 본 발명에서 사용될 수 있는 비펩타이드성 중합체는 상기와 같은 역할을 할 수 있는, 즉 생체 내 단백질분해 효소에 저항성 있는 중합체이면 제한없이 사용될 수 있다. 비펩타이드성 중합체는 분자량이 1 내지 100 kDa 범위, 바람직하게는 1 내지 20 kDa 범위인 것이 바람직하다. 또한, 생리활성 폴리펩타이드와 결합되는 본 발명의 비펩타이드성 중합체는 한 종류의 중합체뿐만 아니라 상이한 종류의 중합체들의 조합이 사용될 수도 있다.
본 발명에서 사용되는 비펩타이드성 중합체는 면역글로불린 Fc 영역 및 단백질 약물과 결합될 수 있는 반응기를 가진다.
바람직하게, 상기 비펩타이드성 중합체는 인슐린 베타 체인의 아미노산 잔기 측쇄의 아민 그룹 또는 티올 그룹과 펩티드(peptide), 헤미티오아세탈(hemithioacetal), 이민(imine) 또는 티오디옥소피롤리디닐(thiodioxopyrrolidinyl) 결합을 형성할 수 있다.
상기 비펩타이드성 중합체의 양 말단 반응기의 비제한적인 예는 프로피온알데히드 그룹, 부틸알데히드 그룹 등의 알데히드 그룹, 말레이미드(maleimide) 그룹 및 석신이미드(succinimide) 유도체 등이 있다. 상기 석신이미드 유도체로는 석신이미딜 카르복시메틸, 석신이미딜 발레르에이트, 석신이미딜 메틸부타노에이트, 석신이미딜 메틸프로피온에이트, 석신이미딜 부타노에이트, 석신이미딜 프로피온에이트, N-하이드록시석신이미드인 또는 석신이미딜 카보네이트가 이용될 수 있으나, 이에 제한되는 것은 아니며, 면역글로불린 Fc 영역과 인슐린 베타 체인 아미노산 잔기의 아민 그룹 또는 티올 그룹과 선택적으로 공유결합을 형성할 수 있는 반응기를 제한없이 사용할 수 있다.
상기 비펩타이드성 중합체의 양 말단 반응기는 서로 같거나 다를 수 있다. 예를 들어, 한쪽 말단에는 석신이미드 그룹을, 다른 쪽 말단에는 프로피온알데히드 그룹 또는 부틸알데히드 그룹 등의 알데히드 그룹을 가질 수 있다. 양쪽 말단에 하이드록시 반응기를 갖는 폴리에틸렌글리콜을 비펩타이드성 중합체로 이용하는 경우에는 공지의 화학반응에 의해 상기 하이드록시기를 상기 다양한 반응기로 활성화하거나, 상업적으로 입수 가능한 변형된 반응기를 갖는 폴리에틸렌글리콜을 이용하여 본 발명의 단백질 결합체를 제조할 수 있다.
바람직하게, 비펩타이드성 중합체는 양 말단에 각각 부틸알데히드 그룹과 석신이미딜 발레르에이트 반응기를 가질 수 있다.
본 발명에서, "면역글로불린 Fc 영역"은, 면역글로불린의 중쇄와 경쇄 가변영역, 중쇄 불변영역 1(CH1)과 경쇄 불변영역(CL1)을 제외한, 중쇄 불변영역 2(CH2) 및 중쇄 불변영역 3(CH3)부분을 의미하며, 중쇄 불변영역에 힌지(hinge)부분을 포함하기도 한다. 또한 본 발명 의 면역글로불린 Fc 영역은 천연형과 실질적으로 동등하거나 향상된 효과를 갖는 한, 면역 글로불린의 중쇄와 경쇄 가변영역만을 제외하고, 일부 또는 전체 중쇄 불변영역 1(CH1) 및/또는 경쇄불변영역 1(CL1)을 포함하는 확장된 Fc영역일 수 있다. 또한, CH2 및/또는 CH 3에 해당하는 상당히 긴 일부 아미노산 서열이 제거된 영역일 수 도 있다. 즉, 본 발명의 면역글로불린 Fc 영역은 (1) CH1 도메인, CH2 도메인, CH3 도메인 및 CH4 도메인, (2) CH1 도메인 및 CH2 도메인, (3) CH1 도메인 및 CH3 도메인, (4) CH2 도메인 및 CH3 도메인, (5) 1개 또는 2개의 이상의 도메인과 면역글로불린 힌지 영역(또는 힌지 영역의 일부)와의 조합, (6) 중쇄 불변영역 각 도메인과 경쇄 불변영역의 이량체일 수 있다.
상기 면역글로불린 Fc 영역은 생체 내에서 대사되는 생분해성의 폴리펩타이드이기 때문에, 약물의 캐리어로 사용하기에 안전하다. 또한, 면역글로불린 Fc 영역은 면역글로불린 전체 분자에 비해 상대적으로 분자량이 적기 때문에 결합체의 제조, 정제 및 수율 면에서 유리할 뿐만 아니라 아미노산 서열이 항체마다 다르기 때문에 높은 비균질성을 나타내는 Fab 부분을 제거함으로써 물질의 동질성이 크게 증가되고 혈중 항원성의 유발 가능성도 낮아지게 되는 효과도 기대할 수 있다.
상기 면역글로불린 Fc 영역은 인간 또는 소, 염소, 돼지, 마우스, 래빗, 햄스터, 랫트, 기니아 픽 등의 동물기원일 수 있으며, 바람직하게는 인간기원이다. 또한, 면역글로불린 Fc 영역은 IgG, IgA, IgD, IgE, IgM 유래 또는 이들의 조합(combination) 또는 이들의 혼성(hybrid)에 의한 Fc 영역일 수 있다. 바람직하게는 인간 혈액에 가장 풍부한 IgG 또는 IgM 유래이며 가장 바람직하게는 리간드 결합 단백질의 반감기를 향상시키는 것으로 공지된 IgG 유래이다.
한편, 본 발명에서 "조합(combination)"이란 이량체 또는 다량체를 형성할 때, 동일 기원 단쇄 면역글로불린 Fc 영역을 암호화하는 폴리펩타이드가 상이한 기원의 단쇄 폴리펩타이 드와 결합을 형성하는 것을 의미한다. 즉, IgG Fc, IgA Fc, IgM Fc, IgD Fc 및 IgE의 Fc 단편으로 이루어진 그룹으로부터 선택된 2개 이상의 단편으로부터 이량체 또는 다량체의 제조가 가능하다.
본 발명에서 "하이브리드(hybrid)"란 단쇄의 면역글로불린 Fc 영역 내에 2개 이상의 상이한 기원의 면역글로불린 Fc 단편에 해당하는 서열이 존재함을 의미하는 용어이다. 본 발명의 경우 여러 형태의 하이브리드가 가능하다. 즉, IgG Fc, IgM Fc, IgA Fc, IgE Fc 및 IgD Fc의 CH1, CH2, CH3 및 CH4로 이루어진 그룹으로부터 1개 내지 4개 도메인으로 이루어진 도메인의 하이브리드가 가능하며, 힌지를 포함할 수 있다.
한편, IgG 역시 IgG1, IgG2, IgG3 및 IgG4의 서브클래스로 나눌 수 있고 본 발명에서는 이들의 조합 또는 이들의 혼성화도 가능하다. 바람직하게는 IgG2 및 IgG4 서브클래스이며, 가장 바람직하게는 보체 의존적 독성(CDC, Complementdependent cytotoxicity)과 같은 이펙터 기능(effector function)이 거의 없는 IgG4의 Fc 영역이다.
즉, 가장 바람직한 본 발명의 약물의 캐리어용 면역글로불린 Fc 영역은, 인간 IgG4 유래의 비-당쇄화된 Fc 영역이다. 인간 유래의 Fc 영역은 인간 생체에서 항원으로 작용하여 이에 대한 새로운 항체를 생성하는 등의 바람직하지 않은 면역 반응을 일으킬 수 있는 비-인간 유래의 Fc 영역에 비하여 바람직하다.
한편, 면역글로불린 Fc 영역은 천연형 당쇄, 천연형에 비해 증가된 당쇄, 천연형에 비해 감소한 당쇄 또는 당쇄가 제거된 형태일 수 있다. 이러한 면역글로불린 Fc 당쇄의 증감 또는 제거에는 화학적 방법, 효소학적 방법 및 미생물을 이용한 유전 공학적 방법과 같은 통상적인 방법이 이용될 수 있다. 여기서, Fc에서 당쇄가 제거된 면역글로불린 Fc 영역은 보체(c1q)의 결합력이 현저히 저하되고, 항체-의존성 세포독성 또는 보체-의존성 세포독성이 감소 또는 제거되므로, 생체 내에서 불필요한 면역반응을 유발하지 않는다. 이런 점에서 약물의 캐리어로서의 본래의 목적에 보다 부합하는 형태는 당쇄가 제거되거나 비당쇄화된 면역글로불린 Fc 영역이라 할 것이다.
본 발명에서 "당쇄의 제거(Deglycosylation)"는 효소를 이용하여 Fc 영역으로부터 당을 제거하는 것을 말하며, "비당쇄화(Aglycosylation)"는 원핵동물, 바람직하게는 대장균에서 당쇄화되지 않은 Fc 영역을 생산하는 것을 의미한다.
또한, 본 발명의 면역글로불린 Fc 영역은 천연형 아미노산 서열뿐만 아니라 이의 서열유도체(mutant)를 포함한다. 아미노산 서열 유도체란 천연 아미노산 서열중의 하나 이상의 아미노산 잔기가 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합에 의하여 상이한 서열을 가지는 것을 의미한다. 예를 들면, IgG Fc의 경우 결합에 중요하다고 알려진 214 내지 238, 297 내지 299, 318 내지 322 또는 327 내지 331번 아미노산 잔기들이 변형을 위해 적당한 부위로서 이용될 수 있다. 또한, 이황화 결합을 형성할 수 있는 부위가 제거되거나, 천연형 Fc에서 N-말단의 몇몇 아미노산이 제거되거나 또는 천연형 Fc의 N-말단에 메티오닌 잔기가 부가될 수도 있는 등 다양한 종류의 유도체가 가능하다. 또한, 이펙터 기능을 없애기 위해 보체결합부위, 예로 C1q 결합부위가 제거될 수도 있고, ADCC 부위가 제거될 수도 있다. 이러한 면역글로불린 Fc 영역의 서열 유도체를 제조하는 기술은 국제특허공개 제97/34631호, 국제특허공개 제96/32478호 등에 개시되어 있다.
분자의 활성을 전체적으로 변경시키지 않는 단백질 및 펩티드에서의 아미노산 교환은 당해 분야에 공지되어 있다(H.Neurath, R.L.Hill, The Proteins, Academic Press, New York,197 9). 가장 통상적으로 일어나는 교환은 아미노산 잔기 Ala/Ser, Val/Ile, Asp/Glu, Thr/Ser, Ala/Gly, Ala/Thr, Ser/Asn, Ala/Val, Ser/Gly, Thr/Phe, Ala/Pro, Lys/Arg, Asp/Asn, Leu/Ile, Leu/Val, Ala/Glu, Asp/Gly 간의 교환이다.
경우에 따라서는 인산화(phosphorylation), 황화(sulfation), 아크릴화(acrylation), 당화(glycosylation), 메틸화(methylation), 파네실화(farnesylation), 아세틸화(acetylation), 아밀화(amidation) 등으로 수식(modification)될 수도 있다.
상기 기술한 면역글로불린 Fc 유도체는 본 발명의 면역글로불린 Fc 영역과 동일한 생물학적 활성을 나타내나 면역글로불린 Fc 영역의 열, pH 등에 대한 구조적 안정성을 증대시킨 유도체일 수 있다. 또한, 이러한 면역글로불린 불변영역은 인간 및 소, 염소, 돼지, 마우스, 래빗, 햄스터, 랫트, 기니아 픽 등의 동물의 생체 내에서 분리한 천연형으로부터 얻어질 수도 있고, 형질전환된 동물세포 또는 미생물로부터 얻어진 재조합형 또는 이의 유도체일 수 있다. 여기서, 천연형으로부터 획득하는 방법은 전체 면역글로불린을 인간 또는 동물의 생체로부터 분리한 후, 단백질 분해효소를 처리하여 얻을 수 있다. 파파인을 처리할 경우에는 Fab 및 Fc로 절단되고, 펩신을 처리할 경우에는 pF'c 및 F(ab)2로 절단된다. 이를 크기 배제 크로마토그래피(size-exclusion chromatography) 등을 이용하여 Fc 또는 pF'c를 분리할 수 있다.
바람직하게는 인간 유래의 면역글로불린 Fc 영역을 미생물로부터 수득한 재조합형 면역글로불린 불변영역일 수 있다.
본 발명에서 면역글로불린 Fc 영역과 비펩타이드성 중합체의 결합은 상기 인슐린 베타 체인과 비펩타이드성 중합체의 결합과 마찬가지로 인슐린과 결합하지 않은 비펩타이드성 중합체의 다른 말단 반응기와 면역글로불린 Fc 영역의 아미노산 잔기의 아민 그룹 또는 티올 그룹 사이의 공유결합에 의해 형성된다. 따라서, 비펩타이드성 중합체는 면역글로불린 Fc 영역의 N 말단 또는 면역글로불린 Fc 영역 내의 라이신 잔기의 아민 그룹 또는 시스테인 잔기의 티올 그룹에 결합한다. 이때, 면역글로불린 Fc 영역 상에서 비펩타이드성 중합체가 결합되는 아미노산 잔기의 위치는 제한되지 않는다.
다른 하나의 양태로서, 본 발명은 상기 인슐린 결합체를 포함하는 생체 내 활성이 증가된 인슐린의 지속성 제제를 제공한다. 바람직하게, 상기 인슐린 지속성 제제는 당뇨병 치료용일 수 있다.
또한, 본 발명은 상기 인슐린 지속성 제제를 이를 필요로 하는 개체에 투여하여 당뇨병을 치료하는 방법을 제공한다.
본 발명에서 "투여"는, 어떠한 적절한 방법으로 환자에게 소정의 물질을 도입하는 것을 의미하며, 상기 결합체의 투여 경로는 약물이 목적 조직에 도달할 수 있는 한 어떠한 일반적인 경로를 통하여 투여될 수 있다. 복강내 투여, 정맥내 투여, 근육내 투여, 피하 투여, 피내 투여, 경구 투여, 국소 투여, 비강내 투여, 폐내 투여, 직장 내 투여 등이 될 수 있으나, 이에 제한되지는 않는다. 그러나 경구 투여시, 펩타이드는 소화가 되기 때문에 경구용 조성물은 활성 약제를 코팅하거나 위에서의 분해로부터 보호되도록 제형화 하는 것이 바람직하다. 바람직하게는 주사제 형태로 투여될 수 있다. 또한, 지속성 제제는 활성 물질이 표적 세포로 이동할 수 있는 임의의 장치에 의해 투여될 수 있다.
본 발명의 결합체를 포함한 지속성 제제는 약제학적으로 허용 가능한 담체를 포함할 수 있다. 약제학적으로 허용되는 담체는 경구투여시에는 결합제, 활택제, 붕해제, 부형제, 가용화제, 분산제, 안정화제, 현탁화제, 색소, 향료 등을 사용할 수 있으며, 주사제의 경우에는 완충제, 보존제, 무통화제, 가용화제, 등장화제, 안정화제 등을 혼합하여 사용할 수 있으며, 국소투여용의 경우에는 기제, 부형제, 윤활제, 보존제 등을 사용할 수 있다. 본 발명의 지속성 제제의 제형은 상술한 바와 같은 약제학적으로 허용되는 담체와 혼합하여 다양하게 제조될 수 있다. 예를 들어, 경구 투여시에는 정제, 트로키, 캡슐, 엘릭서, 서스펜션, 시럽, 웨이퍼 등의 형태로 제조할 수 있으며, 주사제의 경우에는 단위 투약 앰플 또는 다수회 투약 형태로 제조할 수 있다. 기타, 용액, 현탁액, 정제, 환약, 캡슐, 서방형 제제 등으로 제형화할 수 있다.
한편, 제제화에 적합한 담체, 부형제 및 희석제의 예로는 락토즈, 덱스트로즈, 수크로즈, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로즈, 메틸 셀룰로즈, 미정질 셀룰로즈, 폴리비닐피롤리돈, 물, 메틸하이드록시벤조에이트, 프로필하이드록시벤조에이트, 탈크, 마그네슘 스테아레이트 또는 광물유 등이 사용될 수 있다. 또한, 충진제, 항응집제, 윤활제, 습윤제, 향료, 방부제 등을 추가로 포함할 수 있다.
본 발명의 지속성 제제는 치료할 질환, 투여 경로, 환자의 연령, 성별 및 체중 및 질환의 중등도 등의 여러 관련 인자와 함께, 활성성분인 약물의 종류에 따라 결정된다. 본 발명의 약제학적 조성물은 생체 내 지속성 및 역가가 우수하므로, 본 발명의 약제학적 제제의 투여 횟수 및 빈도를 현저하게 감소시킬 수 있다.
본 발명의 지속성 제제는 인슐린의 생체 내 안정성을 향상시키는 동시에 활성을 유지하므로 인슐린에 의한 당뇨병 치료에 효과적이다.
또 하나의 양태로서, 본 발명은 (1) 비펩타이드성 중합체를 인슐린 베타 체인의 N 말단을 제외한 아미노산 잔기에 공유결합으로 연결하는 단계; (2) 상기 (1)의 반응 혼합물로부터 인슐린 베타 체인의 N 말단을 제외한 아미노산 잔기에 비펩타이드성 중합체가 공유결합된 인슐린 연결체를 분리하는 단계; 및 (3) 분리된 연결체의 비펩타이드성 중합체의 다른 쪽 말단에 면역글로불린 Fc 영역을 공유결합으로 연결하여 비펩타이드성 중합체의 양쪽 말단이 각각 면역글로불린 Fc 영역 및 인슐린과 결합된 인슐린 결합체를 생성하는 단계를 포함하는, 인슐린 결합체의 제조방법을 제공한다.
전술한 바와 같이, 바람직하게, 비펩타이드성 중합체는 인슐린 베타 체인의 아미노산 잔기 측쇄의 아민 그룹 또는 티올 그룹과 펩티드(peptide), 헤미티오아세탈(hemithioacetal), 이민(imine) 또는 티오디옥소피롤리디닐(thiodioxopyrrolidinyl) 결합을 형성할 수 있다. 이때, 상기 비펩타이드성 중합체는 양 말단에 각각 독립적으로 알데히드 유도체, 말레이미드 유도체, 또는 석신이미드 유도체를 반응기로 갖는 것일 수 있으나, 이에 제한되지 않는다.
전술한 바와 같이, 바람직하게, 비펩타이드성 중합체의 양 말단은 각각 인슐린 베타 체인의 N 말단을 제외한 아미노산 잔기 및 면역글로불린 Fc 영역의 아미노산 잔기 측쇄의 아민 그룹 또는 티올 그룹(thiol group)을 통해 결합할 수 있다.
바람직하게, 비펩타이드성 중합체는 양 말단에 각각 독립적으로 알데히드 유도체 및 석신이미드 유도체를 반응기로 가질 수 있다. 이때, 상기 (1) 단계는 pH 9.0±2의 알칼리 환경에서 수행할 수 있다. 상기 반응이 pH가 7 미만의 산성 환경에서 수행되는 경우 N 말단의 아민기에 비펩타이드성 중합체가 결합할 수 있다. 상기 pH 범위는 비펩타이드성 중합체의 반응기 종류 및 이와 반응하는 인슐린 베타 체인의 아미노산 잔기의 반응기의 종류 예컨대, 아민 그룹 또는 티올 그룹에 따라 조절할 수 있다. 예컨대, 비펩타이드성 중합체로서 석신이미드 유도체를 반응기로 갖는 PEG를 인슐린 내의 라이신의 아민기에 결합시키는 경우 pH 9.0로 조절함으로써 N 말단 아민기가 아닌 라이신의 아민기와 선택적으로 결합된 인슐린 연결체를 형성할 수 있다.
바람직하게, 인슐린의 베타 체인에 비펩타이드성 중합체를 연결하는 (1) 단계에서 인슐린과 중합체의 반응 몰 비는 1:1.5 내지 1:10 보다 바람직하게는 1:2일 수 있다. 또한, 바람직하게, 상기 인슐린 연결체의 비펩타이드성 중합체의 다른 말단에 면역글로불린 Fc 영역을 공유결합으로 연결하는 (3) 단계에서 인슐린 연결체와 면역글로불린 Fc 영역의 몰 비는 1:1 내지 1:10 보다 바람직하게는 1:1.2일 수 있다.
본 발명의 구체적인 실시예에서는 양 말단에 각각 독립적으로 석신이미드와 알데히드 반응기를 포함하는 PEG 링커를 사용하여 인슐린에 높은 수율로 선택적으로 페길화시켰으며 맵핑 방법을 사용하여 상기 페길화된 위치가 인슐린 베타 체인의 29번 잔기임을 확인하였다(도 2 내지 3). 또한, 상기와 같이 생성된 모노 페길화된 인슐린에 면역글로불린 불변영역을 결합하여 인슐린 - 비펩타이드성 중합체 - 면역글로불린 불변영역 결합체를 제조하였다.
그리고, 제조된 인슐린 결합체의 인슐린 수용체에 대한 결합력을 확인한 결과, 인슐린의 N 말단에 PEG-Fc가 결합된 결합체에 비해 결합력이 약 3.6배 높은 것을 확인하였으며, 이는 본 발명의 결합체의 효력이 보다 우수함을 보여주는 것이다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것은 아니다.
실시예 1: 인슐린의 베타 체인 29번 아미노산 페길화(PEGylation) 반응 및 모노 페길화된 인슐린의 정제
인슐린 분말을 10 mM HCl에 용해시킨 후, 3.4K butyraldehyde-PEG-succinimidyl valerate(양 말단에 각각 부틸 알데히드기와 석신이미딜 발레르에이트를 작용기로 가지고 있는 PEG, Laysan Bio, Inc.미국)로 인슐린 베타 체인의 29번 아미노산 잔기에 페길화시키기 위하여, 인슐린 : PEG의 몰 비를 1 : 2로, 인슐린 농도를 1.5 mg/ml로 하여 상온에서 약 1시간 동안 반응시켰다. 이때 반응은 60.8 mM 소디움 보레이트(Sodium Borate) pH 9.0, 45% 이소프로판올에서 이루어졌으며, 소디움 시트레이트(pH 3.0), 45% 에탄올을 포함하는 완충액과 KCl 농도 구배를 이용한 Source S 컬럼(GE Healthcare)을 사용하여 반응액으로부터 모노 페길화된 인슐린을 정제하였다(도1a 내지 도1b).
실시예 2: 모노 페길화된 인슐린의 페길화 부위 확인
상기 실시예 1에 따라 페길화된 인슐린에서 3.4K PEG의 결합부위를 확인하기 위해 Glu-C 맵핑방법을 사용하였다. 농도 1 mg/ml의 모노 페길화된 인슐린 50 ㎍에 농도 1 mg/ml의 펩티드 내부 가수분해효소 Glu-C 10㎍을 첨가하였다. 반응액은 50 mM HEPES, pH 7.5이며 25℃에서 8시간 동안 반응하였다. 이후 1 N HCl 50 ㎕를 첨가하여 반응을 종결하였다. 맵핑은 HPLC 역상크로마토그래피를 사용하여 수행하였고 그 결과를 도 2에 나타내었다.
도 2에 나타난 바와 같이, 인슐린 베타 체인의 29번 아미노산을 포함하는 피크가 이동하였으며, 이로부터 인슐린 베타 체인 29번 아미노산 잔기에 3.4K PEG가 결합되었음을 확인하였다.
실시예 3: 모노 페길화된 인슐린과 면역글로불린 Fc 결합체의 제조
인슐린-PEG-면역글로불린 Fc 단편 결합체를 제조하기 위하여, 실시예 1의 방법을 이용하여 얻은 모노 페길화된(mono-PEGylated) 인슐린과 면역글로불린 Fc 단편의 몰비가 1 : 1.2가 되도록 하고 전체 단백질 농도를 20 mg/ml로 하여 25℃에서 13시간 동안 반응시켰다. 이때 반응액은 100 mM HEPES, 2M 소디움 클로라이드 (NaCl), pH 8.2이며, 환원제로서 20 mM 소디움 시아노보로하이드라이드를 첨가하였다.
반응이 종결된 후 Source Q 컬럼(GE Healthcare)에 Tris-HCl 완충액(pH 7.5)과 NaCl 농도 구배를 이용하여 반응액으로부터 반응하지 않은 인슐린, 반응하지 않은 면역글로불린 Fc 단편, 인슐린-PEG-면역글로불린 Fc 단편 결합체, 모노페길화된 인슐린(인슐린-PEG)이 2개 이상 결합한 면역글로불린 Fc 단편 결합체를 분리 정제하였다.
이후 Source ISO(GE Healthcare)를 사용하여, 잔류한 면역글로불린 Fc 및 멀티 커플링된 인슐린 결합체를 제거하여, 인슐린-PEG-면역글로불린 Fc 결합체를 얻었다. 이때, Tris-HCl(pH 7.5)가 포함된 암모늄 설페이트(Ammonium sulfate)의 농도 구배를 이용하여 용출하였다. 제조된 결합체는 역상 크로마토그래피, 이온교환 크로마토그래피, 크기배제 크로마토그래피를 이용하여 HPLC 상에서 순도를 분석하였다 (도 3).
실시예 4: 인슐린 베타 체인 내의 PEG-Fc 결합 자리에 따른 인슐린 결합체의 인슐린 수용체에 대한 결합력 측정
인슐린의 N 말단에 PEG-Fc가 결합된 인슐린 결합체와 B29에 PEG-Fc가 결합된 인슐린 결합체의 인슐린 수용체에 대한 결합력의 확인을 위해 SPR(surface Plasmon resonance, BIACORE 3000)을 사용하였다. 인슐린 수용체로는 HEK293F 세포에서 발현시킨 ECD(extracellular domain)를 정제하여 사용하였다. 상기 인슐린 수용체를 CM5칩에 아민 결합법을 이용하여 고정화한 후, 1 μM-6.25 nM의 N 말단 또는 B29 인슐린 결합체를 흘려주어 그 결합력을 확인하였다. 이들 인슐린 결합체들은 결합완충액(HBS-EP)으로 희석하였으며, 인슐린 결합체를 고정화한 칩에 4분간 결합시킨 후, 6분간 해리 과정을 거쳤다. 그 후, 다른 농도의 인슐린 결합체들을 결합시키기 위하여 인슐린 수용체와 결합되어 있는 인슐린 결합체에 50 mM NaCl/5 mM NaOH를 약 30초 동안 흘려주었다. 결합력은 BIAevaluation 프로그램의 1:1 Langmuir binding model을 이용하여 분석하였으며, 그 결과를 도 4에 나타내었다.
도 4에 나타난 바와 같이, N 말단 및 B29 인슐린 결합체는 모두 농도에 비례하여 인슐린 수용체와 결합하는 것을 확인하였다. 이들 인슐린 결합체들의 인슐린 수용체에 대한 결합력을 표 1에 나타내었다. 이를 살펴보면, B29 인슐린 결합체는 N 말단 인슐린 결합체에 비해 약 1.8배의 높은 결합 속도 상수 값을 보인다. 이는 B29 인슐린 결합체가 N 말단 인슐린 결합체에 비해 인슐린 수용체와의 결합을 빠르게 할 수 있다는 것을 의미한다. 또한 해리 속도 상수를 비교해 볼 때에도 B29 인슐린 결합체가 N 말단 인슐린 결합체에 비해 약 1.8배 느린 것을 알 수 있다. 이는 인슐린 수용체와 결합한 후 B29 인슐린 결합체가 보다 안정적으로 결합하고 있음을 의미한다. 결과적으로 N 말단 및 B29 인슐린 결합체의 결합력을 비교하여 보면, B29 인슐린 결합체가 N 말단 인슐린 결합체에 비해 결합력이 약 3.6배 높은 것을 확인하였다.
표 1 N 말단 인슐린 결합체 및 B29 인슐린 결합체의 인슐린 수용체에 대한 결합력 비교
인슐린 결합체 ka (1/ms, X105) kd (1/s, X103) KD(nM)
N 말단 0.06 ± 0.01 3.86 ± 0.15 692.5 ± 50.2
B29 0.11 ± 0.02 2.15 ± 0.22 191.5 ± 50.2
ka: association rate constant
kd: dissociation rate constant
KD: affinity constant
이상의 설명으로부터, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (30)

  1. 인슐린 및 면역글로불린 Fc 영역이 폴리에틸렌글리콜, 폴리프로필렌글리콜, 에틸렌 글리콜-프로필렌 글리콜 공중합체, 폴리옥시에틸화폴리올, 폴리비닐알콜, 폴리사카라이드, 덱스트란, 폴리비닐에틸에테르, 생분해성 고분자, 지질 중합체, 키틴류, 히아루론산 및 이들의 조합으로 이루어진 군으로부터 선택되는 비펩타이드성 중합체 링커를 통해 연결되고, 상기 비펩타이드성 중합체는 일 말단이 인슐린 베타 체인의 N 말단을 제외한 아미노산 잔기에 결합되고 다른 말단이 면역글로불린 Fc 영역에 결합된 것을 특징으로 하는 인슐린 결합체.
  2. 제1항에 있어서,
    상기 비펩타이드성 중합체는 인슐린 베타 체인의 20 내지 29번 중 어느 하나의 아미노산 잔기에 결합된 것을 특징으로 하는 인슐린 결합체.
  3. 제1항에 있어서,
    상기 비펩타이드성 중합체는 인슐린 베타 체인의 25 내지 29번 중 어느 하나의 아미노산 잔기에 결합된 것을 특징으로 하는 인슐린 결합체.
  4. 제1항에 있어서,
    상기 비펩타이드성 중합체는 인슐린 베타 체인의 29번 라이신 잔기에 결합된 것을 특징으로 하는 인슐린 결합체.
  5. 제1항에 있어서,
    비펩타이드성 중합체가 결합하는 인슐린 베타 체인의 아미노산 잔기는 아민 그룹 또는 티올 그룹을 갖는 것인 인슐린 결합체.
  6. 제1항에 있어서,
    상기 인슐린은 천연형 인슐린, 천연형 인슐린에서 일부 아미노산이 치환(substitution), 추가(addition), 제거(deletion) 및 수식(modification) 중에 어느 하나의 방법 또는 이들 방법의 조합을 통해 제조된 변이체, 인슐린 유도체, 인슐린 아고니스트 또는 이들의 단편인 인슐린 결합체.
  7. 제1항에 있어서,
    비펩타이드성 중합체의 양 말단이 각각 면역글로불린 Fc 영역과 인슐린 베타 체인 아미노산 잔기 측쇄의 아민 그룹 또는 티올 그룹(thiol group)에 결합된 인슐린 결합체.
  8. 제7항에 있어서,
    상기 아미노산은 천연 또는 비천연 아미노산인 인슐린 결합체.
  9. 제1항에 있어서,
    면역글로불린 Fc 영역이 비당쇄화됨을 특징으로 하는 인슐린 결합체.
  10. 제1항에 있어서,
    면역글로불린 Fc 영역이 CH1, CH2, CH3 및 CH4 도메인으로 이루어진 군으로부터 선택되는 1개 내지 4개 도메인으로 이루어진 인슐린 결합체.
  11. 제10항에 있어서,
    면역글로불린 Fc 영역이 힌지영역을 추가로 포함하는 인슐린 결합체.
  12. 제1항에 있어서,
    면역글로불린 Fc 영역이 IgG, IgA, IgD, IgE 또는 IgM에서 유래된 Fc 영역인 인슐린 결합체.
  13. 제12항에 있어서,
    면역글로불린 Fc 영역의 각각의 도메인이 IgG, IgA, IgD, IgE, IgM로 이루어진 군에서 선택되는 면역글로불린에서 유래된 상이한 기원을 가진 도메인의 하이브리드인 인슐린 결합체.
  14. 제12항에 있어서,
    면역글로불린 Fc 영역이 동일한 기원의 도메인으로 이루어진 단쇄 면역글로불린으로 구성된 이량체 또는 다량체인 인슐린 결합체.
  15. 제12항에 있어서,
    면역글로불린 Fc 영역이 IgG4 Fc 영역인 인슐린 결합체.
  16. 제12항에 있어서,
    면역글로불린 Fc 영역이 인간 비당쇄화 IgG4 Fc 영역인 인슐린 결합체.
  17. 제1항에 있어서,
    비펩타이드성 중합체는 인슐린 베타 체인의 아미노산 잔기 측쇄의 아민 그룹 또는 티올 그룹과 펩티드(peptide), 헤미티오아세탈(hemithioacetal), 이민(imine) 또는 티오디옥소피롤리디닐(thiodioxopyrrolidinyl) 결합을 형성하는 것인 인슐린 결합체.
  18. 제1항에 있어서,
    비펩타이드성 중합체가 양 말단에 각각 독립적으로 알데히드 그룹, 프로피온알데히드 그룹, 부틸알데히드 그룹, 말레이미드 그룹 및 석신이미드 유도체로 이루어진 군으로부터 선택되는 반응기를 갖는 인슐린 결합체.
  19. 제18항에 있어서,
    석신이미드 유도체가 석신이미딜 카르복시메틸, 석신이미딜 발레르에이트, 석신이미딜 메틸부타노에이트, 석신이미딜 메틸프로피온에이트, 석신이미딜 부타노에이트, 석신이미딜 프로피온에이트, N-하이드록시석신이미드인 또는 석신이미딜 카보네이트인 인슐린 결합체.
  20. 제18항에 있어서,
    비펩타이드성 중합체가 양 말단에 각각 부틸알데히드 그룹과 석신이미딜 발레르에이트 반응기를 갖는 인슐린 결합체.
  21. 제1항 내지 제20항 중 어느 한 항의 인슐린 결합체를 포함하는 생체 내 지속성 및 안정성이 증가된 인슐린의 지속성 제제.
  22. 제21항에 있어서,
    당뇨병 치료용인 지속성 제제.
  23. (1) 비펩타이드성 중합체를 인슐린 베타 체인의 N 말단을 제외한 아미노산 잔기에 공유결합으로 연결하는 단계;
    (2) 상기 (1)의 반응 혼합물로부터 인슐린 베타 체인의 N 말단을 제외한 아미노산 잔기에 비펩타이드성 중합체가 공유결합된 인슐린 연결체를 분리하는 단계; 및
    (3) 분리된 연결체의 비펩타이드성 중합체의 다른 쪽 말단에 면역글로불린 Fc 영역을 공유결합으로 연결하여 비펩타이드성 중합체의 양쪽 말단이 각각 면역글로불린 Fc 영역 및 인슐린과 결합된 인슐린 결합체를 생성하는 단계를 포함하는, 제1항의 인슐린 결합체의 제조방법.
  24. 제23항에 있어서,
    비펩타이드성 중합체는 인슐린 베타 체인의 아미노산 잔기 측쇄의 아민 그룹 또는 티올 그룹과 펩티드(peptide), 헤미티오아세탈(hemithioacetal), 이민(imine) 또는 티오디옥소피롤리디닐(thiodioxopyrrolidinyl) 결합을 형성하는 것인 제조방법.
  25. 제23항에 있어서,
    비펩타이드성 중합체는 양 말단에 각각 독립적으로 알데히드 유도체, 말레이미드 유도체, 또는 석신이미드 유도체를 반응기로 갖는 것인 제조방법.
  26. 제23항에 있어서,
    비펩타이드성 중합체의 양 말단은 각각 인슐린 베타 체인의 N 말단을 제외한 아미노산 잔기 및 면역글로불린 Fc 영역의 아미노산 잔기 측쇄의 아민 그룹 또는 티올 그룹(thiol group)을 통해 결합된 것인 제조방법.
  27. 제23항에 있어서,
    비펩타이드성 중합체가 양 말단에 각각 부틸알데히드 그룹과 석신이미딜 발레르에이트 반응기를 갖는 것인 제조방법.
  28. 제23항에 있어서,
    (1) 단계는 pH 9.0±2의 알칼리 환경에서 수행되는 것인 제조방법.
  29. 제23항 내지 제28항 중 어느 한 항에 있어서,
    상기 (1) 단계의 인슐린과 비펩타이드성 중합체의 몰 비는 1:1.5 내지 1:10인 것인 제조방법.
  30. 제23항 내지 제28항 중 어느 한 항에 있어서,
    상기 (3) 단계의 인슐린 연결체와 면역글로불린 Fc 영역의 몰 비는 1:1 내지 1:10인 것인 제조방법.
PCT/KR2014/001597 2013-02-26 2014-02-26 인슐린 위치 특이적 결합체 WO2014133327A1 (ko)

Priority Applications (17)

Application Number Priority Date Filing Date Title
CN201480009429.5A CN105229025B (zh) 2013-02-26 2014-02-26 位点特异性胰岛素缀合物
AU2014221534A AU2014221534B2 (en) 2013-02-26 2014-02-26 Site-specific insulin conjugate
US14/770,214 US10046061B2 (en) 2013-02-26 2014-02-26 Site-specific insulin conjugate
EP14757574.0A EP2963055B1 (en) 2013-02-26 2014-02-26 Site-specific insulin conjugate
BR112015018828-1A BR112015018828B1 (pt) 2013-02-26 2014-02-26 Conjugado de insulina sítio-específico
JP2015559200A JP6465817B2 (ja) 2013-02-26 2014-02-26 インスリン位置特異的結合体
CA2899418A CA2899418C (en) 2013-02-26 2014-02-26 Site-specific insulin conjugate
RU2015133462A RU2677800C2 (ru) 2013-02-26 2014-02-26 Сайт-специфичный конъюгат инсулина
NZ710564A NZ710564A (en) 2013-02-26 2014-02-26 Site-specific insulin conjugate
SG11201505615PA SG11201505615PA (en) 2013-02-26 2014-02-26 Site-specific insulin conjugate
ES14757574T ES2738676T3 (es) 2013-02-26 2014-02-26 Conjugado de insulina específico de sitio
MX2015009799A MX361083B (es) 2013-02-26 2014-02-26 Conjugado de insulina específico de sitio.
SA515360887A SA515360887B1 (ar) 2013-02-26 2015-08-12 مترافق الأنسولين بموقع محدد
PH12015501815A PH12015501815A1 (en) 2013-02-26 2015-08-18 Site-specific insulin conjugate
IL240714A IL240714B (en) 2013-02-26 2015-08-20 Place-specific insulin clip
ZA2015/07105A ZA201507105B (en) 2013-02-26 2015-09-25 Site-specific insulin conjugate
HK16104800.4A HK1217202A1 (zh) 2013-02-26 2016-04-27 位點特異性胰島素綴合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0020703 2013-02-26
KR20130020703 2013-02-26

Publications (1)

Publication Number Publication Date
WO2014133327A1 true WO2014133327A1 (ko) 2014-09-04

Family

ID=51428525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/001597 WO2014133327A1 (ko) 2013-02-26 2014-02-26 인슐린 위치 특이적 결합체

Country Status (22)

Country Link
US (1) US10046061B2 (ko)
EP (1) EP2963055B1 (ko)
JP (1) JP6465817B2 (ko)
KR (1) KR102185311B1 (ko)
CN (1) CN105229025B (ko)
AR (1) AR094904A1 (ko)
AU (1) AU2014221534B2 (ko)
BR (1) BR112015018828B1 (ko)
CA (1) CA2899418C (ko)
ES (1) ES2738676T3 (ko)
HK (1) HK1217202A1 (ko)
IL (1) IL240714B (ko)
MX (1) MX361083B (ko)
NZ (1) NZ710564A (ko)
PH (1) PH12015501815A1 (ko)
PT (1) PT2963055T (ko)
RU (1) RU2677800C2 (ko)
SA (1) SA515360887B1 (ko)
SG (1) SG11201505615PA (ko)
TR (1) TR201910929T4 (ko)
WO (1) WO2014133327A1 (ko)
ZA (1) ZA201507105B (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018526001A (ja) * 2015-08-28 2018-09-13 ハンミ ファーマシューティカル カンパニー リミテッド 新規なインスリンアナログ及びその用途
US11168109B2 (en) 2012-03-08 2021-11-09 Hanmi Science Co., Ltd. Process for preparation of physiologically active polypeptide complex
US11434271B2 (en) 2011-11-04 2022-09-06 Hanmi Science Co., Ltd. Method for preparing physiologically active polypeptide complex

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160101702A (ko) * 2015-02-17 2016-08-25 한미약품 주식회사 지속형 인슐린 또는 이의 아날로그 결합체
AR105616A1 (es) 2015-05-07 2017-10-25 Lilly Co Eli Proteínas de fusión
EP3517544A4 (en) 2016-09-23 2020-06-03 Hanmi Pharm. Co., Ltd. INSULIN ANALOG HAVING REDUCED INSULIN RECEPTOR BINDING FORCE AND USE THEREOF
EP3604328A4 (en) 2017-03-23 2021-01-06 Hanmi Pharm. Co., Ltd. REDUCED INSULIN ANALOGUE COMPLEX FOR INSULIN RECEPTOR AND ITS USE
WO2019066603A1 (ko) * 2017-09-29 2019-04-04 한미약품 주식회사 효력이 향상된 지속성 단백질 결합체

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996032478A1 (en) 1995-04-14 1996-10-17 Genentech, Inc. Altered polypeptides with increased half-life
WO1997034631A1 (en) 1996-03-18 1997-09-25 Board Of Regents, The University Of Texas System Immunoglobin-like domains with increased half lives
US20090285780A1 (en) * 2006-05-24 2009-11-19 Chyi Lee Peg linker compounds and biologically active conjugates thereof
KR20110111267A (ko) * 2010-04-02 2011-10-10 한미홀딩스 주식회사 면역글로불린 단편을 이용한 인슐린 약물 결합체
KR20110134210A (ko) * 2010-06-08 2011-12-14 한미홀딩스 주식회사 면역글로불린 단편을 이용한 인슐린 유도체 약물 결합체
WO2011159895A2 (en) * 2010-06-16 2011-12-22 Indiana University Research And Technology Corporation Single chain insulin agonists exhibiting high activity at the insulin receptor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101135244B1 (ko) * 2007-11-29 2012-04-24 한미사이언스 주식회사 인슐린 분비 펩타이드 결합체를 포함하는 비만 관련질환 치료용 조성물
CN102369209B (zh) * 2009-03-20 2015-06-10 韩美科学株式会社 制备特异性位点生理活性多肽结合物的方法
CN103533952B (zh) 2011-03-15 2017-02-15 诺沃—诺迪斯克有限公司 包含半胱氨酸置换的人胰岛素类似物和衍生物
CN102675452B (zh) * 2011-03-17 2015-09-16 重庆富进生物医药有限公司 具持续降血糖和受体高结合的人胰岛素及类似物的偶联物
UA113626C2 (xx) * 2011-06-02 2017-02-27 Композиція для лікування діабету, що містить кон'югат інсуліну тривалої дії та кон'югат інсулінотропного пептиду тривалої дії
RU2606262C2 (ru) * 2011-06-02 2017-01-10 Ханми Сайенс Ко., Лтд. Мультимер непептидильный полимер-инсулин и способ его получения

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996032478A1 (en) 1995-04-14 1996-10-17 Genentech, Inc. Altered polypeptides with increased half-life
WO1997034631A1 (en) 1996-03-18 1997-09-25 Board Of Regents, The University Of Texas System Immunoglobin-like domains with increased half lives
US20090285780A1 (en) * 2006-05-24 2009-11-19 Chyi Lee Peg linker compounds and biologically active conjugates thereof
KR20110111267A (ko) * 2010-04-02 2011-10-10 한미홀딩스 주식회사 면역글로불린 단편을 이용한 인슐린 약물 결합체
KR20110134210A (ko) * 2010-06-08 2011-12-14 한미홀딩스 주식회사 면역글로불린 단편을 이용한 인슐린 유도체 약물 결합체
WO2011159895A2 (en) * 2010-06-16 2011-12-22 Indiana University Research And Technology Corporation Single chain insulin agonists exhibiting high activity at the insulin receptor

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
H. NEURATH; R.L. HILL: "The Proteins", 1979, ACADEMIC PRESS
HINDS ET AL.: "Effects of PEG conjugation on insulin properties", ADVANCED DRUG DELIVERY REVIEWS, vol. 54, no. 4, 1 January 2002 (2002-01-01), pages 505 - 530, XP003004966, DOI: 10.1016/S0169-409X(02)00025-X *
JENS BRANGE; AAGE VOLUND, ADV. DRUG DELIV. REV., vol. 35, no. 2-3, 1999, pages 307 - 335
PETER KURTZHALS ET AL., DIABETES, vol. 49, no. 6, 2000, pages 999 - 1005
See also references of EP2963055A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11434271B2 (en) 2011-11-04 2022-09-06 Hanmi Science Co., Ltd. Method for preparing physiologically active polypeptide complex
US11168109B2 (en) 2012-03-08 2021-11-09 Hanmi Science Co., Ltd. Process for preparation of physiologically active polypeptide complex
JP2018526001A (ja) * 2015-08-28 2018-09-13 ハンミ ファーマシューティカル カンパニー リミテッド 新規なインスリンアナログ及びその用途

Also Published As

Publication number Publication date
US10046061B2 (en) 2018-08-14
ES2738676T3 (es) 2020-01-24
EP2963055B1 (en) 2019-05-15
CN105229025B (zh) 2019-11-19
AU2014221534B2 (en) 2018-06-28
EP2963055A1 (en) 2016-01-06
MX361083B (es) 2018-11-27
ZA201507105B (en) 2017-11-29
PT2963055T (pt) 2019-07-25
CA2899418A1 (en) 2014-09-04
IL240714B (en) 2020-05-31
BR112015018828A2 (ko) 2017-08-15
EP2963055A4 (en) 2016-10-19
BR112015018828B1 (pt) 2024-01-30
TR201910929T4 (tr) 2019-08-21
CN105229025A (zh) 2016-01-06
RU2015133462A (ru) 2017-03-31
AU2014221534A1 (en) 2015-08-20
KR102185311B1 (ko) 2020-12-01
KR20140106455A (ko) 2014-09-03
JP6465817B2 (ja) 2019-02-06
IL240714A0 (en) 2015-10-29
RU2677800C2 (ru) 2019-01-21
SA515360887B1 (ar) 2018-10-25
CA2899418C (en) 2022-05-03
JP2016510004A (ja) 2016-04-04
MX2015009799A (es) 2015-10-29
NZ710564A (en) 2020-06-26
US20160000931A1 (en) 2016-01-07
PH12015501815B1 (en) 2015-12-07
SG11201505615PA (en) 2015-09-29
AR094904A1 (es) 2015-09-09
HK1217202A1 (zh) 2016-12-30
PH12015501815A1 (en) 2015-12-07

Similar Documents

Publication Publication Date Title
AU2015268199B2 (en) Composition for treating diabetes mellitus comprising insulin and a GLP-1/glucagon dual agonist
WO2014133327A1 (ko) 인슐린 위치 특이적 결합체
WO2011122921A2 (en) An insulin conjugate using an immunoglobulin fragment
WO2012011752A2 (en) Novel long-acting glucagon conjugate and pharmaceutical composition comprising the same for the prevention and treatment of obesity
WO2012165915A2 (en) Composition for treating diabetes comprising long-acting insulin conjugate and long-acting insulinotropic peptide conjugate
WO2014133324A1 (ko) 신규한 인슐린 아날로그 및 이의 용도
WO2013100704A1 (en) A site-specific glp-2 conjugate using an immunoglobulin fragment
WO2015005748A1 (ko) 수용체-매개 제거가 감소된, 생리활성 폴리펩타이드 단량체-면역글로불린 Fc 단편 결합체 및 이의 제조방법
WO2011122923A2 (en) Long-acting interferon beta formulation using immunoglobulin fragment
RU2624129C2 (ru) Способ получения комплекса физиологически активного полипептида
US10744187B2 (en) Insulin conjugate using an immunoglobulin fragment
WO2012002745A2 (en) Factor viia complex using an immunoglobulin fragment
WO2014137161A1 (ko) 생리활성 폴리펩타이드 결합체의 고수율 생산을 위한 개선된 제조 방법
WO2017116191A2 (ko) 지속형 인간 성장 호르몬 결합체의 신규 액상 제제

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480009429.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14757574

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015559200

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014757574

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2899418

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15175553

Country of ref document: CO

Ref document number: MX/A/2015/009799

Country of ref document: MX

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015018828

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2014221534

Country of ref document: AU

Date of ref document: 20140226

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 240714

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 14770214

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201505396

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 2015133462

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112015018828

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150805