WO2014133145A1 - 眼鏡レンズの製造方法および眼鏡レンズ基材用塗布液塗布装置 - Google Patents

眼鏡レンズの製造方法および眼鏡レンズ基材用塗布液塗布装置 Download PDF

Info

Publication number
WO2014133145A1
WO2014133145A1 PCT/JP2014/055108 JP2014055108W WO2014133145A1 WO 2014133145 A1 WO2014133145 A1 WO 2014133145A1 JP 2014055108 W JP2014055108 W JP 2014055108W WO 2014133145 A1 WO2014133145 A1 WO 2014133145A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating liquid
spectacle lens
lens surface
coating
nozzle
Prior art date
Application number
PCT/JP2014/055108
Other languages
English (en)
French (fr)
Inventor
中村 憲治
島田 明
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to JP2015503054A priority Critical patent/JPWO2014133145A1/ja
Priority to US14/771,297 priority patent/US20160008836A1/en
Priority to EP14757146.7A priority patent/EP2963459A4/en
Priority to KR1020157023207A priority patent/KR20150111995A/ko
Priority to CN201480011369.0A priority patent/CN105229495A/zh
Priority to CA2902802A priority patent/CA2902802A1/en
Priority to AU2014221634A priority patent/AU2014221634A1/en
Publication of WO2014133145A1 publication Critical patent/WO2014133145A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/02Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
    • B05B13/0221Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work characterised by the means for moving or conveying the objects or other work, e.g. conveyor belts
    • B05B13/0228Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work characterised by the means for moving or conveying the objects or other work, e.g. conveyor belts the movement of the objects being rotative
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C9/00Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important
    • B05C9/04Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important for applying liquid or other fluent material to opposite sides of the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/14Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with multiple outlet openings; with strainers in or outside the outlet opening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/02Apparatus for spreading or distributing liquids or other fluent materials already applied to a surface ; Controlling means therefor; Control of the thickness of a coating by spreading or distributing liquids or other fluent materials already applied to the coated surface
    • B05C11/08Spreading liquid or other fluent material by manipulating the work, e.g. tilting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/002Processes for applying liquids or other fluent materials the substrate being rotated
    • B05D1/005Spin coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00865Applying coatings; tinting; colouring
    • B29D11/00884Spin coating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • B05C5/0208Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work for applying liquid or other fluent material to separate articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/002Processes for applying liquids or other fluent materials the substrate being rotated
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C2202/00Generic optical aspects applicable to one or more of the subgroups of G02C7/00
    • G02C2202/16Laminated or compound lenses

Definitions

  • the present invention relates to a method for manufacturing a spectacle lens in which a coating solution is applied to both surfaces of a spectacle lens substrate and a coating solution coating apparatus for a spectacle lens substrate.
  • a method for forming a film on a base material for manufacturing a spectacle lens there are a dip coating method, a spray coating method, a spin coating method, and the like.
  • a method capable of realizing the uniform thickness of the hard coat film is a spin coat method.
  • Patent Document 1 discloses a coating liquid coating method in which a coating liquid is coated on a spectacle lens substrate by a spin coating method.
  • the coating liquid coating method disclosed in Patent Document 1 first, the spectacle lens substrate is rotated. At this time, the spectacle lens rotates with the lens surface oriented in the vertical direction. And a coating liquid is apply
  • the spectacle lens substrate is rotated at a high speed after the coating liquid is applied.
  • a first object of the present invention is to provide a method of manufacturing a spectacle lens that can improve the uniformity of the thickness of the film formed on the lens surface of the spectacle lens.
  • a second object of the present invention is to provide a coating liquid coating apparatus that can easily carry out the above-described spectacle lens manufacturing method.
  • the method for manufacturing a spectacle lens according to the present invention includes a lens surface of a spectacle lens substrate arranged such that a coating liquid is ejected from a nozzle in the horizontal direction and the optical axis is oriented in the horizontal direction. Coating the coating liquid onto the lens surface by rotating the spectacle lens substrate at a first rotational speed so that the optical axis is at the center of rotation, and spreading the coating liquid on the lens surface by centrifugal force; Rotating the spread spectacle lens base material at a second rotational speed higher than the first rotational speed, and causing the excess of the coating liquid to fly out of the spectacle lens base material by centrifugal force.
  • the spectacle lens substrate coating solution coating apparatus of the present invention rotates the spectacle lens substrate so that the optical axis is the center of rotation while the spectacle lens substrate is held so that the optical axis is oriented in the horizontal direction. And a first nozzle that opposes the first lens surface of the spectacle lens substrate and ejects the coating liquid in the horizontal direction toward the first lens surface.
  • the influence of gravity on the spectacle lens substrate having a curved surface is reduced. For this reason, it becomes possible to form a highly uniform film on the lens surface of the spectacle lens.
  • the spectacle lens base material coating liquid application apparatus of the present invention the rotation of the spectacle lens base material and the application of the coating liquid onto the lens surface can be individually controlled. Accordingly, it is possible to easily carry out a wide variety of coating liquid coating methods.
  • FIG. 1 is a flowchart for explaining a first embodiment of a method for manufacturing a spectacle lens of the present invention.
  • 2A to 2D are cross-sectional views for explaining the spectacle lens manufacturing method according to the first embodiment. More specifically, FIG. 2A shows a state in which a lens positioning step is performed.
  • FIG. 2B shows a state in which the coating liquid is applied to the lens surface in the coating step.
  • FIG. 2C shows a state where the coating liquid is spread in the coating step.
  • FIG. 2D shows a state in which a high-speed rotation step is being performed.
  • FIG. 3 is a cross-sectional view showing the configuration of the coating liquid coating apparatus of the present invention.
  • FIG. 3 is a cross-sectional view showing the configuration of the coating liquid coating apparatus of the present invention.
  • FIG. 4 is a flowchart for explaining a second embodiment of the method for manufacturing a spectacle lens of the present invention.
  • 5A to 5F are cross-sectional views for explaining a method for manufacturing a spectacle lens according to the second embodiment. More specifically, FIG. 5A shows a state in which the lens positioning step is performed.
  • FIG. 5B shows a state in which the application liquid is applied to the first lens surface in the first application step.
  • FIG. 5C shows a state where the coating liquid is spread in the first coating step.
  • FIG. 5D shows a state in which the application liquid is applied to the second lens surface in the second application step.
  • FIG. 5E shows a state where the coating liquid is spread out in the second coating step.
  • FIG. 5F shows a state where the high-speed rotation step is performed.
  • FIG. 5A shows a state in which the lens positioning step is performed.
  • FIG. 5B shows a state in which the application liquid is applied to the first lens surface in the first application step.
  • FIG. 5C shows
  • FIG. 6 is a graph showing the film thickness distribution on one surface of the spectacle lens.
  • FIG. 7 is a graph showing the film thickness distribution on both surfaces of the spectacle lens when the film is formed using the method of the first embodiment.
  • FIG. 8 is a graph showing the film thickness distribution on both surfaces of the spectacle lens when the film is formed using the method disclosed in Patent Document 1.
  • FIGS. 1-10 a first embodiment of a spectacle lens manufacturing method and a spectacle lens substrate coating solution coating apparatus according to the present invention will be described in detail with reference to FIGS.
  • the manufacturing method of the spectacle lens of this embodiment is implemented as shown in the flowchart of FIG. That is, the lens positioning step S1, the coating step S2, and the high-speed rotation step S3 are performed in this order. Although details will be described later in the coating step S2, a coating liquid coating step S2a and a coating liquid coating spreading step S2b are performed in this order.
  • the spectacle lens substrate 1 is positioned between the pair of coating liquid application nozzles 2a and 2b.
  • the spectacle lens substrate 1 is formed in a disc shape, and is arranged so that the optical axis C of the lens surfaces 1a and 1b is oriented in the horizontal direction.
  • the illustrated spectacle lens substrate 1 is a minus lens having a first lens surface 1a made of a convex surface and a second lens surface 1b made of a concave surface. Note that the spectacle lens manufacturing method of this embodiment can be applied to a plus lens in addition to a minus lens.
  • the coating liquid application nozzle 2a is referred to as a first nozzle, and the coating liquid application nozzle 2b is referred to as a second nozzle.
  • the first nozzle 2a and the second nozzle 2b are connected to a coating liquid supply device (not shown), and eject the coating liquid 3 in a horizontal direction so as to have a predetermined pressure and coating amount.
  • a coating liquid supply device not shown
  • the first nozzle 2a and the second nozzle 2b are arranged at a position facing the center of the spectacle lens substrate 1, that is, on the optical axis C (extension line) of the spectacle lens substrate 1.
  • the first nozzle 2 a is opposed to the first lens surface 1 a of the spectacle lens substrate 1
  • the second nozzle 2 b is opposed to the second lens surface 1 b of the spectacle lens substrate 1.
  • the spectacle lens substrate 1 so that the distance D1 between the first nozzle 2a and the first lens surface 1a and the distance D2 between the second nozzle 2b and the second lens surface 1b have predetermined values. Is arranged between the first nozzle 2a and the second nozzle 2b.
  • the distance D1 and the distance D2 can be set to be equal distances, for example.
  • the coating liquid coating step S2a of the coating step S2 is performed.
  • the coating liquid 3 is simultaneously ejected from the first nozzle 2a and the second nozzle 2b at a predetermined pressure in the horizontal direction.
  • the spectacle lens substrate 1 is rotated at a predetermined rotation speed V0 so that the optical axis C is the center of rotation. In this way, by spraying the coating liquid 3 while the spectacle lens substrate 1 is rotated, the coating liquid 3 is prevented from spilling in the vertical direction, and the coating liquid 3 is removed from the first lens surface 1a and the second lens. It can be attached to the surface 1b.
  • the rotational speed of the spectacle lens substrate 1 at which the rotational speed V0 is obtained is 200 to 1000 rpm, but the optimal rotational speed of the spectacle lens 1 for performing the coating liquid application step S2a is 200 to 700 rpm.
  • the spray of the coating liquid 3 is performed for 1 to 10 seconds, for example.
  • a primer solution for forming a primer film, a coating solution for forming a film for reducing interference fringes, or the like can be used.
  • the spreading step S2b of the coating step S2 is performed.
  • the spreading step S2b can be performed while the coating liquid 3 is ejected from the first nozzle 2a and the second nozzle 2b.
  • the paint spreading step S2b is performed by rotating the eyeglass lens substrate 1 at the first rotation speed V1 for a predetermined paint spreading time.
  • the first rotation speed V1 is set to such a rotation speed that the coating liquid 3 attached to the first lens surface 1a and the second lens surface 1b flows to the outer peripheral portion of the spectacle lens base material 1 by centrifugal force. Yes.
  • the rotation speed of the spectacle lens substrate 1 from which the first rotation speed V1 is obtained is 200 to 1000 rpm, and the optimal rotation speed of the spectacle lens 1 for performing the paint spreading step S2b is 200 to 700 rpm.
  • the first rotation speed V1 may be the same as the rotation speed V0 in the coating liquid application step S2a, but is usually higher than the rotation speed V0.
  • the spreading time is 0 to 30 seconds.
  • a high-speed rotation step S3 is performed.
  • the spectacle lens substrate 1 is rotated at a predetermined second rotation speed V2.
  • the second rotation speed V2 is higher than the first rotation speed V1 in the spreading step S2b, and the excess 3a of the coating liquid 3 applied to the first lens surface 1a and the second lens surface 1b. Is set to such a rotational speed that is blown out of the spectacle lens substrate 1 by centrifugal force.
  • the number of rotations of the spectacle lens substrate 1 from which the second rotation speed V2 is obtained is, for example, about 1000 to 3000 rpm.
  • the second rotation speed V2 is not limited to 1000 to 3000 rpm, and can be, for example, about 6000 rpm if a coating liquid coating apparatus capable of high-speed rotation is used.
  • This high speed rotation step S3 is carried out for 5 to 30 seconds.
  • the surplus portion 3a of the coating liquid 3 applied to the first lens surface 1a and the second lens surface 1b is removed by centrifugal force and removed.
  • the rotation of the spectacle lens substrate 1 is stopped, and the spectacle lens substrate 1 is sent to the next step, for example, the drying step.
  • the coating liquid 3 is spread on the lens surface of the spectacle lens substrate 1 while rotating the spectacle lens substrate 1 in a vertically placed state.
  • the influence of the gravity concerning the coating liquid 3 is reduced.
  • Conditions are equal including the influence of gravity. Therefore, since the coating liquid 3 can be evenly applied to the first lens surface 1a and the second lens surface 1b, it is possible to form films on both lens surfaces 1a and 1b so as to have the same film thickness. .
  • the application step S2 includes an application liquid application step S2a in which the application liquid 3 is simultaneously applied to the first lens surface 1a and the second lens surface 1b of the spectacle lens substrate 1, and then the application liquid 3 is centrifuged. And a paint spreading step S2b that is spread on both lens surfaces 1a and 1b by force.
  • the coating liquid 3 is applied with high productivity. be able to.
  • the spectacle lens manufacturing method described above can be carried out using the spectacle lens substrate coating solution coating apparatus 11 shown in FIG.
  • the coating liquid coating apparatus 11 ejects the coating liquid 3 toward the rotating unit 12 for rotating the spectacle lens substrate 1 and the first lens surface 1 a and the second lens surface 1 b of the spectacle lens substrate 1.
  • the application part 13 to be made is provided.
  • the spectacle lens substrate 1 is assembled to the rotating unit 12 while being held by the spectacle lens substrate holding member 14.
  • the eyeglass lens substrate holding member 14 includes a bottomed cylindrical cup 15 and a plurality of claws 16 provided on the inner peripheral surface of the cup 15.
  • the cup 15 is sized to accommodate the spectacle lens substrate 1 therein, and is sized so that the wind generated when the cup 15 rotates at high speed does not adversely affect the application of the coating liquid 3. Things are used.
  • a through hole 17 is formed at the center of the bottom of the cup 15.
  • the claw 16 is formed of an elastic material such as a spring material, and protrudes from the inner peripheral surface of the cup 15 toward the axis.
  • the tip of the claw 16 is pressed against the outer peripheral surface of the spectacle lens substrate 11.
  • the holding member 14 having such a configuration pushes the outer peripheral surface of the spectacle lens base material 11 to the center side by a plurality of claws 16, and holds the spectacle lens base material 1 on the same axis as the cup 15.
  • the rotating unit 12 includes a rotating stage 21 that holds the cup 15 of the holding member 14.
  • the rotary stage 21 is detachably held by the chuck mechanism 22 with the cup 15 sandwiched from the outside in the radial direction.
  • the rotary stage 21 is rotatably supported by the apparatus housing 24 via a cylindrical rotary shaft 23 located on the same axis as the axis of the cup 15 (the optical axis C of the spectacle lens substrate 1).
  • a motor 26 is connected to the rotary shaft 23 via a transmission belt 25.
  • the rotary shaft 23 and the rotary stage 21 connected to the rotary shaft 23 are rotated at a predetermined rotational speed by being driven by a motor 26.
  • the rotation speed (or rotation speed) of the motor 26 is controlled by a rotation controller 27 connected to the motor 26.
  • the application unit 13 includes the internal nozzle 31 and an external nozzle 32 disposed at a position where the internal nozzle 31 is opposed to the eyeglass lens substrate 1.
  • the internal nozzle 31 corresponds to the second nozzle 2b in FIG. 2, and the external nozzle 32 corresponds to the first nozzle 2a in FIG.
  • the internal nozzle 31 ejects the coating liquid horizontally toward one lens surface (second lens surface 1b in FIG. 3) of the spectacle lens substrate 1.
  • the internal nozzle 31 is supported by the apparatus housing 24 by a bracket (not shown) in a state of passing through the axial center portion of the rotating shaft 23 in the horizontal direction.
  • the tip of the internal nozzle 31 extends in the horizontal direction, protrudes from the rotating shaft 23, passes through the through hole 17 of the cup 15, and is inserted into the cup 15.
  • the tip of the internal nozzle 31 is separated from the one lens surface (second lens surface 1b in FIG. 3) of the spectacle lens substrate 1 held by the holding member 14 by a predetermined distance.
  • a canister 33 described later is connected to the other end of the internal nozzle 31.
  • the external nozzle 32 ejects the coating liquid 3 horizontally toward the other lens surface of the spectacle lens substrate 1 (the first lens surface 1a in FIG. 3).
  • the distal end portion of the external nozzle 32 extends in the horizontal direction and is supported by the apparatus housing 24 via a bracket (not shown).
  • the tip of the external nozzle 32 is separated from the other lens surface of the spectacle lens base 1 held by the holding member 14 by a predetermined distance.
  • a canister 34 described later is connected to the other end of the external nozzle 32.
  • the canisters 33 and 34 supply the coating liquid 3 to the internal nozzle 31 and the external nozzle 32, respectively.
  • the coating liquid 3 is stored inside the canisters 33, 34, and the coating liquid 3 is pushed out by gas pressure and supplied to the internal nozzle 31 and the external nozzle 32.
  • the gas pressure is controlled by gas pressure controllers 35 and 36 connected to the canisters 33 and 34, respectively.
  • the inner nozzle 31 and the outer nozzle 32 are provided with a suck back device 37.
  • the suck back device 37 is for preventing the coating liquid 3 from being exposed and dried at the tips of the internal nozzle 31 and the external nozzle 32, and has a configuration in which the inside of these nozzles is depressurized after coating of the coating liquid.
  • the canister cans 33 and 34, the gas pressure controllers 35 and 36, and the suck back device 37 constitute the above-described coating liquid supply device.
  • the rotation controller 27 and the gas pressure controllers 35 and 36 constitute a control unit (controller) that controls the ejection of the coating liquid 3 from the internal nozzle 31 and the external nozzle 32 and the rotation by the rotating unit 12.
  • the spectacle lens substrate 1 is placed on the rotary stage 21 via the holding member 14. Retained.
  • the coating liquid 3 is simultaneously ejected from the internal nozzle 31 and the external nozzle 32, and the spectacle lens substrate 1 is rotated at the first rotational speed V1 by driving by the motor 26.
  • the rotation of the motor 26 is increased in the high-speed rotation step S3, and the spectacle lens substrate 1 is moved to the second lens surface 1b. It is rotated at a rotational speed V2.
  • coating step S2 and high-speed rotation step S3 mentioned above is implement
  • the coating liquid coating apparatus 11 is configured to rotate the spectacle lens substrate 1, apply the coating liquid 3 to the first lens surface 1a, and apply the coating liquid 3 to the second lens surface 1b. Are individually controllable. For this reason, according to this embodiment, it is possible to provide a coating liquid coating apparatus capable of simply carrying out the above coating method of simultaneously coating the coating liquid 3 on the first and second lens surfaces 1a and 1b. Can do.
  • the spectacle lens manufacturing method of this embodiment can be carried out using the spectacle lens substrate coating solution coating apparatus 11 shown in FIG. Also in this embodiment, the disk-shaped spectacle lens substrate 1 is processed with the optical axis C oriented in the horizontal direction. Also in this embodiment, a thermoplastic coating solution, a thermosetting coating solution, an ultraviolet curable coating solution, or the like can be used.
  • the lens positioning step S1 in the flowchart shown in FIG. 4 is performed, and then the coating step S11 is performed.
  • the lens positioning step S1 as shown in FIG. 5A, the spectacle lens substrate 1 is disposed between the first nozzle 2a and the second nozzle 2b.
  • the optical axis C of the spectacle lens substrate 1 is oriented in the horizontal direction.
  • the application step S11 includes a first application step S12 for applying the application liquid 3 to the first lens surface 1a, and a second application step S13 for applying the application liquid 3 to the second lens surface 1b. It is constituted by.
  • a first application liquid application step S12a is performed.
  • the coating liquid 3 is ejected from the first nozzle 2a facing the first lens surface 1a at a predetermined pressure.
  • the spectacle lens substrate 1 is rotated at a predetermined rotation speed V0 so that the optical axis C is the center of rotation.
  • the rotational speed of the spectacle lens substrate 1 at which the rotational speed V0 is obtained is also 200 to 1000 rpm in this embodiment, but the optimal rotational speed of the spectacle lens 1 for performing the coating liquid application step S12a is 200. ⁇ 700 rpm.
  • the spray of the coating liquid 3 is performed for 1 to 10 seconds, for example.
  • the coating liquid 3 adheres to the first lens surface 1a of the spectacle lens substrate 1.
  • the first paint spreading step S12b is performed.
  • the first coating spreading step S12b can be performed while the coating liquid 3 is ejected from the first nozzle 2a.
  • the first paint spreading step S12b is performed by rotating the spectacle lens substrate 1 at the first rotation speed V1 for a predetermined paint spreading time.
  • the rotational speed of the spectacle lens substrate 1 at which the first rotational speed V1 is obtained is 200 to 1000 rpm
  • the optimal rotational speed of the spectacle lens 1 for performing the paint spreading step S12b is 200 to 700 rpm.
  • the spreading time is 0 to 30 seconds.
  • the coating liquid 3 is ejected at a predetermined pressure from the second nozzle 2b facing the second lens surface 1b.
  • the spectacle lens substrate 1 is rotated at a predetermined rotation speed V0 so that the optical axis C is the center of rotation.
  • the spray of the coating liquid 3 is performed for 1 to 10 seconds, for example.
  • the coating liquid 3 adheres to the second lens surface 1b of the spectacle lens substrate 1.
  • the second paint spreading step S13b is performed.
  • 2nd coating spreading step S13b can be implemented, ejecting the coating liquid 3 from the 2nd nozzle 2b.
  • the second paint spreading step S13b is performed by rotating the spectacle lens substrate 1 at the first rotation speed V1 for a predetermined paint spreading time.
  • the spreading time is 0 to 30 seconds.
  • a high-speed rotation step S3 is performed.
  • the spectacle lens substrate 1 is rotated at the second rotation speed V2.
  • the number of rotations of the spectacle lens substrate 1 from which the second rotation speed V2 is obtained is, for example, about 1000 to 3000 rpm.
  • This high speed rotation step S3 is carried out for 5 to 30 seconds.
  • the second rotation speed V2 is not limited to 1000 to 3000 rpm, and can be, for example, about 6000 rpm if a coating liquid coating apparatus capable of high-speed rotation is used.
  • a method of applying the coating liquid 3 to the first lens surface 1a of the spectacle lens substrate 1 and spreading the coating liquid 3 and then spreading the coating liquid 3 on the second lens surface 1b Even so, an effect equivalent to that obtained when the method described in the first embodiment is employed can be obtained. Even when the coating solution 3 is applied to the first lens surface 1a after the coating solution 3 is first applied to the second lens surface 1b and spread, the same result can be obtained.
  • coating step S11 and high-speed rotation step S3 mentioned above is implement
  • each lens surface 1a is formed by using the first nozzle 2a facing the first lens surface 1a of the spectacle lens substrate 1 and the second nozzle 2b facing the second lens surface 1b. , 1b, the coating liquid 3 is applied.
  • the coating liquid 3 it is important to apply the coating liquid 3 in a state where the spectacle lens substrate 1 is arranged so that the optical axis C is oriented in the horizontal direction, and two nozzles 2a and 2b are always used. There is no need.
  • the coating liquid 3 is applied to the first lens surface 1a of the spectacle lens substrate 1 by the nozzle 2a, then the spectacle lens substrate 1 is turned over, and the second lens surface of the spectacle lens substrate 1 is again by the nozzle 2a.
  • the coating liquid 3 may be applied to 1b. Therefore, the spectacle lens substrate coating solution coating apparatus 11 shown in FIG. 3 only needs to have at least one of the internal nozzle 31 and the external nozzle 32.
  • the film thickness can be made uniform as compared with the case where the method disclosed in Patent Document 1 is employed.
  • the coating liquid is applied to the lens surface from above while rotating the spectacle lens substrate in a state where the lens surface is directed in the vertical direction.
  • the coating liquid tends to flow around the lens surface due to the influence of gravity.
  • centrifugal force due to rotation also acts, the difference in film thickness between the center and the outer periphery of the lens surface becomes significant.
  • the coating liquid 3 is applied to the lens surface from the horizontal direction while rotating the spectacle lens substrate 1 with the lens surface oriented in the horizontal direction.
  • point A on the lens surface is at a position below the center of the lens surface
  • a force directed toward the outer periphery of the lens surface is applied to the coating liquid 3 at point A due to gravity.
  • the coating liquid 3 at the point A has a force toward the center of the lens surface due to gravity. Take it.
  • the rotation of the spectacle lens substrate 1 cancels the influence of gravity on the coating liquid 3.
  • it is thought that a film thickness distribution can be equalized in the surface of a lens surface rather than the method disclosed by patent document 1.
  • FIG. 6 shows only the film thickness distribution on one lens surface, the same result as that on one lens surface was obtained for the other lens surface.
  • FIG. 7 shows the film thickness distribution on one lens surface (convex surface) and the film thickness distribution on the other lens surface (concave surface).
  • FIG. 8 shows a film thickness distribution of films formed on both sides by the method disclosed in Patent Document 1.
  • the two lens surfaces become the upper surface and the lower surface of the spectacle lens substrate.
  • both of the two lens surfaces become the side surfaces of the spectacle lens base material.
  • the effect of gravity acting on the coating solution is equalized. Accordingly, since the coating liquid 3 can be evenly applied to the two lens surfaces 1, it is possible to form films so that the film thicknesses are equal on both lens surfaces.
  • SYMBOLS 1 Eyeglass lens base material, 1a ... 1st lens surface, 1b ... 2nd lens surface, 2a ... 1st nozzle, 2b ... 2nd nozzle, 3 ... Coating liquid, 11 ... Coating for spectacle lens base materials

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Eyeglasses (AREA)
  • Coating Apparatus (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)

Abstract

 ノズル(2a,2b)から水平方向に塗布液(3)を噴出させて、光軸(C)が水平方向を指向するように配置された眼鏡レンズ基材(1)のレンズ面(1a,1b)に塗布液(3)を塗布する(ステップS2a)。眼鏡レンズ基材(1)を光軸(C)が回転中心となるように第1の回転速度で回転させて、遠心力で塗布液(3)をレンズ面に塗り拡げる(ステップS2b)。眼鏡レンズ基材(1)を第1の回転速度よりも高速の第2の回転速度で回転させて、遠心力で塗布液(3)の余剰分(3a)を眼鏡レンズ基材(1)の外に飛ばす(ステップS3)。これにより、眼鏡レンズのレンズ面に均一性の高い膜を形成することが可能となる。

Description

眼鏡レンズの製造方法および眼鏡レンズ基材用塗布液塗布装置
 本発明は、眼鏡レンズ基材の両面に塗布液を塗布する眼鏡レンズの製造方法および眼鏡レンズ基材用塗布液塗布装置に関するものである。
 眼鏡レンズを製造するための基材(以下、単に眼鏡レンズ基材という)に膜を形成する方法としては、ディップコート法、スプレーコート法、スピンコート法などがある。これらの方法のうち、ハードコート膜の膜厚の均一化を実現可能な方法は、スピンコート法である。
 スピンコート法によって塗布液を眼鏡レンズ基材に塗布する塗布液塗布方法は、例えば特許文献1に開示されている。
 特許文献1に開示されている塗布液塗布方法によれば、先ず、眼鏡レンズ基材が回転させられる。このとき、眼鏡レンズは、レンズ面が上下方向を指向する状態で回転する。そして、回転している眼鏡レンズ基材のレンズ面に塗布液が吐出ノズルによって塗布される。特許文献1中には、塗布液を眼鏡レンズ基材の上方のみから塗布する方法と、眼鏡レンズ基材を停止させることなく塗布液を眼鏡レンズ基材の上方と下方の両方から塗布する方法とが開示されている。
 眼鏡レンズ基材は、塗布液が塗布された後に高速で回転させられる。
 眼鏡レンズ基材に干渉縞が生じることを防ぐために、レンズ面内の膜厚の均一性を高精度に求められる場合がある。しかしながら、特許文献1に開示された方法では、眼鏡レンズ基材のレンズ面内に十分均一な膜を形成することが困難であった。
特開2007-21355号公報
 本発明はこのような問題を解消するためになされたもので、眼鏡レンズのレンズ面に形成される膜の厚さの均一性を向上できる眼鏡レンズの製造方法を提供することを第1の目的とする。
 また、本発明は、上述した眼鏡レンズの製造方法を簡単に実施できる塗布液塗布装置を提供することを第2の目的とする。
 この目的を達成するために、本発明の眼鏡レンズの製造方法は、ノズルから水平方向に塗布液を噴出させて、光軸が水平方向を指向するように配置された眼鏡レンズ基材のレンズ面に塗布液を塗布するステップと、眼鏡レンズ基材を光軸が回転中心となるように第1の回転速度で回転させて、遠心力で塗布液をレンズ面に塗り拡げるステップと、塗布液が塗り拡げられた眼鏡レンズ基材を第1の回転速度よりも高速の第2の回転速度で回転させて、遠心力で塗布液の余剰分を眼鏡レンズ基材の外に飛ばすステップとを備える。
 本発明の眼鏡レンズ基材用塗布液塗布装置は、光軸が水平方向を指向するように眼鏡レンズ基材が保持された状態で、光軸が回転中心となるように眼鏡レンズ基材を回転させる回転部と、眼鏡レンズ基材の第1のレンズ面に対向し第1のレンズ面に向けて水平方向に塗布液を噴出させる第1のノズルとを備える。
 本発明の眼鏡レンズの製造方法によれば、曲面を有する眼鏡レンズ基材にかかる重力の影響が低減される。このため、眼鏡レンズのレンズ面に均一性の高い膜を形成することが可能となる。
 本発明の眼鏡レンズ基材の塗布液塗布装置によれば、眼鏡レンズ基材の回転と、レンズ面への塗布液の塗布とを、個別に制御可能である。したがって、多種多様な塗布液塗布方法を簡単に実施することが可能となる。
図1は、本発明の眼鏡レンズの製造方法の第1の実施の形態を説明するためのフローチャートである。 図2A~図2Dは、第1の実施の形態の眼鏡レンズの製造方法を説明するための断面図である。より詳しくは、図2Aは、レンズ位置決めステップを実施している状態を示す。図2Bは、塗布ステップで塗布液をレンズ面に塗布している状態を示す。図2Cは、塗布ステップで塗布液を塗り拡げている状態を示す。図2Dは、高速回転ステップを実施している状態を示す。 図3は、本発明の塗布液塗布装置の構成を示す断面図である。 図4は、本発明の眼鏡レンズの製造方法の第2の実施の形態を説明するためのフローチャートである。 図5A~図5Fは、第2の実施の形態の眼鏡レンズの製造方法を説明するための断面図である。より詳しくは、図5Aは、レンズ位置決めステップを実施している状態を示す。図5Bは、第1の塗布ステップで塗布液を第1のレンズ面に塗布している状態を示す。図5Cは、第1の塗布ステップで塗布液を塗り拡げている状態を示す。図5Dは、第2の塗布ステップで塗布液を第2のレンズ面に塗布している状態を示す。図5Eは、第2の塗布ステップで塗布液を塗り拡げている状態を示す。図5Fは、高速回転ステップを実施している状態を示す。 図6は、眼鏡レンズの一方の面における膜厚分布を示すグラフである。 図7は、第1の実施の形態の方法を用いて成膜したときの眼鏡レンズの両面における膜厚分布を示すグラフである。 図8は、特許文献1に開示された方法を用いて成膜したときの眼鏡レンズの両面における膜厚分布を示すグラフである。
(第1の実施の形態)
 以下、本発明の眼鏡レンズの製造方法および眼鏡レンズ基材用塗布液塗布装置の第1の実施の形態について、図1~図3を用いて詳細に説明する。
 この実施の形態の眼鏡レンズの製造方法は、図1のフローチャートに示すように実施される。すなわち、レンズ位置決めステップS1と、塗布ステップS2と、高速回転ステップS3とが、この順序で実施される。塗布ステップS2においては、詳細は後述するが、塗布液塗布ステップS2aと塗布液塗り拡げステップS2bとがこの順序で実施される。
 レンズ位置決めステップS1においては、図2Aに示すように、眼鏡レンズ基材1が一対の塗布液塗布用ノズル2a,2bの間に位置決めされる。眼鏡レンズ基材1は、円盤状に形成されたもので、レンズ面1a,1bの光軸Cが水平方向を指向するように配置される。図示した眼鏡レンズ基材1は、凸面からなる第1のレンズ面1aと、凹面からなる第2のレンズ面1bとを有するマイナスレンズである。なお、この実施の形態の眼鏡レンズの製造方法は、マイナスレンズの他に、プラスレンズにも適用することができる。
 塗布液塗布用ノズル2aを第1のノズル、塗布液塗布用ノズル2bを第2のノズルと呼ぶ。第1のノズル2aおよび第2のノズル2bは、図示していない塗布液供給装置に接続されており、塗布液3を予め定めた圧力と塗布量となるように水平方向に噴出させるものである。使用する塗布液の種類に制約はない。すなわち、熱可塑性の塗布液、熱硬化性の塗布液、紫外線硬化型の塗布液などを使用することができる。
 第1のノズル2aおよび第2のノズル2bは、眼鏡レンズ基材1の中心と対向する位置、すなわち眼鏡レンズ基材1の光軸C(の延長線)上に配置されている。第1のノズル2aが眼鏡レンズ基材1の第1のレンズ面1aと対向し、第2のノズル2bが眼鏡レンズ基材1の第2のレンズ面1bと対向している。第1のノズル2aと第1のレンズ面1aとの間隔D1と、第2のノズル2bと第2のレンズ面1bとの間隔D2とが予め定めた値となるように、眼鏡レンズ基材1が第1のノズル2aと第2のノズル2bとの間に配置される。間隔D1と間隔D2は、例えば等しい距離とすることができる。
 レンズ位置決めステップS1が終了した後、塗布ステップS2の塗布液塗布ステップS2aが実施される。塗布液塗布ステップS2aにおいては、図2Bに示すように、第1のノズル2aおよび第2のノズル2bから水平方向に予め定めた圧力で塗布液3が同時に噴出される。このとき、眼鏡レンズ基材1は、その光軸Cが回転中心となるように、予め定めた回転速度V0で回転させられている。このように、眼鏡レンズ基材1が回転した状態で塗布液3を吹き付けることにより、塗布液3が鉛直方向にこぼれ落ちるのを防ぎ、塗布液3を第1のレンズ面1aおよび第2のレンズ面1bに付着させることができる。
 回転速度V0が得られる眼鏡レンズ基材1の回転数は、200~1000rpmであるが、塗布液塗布ステップS2aを実施するうえで最適な眼鏡レンズ1の回転数は、200~700rpmである。
 塗布液3の噴出は、例えば1~10秒間行われる。塗布液3としては、図示してはいないが、プライマー膜を形成するためのプライマー液、干渉縞低減用の膜を形成するための塗布液などを用いることができる。
 その後、塗布ステップS2の塗り拡げステップS2bが実施される。なお、塗り拡げステップS2bは、塗布液3を第1のノズル2aおよび第2のノズル2bから噴出させながら実施することができる。
 塗り拡げステップS2bは、図2Cに示すように、予め定めた塗り拡げ時間だけ眼鏡レンズ基材1を第1の回転速度V1で回転させて行われる。第1の回転速度V1は、第1のレンズ面1aと第2のレンズ面1bとに付着した塗布液3が遠心力で眼鏡レンズ基材1の外周部まで流れるような回転速度に設定されている。第1の回転速度V1が得られる眼鏡レンズ基材1の回転数は、200~1000rpmであり、塗り拡げステップS2bを実施するうえで最適な眼鏡レンズ1の回転数は、200~700rpmである。第1の回転速度V1は、塗布液塗布ステップS2aにおける回転速度V0と同じであってもよいが、通常は回転速度V0よりも高速にする。塗り拡げ時間は0~30秒である。
 塗布液3が第1、第2のレンズ面1a,1bの全域に拡げられた後、高速回転ステップS3が実施される。
 高速回転ステップS3においては、図2Dに示すように、眼鏡レンズ基材1が予め定めた第2の回転速度V2で回転させられる。第2の回転速度V2は、塗り拡げステップS2bにおける第1の回転速度V1よりも高速であり、第1のレンズ面1aおよび第2のレンズ面1bに塗布されている塗布液3の余剰分3aが遠心力で眼鏡レンズ基材1の外に飛ばされるような回転速度に設定されている。第2の回転速度V2が得られる眼鏡レンズ基材1の回転数は、例えば1000~3000rpm程度である。なお、第2の回転速度V2は、1000~3000rpmに限定されることはなく、高速回転が可能な塗布液塗布装置を用いる場合であれば、例えば6000rpm程度とすることも可能である。
 この高速回転ステップS3は、5~30秒間実施される。高速回転ステップS3が実施されることによって、第1のレンズ面1aおよび第2のレンズ面1bに塗布された塗布液3の余剰分3aが遠心力によって飛ばされて除去される。
 高速回転ステップS3が終了した後、眼鏡レンズ基材1の回転が停止され、眼鏡レンズ基材1が次の工程、例えば乾燥工程に送られる。
 この実施の形態の方法では、眼鏡レンズ基材1を縦置きした状態で回転させながら、眼鏡レンズ基材1のレンズ面に塗布液3を塗り拡げる。これにより、眼鏡レンズ基材1の各レンズ面の面内において、塗布液3にかかる重力の影響が低減される。このため、各レンズ面の面内に均一性の高い膜を形成することが可能となる。
 また、上記の方法によれば、眼鏡レンズ基材1の第1のレンズ面1aに塗布液3が塗布されるときの条件と、第2のレンズ面1bに塗布液3が塗布されるときの条件とが、重力の影響を含めて等しくなる。したがって、第1のレンズ面1aと第2のレンズ面1bとに塗布液3を均等に塗布できるから、両レンズ面1a,1bに膜厚が等しくなるように膜を形成することが可能になる。
 また、塗布ステップS2は、眼鏡レンズ基材1の第1のレンズ面1aと第2のレンズ面1bとに塗布液3が同時に塗布される塗布液塗布ステップS2aと、その後に塗布液3が遠心力で両レンズ面1a,1bに拡げられる塗り拡げステップS2bとによって構成されている。このように、第1のレンズ面1aへの塗布液3の塗布と、第2のレンズ面1bへの塗布液3の塗布とを同時に行うことができるから、生産性よく塗布液3を塗布することができる。
 上述した眼鏡レンズの製造方法は、図3に示す眼鏡レンズ基材用塗布液塗布装置11を用いて実施することができる。
 塗布液塗布装置11は、眼鏡レンズ基材1を回転させるための回転部12と、眼鏡レンズ基材1の第1のレンズ面1aと第2のレンズ面1bとに向けて塗布液3を噴出させる塗布部13とを備えている。眼鏡レンズ基材1は、眼鏡レンズ基材用保持部材14に保持された状態で回転部12に組み付けられている。
 眼鏡レンズ基材用保持部材14は、有底円筒状のカップ15と、このカップ15の内周面に設けられた複数の爪16とを備えている。カップ15は、眼鏡レンズ基材1を内部に収容できる大きさであって、このカップ15が高速で回転したときに生じる風が塗布液3の塗布に悪影響を及ぼすことがないような大きさのものが用いられている。カップ15の底部の中心には貫通穴17が形成されている。
 爪16は、詳細には図示してはいないが、ばね材などの弾性を有する材料によって形成されており、カップ15の内周面から軸心に向けて突出している。この爪16の先端部は、眼鏡レンズ基材11の外周面に押し付けられている。
 このような構成の保持部材14は、眼鏡レンズ基材11の外周面を複数の爪16によって中心側へ押し、眼鏡レンズ基材1をカップ15と同一軸線上に位置付けて保持する。
 回転部12は、保持部材14のカップ15を保持する回転ステージ21を備えている。回転ステージ21は、チャック機構22によってカップ15を径方向の外側から挟んで着脱自在に保持するものである。回転ステージ21は、カップ15の軸線(眼鏡レンズ基材1の光軸C)と同一軸線上に位置する筒状の回転軸23を介して、装置筐体24に回転自在に支持されている。回転軸23には、伝動用ベルト25を介してモータ26が接続されている。この回転軸23とそれに接続された回転ステージ21は、モータ26による駆動によって所定の回転速度で回転する。モータ26の回転数(または回転速度)は、モータ26に接続された回転コントローラ27によって制御される。
 回転軸23の中空部内には、塗布部13の一部を構成する内部ノズル31が挿通されている。塗布部13は、この内部ノズル31と、内部ノズル31とは眼鏡レンズ基材1を挟んで対向する位置に配置された外部ノズル32とを備えている。内部ノズル31は図2における第2のノズル2bに相当し、外部ノズル32は図2における第1のノズル2aに相当する。
 内部ノズル31は、眼鏡レンズ基材1の一方のレンズ面(図3においては第2のレンズ面1b)に向けて水平に塗布液を噴出させるものである。内部ノズル31は、回転軸23の軸心部を水平方向に貫通する状態で、図示していないブラケットによって装置筐体24に支持されている。
 内部ノズル31の先端部は、水平方向に延び、回転軸23から突出してカップ15の貫通穴17に通され、カップ15内に挿入されている。内部ノズル31の先端は、保持部材14に保持された眼鏡レンズ基材1の一方のレンズ面(図3においては第2のレンズ面1b)から予め定めた距離だけ離間している。内部ノズル31の他端部には、後述するキャニスター缶33が接続されている。
 外部ノズル32は、眼鏡レンズ基材1の他方のレンズ面(図3においては第1のレンズ面1a)に向けて水平に塗布液3を噴出させるものである。外部ノズル32の先端部は、水平方向に延び、図示していないブラケットを介して装置筐体24に支持されている。外部ノズル32の先端は、保持部材14に保持された眼鏡レンズ基材1の他方のレンズ面から予め定めた距離だけ離間している。外部ノズル32の他端部には、後述するキャニスター缶34が接続されている。
 キャニスター缶33,34は、塗布液3をそれぞれ内部ノズル31および外部ノズル32に供給するものである。キャニスター缶33,34の内部には塗布液3が貯留されており、この塗布液3がガス圧によって押し出されて内部ノズル31および外部ノズル32に供給される。ガス圧は、キャニスター缶33,34にそれぞれ接続されたガス圧コントローラ35,36によって制御される。塗布液3を塗布するにあたってキャニスター缶33,34を使用することによって、内部ノズル31および外部ノズル32から眼鏡レンズ基材1に向けて噴出する塗布液3の噴出圧力と噴出量(塗布量)とを正確に制御することが可能になる。
 内部ノズル31および外部ノズル32には、サックバック装置37が設けられている。サックバック装置37は、内部ノズル31および外部ノズル32の先端に塗布液3が露出して乾燥することを防ぐためのもので、塗布液塗布後にこれらのノズル内を減圧する構成が採られている。
 なお、キャニスター缶33,34、ガス圧コントローラ35,36およびサックバック装置37によって、上述した塗布液供給装置が構成される。また、回転コントローラ27およびガス圧コントローラ35,36によって、内部ノズル31および外部ノズル32からの塗布液3の噴出および回転部12による回転を制御する制御部(コントローラ)が構成される。
 図3に示す塗布液塗布装置11を用いて上述した眼鏡レンズの製造方法を実施するためには、先ず、レンズ位置決めステップS1において、眼鏡レンズ基材1が保持部材14を介して回転ステージ21に保持される。塗布ステップS2においては、内部ノズル31と外部ノズル32とから塗布液3が同時に噴出されるとともに、モータ26による駆動によって眼鏡レンズ基材1が第1の回転速度V1で回転させられる。そして、塗布液3が第1のレンズ面1aと第2のレンズ面1bの全域に拡げられた後、高速回転ステップS3において、モータ26の回転が上昇し、眼鏡レンズ基材1が第2の回転速度V2で回転させられる。
 なお、上述した塗布ステップS2および高速回転ステップS3の動作は、上記制御部の制御によって実現される。より詳しくは、塗布液塗布ステップS2aの動作はガス圧コントローラ35,36および回転コントローラ27の制御によって実現され、塗り拡げステップS2bおよび高速回転ステップS3の動作は回転コントローラ27の制御によって実現される。
 この実施の形態による塗布液塗布装置11は、眼鏡レンズ基材1の回転と、第1のレンズ面1aへの塗布液3の塗布と、第2のレンズ面1bへの塗布液3の塗布とを個別に制御可能なものである。このため、この実施の形態によれば、塗布液3を第1、第2のレンズ面1a,1bに同時に塗布する上記塗布方法を簡単に実施することが可能な塗布液塗布装置を提供することができる。
(第2の実施の形態)
 次に、本発明の眼鏡レンズの製造方法の第2の実施の形態について、図4および図5を用いて詳細に説明する。図4および図5において、図1~図3によって説明したものと同一もしくは同等の部材については、同一符号を付し詳細な説明を適宜省略する。
 この実施の形態の眼鏡レンズの製造方法は、図3に示す眼鏡レンズ基材用塗布液塗布装置11を用いて実施することができる。この実施の形態でも、円盤状の眼鏡レンズ基材1を光軸Cが水平方向を指向する状態で処理する。また、この実施の形態でも、熱可塑性の塗布液、熱硬化性の塗布液、紫外線硬化型の塗布液などを使用することができる。
 この実施の形態の眼鏡レンズの製造方法においては、先ず、図4に示すフローチャートのレンズ位置決めステップS1が実施され、次に塗布ステップS11が実施される。レンズ位置決めステップS1においては、図5Aに示すように、眼鏡レンズ基材1が第1のノズル2aと第2のノズル2bとの間に配置される。眼鏡レンズ基材1の光軸Cは、水平方向を指向している。
 塗布ステップS11は、第1のレンズ面1aに塗布液3を塗布するための第1の塗布ステップS12と、第2のレンズ面1bに塗布液3を塗布するための第2の塗布ステップS13とによって構成されている。
 第1の塗布ステップS12においては、先ず、第1の塗布液塗布ステップS12aが実施される。第1の塗布液塗布ステップS12aにおいては、図5Bに示すように、第1のレンズ面1aと対向する第1のノズル2aから予め定めた圧力で塗布液3が噴出される。このとき、眼鏡レンズ基材1は、その光軸Cが回転中心となるように、予め定めた回転速度V0で回転させられている。
 回転速度V0が得られる眼鏡レンズ基材1の回転数は、この実施の形態においても200~1000rpmであるが、塗布液塗布ステップS12aを実施するうえで最適な眼鏡レンズ1の回転数は、200~700rpmである。
 塗布液3の噴出は、例えば1~10秒間行われる。この塗布液3は、眼鏡レンズ基材1の第1のレンズ面1aに付着する。
 その後、第1の塗り拡げステップS12bが実施される。なお、第1の塗り拡げステップS12bは、塗布液3を第1のノズル2aから噴出させながら実施することができる。第1の塗り拡げステップS12bは、図5Cに示すように、眼鏡レンズ基材1を予め定めた塗り拡げ時間だけ第1の回転速度V1で回転させて行われる。第1の回転速度V1が得られる眼鏡レンズ基材1の回転数は、200~1000rpmであり、塗り拡げステップS12bを実施するうえで最適な眼鏡レンズ1の回転数は、200~700rpmである。塗り拡げ時間は0~30秒である。
 次に、第2の塗布ステップS13に進み、第2の塗布液塗布ステップS13aが実施される。第2の塗布液塗布ステップS13aにおいては、図5Dに示すように、第2のレンズ面1bと対向する第2のノズル2bから予め定めた圧力で塗布液3が噴出される。このとき、眼鏡レンズ基材1は、その光軸Cが回転中心となるように、予め定めた回転速度V0で回転させられている。
 塗布液3の噴出は、例えば1~10秒間行われる。この塗布液3は、眼鏡レンズ基材1の第2のレンズ面1bに付着する。
 その後、第2の塗り拡げステップS13bが実施される。なお、第2の塗り拡げステップS13bは、塗布液3を第2のノズル2bから噴出させながら実施することができる。第2の塗り拡げステップS13bは、図5Eに示すように、眼鏡レンズ基材1を予め定めた塗り拡げ時間だけ第1の回転速度V1で回転させて行われる。塗り拡げ時間は0~30秒である。
 このように第1の塗布ステップS12と第2の塗布ステップS13とが実施されることにより、眼鏡レンズ基材1の両方のレンズ面1a,1bの全域に塗布液3が塗り拡げられる。しかる後、高速回転ステップS3が実施される。
 高速回転ステップS3においては、図5Fに示すように、眼鏡レンズ基材1が第2の回転速度V2で回転させられる。この第2の回転速度V2が得られる眼鏡レンズ基材1の回転数は、例えば1000~3000rpm程度である。この高速回転ステップS3は、5~30秒間実施される。なお、第2の回転速度V2は、1000~3000rpmに限定されることはなく、高速回転が可能な塗布液塗布装置を用いる場合であれば、例えば6000rpm程度とすることも可能である。
 この実施の形態に示すように、眼鏡レンズ基材1の第1のレンズ面1aに塗布液3を塗布して塗り拡げた後に第2のレンズ面1bに塗布液3を塗布して塗り拡げる方法であっても、上述した第1の実施の形態で示した方法を採るときと同等の効果が得られる。なお、第2のレンズ面1bに先に塗布液3を塗布して塗り拡げた後に第1のレンズ面1aに塗布液3を塗布する方法を採ったとしても、同様の結果が得られる。
 なお、上述した塗布ステップS11および高速回転ステップS3の動作は、上記制御部の制御によって実現される。より詳しくは、塗布液塗布ステップS12a,S13aの動作はガス圧コントローラ35,36および回転コントローラ27の制御によって実現され、塗り拡げステップS12b,S13bおよび高速回転ステップS3の動作は回転コントローラ27の制御によって実現される。
(変形例)
 上述した実施の形態では、眼鏡レンズ基材1の第1のレンズ面1aに対向する第1のノズル2aおよび第2のレンズ面1bに対向する第2のノズル2bを用いて、各レンズ面1a,1bに塗布液3を塗布する。しかし、本発明では、光軸Cが水平方向を指向するように眼鏡レンズ基材1が配置された状態で塗布液3を塗布することが重要であり、必ずしも二本のノズル2a,2bを用いる必要はない。例えば、ノズル2aにより眼鏡レンズ基材1の第1のレンズ面1aに塗布液3を塗布し、その後、眼鏡レンズ基材1を裏返し、再びノズル2aにより眼鏡レンズ基材1の第2のレンズ面1bに塗布液3を塗布するようにしてもよい。したがって、図3に示した眼鏡レンズ基材用塗布液塗布装置11は、内部ノズル31および外部ノズル32の少なくとも一方を有していればよい。
(実験結果)
 次に、上述した眼鏡レンズの製造方法に関する実験結果について説明する。第1の実施の形態の方法を用いて、眼鏡レンズのレンズ面に膜を形成した。一方のレンズ面における膜厚の分布を図6に実線で示す。比較のため、特許文献1に開示された方法で形成された膜の膜厚の分布を破線で示している。第1の実施の形態の方法を実施する場合と、特許文献1に開示された方法を実施する場合の相異点は、眼鏡レンズ基材1の光軸が指向する方向のみである。図6に示す膜厚は、眼鏡レンズ基材1の中心の膜厚を100%として描いてある。
 図6から判るように、第1の実施の形態の方法を実施することによって、特許文献1に開示された方法を採る場合と比べて膜厚の均一化を図ることができる。その理由を考察する。
 特許文献1に開示された方法では、レンズ面が上下方向を指向する状態で眼鏡レンズ基材を回転させながら、上方からレンズ面に塗布液を塗布する。上面が凸面の場合、塗布液は重力の影響によりレンズ面の外周に流れやすくなる。その上、回転による遠心力も働くので、レンズ面の中心と外周との膜厚差が顕著になる。
 これに対し、第1の実施の形態の方法では、レンズ面が水平方向を指向する状態で眼鏡レンズ基材1を回転させながら、水平方向からレンズ面に塗布液3を塗布する。いま、レンズ面上のA点がレンズ面の中心から見て下方の位置にあるとき、A点の塗布液3には、重力によりレンズ面の外周に向かう力がかかる。その後、眼鏡レンズ基材1が180゜回転して、A点がレンズ面の中心から見て上方の位置にくると、A点の塗布液3には、重力によりレンズ面の中心に向かう力がかかる。このように、眼鏡レンズ基材1の回転により、塗布液3にかかる重力の影響が相殺される。このため、第1の実施の形態の方法によれば、特許文献1に開示された方法よりも、レンズ面の面内において膜厚分布を均一化できると考えられる。
 図6には一方のレンズ面における膜厚分布のみを示したが、他方のレンズ面についても一方のレンズ面と同様の結果が得られた。図7に、一方のレンズ面(凸面)における膜厚分布と、他方のレンズ面(凹面)における膜厚分布を示す。比較のため、図8に、特許文献1に開示された方法で両面に形成された膜の膜厚分布を示す。
 特許文献1に開示された方法では、眼鏡レンズ基材に塗布液を塗布する際、二つのレンズ面が眼鏡レンズ基材の上面と下面になるため、二つのレンズ面において塗布液に作用する重力の影響が大きく異なる。
 これに対し、第1の実施の形態の方法では、眼鏡レンズ基材1に塗布液3を塗布する際、二つのレンズ面がいずれも眼鏡レンズ基材の側面になるため、二つのレンズ面において塗布液に作用する重力の影響が等しくなる。したがって、二つのレンズ面1に塗布液3を均等に塗布できるから、両レンズ面に膜厚が等しくなるように膜を形成することが可能になる。
 以上では第1の実施の形態に関する実験結果を示したが、第2の実施の形態の方法でも第1の実施の形態と同様の結果が得られた。
 1…眼鏡レンズ基材、1a…第1のレンズ面、1b…第2のレンズ面、2a…第1のノズル、2b…第2のノズル、3…塗布液、11…眼鏡レンズ基材用塗布液塗布装置、12…回転部、13…塗布部、31…内部ノズル、32…外部ノズル、S2,S11…塗布ステップ、S12…第1の塗布ステップ、S13…第2の塗布ステップ、S3…高速回転ステップ、C…光軸。

Claims (8)

  1.  ノズルから水平方向に塗布液を噴出させて、光軸が水平方向を指向するように配置された眼鏡レンズ基材のレンズ面に前記塗布液を塗布するステップと、
     前記眼鏡レンズ基材を前記光軸が回転中心となるように第1の回転速度で回転させて、遠心力で前記塗布液を前記レンズ面に塗り拡げるステップと、
     前記塗布液が塗り拡げられた前記眼鏡レンズ基材を前記第1の回転速度よりも高速の第2の回転速度で回転させて、遠心力で塗布液の余剰分を前記眼鏡レンズ基材の外に飛ばすステップと
     を備える眼鏡レンズの製造方法。
  2.  前記塗布するステップは、前記眼鏡レンズ基材の第1のレンズ面および第2のレンズ面にそれぞれ対向する第1のノズルおよび第2のノズルから水平方向に前記塗布液を噴射させて、前記第1のレンズ面および前記第2のレンズ面に前記塗布液を同時に塗布するステップを含み、
     前記塗り拡げるステップは、前記第1のレンズ面および前記第2のレンズ面に前記塗布液を同時に塗布した後に、前記眼鏡レンズ基材を前記第1の回転速度で回転させるステップを含む
     請求項1記載の眼鏡レンズの製造方法。
  3.  前記塗布するステップは、前記眼鏡レンズ基材の第1のレンズ面に対向する第1のノズルから水平方向に前記塗布液を噴射させて、前記第1のレンズ面に前記塗布液を塗布するステップを含み、
     前記塗り拡げるステップは、前記眼鏡レンズ基材を前記第1の回転速度で回転させて、前記塗布液を前記第1のレンズ面に塗り拡げるステップを含み、
     前記塗布するステップは、前記塗布液を前記第1のレンズ面に塗り拡げた後に、前記眼鏡レンズ基材の第2のレンズ面に対向する第2のノズルから水平方向に前記塗布液を噴射させて、前記第2のレンズ面に前記塗布液を塗布するステップをさらに含み、
     前記塗り拡げるステップは、前記眼鏡レンズ基材を前記第1の回転速度で回転させて、前記塗布液を前記第2のレンズ面に塗り拡げるステップをさらに含む
     請求項1記載の眼鏡レンズの製造方法。
  4.  光軸が水平方向を指向するように眼鏡レンズ基材が保持された状態で、前記光軸が回転中心となるように前記眼鏡レンズ基材を回転させる回転部と、
     前記眼鏡レンズ基材の第1のレンズ面に対向し、前記第1のレンズ面に向けて水平方向に塗布液を噴出させる第1のノズルと
     を備える眼鏡レンズ基材用塗布液塗布装置。
  5.  前記眼鏡レンズ基材の第2のレンズ面に対向し、前記第2のレンズ面に向けて水平方向に前記塗布液を噴出させる第2のノズル
     を更に備える請求項4記載の眼鏡レンズ基材用塗布液塗布装置。
  6.  前記第2のノズルは、前記回転部の軸心部を水平方向に貫通して設けられている
     請求項5記載の眼鏡レンズ基材用塗布液塗布装置。
  7.  前記眼鏡レンズ基材を保持する保持部材を更に備え、
     前記回転部は、
     前記保持部材に保持された前記眼鏡レンズ基材の光軸が水平方向を指向するように前記保持部材を保持する回転ステージと、
     前記回転ステージに接続されかつ前記光軸と同一軸線上に配設された筒状の回転軸と
     を含み、
     前記第2のノズルは、前記回転軸内に挿通されている
     請求項6記載の眼鏡レンズ基材用塗布液塗布装置。
  8.  前記第1のノズルおよび前記第2のノズルからの前記塗布液の噴出および前記回転部による回転を制御する制御部を更に備える
     請求項5記載の眼鏡レンズ基材用塗布液塗布装置。
PCT/JP2014/055108 2013-02-28 2014-02-28 眼鏡レンズの製造方法および眼鏡レンズ基材用塗布液塗布装置 WO2014133145A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2015503054A JPWO2014133145A1 (ja) 2013-02-28 2014-02-28 眼鏡レンズの製造方法および眼鏡レンズ基材用塗布液塗布装置
US14/771,297 US20160008836A1 (en) 2013-02-28 2014-02-28 Method for manufacturing spectacle lens and coating solution coating apparatus for spectacle lens substrate
EP14757146.7A EP2963459A4 (en) 2013-02-28 2014-02-28 METHOD FOR THE PRODUCTION OF EYESE GLASS AND COATING DEVICE FOR COATING LIQUID FOR BASE MATERIAL OF A GLASS GLASS
KR1020157023207A KR20150111995A (ko) 2013-02-28 2014-02-28 안경 렌즈의 제조 방법 및 안경 렌즈 기재용 도포액 도포 장치
CN201480011369.0A CN105229495A (zh) 2013-02-28 2014-02-28 眼镜镜片的制造方法及眼镜镜片基材用涂敷液涂敷装置
CA2902802A CA2902802A1 (en) 2013-02-28 2014-02-28 Method for manufacturing spectacle lens and coating solution coating apparatus for spectacle lens substrate
AU2014221634A AU2014221634A1 (en) 2013-02-28 2014-02-28 Method for manufacturing spectacle lens and coating device for coating liquid for base material of spectacle lens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013039142 2013-02-28
JP2013-039142 2013-02-28

Publications (1)

Publication Number Publication Date
WO2014133145A1 true WO2014133145A1 (ja) 2014-09-04

Family

ID=51428403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055108 WO2014133145A1 (ja) 2013-02-28 2014-02-28 眼鏡レンズの製造方法および眼鏡レンズ基材用塗布液塗布装置

Country Status (8)

Country Link
US (1) US20160008836A1 (ja)
EP (1) EP2963459A4 (ja)
JP (1) JPWO2014133145A1 (ja)
KR (1) KR20150111995A (ja)
CN (1) CN105229495A (ja)
AU (1) AU2014221634A1 (ja)
CA (1) CA2902802A1 (ja)
WO (1) WO2014133145A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3001848C (en) 2015-10-15 2023-09-19 Board Of Regents, The University Of Texas System Versatile process for precision nanoscale manufacturing
US11446697B2 (en) * 2016-12-28 2022-09-20 Transitions Optical, Ltd. Method for imparting an optical element with a light influencing property in a gradient pattern
EP3505232A1 (de) * 2017-12-28 2019-07-03 Satisloh Photonics AG Vorrichtung zum mischen und/oder dosieren von flüssigen beschichtungsstoffen, beschichtungsanlage mit einer solchen vorrichtung und verfahren zum färben optischer gläser
US20200368117A1 (en) 2018-02-06 2020-11-26 3M Innovative Properties Company Microcapsule with a porous or hollow core and ph-sensitive shell and use thereof
DE102018008957A1 (de) * 2018-11-14 2020-05-14 Shape Engineering GmbH Verfahren zur Beschichtung von Brillengläsern
JP2022535814A (ja) 2019-06-04 2022-08-10 スリーエム イノベイティブ プロパティズ カンパニー 多孔質又は中空であるコアと、酸と接触するとガスを放出する成分を含有するシェルとを有するマイクロカプセル
CN113058787B (zh) * 2021-03-29 2022-05-24 江苏鸿晨集团有限公司 一种镜片防灰抗菌层的胶膜装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06246220A (ja) * 1993-02-23 1994-09-06 Seiko Epson Corp 表面処理方法及び表面処理装置
JPH08164355A (ja) * 1994-12-13 1996-06-25 Origin Electric Co Ltd 回転塗布方法及び回転塗布装置
JPH0957184A (ja) * 1995-08-22 1997-03-04 Seiko Epson Corp 表面改質方法
US20020041929A1 (en) * 2000-10-11 2002-04-11 Jean-Francois Magne Spray-spin coating method
JP2007021355A (ja) 2005-07-15 2007-02-01 Seiko Epson Corp スピンコート用保持具、および、スピンコート装置
JP2007072248A (ja) * 2005-09-08 2007-03-22 Seiko Epson Corp ハイブリッドレンズの塗装方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60171115A (ja) * 1984-02-17 1985-09-04 Toray Ind Inc 薄膜の形成方法
TW432520B (en) * 1997-03-31 2001-05-01 Tokyo Electron Ltd Photoresist coating method and apparatus
JP3032515B2 (ja) * 1998-01-14 2000-04-17 松下電子工業株式会社 陰極線管の製造方法
JPH11262718A (ja) * 1998-03-17 1999-09-28 Toray Ind Inc 薬液処理装置および薬液処理方法
JP2005116553A (ja) * 2003-10-02 2005-04-28 Tokyo Electron Ltd 塗布膜形成装置及び塗布膜形成方法
JP2006156565A (ja) * 2004-11-26 2006-06-15 Sharp Corp 回転塗布方法
JP5388409B2 (ja) * 2006-09-28 2014-01-15 東レ・ダウコーニング株式会社 硬化性シリコーン組成物およびその硬化物
WO2009025272A1 (ja) * 2007-08-23 2009-02-26 Hoya Corporation プラスチックレンズの製造方法
US7942523B2 (en) * 2007-09-24 2011-05-17 Qspex Technologies, Inc. Method for manufacturing polarized ophthalmic lenses
JP2012024744A (ja) * 2010-07-27 2012-02-09 Hoya Corp レンズ保持治具及びレンズの保持方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06246220A (ja) * 1993-02-23 1994-09-06 Seiko Epson Corp 表面処理方法及び表面処理装置
JPH08164355A (ja) * 1994-12-13 1996-06-25 Origin Electric Co Ltd 回転塗布方法及び回転塗布装置
JPH0957184A (ja) * 1995-08-22 1997-03-04 Seiko Epson Corp 表面改質方法
US20020041929A1 (en) * 2000-10-11 2002-04-11 Jean-Francois Magne Spray-spin coating method
JP2007021355A (ja) 2005-07-15 2007-02-01 Seiko Epson Corp スピンコート用保持具、および、スピンコート装置
JP2007072248A (ja) * 2005-09-08 2007-03-22 Seiko Epson Corp ハイブリッドレンズの塗装方法

Also Published As

Publication number Publication date
US20160008836A1 (en) 2016-01-14
CN105229495A (zh) 2016-01-06
KR20150111995A (ko) 2015-10-06
EP2963459A1 (en) 2016-01-06
EP2963459A4 (en) 2016-10-26
AU2014221634A1 (en) 2015-09-17
CA2902802A1 (en) 2014-09-04
JPWO2014133145A1 (ja) 2017-02-02

Similar Documents

Publication Publication Date Title
WO2014133145A1 (ja) 眼鏡レンズの製造方法および眼鏡レンズ基材用塗布液塗布装置
US8720797B2 (en) Rotary atomizing head, rotary atomization coating apparatus, and rotary atomization coating method
CN103008175B (zh) 涂覆设备和涂覆方法
WO2014054438A1 (ja) 回転霧化式静電塗装装置のベルカップ
KR100758774B1 (ko) 스핀 코트용 유지구, 및 스핀 코트 장치
WO2013065746A1 (ja) 眼鏡レンズおよびその製造方法
JP6655882B2 (ja) 遮光層付きレンズの製造装置
US20150273491A1 (en) Substrate treatment apparatus and substrate treatment method
JP2013071049A (ja) 塗装装置及びそれを用いた塗装方法
JP2012256780A (ja) スピンコート法によるレジスト塗布方法
US20170098538A1 (en) Substrate processing apparatus
JP7188845B2 (ja) ベル型塗装装置
JP5812967B2 (ja) 塗装ガン及び塗装方法
JP5653875B2 (ja) 塗装装置
JP2005118683A (ja) 塗装装置および塗装方法
WO2014034927A1 (ja) 光学レンズの製造方法
JP2008029086A (ja) ワニス含浸方法およびその装置
JP4102682B2 (ja) 塗布方法
JP2014130208A (ja) 眼鏡レンズ基材用保持装置および塗布液塗布装置
JP2013080012A (ja) 眼鏡レンズ用塗布液塗布装置
JP5844229B2 (ja) 回転霧化式塗装装置及び回転霧化式塗装方法
JP2014130207A (ja) 眼鏡レンズ基材の塗布液塗布方法および眼鏡レンズ用塗布液塗布装置
JPH09192573A (ja) 薄膜形成方法及び薄膜形成装置
JP2018029151A (ja) ノズル調節治具
JP2008290007A (ja) 回転霧化頭および回転霧化塗装装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480011369.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14757146

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2015503054

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157023207

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2902802

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2014757146

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14771297

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014221634

Country of ref document: AU

Date of ref document: 20140228

Kind code of ref document: A