WO2014133023A1 - フェノール樹脂発泡板及びその製造方法 - Google Patents
フェノール樹脂発泡板及びその製造方法 Download PDFInfo
- Publication number
- WO2014133023A1 WO2014133023A1 PCT/JP2014/054725 JP2014054725W WO2014133023A1 WO 2014133023 A1 WO2014133023 A1 WO 2014133023A1 JP 2014054725 W JP2014054725 W JP 2014054725W WO 2014133023 A1 WO2014133023 A1 WO 2014133023A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phenolic resin
- density
- resin foam
- thickness
- resin composition
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/12—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
- C08J9/14—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
- C08J9/141—Hydrocarbons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C44/00—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
- B29C44/20—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of indefinite length
- B29C44/30—Expanding the moulding material between endless belts or rollers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C44/00—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
- B29C44/34—Auxiliary operations
- B29C44/36—Feeding the material to be shaped
- B29C44/46—Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length
- B29C44/461—Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length dispensing apparatus, e.g. dispensing foaming resin over the whole width of the moving surface
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C44/00—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
- B29C44/34—Auxiliary operations
- B29C44/56—After-treatment of articles, e.g. for altering the shape
- B29C44/5627—After-treatment of articles, e.g. for altering the shape by mechanical deformation, e.g. crushing, embossing, stretching
- B29C44/5654—Subdividing foamed articles to obtain particular surface properties, e.g. on multiple modules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C44/00—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
- B29C44/34—Auxiliary operations
- B29C44/56—After-treatment of articles, e.g. for altering the shape
- B29C44/5681—Covering the foamed object with, e.g. a lining
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/36—After-treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B1/00—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
- B05B1/14—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with multiple outlet openings; with strainers in or outside the outlet opening
- B05B1/20—Arrangements of several outlets along elongated bodies, e.g. perforated pipes or troughs, e.g. spray booms; Outlet elements therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B7/00—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
- B05B7/24—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas with means, e.g. a container, for supplying liquid or other fluent material to a discharge device
- B05B7/26—Apparatus in which liquids or other fluent materials from different sources are brought together before entering the discharge device
- B05B7/28—Apparatus in which liquids or other fluent materials from different sources are brought together before entering the discharge device in which one liquid or other fluent material is fed or drawn through an orifice into a stream of a carrying fluid
- B05B7/32—Apparatus in which liquids or other fluent materials from different sources are brought together before entering the discharge device in which one liquid or other fluent material is fed or drawn through an orifice into a stream of a carrying fluid the fed liquid or other fluent material being under pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2065/00—Use of polyphenylenes or polyxylylenes as moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0037—Other properties
- B29K2995/0063—Density
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2201/00—Foams characterised by the foaming process
- C08J2201/02—Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
- C08J2201/026—Crosslinking before of after foaming
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2203/00—Foams characterized by the expanding agent
- C08J2203/14—Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2203/00—Foams characterized by the expanding agent
- C08J2203/14—Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
- C08J2203/142—Halogenated saturated hydrocarbons, e.g. H3C-CF3
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2203/00—Foams characterized by the expanding agent
- C08J2203/18—Binary blends of expanding agents
- C08J2203/182—Binary blends of expanding agents of physical blowing agents, e.g. acetone and butane
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2205/00—Foams characterised by their properties
- C08J2205/04—Foams characterised by their properties characterised by the foam pores
- C08J2205/052—Closed cells, i.e. more than 50% of the pores are closed
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2361/00—Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
- C08J2361/02—Condensation polymers of aldehydes or ketones only
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2361/00—Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
- C08J2361/04—Condensation polymers of aldehydes or ketones with phenols only
- C08J2361/06—Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
- C08J2361/08—Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols with monohydric phenols
- C08J2361/10—Phenol-formaldehyde condensates
Definitions
- the present invention relates to a phenolic resin foam plate and a method for producing the same.
- a phenolic resin foam board is a dynamic mixer having a rotating blade and the like, which is a foamable phenolic resin composition (hereinafter sometimes referred to simply as “foamable resin composition”) comprising a phenolic resin, a foaming agent, a curing catalyst, and the like.
- foamable resin composition a foamable phenolic resin composition
- a method Patent Document 1
- Patent Document 1 is used in which a plurality of grooves are used to supply a linear strip at a predetermined interval onto a surface material.
- JP-A-4-141406 Japanese Patent No. 5060688 British patent 882296 International Publication No. 2011/074611
- the foam has a closed cell ratio and a reduced compressive strength, and has an increased thermal conductivity. That is, there is a problem that the heat insulation performance is lowered.
- foam curing occurs non-uniformly in the thickness direction of the foam, that is, in the vicinity of the surface layer portion and the inner layer portion, there is a problem that the density gradient increases and dimensional stability is lowered after molding. Since the density gradient increases as the thickness of the product increases, it may not be preferable as a method for manufacturing a thick foam plate product.
- the heating temperature at the time of foaming and curing is set low, It is possible to extend the residence time. However, it is not preferable from the viewpoint of cost and production efficiency because the production speed is reduced and the production equipment needs to be modified such as lengthening the heating furnace. Further, the phenomenon that the foam curing is not uniform in the thickness direction of the foam, that is, in the vicinity of the surface layer portion and the inner layer portion, is not eliminated.
- this method requires a plurality of types of discharge materials, films, and the like, which causes a problem that the manufacturing apparatus becomes complicated and costs increase. Moreover, since the density in the thickness direction changes discontinuously, the effect of suppressing sink and expansion in the cross section is not sufficient.
- Patent Document 4 As another method for suppressing an excessive increase in internal temperature of the foamable resin composition, a method of individually discharging the resin composition onto the upper and lower surface materials has been proposed (Patent Document 4).
- the density distribution in the thickness direction has a low density region dispersed therein, so that the effect of preventing local fracture during compression can be obtained and the heat insulation performance can be improved.
- the device is devised for holding the upper surface material side to which the foamable phenol resin composition is applied, and the equipment investment associated therewith is required.
- density unevenness near the upper and lower surface layers of the foam cannot be eliminated, and there is a region with a steep density gradient near the center in the thickness direction. May occur, which may cause gaps during construction.
- An object of the present invention is to provide a phenolic resin foam plate that exhibits practically sufficient compressive strength and thermal conductivity even when the product thickness is increased, and has superior dimensional stability compared to conventional products, and a method for producing the same.
- the present invention provides the following [1] to [10].
- a phenolic resin foam plate having a plate thickness of 40 mm or more and 300 mm or less, N sheets at substantially equal intervals over 10mm 8mm or less in the thickness direction from the one main surface of the phenolic resin foam plate along the main surface and (n ⁇ 5) on the slicing, the density of the n-th sections d n
- D i (d i + d (i + 1) ) / 2 is calculated [i is an integer from 1 to (n ⁇ 1)]
- D i is plotted in the order of the numerical values of i (where i is the horizontal axis and D i is vertical axis), when obtaining the connecting it density distribution line the value of D i, not the horizontal axis and parallel
- a phenolic resin foam board When the slices divided into five equal in the thickness direction along the main surface of the phenol resin foam plate are P1, P2, P3, P4 and P5 in order from the main surface, the density d P2 of P2 , the density d P3 of P3 and P4 between the density d P4 of, d P3 ⁇ d P2, or at least one of d P3 ⁇ d P4 holds, phenolic resin foam plate according to [1]. [3] The phenol resin foamed plate according to [1] or [2], wherein the plate thickness is 70 mm or more and 200 mm or less.
- At least a phenol resin, a foaming agent, and a curing agent are mixed to obtain a foamable phenol resin composition, and a distribution pipe for distributing and widening the foamable phenol resin composition.
- a method for producing a phenolic resin foam board comprising mixing a foamable phenolic resin composition by a static mixer with a distribution pipe and discharging the foamed phenolic resin composition onto a face material traveling from a discharge port.
- the foamable phenolic resin composition is distributed and widened a plurality of times through a plurality of distribution paths, In each flow path from the most upstream piping section to a plurality of discharge ports, a static mixer is installed in at least one piping section, and the static mixer is excluded except for the piping section including the most distal discharge port.
- a static mixer is installed in at least one piping section, and the static mixer is excluded except for the piping section including the most distal discharge port.
- the temperature distribution inside the foamable phenolic resin composition is made uniform, and the foaming and curing In the process, it is possible to suppress a local internal heat generation that occurs during curing and to obtain a uniform foamed state.
- a thick and high quality foamed plate can be produced without damaging the cell membrane of the foamable resin composition.
- a phenolic resin foam plate having a characteristic structure of uniform density distribution in the thickness direction can be produced with high efficiency, and a phenol resin foam plate having improved dimensional stability compared to conventional products can be obtained.
- a phenolic resin foam plate that exhibits practically sufficient compressive strength and thermal conductivity and is superior in dimensional stability compared to conventional products and a method for producing the same. Is possible.
- the phenolic resin foam plate (hereinafter sometimes referred to as “foam plate”) in the present embodiment is a foam plate present in a state where a large number of bubbles are dispersed in a phenol resin formed by a curing reaction.
- the thickness in a foam board is a growth direction at the time of foaming of the foamable resin composition on a surface, and refers to the side with the smallest dimension among the three sides of a foam board.
- the foam board has the main surface which is a surface perpendicular
- the phenol resin foam plate of this embodiment has a uniform density distribution in the thickness direction, and the uniformity index can be evaluated by the following method. Specifically, the slice is cut into n pieces from one main surface along the main surface in the thickness direction at substantially equal intervals of 8 mm or more and 10 mm or less, and the average density of the n pieces (slice products) is d ave , When the minimum density of n sheets is d min , the phenol resin foam plate of the present embodiment has a relationship that the H value ((d ave ⁇ d min ) / d ave ) is 0 ⁇ H ⁇ 0.12. Preferably, 0 ⁇ H ⁇ 0.10, more preferably 0 ⁇ H ⁇ 0.09.
- the phenolic resin foam plate of the present embodiment improves the uniformity of the density distribution in the thickness direction and causes local destruction of the low density portion. Since it is suppressed, the compressive strength is improved. Further, in the cross section of the foamed plate, the difference in density between the surface layer portion and the inner layer portion is reduced, so that the dimensional stability is improved by suppressing sinking or expansion during moisture absorption or drying. Furthermore, in the inner layer portion, it is possible to manufacture and use a uniform foamed plate as a sliced product from a portion where the density in the thickness direction is substantially equal, so that productivity is improved.
- the foam has a size that allows easy measurement of the density, for example, 200 mm ⁇ 200 mm ⁇ thickness (in this case, W X and L X in FIGS. 1 and 2 are each 160 mm). ) Is cut out from the foamed plate so as to become (hereinafter referred to as “foam cutout portion”). At this time, if the face material is included, the face material is peeled off. Then, the foam cutout portion is sliced into n pieces at substantially equal intervals of 8 mm or more and 10 mm or less in the thickness direction of the foam cutout portion in parallel with one of the main surfaces, and the density of each section is measured.
- the cutting method and cutting means in this case are not particularly limited. Further, when slicing, a loss corresponding to the thickness of the blade to be sliced may occur, resulting in a slight difference in the thickness of the obtained slice. In such a case, the slice is cut at substantially equal intervals of 8 mm or more and 10 mm or less. Can be handled as a cut section.
- the thickness was measured at 20mm lattice points 4 points from the corners of each side of the main surface, according to equation (6), the average value of the thickness of the sections ( T n ) is obtained (see FIGS. 1 and 2). Further, the length in the width direction and the length in the length direction of the slice were measured at two points each at a position 5 mm from one main surface, and each average value (W n , L) was determined according to the equations (7) and (8). n ) is obtained (see FIGS. 3 and 4).
- T n ⁇ T 1 + T 2 + T 3 + T 4 ⁇ / 4 (6)
- W n ⁇ W 1 + W 2 ⁇ / 2 (7)
- L n ⁇ L 1 + L 2 ⁇ / 2 (8)
- d n G n / ⁇ T n ⁇ W n ⁇ L n ⁇ ⁇ (9)
- the average density d ave of the n pieces obtained in this way is calculated, and when the minimum density of the n pieces is set to d min , the phenolic resin foam plate of the present embodiment has an H value ((( d ave ⁇ d min ) / d ave ) satisfies the relationship 0 ⁇ H ⁇ 0.12.
- the phenolic resin foam plate of the present embodiment having an H value in this range is characterized in that the density distribution is highly uniform,
- axis when obtaining the connecting it density distribution line the value of D i, has the feature that the horizontal axis and parallel to the straight line intersecting in the density distribution line and the 4-point is not present.
- i is an integer of 1 to (n ⁇ 1).
- Density Evaluation by D i is the mean value of the density of the two points i and (i + 1) is performed to extract the trend of the density distribution of the phenolic resin foam plate.
- a straight line parallel to the horizontal axis intersecting the density distribution line at four points exists.
- 9 calculates the D i by using the foam plate of Example 1 and Comparative Example 1 and Comparative Example 5 below, is a diagram showing a plotted density distribution line. As shown in FIG. 9, for example, there is no straight line parallel to the horizontal axis that intersects the density distribution line of Example 1 at four points, but the density distribution line of Comparative Example 5 intersects the straight line 70a at four points. .
- H value ((d ave -d min) / d ave) is, 0 ⁇ H ⁇ 0.12 satisfies the relationship, parallel to the transverse axis intersecting with density distribution lines and four points was plotted D i
- D i In the phenolic resin foam plate of the present embodiment in which no straight line exists, since there is no region having a steep density gradient in the vicinity of the center position in the thickness direction, sink or expansion is unlikely to occur in the cross section of the foam, and dimensional stability is improved.
- the phenol resin foam plate of the present embodiment has a low density region and a high density region, and slices divided into five equal parts in the thickness direction along the main surface of the foam plate are sequentially arranged from the main surface.
- P1, P2, P3, P4, and P5 at least d P3 ⁇ d P2 or d P3 ⁇ d P4 between the density d P2 of P2 , the density d P3 of P3, and the density d P4 of P4 Either one holds. That is, the density of the segment P3 is the same as or lower than the density of the segment P2 and / or the density of the segment P4.
- the foam has a size that allows easy measurement of the density, for example, 200 mm ⁇ 200 mm ⁇ thickness (in this case, W X and L X in FIGS. 1 and 2 are each 160 mm). ) Is cut out from the foamed plate so as to become (hereinafter referred to as “foam cutout portion”). At this time, if the face material is included, the face material is peeled off. Then, the foam cut-out portion is sliced into five equal parts in the thickness direction of the foam cut-out portion in parallel with one of the main surfaces, and the obtained sections are sequentially P1, P2, P3, P4 from the main surface. And P5.
- a size that allows easy measurement of the density for example, 200 mm ⁇ 200 mm ⁇ thickness (in this case, W X and L X in FIGS. 1 and 2 are each 160 mm).
- P1 and P5 including the main surface and the face material are removed, and the densities of P2 to P4 are measured.
- the cutting method and cutting means at this time are not particularly limited.
- a loss corresponding to the thickness of the blade to be sliced may occur, and there may be a slight difference in the thickness of the five sections obtained. It can be handled as a cut section.
- T m ⁇ T 1 + T 2 + T 3 + T 4 ⁇ / 4 (10)
- W m ⁇ W 1 + W 2 ⁇ / 2 (11)
- L m ⁇ L 1 + L 2 ⁇ / 2 (12)
- d pm G m / ⁇ T m ⁇ W m ⁇ L m ⁇ ⁇ (13)
- the phenolic resin foam plate according to the present embodiment has a thickness of 40 mm or more and 300 mm or less.
- the density in the thickness direction of the foam is high in the surface layer portion and low in the inner layer portion, depending on the density depending on the position in the thickness direction, the warp in the length direction or width direction of the foam plate or the cross section of the foam plate.
- sink marks may occur, particularly when the plate thickness is 50 mm or more, the ratio of the inner layer portion is increased and the bending resistance of the entire plate is improved, so that warpage tends to be suppressed.
- the plate thickness is more preferably 70 mm to 200 mm, more preferably 80 mm to 180 mm, and most preferably 100 mm to 160 mm from the viewpoint of production efficiency and warpage suppression. It is.
- the density of the entire phenolic resin foam plate can be selected according to conditions such as the ratio of the foaming agent and the oven temperature during curing, but is preferably in the range of 10 kg / m 3 to 100 kg / m 3 , more preferably, The range is from 15 kg / m 3 to 60 kg / m 3 , and more preferably from 20 kg / m 3 to 60 kg / m 3 .
- the density is less than 10 kg / m 3
- the mechanical strength such as compressive strength is low, so that it is easy to break when handling the foam, and the surface brittleness is also increased.
- the density exceeds 100 kg / m 3 , the heat transfer of the resin part is increased, the heat insulation performance may be lowered, and the cost is increased, which is not preferable.
- the closed cell ratio of the phenolic resin foam plate is preferably 80% or more, more preferably 90% or more. If the closed cell ratio is less than 80%, the foaming agent in the phenolic resin foam plate may be replaced with air and the heat insulation performance may be easily lowered, which is not preferable.
- a closed cell rate shows the ratio (%) of the closed cell volume with respect to the apparent volume computed from the external dimension of the foam sample.
- the thermal conductivity of the phenolic resin foam plate is preferably 0.023 W / m ⁇ K or less, more preferably 0.015 or more and 0.023 W / m ⁇ K or less, and 0.015 or more and 0.021 W / m ⁇ K or less. More preferred is 0.015 or more and 0.019 W / m ⁇ K or less.
- hydrocarbons are contained in the bubbles inside the phenolic resin foam plate.
- the foaming agent in the foamable phenolic resin composition contains hydrocarbons
- the hydrocarbons are contained in the bubbles inside the foam.
- chlorinated hydrocarbons it is also preferable to use chlorinated hydrocarbons as a substitute for hydrocarbons, or to use hydrocarbons and chlorinated hydrocarbons in combination.
- the method for producing a phenolic resin foam plate includes an introduction step of mixing at least a phenol resin, a foaming agent and a curing agent to obtain a foamable phenolic resin composition, and distributing and widening the foamable phenolic resin composition.
- a method for producing a phenol resin foam comprising a distribution pipe (in a distribution step)
- the foamable phenol resin composition is statically mixed in the distribution pipe and discharged from a plurality of discharge ports onto a face material
- widening means expanding the space
- FIG. 5 is an explanatory view showing a method for producing a phenolic resin foam plate of the present embodiment.
- the first face material 40a is installed at the lower stage
- the second face material 40b is installed at the upper stage
- the first face material 40a and the second face material 40b are provided.
- the slat type double conveyors 60a and 60b can travel in the same direction.
- the phenol resin, the foaming agent, and the curing agent are mixed by the mixer 42 in the introducing step.
- a powder of a finely pulverized phenol resin foam plate, paraformaldehyde, inorganic fine particles, a surfactant, or the like may be further added.
- the mixer 42 may be a dynamic mixer or a static mixer, but it is preferable to use a dynamic mixer in that the above components can be efficiently stirred in a short time.
- a dynamic mixer in that the above components can be efficiently stirred in a short time.
- a structure in which a rotor having a large number of blades (projections) rotates and the blades rotate with the rotation of the rotor without contacting the projections, so-called pin mixer, Hobart type batch mixer or Oaks type continuous mixer No. 40-17143 can be used.
- FIG. 6 is a schematic view showing a part of the production facility for the phenolic resin foam plate of the present embodiment.
- the mixer 1 for mixing the foamable phenolic resin composition is divided into the distribution pipe 10 by the introduction pipe part 2. It is connected to the. Further, a section between one branch section 4 and a plurality of further downstream branch sections 4 connected to the branch section 4 is collectively referred to as a distribution path (for example, A to D).
- a distribution path for example, A to D.
- the section between the branch section 4 and the branch section 4 (not including the branch section 4) and the section from the branch section 4 to the downstream discharge section 5 (not including the branch section 4) are simply the piping section.
- the above-mentioned distribution path is composed of a branching section 4 and a plurality of piping sections 3 connected downstream thereof.
- the foamable phenol resin composition is preferably distributed a plurality of times through a plurality of distribution paths (for example, A to D).
- the static mixer 6 is installed in at least one pipe section 3 and includes the most distal discharge port 5. Except for the piping part 3, it is preferable that the piping part 3 in which the static mixer 6 is not installed does not exist continuously.
- the foamable phenol resin composition uniformly mixed by the mixer 1 is distributed and widened in the distribution pipe 10 (configured by distribution paths A to D) connected thereafter.
- the distribution pipe 10 in a general manufacturing method, in the cross-sectional direction in the flow path in the distribution pipe, a temperature difference of the resin composition occurs between the outside and the inside, the flow rate increases because the viscosity of the high temperature portion decreases, and the low temperature portion Since the viscosity increases, the flow rate decreases, and uneven flow may occur between the flow paths.
- the foamable phenol resin composition passes through the static mixer 6 in the distribution channel, so that the temperature of the foamable phenol resin composition in the flow channel is made uniform.
- the temperature of the resin composition between the passages is also uniformed, and ideal uniform discharge can be achieved, and by suppressing the deviation of the flow rate between the flow rates, the thickness unevenness caused by the flow rate spots in the width direction of the foam product
- the product quality is improved by eliminating non-uniformity in product quality such as strength spots, and the production efficiency is improved by increasing the yield.
- the distribution path is preferably made of metal, but any portion may be replaced with a resin tube.
- a tube made of polytetrafluoroethylene, polyethylene, nylon, or the like can be arbitrarily selected as the resin tube.
- the static mixer 6 is not particularly limited, and may be any commercially available one. However, the static mixer 6 is connected in parallel and has spiral wings therein, and at least two parallel, substantially straight lines that allow fluid to pass therethrough. A plurality of fluid mixing elements connected in series to each other and another fluid passage that combines the fluid to be mixed provided in these fluid passages on the upstream side and divides them on the downstream side Arranged so that the line connecting the centers of the plurality of fluid passages arranged in parallel intersects the line connecting the centers of the other adjacent fluid mixing elements, and the line connecting the centers is further connected to the spiral. Examples thereof include fluid mixers arranged so as to intersect with the directions of the blade tip portions on the upstream side and the downstream side of the blade. In addition, static mixers manufactured by Noritake Company, Toray Engineering Co., Ltd. and the like can be mentioned as preferable static mixers.
- the temperature adjusting ability of the static mixer 6 it is preferable to adjust the temperature so that the foamable phenolic resin temperature at the discharge port is 30 ° C. or higher and 50 ° C. or lower, more preferably 35 ° C. or higher and 50 ° C. or lower, still more preferably.
- the temperature adjustment is 40 ° C. or more and 50 ° C. or less, and most preferably 40 ° C. or more and 45 ° C. or less.
- the above-mentioned temperature is less than 30 ° C., the foam having a predetermined density and thickness in addition to insufficient curing due to a decrease in foaming efficiency due to a decrease in internal temperature of the foamable phenol resin composition There is a risk that the product cannot be obtained.
- the internal temperature of the foamable phenol resin composition is excessively increased, and the timing of curing is accelerated, so that the cell walls are destroyed, and the closed cell rate may be reduced.
- a double-pipe jacket structure can be used to allow temperature-controlled water to pass through the jacket portion to heat, keep warm, or cool the internal temperature of the foamable resin composition immediately after discharge. It can be made uniform at an arbitrary temperature to promote uniform foaming and curing, increase the uniformity of the density distribution in the thickness direction, and improve the compressive strength and dimensional stability.
- the foamable phenol resin composition mixed in the introduction step described above is discharged onto the surface of the first face material 40a facing the second face material 40b.
- the discharged foamable phenol resin composition 50a becomes a foamable phenol resin composition 50a2 in the foaming process grown from the first face material 40a side to the second face material 40b side, and is heated in the oven 30 to be face material.
- the phenolic resin foam plate 100 with both main surfaces covered is obtained.
- the 1st face material 40a and the 2nd face material 40b are not specifically limited, A flexible face material is preferable, and the synthetic fiber nonwoven fabric, an inorganic fiber nonwoven fabric, especially from the point of the ease of handling as a foamed board, and economical efficiency. Paper is most preferred. Further, if necessary, an inorganic substance such as aluminum hydroxide may be included to impart flame retardancy.
- the face material only needs to travel in the same direction at a predetermined interval, and the positional relationship may be parallel in the vertical direction, may be parallel in the horizontal direction, or may be opposed to each other as the face material.
- the predetermined interval is an interval suitable for foaming / curing when the surface of the foamable phenol resin composition in the foaming process grown from the first face material side and the surface of the second face material are in contact with each other. Therefore, the thickness is determined in consideration of the thickness of the foam plate to be a product.
- the use of a die makes it simpler, extremely accurate and efficient compared to the conventional method. It is possible to produce a phenolic resin foam plate having good appearance and physical properties in a stable and long time. Further, a method of discharging a foamable resin composition using a resin tube as a discharge portion can be preferably used.
- phenol resin a resol type phenol resin synthesized with an alkali metal hydroxide or an alkaline earth metal hydroxide, a novolac type phenol resin synthesized with an acid catalyst, an ammonia resol type phenol resin synthesized with ammonia, or lead naphthenate Benzyl ether type phenol resin etc. which were synthesize
- the resol type phenol resin can be obtained by heating and polymerizing phenol and formalin as raw materials at a temperature range of 40 to 100 ° C. with an alkali catalyst. Moreover, you may add additives, such as urea, at the time of resole resin polymerization as needed. When adding urea, it is preferable to mix urea methylolated with an alkali catalyst in advance into the resole resin. Since the resole resin after synthesis usually contains excess water, it is preferable to adjust the amount of water suitable for foaming when foaming.
- aliphatic hydrocarbons or alicyclic hydrocarbons having a high boiling point or mixtures thereof, diluents for viscosity adjustment such as ethylene glycol and diethylene glycol, and other additives may be added to the phenol resin as necessary. it can.
- the starting molar ratio of phenols to aldehydes in the phenolic resin is preferably from 1: 1 to 1: 4.5, more preferably from 1: 1.5 to 1: 2.5.
- Phenols preferably used in the synthesis of phenol resin are phenol itself and other phenols. Examples of other phenols are resorcinol, catechol, o-, m- and p-cresol, xylenol. , Ethylphenols, p-tertbutylphenol and the like. Dinuclear phenols can also be used.
- aldehydes examples include formaldehyde itself and other aldehydes. Examples of other aldehydes include glyoxal, acetaldehyde, chloral, furfural, and benzaldehyde. Urea, dicyandiamide, melamine, and the like may be added to the aldehydes as additives. In addition, when adding these additives, a phenol resin refers to the thing after adding an additive.
- the foaming agent is not particularly limited, but preferably contains a hydrocarbon. This is because the global warming potential is significantly smaller than that of fluorocarbon foaming agents.
- the hydrocarbon content contained in the phenolic resin foam plate is preferably 50% by weight or more, more preferably 70% by weight or more, and particularly preferably 90% by weight or more based on the total weight of the foaming agent.
- the hydrocarbon contained in the foaming agent is preferably a cyclic or chain alkane, alkene, or alkyne having 3 to 7 carbon atoms, and has foaming performance, chemical stability (no double bond), and the compound itself.
- alkanes having 4 to 6 carbon atoms or cycloalkanes are more preferable.
- Specific examples include normal butane, isobutane, cyclobutane, normal pentane, isopentane, cyclopentane, neopentane, normal hexane, isohexane, 2,2-dimethylbutane, 2,3-dimethylbutane, cyclohexane, and the like.
- normal pentane, isopentane, cyclopentane, neopentane pentanes and normal butane, isobutane, cyclobutane butanes have comfortable foaming characteristics in the production of phenolic resin foam plates, and relatively low thermal conductivity. It is particularly preferable because of its small size.
- Two or more kinds of hydrocarbons contained in the blowing agent can be mixed and used. Specifically, a mixture of 5 to 95% by weight of pentanes and 95 to 5% by weight of butanes is preferable because it exhibits good heat insulation characteristics over a wide temperature range. Among them, normal pentane or a combination of isopentane and isobutane is preferable because the foam exhibits high heat insulation performance in a wide range from a low temperature range to a high temperature range, and these compounds are inexpensive.
- a chlorinated hydrocarbon such as 2-chloropropane may be mixed as a blowing agent.
- hydrocarbons as foaming agents and HFCs
- hydrocarbons such as 1,1,1,2-tetrafluoroethane, 1,1-difluoroethane, and pentafluoroethane having a low boiling point improves the low-temperature characteristics of the foam.
- HFCs since the global warming potential as a mixed foaming agent is larger than that of a hydrocarbon-only foaming agent, it is not preferable to use HFCs in combination.
- foaming agents having a low global warming potential 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf), 1,3,3,3-tetrafluoro-1-propene (HFO-1234ze) , Difluoromethane (R32) or the like is a preferred embodiment.
- a low-boiling point substance such as nitrogen, helium, argon, or air may be added to the foaming agent as the foam nucleating agent.
- particles having an average particle size of 1 mm or less such as phenol resin foam powder and aluminum hydroxide powder, as the foam nucleating agent, if necessary.
- the curing catalyst is not particularly limited, but when an acid containing water is used, foaming, foaming phenolic resin composition foam film at the time of curing may be destroyed, and therefore, an acid anhydride curing catalyst is preferable. Phosphoric acid and aryl sulfonic anhydride are preferred.
- aryl sulfonic anhydride examples include toluene sulfonic acid, xylene sulfonic acid, phenol sulfonic acid, substituted phenol sulfonic acid, xylenol sulfonic acid, substituted xylenol sulfonic acid, dodecyl benzene sulfonic acid, benzene sulfonic acid, and naphthalene sulfonic acid. These may be used alone or in combination of two or more. Further, resorcinol, cresol, saligenin (o-methylolphenol), p-methylolphenol and the like may be added as a curing aid. In addition, these curing catalysts may be diluted with a solvent such as ethylene glycol or diethylene glycol.
- the amount of acid curing catalyst used varies depending on the type, and when phosphoric anhydride is used, it is preferably used in an amount of 5 to 30 parts by weight, more preferably 8 to 25 parts by weight, based on 100 parts by weight of the phenol resin.
- phosphoric anhydride when phosphoric anhydride is used, it is preferably used in an amount of 5 to 30 parts by weight, more preferably 8 to 25 parts by weight, based on 100 parts by weight of the phenol resin.
- a mixture of 60% by weight of paratoluenesulfonic acid monohydrate and 40% by weight of diethylene glycol is used, it is preferably used in an amount of 3 to 30 parts by weight, more preferably 5 to 20 parts by weight based on 100 parts by weight of the phenol resin. Is done.
- nonionic surfactants are effective, for example, alkylene oxide which is a copolymer of ethylene oxide and propylene oxide.
- condensation products of alkylene oxide and castor oil, condensation products of alkylene oxide and alkylphenols such as nonylphenol and dodecylphenol, polyoxyethylene alkyl ethers, and fatty acid esters such as polyoxyethylene fatty acid esters, polydimethyl Silicone compounds such as siloxane, polyalcohols and the like are preferable.
- One type of surfactant may be used, or two or more types may be used in combination.
- the amount used is not particularly limited, but it is preferably used in the range of 0.3 to 10 parts by weight per 100 parts by weight of the phenol resin composition.
- reaction solution was cooled to 30 ° C., and the pH was neutralized to 6.4 with a 50 wt% aqueous solution of paratoluenesulfonic acid monohydrate.
- the viscosity at 40 ° C. was 13,000 mPa ⁇ s. This was designated as phenol resin AU-1.
- phenol resin composition A 4.0 parts by weight of ethylene oxide-propylene oxide block copolymer as a surfactant is mixed with 100 parts by weight of phenol resin AU-1 to obtain phenol resin composition A. It was.
- This phenol resin composition A 6 parts by weight of a mixture of 50% by weight of isopentane and 50% by weight of isobutane as a blowing agent, and a mixture of 80% by weight of xylene sulfonic acid and 20% by weight of diethylene glycol as a curing catalyst with respect to 100 parts by weight of this phenol resin composition A
- Composition B consisting of parts by weight was supplied to a mixing head whose jacket part was temperature-controlled at 10 ° C.
- the mixing head (dynamic mixer) used was the same structurally as that disclosed in Japanese Patent Application Laid-Open No. 10-225993. That is, the upper side had an inlet for the phenol resin composition and the blowing agent, and the side near the center of the stirring portion (mixing portion) where the rotor stirred (mixed) was provided with the inlet for the curing catalyst.
- a distribution pipe 10 composed of four stages of distribution paths A to D (the distribution path is formed by the branching section 4 and a plurality of piping sections 3 connected downstream thereof).
- the foamed resin composition was connected and expanded to 16 discharge ports 5 and then discharged onto the lower face material.
- the static mixer 6 is located immediately before the downstream branching section 4 in each piping section between the branching section 4 and the downstream branching section 4 in the four-stage distribution paths A to D.
- the temperature was adjusted to 18 ° C. for each jacket part A to D.
- a polyester non-woven fabric (“Spunbond E05030” manufactured by Asahi Kasei Fibers Co., Ltd., weighing 30 g / m 2 , thickness 0.15 mm) was used.
- the foamable resin composition that emerged from the mixer was sent to a double conveyor at 78 ° C. so as to be sandwiched between face materials while being foamed, cured with a residence time of 20 minutes, and then cured in an oven at 110 ° C. for 6 hours.
- a phenolic resin foam board having a thickness of 160 mm was obtained.
- Example 2 A phenol resin foam plate having a thickness of 100 mm was obtained under the same conditions as in Example 1 except that the double conveyor was set at 78 ° C., the residence time was 12 minutes, and the oven was cured at 110 ° C. for 3 hours.
- Example 3 A 70 mm thick phenolic resin foam plate was obtained under the same conditions as in Example 1 except that the double conveyor was 78 ° C., the residence time was 9 minutes, and the oven was cured in a 110 ° C. oven for 3 hours.
- Example 4 Of the four distribution paths A to D, a phenol resin having a thickness of 70 mm is used under the same conditions as in Example 3 except that the static mixer is arranged only in the distribution pipes in the distribution paths A and C. A foam plate was obtained.
- Example 5 Of the four distribution paths A to D, a phenol resin foam board having a thickness of 70 mm is used under the same conditions as in Example 3 except that the static mixer is arranged only in the distribution pipe in the distribution path C. Got.
- Example 6 A phenol resin foam plate having a thickness of 70 mm was obtained under the same conditions as in Example 3 except that the temperature control of the mixing head (dynamic mixer) was 8 ° C. and the double conveyor was 86 ° C.
- Comparative Example 1 Using the same foamable resin composition as in Example 1 and the same discharge equipment except that a static mixer was not used in the four-stage distribution paths A to D, a 160 mm thick phenol resin foam board was obtained. .
- Example 2 A phenol resin foam plate having a thickness of 70 mm was obtained using the same foamable resin composition and the same discharge equipment as in Example 3 except that a static mixer was not used in the four-stage distribution paths A to D. .
- Example 3 A phenolic resin foam plate having a thickness of 160 mm was obtained under the same conditions as in Example 1 except that a distribution pipe directly connected to a dynamic mixer and distributed to 12 flow paths was used and a static mixer was not used. .
- the jacket portion of the dynamic mixer was used at 10 ° C., and the jacket portion of the distribution channel was used at 18 ° C.
- Example 4 A 70 mm thick phenolic resin foam plate was obtained under the same conditions as in Example 3 except that a distribution pipe directly connected to a dynamic mixer and distributed to 12 flow paths was used and a static mixer was not used. .
- the jacket portion of the dynamic mixer was used at 10 ° C., and the jacket portion of the distribution channel was used at 18 ° C.
- Example 5 After the foamable resin composition is mixed with a dynamic mixer, it is directly connected to the dynamic mixer and discharged to each of the opposing surfaces of the moving upper and lower surface materials using distribution pipes distributed to 24 flow paths.
- a phenol resin foam board having a thickness of 160 mm was obtained under the same conditions as in Example 1 except that.
- the jacket portion of the dynamic mixer was used at 10 ° C.
- the jacket portion of the distribution channel was used at 18 ° C.
- Example 6 After the foamable resin composition is mixed with a dynamic mixer, it is directly connected to the dynamic mixer and discharged to each of the opposing surfaces of the moving upper and lower surface materials using distribution pipes distributed to 24 flow paths.
- a phenol resin foam plate having a thickness of 100 mm was obtained under the same conditions as in Example 2 except that.
- the jacket portion of the dynamic mixer was used at 10 ° C.
- the jacket portion of the distribution channel was used at 18 ° C.
- Example 7 After the foamable resin composition is mixed with a dynamic mixer, it is directly connected to the dynamic mixer and discharged to each of the opposing surfaces of the moving upper and lower surface materials using distribution pipes distributed to 24 flow paths.
- a phenol resin foam plate having a thickness of 70 mm was obtained under the same conditions as in Example 3 except that.
- the jacket portion of the dynamic mixer was used at 10 ° C.
- the jacket portion of the distribution channel was used at 18 ° C.
- the phenolic resin foam boards obtained in the examples and comparative examples were evaluated as follows.
- D i was calculated from these intercepts, and it was evaluated whether there was a density distribution line plotted with i as the horizontal axis and D i as the vertical axis, and a straight line parallel to the horizontal axis intersecting at four points. Further, the sample cut out in the same manner is sliced into five equal parts in the thickness direction, and the obtained slices are set as P1, P2, P3, P4 and P5 in order from one main surface, and P1 and P5 including the main surface are set. Excluded were measured P2 density d p2 , P3 density d p3 and P4 density d p4 .
- the dimension Wa of the foam surface layer part and the dimension Wb of the inner layer part, and for the length L, the dimension La of the foam surface layer part and the dimension Lb of the inner layer part are represented by the following formulas (15) to (18) (see FIGS. 7 and 8).
- the dimensional change rate of the surface layer portion in the width direction W and the dimensional change rate of the inner layer portion in the width direction W under the high humidity condition are respectively R Wa , R Wb , the dimensional change rate of the surface layer portion in the length direction L, and the inner layer portion dimension.
- the change rates are R La and R Lb , respectively, and calculated by the following formula (19).
- the difference I between the dimensional change rates of the surface layer portion and the inner layer portion is expressed by the following formula (20) And (21).
- the difference J of the dimensional change rate between the surface layer portion and the inner layer portion under dry conditions was calculated in the same manner by the following equations (22) and (23).
- the width W and length L were measured at the center of the small piece in the thickness direction and in the vicinity of the surface layer (position 5 mm from the face material in the thickness direction). 7 and 8, the width and length are the average values of the two points in the width direction / the length direction, respectively, and the thickness is the average value of the four points measured as shown in FIGS. did.
- the resin temperature at the outlet of the distribution channel was the two-point average value of the values measured by disposing a thermocouple near the center of the discharge port at the east and west ends on the bottom material side.
- Table 1 summarizes the production conditions of the foamed plates obtained in the above examples and comparative examples.
- H value 0.12 or less.
- dp2 / dp3 1 or more.
- d p4 / d p3 1 or more.
- I value The absolute value is 0.2 or less in both the width direction and the length direction.
- J value The absolute value is 0.2 or less in both the width direction and the length direction.
- K J value The absolute value is less than 0.2.
- Q value 0.3 or less less
- Table 2 shows the evaluation results of the foamed plates obtained in the above examples and comparative examples.
- a phenolic resin foam plate that exhibits practically sufficient compressive strength and thermal conductivity and is superior in dimensional stability compared to conventional products and a method for producing the same. Is possible.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Laminated Bodies (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
Abstract
Description
また、厚み方向の密度分布に着目した別の手法として、複数材料の吐出部を備え、境界部に樹脂フィルムや金属板などを介して多層成型する手法も提案されている(特許文献3参照)。この手法を用いると、表層部と内層部の密度や厚みを調整することにより、例えば、表層部を内層部より高密度とすることによって、強度などの物性を向上させることができると記載されている。しかしながら、本手法では、複数種の吐出材料やフィルムなどを要するために、製造装置が複雑化し、コストアップしてしまうという問題があった。また、厚み方向の密度が不連続的に変化するため、断面におけるヒケや膨張を抑制する効果も十分ではない。
また、発泡体の上下表層部付近の密度ムラを解消することはできておらず、厚み方向の中心位置付近においても密度勾配の急な領域が存在するために、発泡体の断面にヒケや膨張が生じ、施工時の隙間要因となってしまう場合がある。
さらに、厚み方向の中心位置付近を境とした上層部と下層部の密度分布を完全に同等にすることが困難であり、上層部側と下層部側の寸法安定性の違いに起因し、発泡体全体に反りが発生する場合がある。
[1]
板厚が40mm以上300mm以下のフェノール樹脂発泡板であって、
フェノール樹脂発泡板の一方の主面から該主面に沿って厚み方向に8mm以上10mm以下の略等間隔でn枚(n≧5)にスライス切断し、n枚目の切片の密度をdn、n枚の平均密度をdave、n枚のうちの最低密度をdminとしたとき、0≦(dave-dmin)/dave≦0.12が成り立ち、
Di=(di+d(i+1))/2を算出し[iは1~(n-1)の整数]、iの数値の順にDiをプロットして(iが横軸、Diが縦軸)、Diの値を結んだ密度分布線を得たときに、当該密度分布線と4点で交わる前記横軸と平行な直線が存在しない、フェノール樹脂発泡板。
[2]
フェノール樹脂発泡板であって、
フェノール樹脂発泡板の主面に沿って厚み方向に5等分した切片を、主面から順にP1、P2、P3、P4及びP5としたときに、P2の密度dP2、P3の密度dP3及びP4の密度dP4の間に、dP3≦dP2、又は、dP3≦dP4の少なくともいずれか一方が成り立つ、[1]に記載のフェノール樹脂発泡板。
[3]
板厚が70mm以上200mm以下である、[1]又は[2]のフェノール樹脂発泡板。
[4]
フェノール樹脂発泡板全体の密度が10kg/m3以上100kg/m3以下であり、独立気泡率が80%以上である、[1]~[3]のいずれかのフェノール樹脂発泡板。
[5]
熱伝導率が0.023W/m・K以下である、[1]~[4]のいずれかのフェノール樹脂発泡板。
[6]
炭化水素及び/又は塩素化炭化水素を含有する、[1]~[5]のいずれかのフェノール樹脂発泡板。
[7]
少なくともフェノール樹脂、発泡剤及び硬化剤を混合し、発泡性フェノール樹脂組成物を得る導入工程と、上記発泡性フェノール樹脂組成物を分配及び拡幅する分配管と、を備えるフェノール樹脂発泡板の製造方法において、
発泡性フェノール樹脂組成物を分配管で静的混合器によって混合し、吐出口から走行する面材上に吐出することを特徴とする、フェノール樹脂発泡板の製造方法。
[8]
上記分配管において、発泡性フェノール樹脂組成物は、複数の分配路を経て複数回分配及び拡幅され、
最も上流側の配管部から複数の吐出口までの各流路において、静的混合器が少なくとも一つの配管部内に設置され、かつ、最末端の吐出口を含む配管部を除き、静的混合器の設置されていない配管部が連続的に存在しない、[7]の製造方法。
[9]
静的混合器が温度調節機能を有する、[7]又は[8]の製造方法。
[10]
吐出口における発泡性フェノール樹脂組成物の温度を30℃以上50℃以下に調節する、[7]~[9]のいずれかの製造方法。
このように、厚み方向に均一な密度分布という特徴的な構造を有するフェノール樹脂発泡板を高効率で製造できること、寸法安定性等が従来品に比べて向上したフェノール樹脂発泡板を得ることができることを本願発明者らは見出したものである。
まず、発泡体の厚みZ(単位:mm)が40mm以上50mm未満の場合、式(1)より、Zを8で割った商p(整数)と余りZ2を求め、以下の式(2)より、切断間隔zを決める。これによると、商p=5となり、切断枚数n=5と一義的に定まる。
Z=8×p+Z2・・・(1)
n=p、z=8+Z2/p・・・(2)
また、発泡体の厚みZ(単位:mm)が50mm以上300mm未満の場合、式(3)より、Zを10で割った商p(整数)と余りZ3を求める。ここで、Z3の値による以下の場合分けを行い、式(4)或いは式(5)により、切断枚数及び切断間隔zを定める。
Z=10×p+Z3・・・(3)
0≦Z3<5の場合:n=p、
z=10+Z3/p・・・(4)
5≦Z3<10の場合:n=p+1、
z=10-(10-Z3)/(p+1)・・・(5)
なお、この際の切断方法及び切断手段は、特に限定されるものではない。また、スライス切断する場合にスライスする刃の厚み分の損失が発生し、得られる切片の厚みに微差が生じる場合があるが、このような場合も8mm以上10mm以下の略等間隔にスライス切断された切片として取り扱うことができる。
Tn={T1+T2+T3+T4}/4・・・(6)
Wn={W1+W2}/2・・・(7)
Ln={L1+L2}/2・・・(8)
dn=Gn/{Tn×Wn×Ln}・・・(9)
このようにして得られたn枚の切片の平均密度daveを算出し、n枚の切片のうちの最小密度をdminとしたとき、本実施形態のフェノール樹脂発泡板は、H値((dave-dmin)/dave)が、0≦H≦0.12の関係を満たす。H値がこの範囲にある本実施形態のフェノール樹脂発泡板は、密度分布の均一性が高く、局所的に強度の低い箇所や、寸法安定性の異なる箇所が存在しにくいことを特徴とする。
Tm={T1+T2+T3+T4}/4・・・(10)
Wm={W1+W2}/2・・・(11)
Lm={L1+L2}/2・・・(12)
dpm=Gm/{Tm×Wm×Lm}・・・(13)
図6に示すように、本製造方法の一例である分配管10においては、発泡性フェノール樹脂組成物が複数の分配路(例えばA~D)を経て複数回分配されることが好ましい。ここで、最も上流側の配管部3から複数の吐出口5までの各流路において、静的混合器6が少なくとも一つの配管部3内に設置され、かつ、最末端の吐出口5を含む配管部3を除き、静的混合器6の設置されていない配管部3が連続的に存在しないことが好ましい。
最末端の吐出口を含む配管部以外において、静的混合器6の設置されていない配管部3が連続的に存在する流路を通過した発泡性樹脂組成物は、静的混合器が存在しない上流側の分岐部で均等分配された後、さらに引き続き下流側の分岐部4において、静的混合されない状態で2回目の分配をされることとなり、配管流路の外側と内側における温度差に起因する流量斑を発生させる恐れがある。
反応器に52重量%ホルムアルデヒド350kgと99重量%フェノール251kgを仕込み、プロペラ回転式の攪拌機により攪拌し、温調機により反応器内部液温度を40℃に調整した。次いで50重量%水酸化ナトリウム水溶液を加えながら昇温して、反応を行わせた。オストワルド粘度が37センチストークス(=37×10-6m2/s、25℃における測定値)に到達した段階で、反応液を冷却し、尿素を57kg(ホルムアルデヒド仕込み量の15モル%に相当)添加した。その後、反応液を30℃まで冷却し、パラトルエンスルホン酸一水和物の50重量%水溶液でpHを6.4に中和した。この反応液を、60℃で脱水処理して粘度を測定したところ、40℃における粘度は13,000mPa・sであった。これをフェノール樹脂A-U-1とした。
ダブルコンベアを78℃、滞留時間を12分とし、110℃のオーブンで3時間キュアした以外は、実施例1と同様の条件とし、厚さ100mmのフェノール樹脂発泡板を得た。
ダブルコンベアを78℃、滞留時間を9分とし、110℃のオーブンで3時間キュアした以外は、実施例1と同様の条件とし、厚さ70mmのフェノール樹脂発泡板を得た。
A~Dの4つの分配路のうち、A及びCの分配路における分配管のみに静的混合機を配置する構成とした以外は、実施例3と同様の条件とし、厚さ70mmのフェノール樹脂発泡板を得た。
A~Dの4つの分配路のうち、Cの分配路における分配管のみに静的混合機を配置する構成とした以外は、実施例3と同様の条件とし、厚さ70mmのフェノール樹脂発泡板を得た。
ミキシングヘッド(動的ミキサー)の温調を8℃とし、ダブルコンベアを86℃とした以外は、実施例3と同様の条件とし、厚さ70mmのフェノール樹脂発泡板を得た。
A~Dの4段階の分配路において、静的ミキサーを用いない以外は、実施例1と同じ発泡性樹脂組成物、及び、同じ吐出設備を用い、厚さ160mmのフェノール樹脂発泡板を得た。
A~Dの4段階の分配路において、静的ミキサーを用いない以外は、実施例3と同じ発泡性樹脂組成物、及び、同じ吐出設備を用い、厚さ70mmのフェノール樹脂発泡板を得た。
動的ミキサーに直結し、12本の流路に分配させる分配管を用い、静的ミキサーを用いていないこと以外は、実施例1と同じ条件により、厚さ160mmのフェノール樹脂発泡板を得た。なお、動的ミキサーのジャケット部は10℃、分配路のジャケット部は18℃に温調して用いた。
動的ミキサーに直結し、12本の流路に分配させる分配管を用い、静的ミキサーを用いていないこと以外は、実施例3と同じ条件により、厚さ70mmのフェノール樹脂発泡板を得た。なお、動的ミキサーのジャケット部は10℃、分配路のジャケット部は18℃に温調して用いた。
発泡性樹脂組成物を動的ミキサーで混合後、動的ミキサーに直結し、24本の流路に分配させる分配管を用いて、移動する上下面材表面の対向面に、それぞれ12本ずつ吐出した以外は、実施例1と同じ条件により、厚さ160mmのフェノール樹脂発泡板を得た。なお、動的ミキサーのジャケット部は10℃、分配路のジャケット部は18℃に温調して用いた。
発泡性樹脂組成物を動的ミキサーで混合後、動的ミキサーに直結し、24本の流路に分配させる分配管を用いて、移動する上下面材表面の対向面に、それぞれ12本ずつ吐出した以外は、実施例2と同じ条件により、厚さ100mmのフェノール樹脂発泡板を得た。なお、動的ミキサーのジャケット部は10℃、分配路のジャケット部は18℃に温調して用いた。
発泡性樹脂組成物を動的ミキサーで混合後、動的ミキサーに直結し、24本の流路に分配させる分配管を用いて、移動する上下面材表面の対向面に、それぞれ12本ずつ吐出した以外は、実施例3と同じ条件により、厚さ70mmのフェノール樹脂発泡板を得た。なお、動的ミキサーのジャケット部は10℃、分配路のジャケット部は18℃に温調して用いた。
実施例及び比較例の発泡板について、その一部を長さ200mm、幅200mm(図1、図2のWX、LXはそれぞれ160mm)、厚みはそのままにして切り出し、その切り出した試料について、厚み方向に一方の主面から8mm以上10mm以下の略等間隔でスライス切断した各切片の密度を平均し、試料全体の平均密度とした。また、試料全体の平均密度と、各切片のうちの最低密度との差から、H値を算出した。また、これらの切片からDiを算出し、iを横軸、Diを縦軸としてプロットした密度分布線と、4点で交わる横軸と平行な直線が存在するか否かを評価した。
また、同様に切り出した試料について、厚み方向に5等分にスライス切断し、得られた切片について一方の主面から順にP1、P2、P3、P4及びP5とし、主面を含むP1及びP5を除外し、P2の密度dp2、P3の密度dp3及びP4の密度dp4を測定した。
発泡板の厚み方向中心位置において、バンドソーを用いて約25mm角の小片を切り出し、空気比較式比重計(東京サイエンス社製、1,000型)の標準使用方法により試料容積Vを測定した。独立気泡率は、以下の式(14)の通り、その試料容積Vから、試料重量WTと樹脂密度から計算した気泡壁の容積を差し引いた値を、試料の外寸から計算した見かけの容積Vaで割った値であり、ASTM-D-2856(C法)に従い測定した。ここでフェノール樹脂の場合、その密度は1.3kg/Lとした。
独立気泡率(%)=(V-WT/1.3)/Va×100・・・(14)
幅300mm、長さ300mm(図1、図2のWX、LXはそれぞれ260mm)、厚みは発泡体厚みと同等の小片を切り出し、安定化条件(23℃、50%RH)で約2週間保管した後、引き続き、高湿度条件(70℃・95%RH×48hr)、乾燥条件(70℃・25%RH×48hr)とし、高湿度条件48hr経過時、乾燥条件48hr経過時に、それぞれ小片の幅W、長さL及び厚みTを測定した。ここで、幅Wについては発泡体表層部の寸法Wa、内層部の寸法Wbを、また長さLについては発泡体表層部の寸法La、内層部の寸法Lbを、それぞれ下記式(15)~(18)より算出した(図7、8参照)。
さらに、高湿度条件での、幅方向Wにおける表層部の寸法変化率、内層部の寸法変化率をそれぞれ、RWa、RWb、長さ方向Lにおける表層部の寸法変化率、内層部の寸法変化率をそれぞれ、RLa、RLbとし、下記式(19)によって算出したのち、寸法安定性を評価する尺度として、表層部と内層部の寸法変化率の差Iを、下記式(20)及び(21)によって算出した。
また、乾燥条件下での、表層部と内層部の寸法変化率の差Jも、下記式(22)及び(23)によって同様に算出した。I、Jが正の値を示す場合、発泡体断面において内層部が表層部よりもへこむ状態となり(ヒケ)、逆に、I、Jが負の値を示す場合、発泡体断面において内層部が表層部よりも膨らむ状態となる。
さらに、厚みTについては、安定化条件、高湿度条件、乾燥条件下での値を測定し、高湿度条件下及び乾燥条件下の厚み変化率(KI、KJ)を下記式(24)によって算出した)。
高湿度条件、乾燥条件共通
幅 :表層部 Wa={Wa1+Wa2}/2・・・(15)
内層部 Wb={Wb1+Wb2}/2・・・(16)
長さ:表層部 La={La1+La2}/2・・・(17)
内層部 Lb={Lb1+Lb2}/2・・・(18)
表層部と内層部の寸法変化率
R=((測定値)-(安定化時の値))/安定化時の値・・・(19)
表層部と内層部の寸法変化率の差
高湿度条件、幅方向 :IW=RWa―RWb・・・(20)
高湿度条件、長さ方向:IL=RLa―RLb・・・(21)
乾燥条件、幅方向 :JW=RWa―RWb・・・(22)
乾燥条件、長さ方向 :JL=RLa―RLb・・・(23)
高湿度条件下及び乾燥条件下の厚み変化率
K=((測定値)―(安定化時の値))/(安定化時の値)・・・(24)
吐出開始後2時間経過時点で、上下面材の吐出速度を一時的に早めて、走行する下面材上に吐出されたn本の帯状の発泡性樹脂組成物(以下、「ビード」という)が、互いに接触しないようにし、各ビード重量Wnを測定した。
ここで、Wnの平均値をWaveとし、下記式(25)より、各ビードにおける吐出量の割合Qnを算出し、Qnのうちの最大値Qmaxと最小値Qminの差Qを求めた(式(26))。
Qn=(Wn-Wave)/Wave・・・(25)
Q=Qmax-Qmin・・・(26)
分配流路出口部の樹脂温度については、下面材側における東西両端の吐出口中心部付近に熱電対を配置して測定した値の2点平均値とした。
H値:0.12以下であること。
密度分布線との交点数が4点となり得る、横軸と平行な直線:存在しないこと。
dp2/dp3 :1以上であること。
dp4/dp3 :1以上であること。
I値:絶対値が、幅方向、長さ方向のいずれにおいても、0.2以下であること。
J値:絶対値が、幅方向、長さ方向のいずれにおいても、0.2以下であること。
KI値:1.5以下であること。
KJ値:絶対値が0.2未満であること。
Q値:0.3以下であること
特に、比較例5及び6では、P3の密度がP2及びP4の密度よりも高くなっているため、厚み方向において密度が極大となる層が存在し、ボード全体に反りや撓みが生じた。
Claims (10)
- 板厚が40mm以上300mm以下のフェノール樹脂発泡板であって、
前記フェノール樹脂発泡板の一方の主面から該主面に沿って厚み方向に8mm以上10mm以下の略等間隔でn枚(n≧5)にスライス切断し、n枚目の切片の密度をdn、n枚の平均密度をdave、n枚のうちの最低密度をdminとしたとき、0≦(dave-dmin)/dave≦0.12が成り立ち、
Di=(di+d(i+1))/2を算出し[iは1~(n-1)の整数]、iの数値の順にDiをプロットして(iが横軸、Diが縦軸)、Diの値を結んだ密度分布線を得たときに、当該密度分布線と4点で交わる前記横軸と平行な直線が存在しない、フェノール樹脂発泡板。 - フェノール樹脂発泡板であって、
前記フェノール樹脂発泡板の主面に沿って厚み方向に5等分した切片を、前記主面から順にP1、P2、P3、P4及びP5としたときに、P2の密度dP2、P3の密度dP3及びP4の密度dP4の間に、dP3≦dP2、又は、dP3≦dP4の少なくともいずれか一方が成り立つ、請求項1に記載のフェノール樹脂発泡板。 - 前記板厚が70mm以上200mm以下である、請求項1又は2に記載のフェノール樹脂発泡板。
- 前記フェノール樹脂発泡板全体の密度が10kg/m3以上100kg/m3以下であり、独立気泡率が80%以上である、請求項1~3のいずれか1項に記載のフェノール樹脂発泡板。
- 熱伝導率が0.023W/m・K以下である、請求項1~4のいずれか1項に記載のフェノール樹脂発泡板。
- 炭化水素及び/又は塩素化炭化水素を含有する、請求項1~5のいずれか1項に記載のフェノール樹脂発泡板。
- 少なくともフェノール樹脂、発泡剤及び硬化剤を混合し、発泡性フェノール樹脂組成物を得る導入工程と、前記発泡性フェノール樹脂組成物を分配及び拡幅する分配管と、を備えるフェノール樹脂発泡板の製造方法において、
前記発泡性フェノール樹脂組成物を前記分配管で静的混合器によって混合し、吐出口から走行する面材上に吐出する、フェノール樹脂発泡板の製造方法。 - 前記分配管において、前記発泡性フェノール樹脂組成物は複数の分配路を経て複数回分配及び拡幅され、
最も上流側の配管部から前記複数の吐出口までの各流路において、前記静的混合器が少なくとも一つの前記配管部内に設置され、かつ、最末端の吐出口を含む配管部を除き、前記静的混合器の設置されていない前記配管部が連続的に存在しない、請求項7に記載の製造方法。 - 前記静的混合器が温度調節機能を有する、請求項7又は8に記載の製造方法。
- 前記吐出口における前記発泡性フェノール樹脂組成物の温度を30℃以上50℃以下に調節する、請求項7~9のいずれか1項に記載の製造方法。
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2901973A CA2901973C (en) | 2013-02-26 | 2014-02-26 | Phenolic resin foam board, and method for manufacturing same |
EP14757793.6A EP2963081B1 (en) | 2013-02-26 | 2014-02-26 | Phenolic resin foam board, and method for manufacturing same |
CN201480010654.0A CN105073860B (zh) | 2013-02-26 | 2014-02-26 | 酚醛树脂发泡板及其制造方法 |
KR1020157014746A KR102026505B1 (ko) | 2013-02-26 | 2014-02-26 | 페놀 수지 발포판 및 그 제조 방법 |
KR1020217006397A KR102374180B1 (ko) | 2013-02-26 | 2014-02-26 | 페놀 수지 발포판 및 그 제조 방법 |
US14/770,023 US9957368B2 (en) | 2013-02-26 | 2014-02-26 | Phenolic resin foam board, and method for manufacturing same |
KR1020187020233A KR20180083962A (ko) | 2013-02-26 | 2014-02-26 | 페놀 수지 발포판 및 그 제조 방법 |
JP2015502964A JP6259811B2 (ja) | 2013-02-26 | 2014-02-26 | フェノール樹脂発泡板及びその製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013036347 | 2013-02-26 | ||
JP2013-036347 | 2013-02-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014133023A1 true WO2014133023A1 (ja) | 2014-09-04 |
Family
ID=51428283
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/054725 WO2014133023A1 (ja) | 2013-02-26 | 2014-02-26 | フェノール樹脂発泡板及びその製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9957368B2 (ja) |
EP (1) | EP2963081B1 (ja) |
JP (1) | JP6259811B2 (ja) |
KR (3) | KR102374180B1 (ja) |
CN (1) | CN105073860B (ja) |
CA (1) | CA2901973C (ja) |
WO (1) | WO2014133023A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5795450B1 (ja) * | 2014-11-18 | 2015-10-14 | 旭化成建材株式会社 | フェノール樹脂発泡体積層板及びその製造方法 |
JP2016180103A (ja) * | 2015-03-24 | 2016-10-13 | 積水化学工業株式会社 | フェノール樹脂発泡体 |
JP2017075314A (ja) * | 2015-10-13 | 2017-04-20 | 積水化学工業株式会社 | フェノール樹脂発泡板 |
JP6123015B1 (ja) * | 2016-12-19 | 2017-04-26 | 積水化学工業株式会社 | フェノール樹脂発泡板及びその製造方法 |
JP6159467B1 (ja) * | 2016-12-20 | 2017-07-05 | 積水化学工業株式会社 | フェノール樹脂発泡体およびその製造方法 |
JP6159468B1 (ja) * | 2016-12-20 | 2017-07-05 | 積水化学工業株式会社 | フェノール樹脂発泡体およびその製造方法 |
JP6163601B1 (ja) * | 2016-12-19 | 2017-07-12 | 積水化学工業株式会社 | フェノール樹脂発泡板及びその製造方法 |
JP2020139088A (ja) * | 2019-02-28 | 2020-09-03 | 旭化成建材株式会社 | フェノール樹脂発泡体の製造方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PL3576922T3 (pl) * | 2017-01-31 | 2021-12-13 | Covestro Intellectual Property Gmbh & Co. Kg | Sposób i urządzenie do wytwarzania piankowych elementów kompozytowych |
KR102356528B1 (ko) * | 2018-07-30 | 2022-01-26 | (주)엘엑스하우시스 | 페놀 수지 발포체, 이의 제조방법 및 이를 포함하는 단열재 |
US12036766B2 (en) | 2019-09-06 | 2024-07-16 | Dow Global Technologies Llc | Multilayer panel member |
WO2022098196A1 (ko) * | 2020-11-09 | 2022-05-12 | (주)엘엑스하우시스 | 페놀 발포체 및 이의 제조방법 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB882296A (en) | 1957-03-14 | 1961-11-15 | Owens Corning Fiberglass Corp | A composite foam and mineral product and methods for producing same |
JPH04141406A (ja) | 1990-10-02 | 1992-05-14 | Sumikin Chem Co Ltd | フェノール樹脂発泡体の製造法 |
JPH10225993A (ja) | 1997-02-17 | 1998-08-25 | Asahi Chem Ind Co Ltd | フェノール樹脂発泡体の製造方法 |
JP2003340846A (ja) * | 2002-05-24 | 2003-12-02 | Nisshin Steel Co Ltd | 防火パネルの製造方法及び発泡性樹脂組成物の調製装置 |
JP2005059370A (ja) * | 2003-08-12 | 2005-03-10 | Japan Steel Works Ltd:The | タンデム型マルチ押出成形方法および装置 |
WO2009066621A1 (ja) | 2007-11-20 | 2009-05-28 | Asahi Kasei Construction Materials Corporation | 熱硬化性樹脂発泡板の製造方法 |
WO2011074611A1 (ja) | 2009-12-18 | 2011-06-23 | 旭化成建材株式会社 | フェノール樹脂発泡板及びその製造方法 |
WO2012053493A1 (ja) * | 2010-10-18 | 2012-04-26 | 旭化成建材株式会社 | フェノール樹脂発泡板 |
JP5060688B2 (ja) | 2001-03-29 | 2012-10-31 | 旭有機材工業株式会社 | 樹脂発泡体 |
JP5112940B2 (ja) | 2008-04-24 | 2013-01-09 | 旭化成建材株式会社 | 熱硬化性樹脂発泡板の製造方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US882296A (en) | 1907-05-21 | 1908-03-17 | Henry F Schlink | Sliding-door fastener. |
DE2037930A1 (de) | 1969-07-31 | 1971-02-18 | Sumitomo Bakelite Co | Verfahren zum kontinuierlichen Her stellen eines Phenolschaumstoffes |
JPS4813339B1 (ja) | 1969-07-31 | 1973-04-26 | ||
JPS5060688A (ja) | 1973-09-30 | 1975-05-24 | ||
CA1117700A (en) * | 1978-09-20 | 1982-02-02 | Koppers Company, Inc. | Process for producing phenolic foams with a uniform appearance |
DE3016445A1 (de) * | 1980-04-29 | 1981-11-05 | Bayer Ag, 5090 Leverkusen | Vorrichtung zum auftragen eines insbesondere schaumstoff bildenden reaktionsgemisches aus mindestends zwei fliessfaehigen komponenten auf eine wandernde unterlage |
JPS6092809A (ja) * | 1983-10-28 | 1985-05-24 | Mitsubishi Petrochem Co Ltd | フエノ−ル樹脂発泡体の連続製造方法 |
JP3243571B2 (ja) * | 1991-12-07 | 2002-01-07 | 東洋ゴム工業株式会社 | 発泡合成樹脂板の製造方法及び装置 |
GB2436313B (en) * | 2006-01-30 | 2011-10-26 | Kingspan Holdings | A phenolic foam board |
JP5037051B2 (ja) * | 2006-07-24 | 2012-09-26 | 旭化成建材株式会社 | フェノール樹脂フォーム及びその製造方法 |
BRPI0914454A2 (pt) | 2008-10-21 | 2015-10-27 | Novodermix Internat Ltd | "composição para o tratamento do tecido epitelial" |
CA2793827C (en) * | 2010-03-26 | 2015-05-05 | Asahi Kasei Construction Materials Corporation | Phenolic resin foam laminated sheet and method for manufacturing the same |
-
2014
- 2014-02-26 KR KR1020217006397A patent/KR102374180B1/ko active IP Right Grant
- 2014-02-26 WO PCT/JP2014/054725 patent/WO2014133023A1/ja active Application Filing
- 2014-02-26 KR KR1020157014746A patent/KR102026505B1/ko active IP Right Review Request
- 2014-02-26 CA CA2901973A patent/CA2901973C/en active Active
- 2014-02-26 EP EP14757793.6A patent/EP2963081B1/en active Active
- 2014-02-26 JP JP2015502964A patent/JP6259811B2/ja active Active
- 2014-02-26 CN CN201480010654.0A patent/CN105073860B/zh active Active
- 2014-02-26 US US14/770,023 patent/US9957368B2/en active Active
- 2014-02-26 KR KR1020187020233A patent/KR20180083962A/ko active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB882296A (en) | 1957-03-14 | 1961-11-15 | Owens Corning Fiberglass Corp | A composite foam and mineral product and methods for producing same |
JPH04141406A (ja) | 1990-10-02 | 1992-05-14 | Sumikin Chem Co Ltd | フェノール樹脂発泡体の製造法 |
JPH10225993A (ja) | 1997-02-17 | 1998-08-25 | Asahi Chem Ind Co Ltd | フェノール樹脂発泡体の製造方法 |
JP5060688B2 (ja) | 2001-03-29 | 2012-10-31 | 旭有機材工業株式会社 | 樹脂発泡体 |
JP2003340846A (ja) * | 2002-05-24 | 2003-12-02 | Nisshin Steel Co Ltd | 防火パネルの製造方法及び発泡性樹脂組成物の調製装置 |
JP2005059370A (ja) * | 2003-08-12 | 2005-03-10 | Japan Steel Works Ltd:The | タンデム型マルチ押出成形方法および装置 |
WO2009066621A1 (ja) | 2007-11-20 | 2009-05-28 | Asahi Kasei Construction Materials Corporation | 熱硬化性樹脂発泡板の製造方法 |
JP5112940B2 (ja) | 2008-04-24 | 2013-01-09 | 旭化成建材株式会社 | 熱硬化性樹脂発泡板の製造方法 |
WO2011074611A1 (ja) | 2009-12-18 | 2011-06-23 | 旭化成建材株式会社 | フェノール樹脂発泡板及びその製造方法 |
WO2012053493A1 (ja) * | 2010-10-18 | 2012-04-26 | 旭化成建材株式会社 | フェノール樹脂発泡板 |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5795450B1 (ja) * | 2014-11-18 | 2015-10-14 | 旭化成建材株式会社 | フェノール樹脂発泡体積層板及びその製造方法 |
JP2016180103A (ja) * | 2015-03-24 | 2016-10-13 | 積水化学工業株式会社 | フェノール樹脂発泡体 |
JP2017075314A (ja) * | 2015-10-13 | 2017-04-20 | 積水化学工業株式会社 | フェノール樹脂発泡板 |
JP2017160464A (ja) * | 2015-10-13 | 2017-09-14 | 積水化学工業株式会社 | フェノール樹脂発泡板 |
JP6163601B1 (ja) * | 2016-12-19 | 2017-07-12 | 積水化学工業株式会社 | フェノール樹脂発泡板及びその製造方法 |
JP6123015B1 (ja) * | 2016-12-19 | 2017-04-26 | 積水化学工業株式会社 | フェノール樹脂発泡板及びその製造方法 |
JP2018094895A (ja) * | 2016-12-19 | 2018-06-21 | 積水化学工業株式会社 | フェノール樹脂発泡板及びその製造方法 |
JP2018095820A (ja) * | 2016-12-19 | 2018-06-21 | 積水化学工業株式会社 | フェノール樹脂発泡板及びその製造方法 |
JP6159468B1 (ja) * | 2016-12-20 | 2017-07-05 | 積水化学工業株式会社 | フェノール樹脂発泡体およびその製造方法 |
JP6159467B1 (ja) * | 2016-12-20 | 2017-07-05 | 積水化学工業株式会社 | フェノール樹脂発泡体およびその製造方法 |
JP2018094898A (ja) * | 2016-12-20 | 2018-06-21 | 積水化学工業株式会社 | フェノール樹脂発泡体およびその製造方法 |
JP2018095826A (ja) * | 2016-12-20 | 2018-06-21 | 積水化学工業株式会社 | フェノール樹脂発泡体およびその製造方法 |
JP2020139088A (ja) * | 2019-02-28 | 2020-09-03 | 旭化成建材株式会社 | フェノール樹脂発泡体の製造方法 |
JP7221083B2 (ja) | 2019-02-28 | 2023-02-13 | 旭化成建材株式会社 | フェノール樹脂発泡体の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
CA2901973A1 (en) | 2014-09-04 |
CN105073860B (zh) | 2018-09-21 |
US20160002428A1 (en) | 2016-01-07 |
KR20210027544A (ko) | 2021-03-10 |
EP2963081A4 (en) | 2016-12-07 |
KR20150082476A (ko) | 2015-07-15 |
CA2901973C (en) | 2019-03-12 |
KR102026505B1 (ko) | 2019-09-27 |
EP2963081A1 (en) | 2016-01-06 |
CN105073860A (zh) | 2015-11-18 |
JP6259811B2 (ja) | 2018-01-10 |
KR20180083962A (ko) | 2018-07-23 |
EP2963081B1 (en) | 2019-10-16 |
KR102374180B1 (ko) | 2022-03-14 |
JPWO2014133023A1 (ja) | 2017-02-02 |
US9957368B2 (en) | 2018-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6259811B2 (ja) | フェノール樹脂発泡板及びその製造方法 | |
JP5587340B2 (ja) | フェノール樹脂発泡板及びその製造方法 | |
JPWO2012053493A1 (ja) | フェノール樹脂発泡板 | |
JP2009262475A (ja) | フェノール樹脂発泡体積層板の製造方法 | |
JP2009263468A (ja) | 熱硬化性樹脂発泡板の製造方法 | |
JP5809738B1 (ja) | フェノール樹脂発泡体積層板及びその製造方法 | |
JP6946038B2 (ja) | フェノール樹脂発泡体積層板及びその製造方法 | |
JP7027078B2 (ja) | フェノール樹脂発泡体積層板及びその製造方法 | |
JP7221083B2 (ja) | フェノール樹脂発泡体の製造方法 | |
TWI801964B (zh) | 酚樹脂發泡體 | |
WO2023204283A1 (ja) | フェノール樹脂発泡体およびその積層板 | |
JP7010643B2 (ja) | フェノール樹脂発泡体積層板 | |
JP7014566B2 (ja) | フェノール樹脂発泡板およびその製造方法 | |
JP6163602B1 (ja) | フェノール樹脂発泡体およびフェノール樹脂発泡体の製造方法 | |
JP2015151484A (ja) | フェノール樹脂発泡体の製造方法 | |
WO2023017603A1 (ja) | フェノール樹脂発泡体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480010654.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14757793 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015502964 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20157014746 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014757793 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2901973 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14770023 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2015141079 Country of ref document: RU Kind code of ref document: A |