WO2014132725A1 - 色素増感太陽電池 - Google Patents

色素増感太陽電池 Download PDF

Info

Publication number
WO2014132725A1
WO2014132725A1 PCT/JP2014/051765 JP2014051765W WO2014132725A1 WO 2014132725 A1 WO2014132725 A1 WO 2014132725A1 JP 2014051765 W JP2014051765 W JP 2014051765W WO 2014132725 A1 WO2014132725 A1 WO 2014132725A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
dye
solar cell
transparent conductive
conductive film
Prior art date
Application number
PCT/JP2014/051765
Other languages
English (en)
French (fr)
Inventor
伸次 大栢
雅彦 古川
Original Assignee
日本写真印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本写真印刷株式会社 filed Critical 日本写真印刷株式会社
Publication of WO2014132725A1 publication Critical patent/WO2014132725A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • H01G9/2081Serial interconnection of cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solar cell, and more particularly to a dye-sensitized solar cell excellent in power generation efficiency.
  • the dye-sensitized solar cell is a solar cell that is low in production cost and has few environmental load problems.
  • the dye-sensitized solar cell 100 has a configuration in which a plurality of electrode cells 101 are electrically connected.
  • the electrode cell 101 has a configuration in which an electrolyte layer 110 is sandwiched between a photoelectrode 120 and a counter electrode 130.
  • a sealant 140 is formed on the periphery of the electrode cell 2 so that the electrolyte layer 110 does not leak from the electrode cell 101.
  • the photoelectrode 120 has a configuration in which a power generation layer 123 and a current collection layer 124 are laminated on a transparent conductive film 122.
  • the transparent conductive film 122 has a structure laminated on the transparent substrate 121, and the power generation layer 123 has a structure in which a dye is supported on a porous layer made of titanium oxide or the like.
  • the current collecting layer 124 is disposed in the vicinity of the power generation layer 123 in order to efficiently move electrons generated in the power generation layer 123 to the counter electrode 130 side, and is mainly made of a material having high conductivity such as silver.
  • the counter electrode 130 has a configuration in which a catalyst layer 133 is laminated on a transparent conductive film 132.
  • the transparent conductive film 132 is stacked on the transparent substrate 131.
  • electrons generated in the power generation layer 123 move to the counter electrode 130 side via the current collection layer 124, and function as the dye-sensitized solar cell 100.
  • the dye-sensitized solar cell 100 has a problem of low power generation efficiency. Therefore, attempts have been made to increase the area of the power generation layer 123 to obtain the dye-sensitized solar cell 100 with high power generation efficiency. However, even if the area of the power generation layer 123 is increased, electrons generated at a location distant from the current collection layer 124 (for example, electrons generated at the point A in FIG. 4) are electrolytes before reaching the current collection layer 124. There is a problem that it is not possible to obtain the dye-sensitized solar cell 100 which is trapped by 110 iodine and has high power generation efficiency.
  • an object of the present invention is to provide a dye-sensitized solar cell with high power generation efficiency.
  • the present invention is configured as follows.
  • a dye-sensitized solar cell in which an electrolyte layer is sandwiched between a photoelectrode and a counter electrode, The photoelectrode is A first transparent conductive film; A power generation layer laminated on a central portion of the first transparent conductive film; A first current collecting layer laminated so as to surround the power generation layer;
  • a dye-sensitized solar cell comprising:
  • a dye-sensitized solar cell in which an electrolyte layer is sandwiched between a photoelectrode and a counter electrode, The counter electrode is A second transparent conductive film; A catalyst layer formed in a central portion of the second transparent conductive film; a second current collecting layer laminated so as to surround the catalyst layer;
  • a dye-sensitized solar cell comprising:
  • a dye-sensitized solar cell in which an electrolyte layer is sandwiched between a photoelectrode and a counter electrode,
  • the photoelectrode is A first transparent conductive film;
  • With The counter electrode is A second transparent conductive film;
  • a dye-sensitized solar cell comprising:
  • the cross-sectional view provides the dye-sensitized solar cell according to claim 3, wherein the first and second current collectors are laminated on the same plane.
  • a dye-sensitized solar cell in which a plurality of electrode cells each including a photoelectrode and a counter electrode arranged to face the photoelectrode, and the electrolyte layer sandwiched between the photoelectrode and the counter electrode are connected in series.
  • the photoelectrode is A first transparent conductive film; A power generation layer laminated on a central portion of the first transparent conductive film; A first current collecting layer stacked so as to surround the power generation layer,
  • the counter electrode is A second transparent conductive film; A catalyst layer formed at the center of the second transparent conductive film; and a second current collecting layer that surrounds the catalyst layer and is laminated on the same plane as the first current collector in a sectional view; Provided is a dye-sensitized solar cell in which the first current collecting layer disposed in one electrode cell and the second current collecting layer of another electrode cell adjacent to the one electrode cell are electrically connected. .
  • the dye-sensitized solar cell of the present invention is a dye-sensitized solar cell with high power generation efficiency.
  • FIG. 2 is a cross-sectional view taken along the line AA ′ of FIG. It is a top view by the side of a counter electrode.
  • FIG. 4 is a cross-sectional view taken along the line BB ′ of FIG. It is sectional drawing of a dye-sensitized solar cell. It is a graph which shows an experimental result. It is the table
  • FIG. 1 is a plan view of the photoelectrode plate 10.
  • FIG. 2 is a cross-sectional view taken along the line AA ′ of FIG.
  • the photoelectrode plate 10 includes a plurality of photoelectrodes 11 partitioned by laser lines.
  • the photoelectrode 11 includes a first transparent conductive film 12, a first current collecting layer 13, a first insulating layer 14, a power generation layer 15, and a first connection portion 16.
  • the first transparent conductive film 12 is laminated on the first transparent substrate 50, and the first current collecting layer 13 and the power generation layer 15 are peripheral portions of the first transparent conductive film 12. And are stacked in the center.
  • the first insulating layer 14 is laminated on the first transparent conductive film 12 so as to cover the first current collecting layer 13.
  • the photoelectrode 11 has a first connection portion 16 at one end thereof.
  • the 1st connection part 16 is for moving the electron which generate
  • the first connection unit 16 is connected to the second connection unit 26.
  • FIG. 3 is a plan view of the counter electrode plate. 4 is a cross-sectional view taken along the line BB ′ of FIG.
  • the counter electrode plate 20 includes a plurality of counter electrodes 21 partitioned by laser lines.
  • the counter electrode 21 includes a second transparent conductive film 22, a second current collecting layer 23, a second insulating layer 24, a catalyst layer 25, and a second connection portion 26.
  • the counter electrode 21 is stacked in such a manner that the first current collecting layer 13 is the second current collecting layer 23, the first insulating layer 14 is the second insulating layer 24, the power generation layer 15 is the catalyst layer 25, and the first connecting portion. This is the same as in the case of the photoelectrode 11 except that 16 is replaced with the second connection portion 26.
  • FIG. 5 is a cross-sectional view of the dye-sensitized solar cell 1 in which the photoelectrode plate 10 and the counter electrode plate 20 are combined.
  • the dye-sensitized solar cell 1 has a configuration in which electrode cells are connected in series. One section surrounded by a thick frame is one unit of the electrode cell. In FIG. 5, seven electrode cells are arranged in the dye-sensitized solar cell 1.
  • the electrode cell 2 includes a photoelectrode 11, a counter electrode 21, an electrolyte layer 30, and a sealing layer 40.
  • the configurations of the photoelectrode 11 and the counter electrode 21 are as described above.
  • the sealing layer 40 is laminated so as to cover the first insulating layer 14 and the second insulating layer 24, connect the first insulating layer 14 and the second insulating layer 24, and seal the electrode cell 2.
  • the sealing layer 40 protects the first insulating layer 14 and the second insulating layer 24 from the electrolyte layer, and simultaneously stores the electrolyte layer 30 in the electrode cell 2. .
  • first current collecting layer 13 and the second current collecting layer 23 are arranged on the same plane in a sectional view. Further, the first current collecting layer 13 is electrically connected to the second current collecting layer 23 ′ of the electrode cell 2 ′ adjacent to the electrode cell 2. The first current collecting layer 13 and the second current collecting layer 23 ′ are electrically connected through the first connecting portion 16 and the second connecting portion 26. The second current collecting layer 23 is electrically connected to the first current collecting layer 13 ′′ of the electrode cell 2 ′′ adjacent to the electrode cell 2. The connection between the second current collecting layer 23 and the first current collecting layer 13 ′′ is performed using the first connecting portion 16 and the second connecting portion 26.
  • the electromotive force and power generation efficiency of the dye-sensitized solar cell 1 are improved.
  • the reason why the electromotive force is improved is that the first current collecting layer 13 and the second current collecting layer 23 'are connected to each other, so that a series connection between the electrode cells 2 becomes possible.
  • the power generation efficiency is improved because the first current collecting layer 13 and the second current collecting layer 23 are stacked on the same plane in the cross-sectional view, so that the power generation efficiency disposed on the same plane in the cross-sectional view.
  • the ratio between the layer 15 and the catalyst layer 25 is increased. This is because efficient exchange of electrons becomes possible.
  • the first current collecting layer 13 is stacked on the first transparent conductive film 12 along the periphery of the power generation layer 15.
  • the first current collecting layer 13 is compared with the case of the prior art (when the current collecting layer is formed in the vicinity of one side surface of the power generation layer).
  • the distance between the current collection layer 13 and the power generation layer 16 is relatively short. As a result, the rate at which electrons generated in the power generation layer 15 are trapped by the electrolyte layer 30 is reduced, so that the power generation efficiency of the dye-sensitized solar cell 1 is improved.
  • the second current collecting layer 23 is laminated on the second transparent conductive film 22 along the periphery of the catalyst layer 25. If comprised as mentioned above, compared with the case where the 2nd current collection layer 23 is formed in the vicinity of the one side surface of the catalyst layer 25, electric power generation efficiency will increase. The reason for this is not clear, but it is thought that the above configuration promotes the electron transfer from the second connection portion 26 to the catalyst layer 25.
  • the first transparent substrate 50 and the second transparent substrate 60 are preferably transparent.
  • the thickness is 0.1 to 5 mm.
  • the first transparent conductive film 12 and the second transparent conductive film 22 are made of an organic material or an inorganic material.
  • a conductive polymer material can be used.
  • the conductive polymer materials it is preferable to use a water-dispersed polythiophene derivative (PEDOT: PSS) prepared using polystyrene sulfonic acid (PSS) and 3,4-ethylenedioxythiophene (EDOT).
  • PES polystyrene sulfonic acid
  • EDOT 3,4-ethylenedioxythiophene
  • the water-dispersed polythiophene derivative (PEDOT: PSS) has high transparency and high conductivity. Therefore, by using a water-dispersed polythiophene derivative (PEDOT: PSS) as a transparent conductive layer, light from the outside can be efficiently taken into the dye-sensitized solar cell 1.
  • an inorganic oxide such as fluorine-doped tin oxide, indium tin oxide, gallium-doped zinc oxide, aluminum-doped zinc oxide, or niobium-doped titanium oxide can be used.
  • the thickness of the first transparent conductive film 12 and the second transparent conductive film 22 is preferably about 0.3 to 2 ⁇ m. If it is less than 0.3 ⁇ m, the sheet resistance becomes high, and the resistance value of the dye-sensitized solar cell 1 becomes high.
  • the transparent conductive layer 11 is formed by a CVD method, a sputtering method, a spray method, or the like.
  • the first current collecting layer 13 and the second current collecting layer 23 are preferably made of a material having better conductivity than the first transparent conductive film 12 and the second transparent conductive film 22, respectively. Examples thereof include metals such as silver, copper, platinum, nickel, aluminum and iron, alloys containing at least one of the above metals, and carbon.
  • the first current collecting layer 13 and the second current collecting layer 23 are formed on the first transparent conductive film 12 and the second transparent conductive film 22 by a heating vapor deposition method, a sputtering method, a CVD method, a printing method using a conductive paste, or the like.
  • the conductive paste a paste in which metal fine powder having high electrical conductivity such as gold, silver, copper, platinum, nickel is mixed is used.
  • the power generation layer 15 is made of a metal oxide semiconductor film carrying a sensitizing dye.
  • titanium oxide (TiO2) is optimal, and as other materials, titanium (Ti), zinc (Zn), tin (Sn), niobium (Nb), indium (In), yttrium (Y ), Lanthanum (La), zirconium (Zr), tantalum (Ta), hafnium (Hf), strontium (Sr), barium (Ba), calcium (Ca), vanadium (V), tungsten (W), etc.
  • Titanium oxide or the like is preferable because it has an electronic energy band gap in the range of 2 to 5 eV, which is larger than the visible light energy.
  • an organic dye or a metal complex dye can be used as the sensitizing dye.
  • the organic dye include acridine, azo, indigo, quinone, coumarin, merocyanine, and phenylxanthene dyes.
  • the metal complex dye a ruthenium dye is preferable, and a ruthenium bipyridine dye and a ruthenium terpyridine dye, which are ruthenium complexes, are particularly preferable.
  • visible light (wavelength of about 400 to 800 nm) can hardly be absorbed with an oxide semiconductor film alone, but by supporting a ruthenium complex, visible light can be largely taken in and photoelectrically converted.
  • the catalyst layer 25 is made of platinum, carbon, a polythiophene derivative, or the like. Among the above, it is preferable to use platinum. By using platinum, conversion efficiency and transparency are improved.
  • the thickness of the catalyst layer 25 is preferably 0.1 to 100 nm.
  • the catalyst layer 25 is formed on the second transparent conductive film 22 by a method such as doctor blade, screen printing, spray coating, or ink jet.
  • the electrolyte layer 30 is preferably a liquid electrolyte or a gel electrolyte. Photoelectric conversion efficiency is improved by using a liquid electrolyte or a gel electrolyte excellent in charge transport characteristics.
  • the electrolyte layer is composed of a solid electrolyte such as a polymer electrolyte, a conductive polymer such as polythiophene / polypyrrole or polyphenylene vinylene, or an organic molecular electron transport agent such as a fullerene derivative, a pentacene derivative, a perylene derivative, or a triphenyldiamine derivative. May be.
  • the electrolyte layer contains iodine / iodide salt, bromine / bromide salt, cobalt complex, potassium ferrocyanide, and the like.
  • the thickness of the electrolyte layer is preferably 1 to 500 ⁇ m. If it exceeds 500 ⁇ m, the resistance increases during charge transport, and the dye-sensitized solar cell 1 cannot be made highly efficient.
  • ⁇ Sealing layer> examples of the material of the sealing layer 40 include resin adhesives such as acrylate-based UV curable resins, polyethylene, polypropylene, epoxy resins, fluorine resins, and silicone resins, or inorganic adhesives such as glass frit and ceramics.
  • the thickness (height) of the sealing layer 40 is preferably 0.5 to 500 ⁇ m.
  • the sealing layer 40 is formed by a method such as hot pressing or UV curing.
  • Example 1 A dye-sensitized solar cell was produced by the following procedure.
  • Titanium paste was screen printed to a film thickness of 4 ⁇ m. This was fired at 500 ° C. to form a power generation layer.
  • the electrode on which the power generation layer was formed was coated with a dye solution [dye: [trade name: SK-1 / company name: manufactured by Kobe Natural Chemicals Co., Ltd.], concentration: 0.3M, solvent: acetonitrile / t-butanol 1/1 ( The pigment was supported on the titanium oxide of the power generation layer by immersing in a mixed solvent of v / v) at 40 ° C. for 2 hours.
  • a silver paste was screen printed with a thickness of 4 ⁇ m around the power generation layer to obtain an anode electrode in which the first current collecting layer was laminated around the power generation layer.
  • a platinum-coated titanium plate on which platinum is laminated as a catalyst layer is prepared, and silver paste is screen-printed at a thickness of 4 ⁇ m around the catalyst layer, so that a second layer is formed around the catalyst layer.
  • a cathode electrode on which a current collecting layer was laminated was obtained. After the electrolyte solution injection hole was formed in the cathode electrode, an adhesive was applied around the second current collecting layer, and the cathode electrode and the anode electrode were bonded together with the adhesive. At this time, both electrodes were arranged in parallel at a constant interval of about 50 ⁇ m.
  • Comparative Example 1 A silver paste was screen-printed only on one side of the power generation layer, and an anode electrode in which the current collecting layer was laminated only on one side of the power generation layer was used. Except for this, an experimental cell was completed in the same manner as in Example 1. For the experimental cell, the conversion efficiency was measured in the same manner as in Example 1. The results are shown in FIGS.
  • Example 1 has large conversion efficiency (%) compared with the dye-sensitized solar cell of the comparative example 1.
  • Electrode cell 10 Photoelectrode plate 11: Photoelectrode 12: First transparent conductive film 13: 1st current collection layer 14: 1st insulating layer 15: Power generation layer 16: 1st connection part 20: Counter electrode plate 21: Counter electrode 22: 2nd transparent conductive film 23: 2nd current collection layer 24: 2nd insulation layer 25: catalyst layer 26: second connection part 30: electrolyte layer 40: sealing layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

【課題】本発明は太陽電池に関し、特に発電効率に優れた色素増感太陽電池に関する。 【解決手段】本発明の色素増感太陽電池1は、光電極11と対極21によって電解質層30が挟持された色素増感型太陽電池1であって、前記光電極11は、第1透明導電膜12と、前記第1透明導電膜12の中央部に積層される発電層15と、前記発電層15の周囲を取り囲むように積層される第1集電層13とを備える色素増感型太陽電池1であるように構成した。

Description

色素増感太陽電池
 本発明は太陽電池に関し、特に発電効率に優れた色素増感太陽電池に関する。
 環境問題・資源問題などを背景に、クリーンエネルギーとしての太陽電池が注目を集めている。しかしながら、従来のシリコン系太陽電池は、製造コストが高い、原料供給が不十分などの課題が残されており、大幅普及には至っていない。また、CIS系などの化合物系太陽電池は、極めて高い光電変換効率を示すなど優れた特徴を有しているが、コストや環境負荷などの問題がやはり大幅普及への障害となっている。
 一方、色素増感太陽電池は、製造コストが安く、環境負荷の問題が少ない太陽電池である。図8に示すように、色素増感太陽電池100は、複数の電極セル101が電気的に接続された構成からなる。電極セル101は、電解質層110が光電極120と対極130に挟持された構成からなる。なお、電極セル2の周縁には、電解質層110が電極セル101から漏れ出ないように封止剤140が形成されている。
 光電極120は、透明導電膜122の上に発電層123と集電層124が積層された構成からなる。なお、透明導電膜122は透明基板121の上に積層された構成からなり、発電層123は、酸化チタン等からなる多孔質の層に色素が担持された構成からなる。集電層124は、発電層123で発生した電子を効率的に対極130側に移動させるために発電層123の近傍に配置され、主に銀などの導電率の高い材料からなる。対極130は、透明導電膜132の上に触媒層133が積層された構成からなる。なお、透明導電膜132は、透明基板131の上に積層されている。
 上記のように構成することで、発電層123で発生した電子が集電層124を介して対極130側へ移動し、色素増感太陽電池100として機能を発揮するようになっている。
 しかし、色素増感太陽電池100には、発電効率が低いという問題がある。そこで、発電層123の面積を大きして発電効率の高い色素増感太陽電池100を得ようとする試みがなされている。しかし、発電層123の面積を大きくしても、集電層124から離れた箇所で発生した電子(例えば、図4におけるA地点で発生した電子)は、集電層124に到達するまでに電解質110のヨウ素にトラップされ、発電効率の高い色素増感太陽電池100を得ることはできないという問題がある。
特開2010-113905
 従って、本発明の目的は、発電効率の高い色素増感太陽電池を提供する。
 上記目的を達成するために、本発明は以下のように構成する。
 以下に、本発明にかかる実施の形態に基づいて詳細に説明する。
 本発明の第1態様によれば、
 光電極と対極によって電解質層が挟持された色素増感型太陽電池であって、
 前記光電極は、
 第1透明導電膜と、
 前記第1透明導電膜の中央部に積層される発電層と、
 前記発電層の周囲を取り囲むように積層される第1集電層と、
 を備える色素増感型太陽電池を提供する。
 本発明の第2態様によれば、
 光電極と対極によって電解質層が挟持された色素増感型太陽電池であって、
 前記対極は、
 第2透明導電膜と、
 前記第2透明導電膜の中央部に形成される触媒層と
 前記触媒層の周囲を取り囲むように積層される第2集電層と、
 を備える色素増感型太陽電池を提供する。
 本発明の第3態様によれば、
 光電極と対極によって電解質層が挟持された色素増感型太陽電池であって、
 前記光電極は、
 第1透明導電膜と、
 前記第1透明導電膜の中央部に積層される発電層と、
 前記発電層の周囲を取り囲むように積層される第1集電層と、
 を備え、
 前記対極は、
 第2透明導電膜と、
 前記第2透明導電膜の中央部に形成される触媒層と
 前記触媒層の周囲を取り囲むように積層される第2集電層と、
 を備える色素増感型太陽電池を提供する。
 本発明の第4態様によれば、
 断面視において、前記第1集電線と前記第2集電線が同一平面上に積層されている請求項3の色素増感型太陽電池を提供する。
 本発明の第5態様によれば、
 光電極と前記光電極と対向するように配置される対極と前記光電極と前記対極に挟持される電解質層とを備える電極セルが直列的に複数接続された色素増感型太陽電池であって、
 前記光電極は、
 第1透明導電膜と、
 前記第1透明導電膜の中央部に積層される発電層と、
 前記発電層の周囲を取り囲むように積層される第1集電層とを備え、
 前記対極は、
 第2透明導電膜と、
 前記第2透明導電膜の中央部に形成される触媒層と
 前記触媒層の周囲を取り囲み、断面視において前記第1集電線と同一平面上に積層される第2集電層とを備え、
 一の電極セルに配置された前記第1集電層と、前記一の電極セルと隣接する他の電極セルの第2集電層とが電気的に接続される色素増感太陽電池を提供する。
 本発明の色素増感太陽電池は、発電効率の高い色素増感太陽電池である。
光電極側の平面図である。 図1のA-A'断面における断面図である。 対極側の平面図である。 図3のB-B'断面における断面図である。 色素増感太陽電池の断面図である。 実験結果を示すグラフである。 図6の実験結果を解析した表である。 従来の色素増感太陽電池の断面図である。
 下記で、本発明に係る実施形態を図面に基づいてさらに詳細に説明する。なお、本発明の実施例に記載した部位や部分の寸法、材質、形状、その相対位置などは、とくに特定的な記載がない限り、この発明の範囲をそれらのみに限定する趣旨のものではなく、単なる説明例にすぎない。
 図1は、光電極板10の平面図である。図2は、図1のA-A'断面図である。図1に示すように、光電極板10は、レーザーラインによって区画化された複数の光電極11からなる。光電極11は、第1透明導電膜12、第1集電層13、第1絶縁層14、発電層15、および第1接続部16からなる。図1、図2に示すように、第1透明導電膜12は、第1透明基板50の上に積層され、第1集電層13と発電層15は、第1透明導電膜12の周縁部と中央部にそれぞれ積層されている。第1絶縁層14は、第1集電層13を覆うように第1透明導電膜12上に積層されている。
 再び図1に示すように、光電極11は、その一方端に第1接続部16を備えている。第1接続部16は、発電層15で発生し、第1集電層13に移動してきた電子を対極21側に移動させるためのものである。なお、第1接続部16は、第2接続部26と接続している。
 図3は、対極板の平面図である。図4は、図3のB-B'断面図である。図3に示すように、対極板20は、レーザーラインによって区画化された複数の対極21から構成される。図3、図4に示すように、対極21は、第2透明導電膜22、第2集電層23、第2絶縁層24、触媒層25および第2接続部26からなる。なお、対極21の積層配置は、第1集電層13が第2集電層23に、第1絶縁層14が第2絶縁層24に、発電層15が触媒層25に、第1接続部16が第2接続部26に置き換わったことを除いて光電極11の場合と同様である。
 図5は、光電極板10と対極板20を組合せた色素増感太陽電池1の断面図である。図5に示すように、色素増感太陽電池1は、電極セルが直列的に接続された構成からなる。なお、太枠で囲まれた1区画が電極セルの一単位である。図5では、色素増感太陽電池1の中に7つの電極セルが配置されている。
 電極セル2は、光電極11、対極21、電解質層30、および封止層40から構成されている。光電極11、対極21の構成は、上述の通りである。封止層40は、第1絶縁層14と第2絶縁層24を覆い、かつ第1絶縁層14と第2絶縁層24を連結し、電極セル2を封止するように積層されている。上記のように構成されることにより、封止層40は、第1絶縁層14と第2絶縁層24を電解質層から保護するのと同時に、電解質層30を電極セル2内に保存している。
 また、第1集電層13と第2集電層23は、断面視において同一平面上に配置されている。さらに、第1集電層13は、電極セル2と隣接する電極セル2'の第2集電層23'と電気的に接続されている。第1集電層13と第2集電層23'の電気的な接続は、第1接続部16と第2接続部26を介してなされている。なお、第2集電層23は、電極セル2と隣接する電極セル2''の第1集電層13''と電気的に接続されている。第2集電層23と第1集電層13''の接続は、第1接続部16と第2接続部26を用いて行われている。
 このように、第1集電層13と第2集電層23が構成されていると、色素増感太陽電池1の起電力と発電効率が向上する。起電力が向上するのは、第1集電層13と第2集電層23'が接続されることにより、電極セル2間での直列的な接続が可能となるからである。また、発電効率が向上するのは、第1集電層13と第2集電層23とが断面視において同一平面上に積層されていることにより、断面視において同一平面上に配置される発電層15と触媒層25の割合が大きくなる。そのため、効率的な電子のやりとりが可能となるからである。
 また、図1、図5に示すように、第1集電層13は、発電層15の周囲に沿って第1透明導電膜12上に積層されている。第1集電層13が、発電層15の周囲に沿って積層されていると、従来技術の場合(集電層が発電層の一方側面の近傍に形成される場合)と比較して、第1集電層13と発電層16との距離が相対的に近くなる。その結果、電解質層30によって発電層15で発生した電子がトラップされる割合が減少するので、色素増感太陽電池1の発電効率は向上する。
 さらに、図3、図5に示すように、第2集電層23は触媒層25の周囲に沿って第2透明導電膜22上に積層されている。上記のように構成されると、触媒層25の一方側面の近傍に第2集電層23が形成されている場合と比較して、発電効率が増大する。その理由については定かではないが、上記のように構成すると第2接続部26から触媒層25への電子移動が促進されるためではないかと思われる。
 以下では、上記で示した各部材について説明する。 
 <透明基板>
 第1透明基板50、第2透明基板60は透明性を有するものであることが好ましい。例えば、透明なガラス板やプラスチック板などである。厚みは0.1~5mmである。
 <透明導電層>
 第1透明導電膜12、第2透明導電膜22は、有機材料や無機材料からなる。有機材料としては、導電性高分子材料を使用できる。上記導電性高分子材料の中でも、ポリスチレンスルホン酸(PSS)と3,4-エチレンジオキシチオフェン(EDOT)を用いて作成される水分散ポリチオフェン誘導体(PEDOT:PSS)を用いることが好ましい。水分散ポリチオフェン誘導体(PEDOT:PSS)は透明性が高く、導電性も高い。そのため、水分散ポリチオフェン誘導体(PEDOT:PSS)を透明導電層として用いることによって、色素増感太陽電池1内に外部からの光を効率的に取り込むことができる。
 無機材料としては、フッ素ドープ錫酸化物、インジウム錫酸化物、ガリウムドープ亜鉛酸化物、アルミドープ亜鉛酸化物、またはニオブドープチタン酸化物などの無機酸化物を使用することができる。
 なお、第1透明導電膜12、第2透明導電膜22の厚みは、それぞれ0.3~2μm程度が好ましい。0.3μm未満では、シート抵抗が高くなり、色素増感太陽電池1の抵抗値が高くなる。なお、透明導電層11は、CVD法、スパッタリング法、スプレー法等によって形成される。
 <集電層>
 第1集電層13、第2集電層23は、それぞれ第1透明導電膜12、第2透明導電膜22よりも導電性の良い材料から構成することが好ましく、具体的には、金、銀、銅、白金、ニッケル、アルミニウム、鉄等の金属、前記金属を1種以上含む合金、カーボンなどが挙げられる。第1集電層13、第2集電層23は、加熱蒸着法、スパッタ法、CVD 法、導電性ペーストを用いた印刷法等によって、第1透明導電膜12、第2透明導電膜22上に設けられる。導電性ペーストとしては、金、銀、銅、白金、ニッケルなどの電気伝導度の高い金属微粉末を混入させたものが用いられる。
 <発電層>
 発電層15は、増感色素が担持された金属酸化物の半導体膜からなる。金属酸化物としては、酸化チタン(TiO2)が最適であり、他の材料としては、チタン(Ti),亜鉛(Zn),錫(Sn),ニオブ(Nb),インジウム(In),イットリウム(Y),ランタン(La),ジルコニウム(Zr),タンタル(Ta),ハフニウム(Hf),ストロンチウム(Sr),バリウム(Ba),カルシウム(Ca),バナジウム(V),タングステン(W)等の金属元素の少なくとも1種以上の金属酸化物半導体がよく、例えば、TiO2、WO3、ZnO、Nb2O5、Ta2O5、またはSrTiO3のうち少なくとも1つから成る。また窒素(N),炭素(C),フッ素(F),硫黄(S),塩素(Cl),リン(P)等の非金属元素の1種以上を含有していてもよい。酸化チタン等はいずれも電子エネルギーバンドギャップが可視光のエネルギーより大きい2~5eVの範囲にあり、好ましい。
 増感色素としては、有機色素または金属錯体色素を使用することができ、有機色素としては、アクリジン系、アゾ系、インジゴ系、キノン系、クマリン系、メロシアニン系、フェニルキサンテン系の色素が挙げられ、金属錯体色素では、ルテニウム系色素が好ましく、特にルテニウム錯体であるルテニウムビピリジン色素およびルテニウムターピリジン色素が好ましい。例えば、酸化物半導体膜だけでは、可視光(400~800nm程度の波長)を殆ど吸収できないが、ルテニウム錯体を担持させることにより、大幅に可視光まで取り込んで光電変換できるようになる。
 <触媒層>
 触媒層25は、白金、炭素、ポリチオフェン誘導体などからなる。上記の中でも、白金を用いることが好ましい。白金を用いることによって、変換効率と透明性が向上する。触媒層25の厚みは0.1~100 nmであることが好ましい。なお、触媒層25はドクターブレード、スクリーン印刷、スプレー塗布、インクジェットなどの方法によって、第2透明導電膜22の上に形成される。
 <電解質層>
 電解質層30は、液状電解質もしくはゲル状電解質を用いることが好ましい。電荷の輸送特性に優れる液状電解質もしくはゲル状電解質を用いることによって、光電変換効率が向上する。また、電解質層はポリマー電解質等の固体電解質、ポリチオフェン・ポリピロール,ポリフェニレンビニレン等の導電性ポリマー、またはフラーレン誘導体,ペンタセン誘導体,ペリレン誘導体,トリフェニルジアミン誘導体等の有機分子電子輸送剤から成るものであってもよい。なお、電解質層はヨウ素/ヨウ化物塩,臭素/臭化物塩,コバルト錯体およびフェロシアン化カリウム等を含む。電解質層の厚みは1~500μmであることが好ましい。500μmを超えると電荷輸送時に抵抗が大きくなり、色素増感太陽電池1の高効率化ができない。
 <封止層>
 封止層40の材質としては、アクリレート系のUV硬化樹脂、ポリエチレン,ポリプロピレン,エポキシ樹脂,フッ素樹脂またはシリコーン樹脂等の樹脂接着剤、もしくはガラスフリット,セラミックス等の無機接着剤を挙げることができる。封止層40の厚み(高さ)は、0.5~500μmであることが好ましい。封止層40はホットプレス、UV硬化などの方法によって形成される。
 《実施例1》
(1) 以下の手順により色素増感太陽電池を作製した。
 i. 基板(フッ素ドープ酸化スズ膜付ガラス板、35mm×33mm)上の1辺1cmの正方形面積部分にスクリーン印刷により酸化チタンペーストを膜厚8μmにスクリーン印刷し、乾燥後、その上にさらに酸化チタンペーストを膜厚4μmにスクリーン印刷した。これを500℃で焼成することで、発電層を形成した。
 ii. 発電層を形成した電極を色素溶液[ 色素:[商品名:SK-1/会社名:神戸天然化学株式会社製]、濃度:0.3M、溶媒:アセトニトリル/t-ブタノール1/1(v/v)の混合溶媒]に40℃で2時間、浸漬することで、色素を発電層の酸化チタン上に担持させた。
 iii. 上記発電層の周囲に銀ペーストを膜厚4μmの厚さでスクリーン印刷し、発電層の周囲に第1集電層が積層されたアノード電極を得た。
 iv.次に、触媒層として白金が積層された白金被覆チタン板を用意し、上記触媒層の周囲に銀ペーストを膜厚4μmの厚さでスクリーン印刷することで、触媒層の周囲に第2集電層が積層されたカソード電極を得た。このカソード電極に電解液注入孔を形成したのち、第2集電層の周囲に接着剤を施し、カソード電極とアノード電極とを接着剤により接着した。このとき、両電極が50μm程度の一定間隔を置いて平行に配置されるようにした。
 v. 次いで、電解液注入口より電解液を注入した。ここで、用いた電解液は、ヨウ素0 . 1 M 、の3 - メトキシプロピオニトリルを溶媒とする溶液を用いた。
 vi. 最後に、接着剤を用いて電解液注入孔を封止し、アノード電極上に端子取り出しのためのハンダを塗布して実験用セルを完成させた。
(2) 次いで、上記(1) で得られた実験用セルにつき、1SUN(100mW/cm2)の照射条件下で変換効率(%)などを測定した。その結果を図6、図7に示す。
 図6中、Pmaxは最大出力点、Ipmは最大出力動作電流、Vpmは最大出力動作電圧、FFは曲線因子、Effは変換効率を示す。ここで、Pmax、Ipm、Vpm、FFは、図6に示すグラフから算出した。変換効率(%)については、以下の式により算出した。式:変換効率(%)=100×[(短絡電流密度×開放電圧×曲線因子)/(照射太陽光エネルギー) 
 《比較例1》
 発電層の一方側面のみに銀ペーストをスクリーン印刷し、集電層が発電層の一方側面のみに積層されたアノード電極を用いた。これ以外は、実施例1と同様の方法で実験用セルを完成させた。上記実験用セルについても、実施例1と同様の方法で、変換効率を測定した。その結果を図6、図7に示す。
 図7に示すように、実施例1と比較例1の色素増感太陽電池は、Pmax、Ipm、Vpmにおいて大差はないが、FFが大きく異なっている。そのため、実施例1は比較例1の色素増感太陽電池と比較し、大きな変換効率(%)を有しているのが分かる。
1:色素増感太陽電池
2:電極セル
10:光電極板
11:光電極
12:第1透明導電膜 
13:第1集電層
14:第1絶縁層
15:発電層
16:第1接続部
20:対極板
21:対極
22:第2透明導電膜
23:第2集電層
24:第2絶縁層
25:触媒層
26:第2接続部
30:電解質層
40:封止層

Claims (5)

  1.  光電極と対極によって電解質層が挟持された色素増感型太陽電池であって、
     前記光電極は、
     第1透明導電膜と、
     前記第1透明導電膜の中央部に積層される発電層と、
     前記発電層の周囲を取り囲むように積層される第1集電層と、
     を備える色素増感型太陽電池。
  2.  光電極と対極によって電解質層が挟持された色素増感型太陽電池であって、
     前記対極は、
     第2透明導電膜と、
     前記第2透明導電膜の中央部に形成される触媒層と
     前記触媒層の周囲を取り囲むように積層される第2集電層と、
     を備える色素増感型太陽電池。
  3.  光電極と対極によって電解質層が挟持された色素増感型太陽電池であって、
     前記光電極は、
     第1透明導電膜と、
     前記第1透明導電膜の中央部に積層される発電層と、
     前記発電層の周囲を取り囲むように積層される第1集電層と、
     を備え、
     前記対極は、
     第2透明導電膜と、
     前記第2透明導電膜の中央部に形成される触媒層と
     前記触媒層の周囲を取り囲むように積層される第2集電層と、
     を備える色素増感型太陽電池。
  4.  断面視において、前記第1集電線と前記第2集電線が同一平面上に積層されている請求項3の色素増感型太陽電池。
  5.  光電極と前記光電極と対向するように配置される対極と前記光電極と前記対極に挟持される電解質層とを備える電極セルが直列的に複数接続された色素増感型太陽電池であって、
     前記光電極は、
     第1透明導電膜と、
     前記第1透明導電膜の中央部に積層される発電層と、
     前記発電層の周囲を取り囲むように積層される第1集電層とを備え、
     前記対極は、
     第2透明導電膜と、
     前記第2透明導電膜の中央部に形成される触媒層と
     前記触媒層の周囲を取り囲み、断面視において前記第1集電線と同一平面上に積層される第2集電層とを備え、
     一の電極セルに配置された前記第1集電層と、前記一の電極セルと隣接する他の電極セルの第2集電層とが電気的に接続される色素増感太陽電池。
PCT/JP2014/051765 2013-02-28 2014-01-28 色素増感太陽電池 WO2014132725A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-039975 2013-02-28
JP2013039975A JP2014167888A (ja) 2013-02-28 2013-02-28 色素増感太陽電池

Publications (1)

Publication Number Publication Date
WO2014132725A1 true WO2014132725A1 (ja) 2014-09-04

Family

ID=51427999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051765 WO2014132725A1 (ja) 2013-02-28 2014-01-28 色素増感太陽電池

Country Status (3)

Country Link
JP (1) JP2014167888A (ja)
TW (1) TW201442265A (ja)
WO (1) WO2014132725A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7122930B2 (ja) * 2018-10-12 2022-08-22 シャープ株式会社 太陽電池モジュールおよび太陽電池モジュールの製造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003178817A (ja) * 2001-12-10 2003-06-27 Hitachi Maxell Ltd 光電変換素子及びその製造方法
JP2005135902A (ja) * 2003-10-06 2005-05-26 Ngk Spark Plug Co Ltd 色素増感型太陽電池
JP2007265796A (ja) * 2006-03-28 2007-10-11 Matsushita Electric Works Ltd 光電変換素子
JP2008177022A (ja) * 2007-01-18 2008-07-31 Electric Power Dev Co Ltd 色素増感型太陽電池の電極および色素増感型太陽電池
JP2008177021A (ja) * 2007-01-18 2008-07-31 Electric Power Dev Co Ltd 集電用配線および色素増感型太陽電池
JP2008186692A (ja) * 2007-01-30 2008-08-14 Oki Electric Ind Co Ltd 色素増感太陽電池及びその製造方法
JP2008251518A (ja) * 2007-03-02 2008-10-16 Tokyo Univ Of Science 色素増感型太陽電池用光電極の製造方法および色素増感型太陽電池用光電極、並びに色素増感型太陽電池
JP2009200012A (ja) * 2008-02-25 2009-09-03 Shimane Pref Gov 色素増感太陽電池、その作製方法、及び導電基板上の金属配線を絶縁保護する方法
JP2011222428A (ja) * 2010-04-13 2011-11-04 Fujikura Ltd 色素増感太陽電池モジュール及びその製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003178817A (ja) * 2001-12-10 2003-06-27 Hitachi Maxell Ltd 光電変換素子及びその製造方法
JP2005135902A (ja) * 2003-10-06 2005-05-26 Ngk Spark Plug Co Ltd 色素増感型太陽電池
JP2007265796A (ja) * 2006-03-28 2007-10-11 Matsushita Electric Works Ltd 光電変換素子
JP2008177022A (ja) * 2007-01-18 2008-07-31 Electric Power Dev Co Ltd 色素増感型太陽電池の電極および色素増感型太陽電池
JP2008177021A (ja) * 2007-01-18 2008-07-31 Electric Power Dev Co Ltd 集電用配線および色素増感型太陽電池
JP2008186692A (ja) * 2007-01-30 2008-08-14 Oki Electric Ind Co Ltd 色素増感太陽電池及びその製造方法
JP2008251518A (ja) * 2007-03-02 2008-10-16 Tokyo Univ Of Science 色素増感型太陽電池用光電極の製造方法および色素増感型太陽電池用光電極、並びに色素増感型太陽電池
JP2009200012A (ja) * 2008-02-25 2009-09-03 Shimane Pref Gov 色素増感太陽電池、その作製方法、及び導電基板上の金属配線を絶縁保護する方法
JP2011222428A (ja) * 2010-04-13 2011-11-04 Fujikura Ltd 色素増感太陽電池モジュール及びその製造方法

Also Published As

Publication number Publication date
TW201442265A (zh) 2014-11-01
JP2014167888A (ja) 2014-09-11

Similar Documents

Publication Publication Date Title
KR101279586B1 (ko) 플렉서블 광전극과 그 제조방법, 및 이를 이용한 염료감응 태양전지
Chen et al. A quasi solid-state dye-sensitized solar cell containing binary ionic liquid and polyaniline-loaded carbon black
JP2009110796A (ja) 色素増感光電変換素子モジュールおよびその製造方法ならびに電子機器
Lee et al. Efficient and stable plastic dye-sensitized solar cells based on a high light-harvesting ruthenium sensitizer
JP2009146625A (ja) 色素増感光電変換素子モジュールおよびその製造方法ならびに光電変換素子モジュールおよびその製造方法ならびに電子機器
KR20140003998A (ko) 페로브스카이트 기반 메조다공 박막 태양전지 제조 기술
US9105409B2 (en) Dye-sensitized solar cell and manufacturing method for thereof
Zhang et al. Development of flexible dye-sensitized solar cell based on pre-dyed zinc oxide nanoparticle
JP2007095682A (ja) 積層型光起電素子およびその製造方法
TWI833810B (zh) 染料敏化光伏電池
KR20090039340A (ko) 염료 감응 태양전지 및 그 제조 방법
KR20110087077A (ko) 염료감응 태양전지 및 그 제조방법
JP2009009936A (ja) 光電変換装置
US20110061722A1 (en) Dye-sensitized solar cell and manufacturing method of the same
JP2007227260A (ja) 光電変換装置及び光発電装置
WO2014132725A1 (ja) 色素増感太陽電池
JP5013741B2 (ja) 光電変換装置及び光発電装置
JP2013122875A (ja) 光電変換素子およびその製造方法ならびに光電変換素子用対極ならびに電子機器ならびに建築物
JP2013122874A (ja) 光電変換素子およびその製造方法ならびに電子機器ならびに光電変換素子用対極ならびに建築物
Nursam et al. Low-cost monolithic dye-sensitized solar cells fabricated on single conductive substrate
JP5153248B2 (ja) 光電変換装置及び光発電装置
WO2016104047A1 (ja) 色素増感型太陽電池
Kim et al. Flexible Dye‐Sensitized Solar Cells
JP6000808B2 (ja) 色素増感型太陽電池モジュール
Calisir et al. Polymer nanocomposites for dye-sensitized solar cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14757332

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14757332

Country of ref document: EP

Kind code of ref document: A1