WO2014132352A1 - 車両用空気調和装置 - Google Patents

車両用空気調和装置 Download PDF

Info

Publication number
WO2014132352A1
WO2014132352A1 PCT/JP2013/055073 JP2013055073W WO2014132352A1 WO 2014132352 A1 WO2014132352 A1 WO 2014132352A1 JP 2013055073 W JP2013055073 W JP 2013055073W WO 2014132352 A1 WO2014132352 A1 WO 2014132352A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
compressor
refrigerant
way valve
valve
Prior art date
Application number
PCT/JP2013/055073
Other languages
English (en)
French (fr)
Inventor
和平 新宮
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US14/435,658 priority Critical patent/US9909795B2/en
Priority to JP2015502619A priority patent/JP5932131B2/ja
Priority to PCT/JP2013/055073 priority patent/WO2014132352A1/ja
Priority to EP13876230.7A priority patent/EP2963363B1/en
Publication of WO2014132352A1 publication Critical patent/WO2014132352A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00485Valves for air-conditioning devices, e.g. thermostatic valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00907Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant changes and an evaporator becomes condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/065Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members
    • F16K11/0655Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members with flat slides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00935Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising four way valves for controlling the fluid direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • F25B2313/0292Control issues related to reversing valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/27Problems to be solved characterised by the stop of the refrigeration cycle

Definitions

  • This invention relates to a vehicle air conditioner that switches between a cooling operation and a heating operation by a four-way valve.
  • the refrigerant flow is switched using a four-way valve.
  • the method of switching the four-way valve is to supply high-pressure refrigerant to one and the other of the piston chambers at both ends of the four-way valve via a control electromagnetic valve, and to control electromagnetic from the other.
  • the refrigerant is sucked through the valve to make the pressure low, and the valve body is operated by the generated differential pressure (details will be described later).
  • Patent Document 1 shows a conventional air conditioner. This is related to the switching of the four-way valve.
  • control is performed so that the four-way valve is switched after the inverter frequency exceeds a predetermined value after the thermo-on. Yes.
  • the thermo-off state is controlled after switching the four-way valve.
  • switching the four-way valve requires a pressure difference between the piston chambers at both ends, and is therefore limited to when the compressor is operating.
  • the compressor stops before the four-way valve switches, and the compressor discharges. There is a problem that the pressure and the suction pressure are equalized, and an intermediate stop (insufficient switching) of the valve body inside the four-way valve occurs.
  • the present invention has been made to solve the above-described problems, and ensures a pressure difference between the piston chambers necessary for switching the four-way valve even after the compressor is stopped. It aims at obtaining the air harmony device for vehicles which prevents the middle stop of a valve element.
  • the four-way valve is provided with a piston mechanism that moves the valve body between one piston chamber and the other piston chamber, and the discharge pressure of the compressor is set to one piston of the four-way valve. Acting on the chamber, causing the suction pressure of the compressor to act on the other piston chamber of the four-way valve, moving the valve body together with the piston mechanism using the pressure difference between the piston chambers, and
  • the refrigerant related to the discharge pressure of the compressor or the refrigerant related to the suction pressure is accumulated during the operation of the compressor, and the four-way A pressure reservoir is provided to ensure a pressure difference between the piston chambers necessary for the valve switching operation, and the switching of the four-way valve is necessary between the piston chambers of the four-way valve even after the compressor is stopped. A pressure difference is obtained so as to generate.
  • the refrigerant related to the discharge pressure of the compressor or the refrigerant related to the suction pressure is accumulated during the operation of the compressor, and between the piston chambers necessary for the switching operation of the four-way valve. Since the pressure reservoir for ensuring the pressure difference is provided, the pressure difference necessary for the switching operation of the four-way valve is ensured even after the compressor is stopped, and the intermediate stop of the valve body inside the four-way valve is prevented. be able to.
  • FIG. 1 is a diagram showing a general heat pump type refrigerant circulation cycle in a vehicle air conditioner.
  • the main components in a vehicle air conditioner that can be switched between a cooling operation and a heating operation are a compressor, an indoor heat exchanger, an outdoor heat exchanger, an expansion valve, an accumulator, and a four-way valve (four-way switching for cycle switching) Valve).
  • a compressor When switching between the cooling operation and the heating operation, an operation of switching the refrigerant flow direction in the refrigerant circulation cycle is performed using a four-way valve.
  • the solid line indicates the flow direction of the refrigerant during the cooling operation
  • the broken line indicates the flow direction of the refrigerant during the heating operation.
  • the refrigerant compressed by the compressor 1 to high temperature and high pressure passes through the four-way valve 2 and reaches the outdoor heat exchanger 3 where heat is exchanged with the outside air to remove heat and cool down to a medium temperature and high pressure liquid. Condensed.
  • the condensed refrigerant is expanded and evaporated by the expansion valve 4.
  • the refrigerant, which has been evaporated to low temperature and low pressure cools the room by exchanging heat with the indoor air by the indoor heat exchanger 5, takes the heat, passes through the four-way valve 2, returns to the compressor 1 through the accumulator 6. Repeat this cycle.
  • the refrigerant that has been compressed by the compressor 1 to high temperature and high pressure passes through the four-way valve 2 and reaches the indoor heat exchanger 5 to exchange heat with the indoor air, thereby heating the room.
  • the pressure is reduced by the expansion valve 4.
  • the refrigerant that has been depressurized to a low temperature and low pressure exchanges heat with the outside air by the outdoor heat exchanger 3 to remove heat, passes through the four-way valve 2, passes through the accumulator 6, and returns to the compressor 1. Repeat this cycle.
  • FIG. 2 is a diagram showing a state of the four-way valve when heating a general refrigerant circulation cycle in the vehicle air conditioner.
  • the accumulator is not shown in FIG.
  • the four-way valve 2 includes a cylindrical valve body 11 whose both ends are closed, a valve body 12 that slides in the valve body 11 to switch a refrigerant flow path, and a piston mechanism 13 that operates the valve body 12. And a control electromagnetic valve 14 for switching the pressure for driving the piston mechanism 13.
  • the valve body 11 and the piston mechanism 13 constitute a piston chamber E at the left end of the valve body 11 and a piston chamber F at the right end of the valve body 11 as shown in the drawing.
  • the four-way valve 2 further includes an inlet joint (pipe) A, an outlet joint (pipe) C, a switching joint (pipe) B, and a switching joint (pipe) D.
  • a piston mechanism 13 for moving the valve body 12 between the piston chamber E and the piston chamber F is provided.
  • the high-pressure refrigerant compressed by the compressor 1 is supplied to the inlet joint A, and the low-pressure refrigerant from the outlet joint C is sucked into the compressor 1.
  • the method of switching the four-way valve 2 is performed by sliding the valve body 12 together with the piston mechanism 13 by the differential pressure (pressure difference) generated between the piston chambers E and F at both ends of the four-way valve 2.
  • high-pressure refrigerant from the inlet joint A (refrigerant related to the discharge pressure of the compressor) passes through a capillary tube (hereinafter abbreviated as a tube) 15a, passes through a control electromagnetic valve 14, passes through a tube 15b, and is supplied to the piston chamber E.
  • the piston chamber E becomes a high pressure.
  • the refrigerant from the piston chamber F passes through the tube 15c, passes through the control solenoid valve 14, passes through the tube 15d, and is sucked from the outlet joint C.
  • the piston chamber F becomes low pressure, and the suction pressure of the compressor acts.
  • the piston mechanism 13 and the valve body 12 slide to the right as viewed in the drawing, the inlet joint A and the switching joint B circulate, and the switching joint D
  • the outlet joint C circulates.
  • the high-pressure refrigerant from the inlet joint A is switched by the control electromagnetic valve 14 through the tube 15a and supplied to the piston chamber F through the tube 15c, and the piston chamber F becomes high pressure.
  • the refrigerant from the piston chamber E passes through the tube 15b and is switched by the control solenoid valve 14, passes through the tube 15d and is sucked from the outlet joint C, the piston chamber E becomes low pressure, and the suction pressure of the compressor acts.
  • the piston mechanism 13 and the valve body 12 slide to the left as viewed in the drawing, the inlet joint A and the switching joint D circulate, and the switching joint B
  • the outlet joint C circulates.
  • the pressure difference is required between the piston chambers E and F in order to switch the four-way valve 2 in this way, it is limited to when the compressor 1 is operating.
  • the compressor 1 stops before the four-way valve 2 switches, and the compressor The discharge pressure and the suction pressure are equalized, causing an intermediate stop of the valve body 12 inside the four-way valve 2.
  • FIG. 3 is a diagram showing a refrigerant circulation cycle in the vehicle air conditioner according to Embodiment 1 of the present invention.
  • the four-way valve 2 shows a state during heating operation.
  • a high pressure reservoir 22 is connected to a pipe (a pipe connecting the compressor 1 and the inlet joint A) through which the high-pressure refrigerant discharged from the compressor 1 flows through a check valve 21 connected to the pipe. Yes.
  • the pressure reservoir 22 passes through the tube 15a, passes through the control electromagnetic valve 14, passes through the tube 15b, and is connected to the piston chamber E.
  • the high pressure refrigerant is supplied to the piston chamber E to increase the pressure in the piston chamber E.
  • the check valve 21 has a flow direction from a pipe through which high-pressure refrigerant flows to a high-pressure pressure reservoir 22.
  • the vehicle air conditioner configured as described above includes a high-pressure pressure reservoir 22 via a check valve 21 connected to a high-pressure refrigerant pipe, and the pressure reservoir 22 is compressed during the operation of the compressor 1. Since the refrigerant related to the discharge pressure of the machine 1 is accumulated and a differential pressure is generated between the piston chambers E and F, the high-pressure refrigerant exists in the high-pressure pressure reservoir 22 even after the compressor 1 is stopped.
  • the control solenoid valve 14 When the power to the compressor 1 is turned off, the control solenoid valve 14 is also turned off, but the control solenoid valve 14 stops at either the heating switching position or the cooling switching position of the tubes 15a-15d. Therefore, the pressure by the pressure reservoir 22 can be stopped at either the heating switching position or the cooling switching position in the joint AD of the four-way valve 2, and the intermediate position of the valve body 12 of the four-way valve 2 is stopped. Can be avoided reliably.
  • the intermediate position stop of the valve body 12 means that the outlet joint C does not flow only with either the switching joint D or B, and the outlet joint C is part of the switching joint D and part of the switching joint B. A half-way switching state that circulates.
  • FIG. FIG. 4 is a diagram showing a refrigerant circulation cycle in the vehicle air conditioner according to Embodiment 2 of the present invention.
  • the four-way valve 2 shows a state during heating operation.
  • a low pressure reservoir 23 connected to the low pressure pipe is provided.
  • a low pressure reservoir 23 is connected via a check valve 24 to a pipe (a pipe connecting the outlet joint C and the compressor 1) through which the low pressure refrigerant flows.
  • the check valve 24 the direction from the pressure reservoir 23 to the low-pressure piping is the flow direction.
  • the low-pressure pressure reservoir 23 is connected to the piston chamber F through the tube 15d, the control electromagnetic valve 14, the tube 15c, and the like.
  • the refrigerant in the piston chamber F passes through the tube 15 c, passes through the control solenoid valve 14, passes through the tube 15 d, passes through the pressure reservoir 23, reaches the low-pressure pipe through the check valve 24, and is sucked by the compressor 1. Thereby, the piston chamber F becomes a low pressure.
  • the vehicle air conditioner configured as described above includes a low-pressure pressure reservoir 23 via a check valve 24 connected to a pipe through which low-pressure refrigerant flows, and the compressor 1 is in operation in the pressure reservoir 23. Since the refrigerant related to the suction pressure of the compressor 1 is accumulated and a differential pressure is generated between the piston chambers E and F, even after the compressor 1 is stopped, the low pressure of the pressure reservoir 23 causes the four-way The piston chamber E or F of the valve 2 becomes a low pressure, and a differential pressure between the piston chambers E and F required when switching the four-way valve 2 can be ensured. Therefore, the intermediate stop of the four-way valve can be prevented by the above configuration, and a safe cooling / heating operation is possible.
  • the volume of the pressure reservoirs 22 and 23 provided in the first and second embodiments is 1.5 to 3 times the maximum volume of the piston chamber E or F of the four-way valve. It is provided. By doing so, the discharge pressure refrigerant or suction pressure refrigerant exceeding the maximum volume of the piston chamber E or F of the four-way valve can be stored, and a sufficient differential pressure is provided between the piston chambers of the four-way valve when switching the four-way valve. By securing it, it is possible to switch the four-way valve reliably. A volume exceeding 3 times is not preferable because the volume becomes large.
  • FIG. 5 is a diagram showing a refrigerant circulation cycle in the air-conditioning apparatus according to Embodiment 4 of the present invention.
  • the four-way valve 2 shows a state during heating operation.
  • the solenoid valve 25 shuts off the flow when the power is turned off, and flows when the power is connected.

Abstract

 四方弁を切換動作させ、冷房運転と暖房運転とを切り換える車両用空気調和装置において、圧縮機の吐出圧力に係わる冷媒又は吸引圧力に係わる冷媒を前記圧縮機の動作中に蓄積すると共に前記四方弁の切換動作に必要なピストン室間の圧力差を確保する圧力溜りを設け、前記圧縮機の停止後においても前記四方弁の前記ピストン室間に前記四方弁の切換動作に必要な圧力差を発生させるようにした。 

Description

車両用空気調和装置
 この発明は、四方弁により冷房運転と暖房運転を切り換える車両用空気調和装置に関する。
 空気調和装置において、冷房運転と暖房運転を切り換える場合は、四方弁を用いて冷媒の流れを切換操作する。一般的に、四方弁を切り換える方法は、四方弁両端部のピストン室の一方と他方に対して、前記一方には制御用電磁弁を介して高圧冷媒を供給し、前記他方からは制御用電磁弁を介して冷媒を吸引して低圧にして、発生する差圧によって弁体を動作させて行っている(詳細は後述)。
 特許文献1は従来の空気調和装置を示す。これは四方弁の切換えに関し、圧縮機の停止中に冷房運転と暖房運転の切換え指令を受けた時は、サーモオン後インバータ周波数が所定値以上になってから、四方弁を切り換えるように制御している。また、圧縮機の運転中に冷房運転と暖房運転の切換え指令を受けた時は、四方弁を切り換えた後、サーモオフ状態にするように制御している。これにより、四方弁の切換動作に必要な差圧の不足を解消している。
特開平5-264113号公報
 従来の空気調和装置において、四方弁を切り換えるには、両端部のピストン室間に圧力差が必要なため、圧縮機が動作している時に限られる。しかし、電車に搭載される車両用空気調和装置は、電源を車両側に依存しているため、車両の電源の切り方によっては四方弁が切り換わる前に圧縮機が停止し、圧縮機の吐出圧力と吸引圧力が均圧化され、四方弁内部の弁体の中間止まり(不十分な切り換わり)が生じるといった問題があった。
 この発明は、前記のような課題を解決するためになされたものであり、圧縮機が停止した後においても四方弁を切り換えるために必要なピストン室間の圧力差を確保し、四方弁内部の弁体の中間止まりを防止する車両用空気調和装置を得ることを目的とする。
 この発明の車両用空気調和装置は、四方弁には、一方のピストン室と他方のピストン室間に弁体を移動させるピストン機構を備え、圧縮機の吐出圧力を前記四方弁の一方の前記ピストン室に作用させ、前記圧縮機の吸引圧力を前記四方弁の他方の前記ピストン室に作用させ、前記ピストン室間の圧力差を利用して前記ピストン機構と共に前記弁体を移動させて、前記四方弁を切換動作させ、冷房運転と暖房運転とを切り換える車両用空気調和装置において、前記圧縮機の吐出圧力に係わる冷媒又は吸引圧力に係わる冷媒を前記圧縮機の動作中に蓄積すると共に、前記四方弁の切換動作に必要な前記ピストン室間の圧力差を確保する圧力溜りを設け、前記圧縮機の停止後においても前記四方弁の前記ピストン室間に前記四方弁の切換動作に必要な圧力差を発生させるようにしたものである。
 この発明に係る車両用空気調和装置によれば、圧縮機の吐出圧力に係わる冷媒又は吸引圧力に係わる冷媒を前記圧縮機の動作中に蓄積すると共に、四方弁の切換動作に必要なピストン室間の圧力差を確保する圧力溜りを設けたので、前記圧縮機の停止後においても前記四方弁の切換動作に必要な圧力差を確保して、前記四方弁内部の弁体の中間止まりを防止することができる。
 この発明の前記以外の目的、特徴、観点及び効果は、図面を参照する以下のこの発明の詳細な説明から、さらに明らかになるであろう。
車両用空気調和装置における一般的なヒートポンプタイプの冷媒循環サイクルを示す図である。 車両用空気調和装置における一般的な冷媒循環サイクルを暖房運転させるときの四方弁の状態を示す図である。 この発明の実施の形態1の車両用空気調和装置における冷媒循環サイクルを示す図である。 この発明の実施の形態2の車両用空気調和装置における冷媒循環サイクルを示す図である。 この発明の実施の形態4の空気調和装置における冷媒循環サイクルを示す図である。
実施の形態1.
 図1は車両用空気調和装置における一般的なヒートポンプタイプの冷媒循環サイクルを示す図である。冷房運転と暖房運転とに切換え可能な車両用空気調和装置における主な構成要素は、圧縮機,室内熱交換器,室外熱交換器,膨張弁,アキュームレータ,及び四方弁(サイクル切換用4路切換弁)である。冷房運転と暖房運転とを切り換える場合は、四方弁を用いて冷媒循環サイクル中の冷媒流通方向を切り換える操作をする。図において、実線は冷房運転時の冷媒の流れ方向を示し、破線は暖房運転時の冷媒の流れ方向を示す。
 冷房運転時では、圧縮機1により圧縮され高温高圧となった冷媒は、四方弁2を通って室外熱交換器3に至り、外気と熱交換し熱を奪われ冷やされて中温高圧の液体に凝縮される。凝縮された冷媒は、膨張弁4により膨張され蒸発される。蒸発され低温低圧となった冷媒は、室内熱交換器5により室内気と熱交換し熱を奪うことで室内の冷房を行い、四方弁2を通り、アキュームレータ6を経て圧縮機1に戻る。このサイクルを繰り返す。
 一方暖房運転時では、圧縮機1により圧縮され高温高圧となった冷媒は、四方弁2を通って室内熱交換器5に至り、室内気と熱交換し熱を奪われることで室内を暖房し、膨張弁4により減圧される。減圧され低温低圧となった冷媒は、室外熱交換器3により外気と熱交換し熱を奪い、四方弁2を通り、アキュームレータ6を経て圧縮機1に戻る。このサイクルを繰り返す。
 図2は車両用空気調和装置における一般的な冷媒循環サイクルを暖房運転させるときの四方弁の状態を示す図である。なお、アキュームレータは図2では図示していない。四方弁2は、両端が閉鎖された円筒体の弁本体11と、この弁本体11内を摺動移動して冷媒の流路を切り換える弁体12と、この弁体12を動作させるピストン機構13と、このピストン機構13を駆動させる圧力を切り換える制御用電磁弁14とを備えている。弁本体11とピストン機構13により、図面に向かって、弁本体11の左端部にピストン室Eと右端部にピストン室Fが構成される。四方弁2は、さらに、入口継手(パイプ)A,出口継手(パイプ)C,切換継手(パイプ)Bと切換継手(パイプ)Dを有している。ピストン室Eとピストン室F間に弁体12を移動させるピストン機構13が備えられている。
 圧縮機1で圧縮された高圧冷媒は、入口継手Aに供給され、出口継手Cからの低圧冷媒が圧縮機1に吸引される。四方弁2を切り換える方法は、四方弁2の両端部のピストン室E,F間に発生する差圧(圧力差)によって、ピストン機構13と共に弁体12を摺動移動させて行う。暖房時には、入口継手Aからの高圧冷媒(圧縮機の吐出圧力に係る冷媒)がキャピラリーチューブ(以下チューブと略称する)15aを通り制御用電磁弁14を経てチューブ15bを通りピストン室Eに供給され、ピストン室Eは高圧になる。ピストン室Fからの冷媒は、チューブ15cを通り制御用電磁弁14を経てチューブ15dを通り出口継手Cより吸引され、ピストン室Fは低圧になり、圧縮機の吸引圧力が作用する。その結果、ピストン室Eとピストン室Fとの差圧により、ピストン機構13と弁体12は図面に向かって右側に摺動移動し、入口継手Aと切換継手Bは流通し、切換継手Dと出口継手Cは流通する。
 一方、冷房時には、入口継手Aからの高圧冷媒がチューブ15aを通り制御用電磁弁14で切り換えられチューブ15cを通りピストン室Fに供給され、ピストン室Fは高圧になる。ピストン室Eからの冷媒は、チューブ15bを通り制御用電磁弁14で切り換えられチューブ15dを通り出口継手Cより吸引され、ピストン室Eは低圧になり、圧縮機の吸引圧力が作用する。その結果、ピストン室Fとピストン室Eとの差圧により、ピストン機構13と弁体12は図面に向かって左側に摺動移動し、入口継手Aと切換継手Dは流通し、切換継手Bと出口継手Cは流通する。
 このように四方弁2を切り換えるにはピストン室E,F間に圧力差が必要なため、圧縮機1が動作している時に限られる。しかし、電車に搭載される車両用空気調和装置は、電源を車両側に依存しているため、車両の電源の切り方によっては四方弁2が切り換わる前に圧縮機1が停止し、圧縮機の吐出圧力と吸引圧力が均圧化され、四方弁2内部で弁体12の中間止まりが生じる原因となる。
 図3はこの発明の実施の形態1の車両用空気調和装置における冷媒循環サイクルを示す図である。四方弁2は暖房運転時の状態を示している。圧縮機1から吐出された高圧冷媒を流す配管(圧縮機1と入口継手Aを接続する配管)には、その配管に接続された逆止弁21を介して高圧の圧力溜り22が接続されている。圧力溜り22はチューブ15aを通り制御用電磁弁14を経てチューブ15bを通りピストン室Eに接続され、ピストン室Eに高圧冷媒を供給してピストン室Eの圧力を高めている。逆止弁21は高圧冷媒を流す配管から高圧の圧力溜り22への方向が流通方向となっている。このように構成された車両用空気調和装置においては、高圧冷媒配管に接続された逆止弁21を介して高圧の圧力溜り22を備え、この圧力溜り22に、圧縮機1の動作中に圧縮機1の吐出圧力に係る冷媒を蓄積して、ピストン室E,F間に差圧を発生させるようにしたので、圧縮機1が停止した後においても、高圧の圧力溜り22に高圧冷媒が存在するため、四方弁2のピストン室E又はFに高圧冷媒を引き込むことができ、四方弁2を切り換える時に必要なピストン室E,F間の差圧を確保することができる。従って、前記構成により四方弁の中間止まりを防止することができ、安全な冷暖房運転が可能となる。
 なお、圧縮機1への電源が切れる時には、制御用電磁弁14も電源が切れるが、制御用電磁弁14は、チューブ15a―15dの暖房時切換位置か冷房時切換位置のいずれかで停止するので、前記圧力溜り22による圧力により、四方弁2の継手A-Dにおける暖房時切換位置か冷房時切換位置のいずれかに停止されることができ、四方弁2の弁体12の中間位置止まりを確実に回避できる。なお、弁体12の中間位置止まりとは、出口継手Cが切換継手D又はBのいずれか一方とのみ流通しないで、出口継手Cが切換継手Dの一部と切換継手Bの一部とに流通する中途半端な切り換わり状態をいう。
実施の形態2.
 図4はこの発明の実施の形態2の車両用空気調和装置における冷媒循環サイクルを示す図である。四方弁2は暖房運転時の状態を示している。実施の形態2では、実施の形態1の高圧の圧力溜り22の代わりに、低圧配管に接続される低圧の圧力溜り23を備えたものである。低圧冷媒を流す配管(出口継手Cと圧縮機1とを接続する配管)には、低圧の圧力溜り23が逆止弁24を介して接続されている。逆止弁24は圧力溜り23から低圧配管方向が流通方向である。低圧の圧力溜り23は、図では、チューブ15dを通り制御用電磁弁14を経てチューブ15cを通りピストン室Fに接続されている。ピストン室Fの冷媒は、チューブ15cを通り制御用電磁弁14を経てチューブ15dを通り圧力溜り23を通り、逆止弁24を介して低圧配管に至り、圧縮機1で吸引される。これによりピストン室Fは低圧になる。
 このように構成された車両用空気調和装置においては、低圧冷媒を流す配管に接続された逆止弁24を介して低圧の圧力溜り23を備え、この圧力溜り23に、圧縮機1の動作中に圧縮機1の吸引圧力に係る冷媒を蓄積して、ピストン室E,F間に差圧を発生させるようにしたので、圧縮機1が停止した後においても、圧力溜り23の低圧により、四方弁2のピストン室E又はFが低圧になり、四方弁2を切り換える時に必要なピストン室E,F間の差圧を確保することができる。従って、前記構成により四方弁の中間止まりを防止することができ、安全な冷暖房運転が可能となる。
実施の形態3.
 実施の形態3は、実施の形態1及び実施の形態2に備える圧力溜り22,23の容積が、四方弁のピストン室E又はFの最大容積に対して、1.5~3倍の容積を備えたものである。このようにすることにより、四方弁のピストン室E又はFの最大容積以上の吐出圧力冷媒又は吸引圧力冷媒を溜めることができ、四方弁を切り換える時に四方弁のピストン室間に十分な差圧を確保することで、確実な四方弁切り換えが可能となる。3倍を超える容積では、体積が大きくなり好ましくない。
実施の形態4.
 実施の形態4は、実施の形態1及び実施の形態2に備える逆止弁に代わって、電磁弁25を設けたものである。図5はこの発明の実施の形態4の空気調和装置における冷媒循環サイクルを示す図である。四方弁2は暖房運転時の状態を示している。電磁弁25は電源が切れたときは流通を遮断し、電源が接続されたときは、流通するものである。以上のように構成されることにより、実施の形態1及び実施の形態2と同様の効果を得ることができる。
 なお、この発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。

Claims (5)

  1.  四方弁には、一方のピストン室と他方のピストン室間に弁体を移動させるピストン機構を備え、
    圧縮機の吐出圧力を前記四方弁の一方の前記ピストン室に作用させ、前記圧縮機の吸引圧力を前記四方弁の他方の前記ピストン室に作用させ、
    前記ピストン室間の圧力差を利用して前記ピストン機構と共に前記弁体を移動させて、前記四方弁を切換動作させ、冷房運転と暖房運転とを切り換える車両用空気調和装置において、
    前記圧縮機の吐出圧力に係わる冷媒又は吸引圧力に係わる冷媒を前記圧縮機の動作中に蓄積すると共に、前記四方弁の切換動作に必要な前記ピストン室間の圧力差を確保する圧力溜りを設け、
    前記圧縮機の停止後においても前記四方弁の前記ピストン室間に前記四方弁の切換動作に必要な圧力差を発生させるようにしたことを特徴とする車両用空気調和装置。
  2.  前記圧力溜りは、前記圧縮機から吐出される冷媒の高圧圧力溜りであり、
    前記高圧圧力溜りは、前記圧縮機から吐出された高圧冷媒を通す配管に、前記圧縮機からの冷媒を流通させる方向を流通方向とする逆止弁を介して接続されると共に、制御用電磁弁を経て一方又は他方の前記ピストン室に接続され、前記一方又は他方のピストン室に前記圧縮機からの高圧冷媒を供給するようにしたことを特徴とする請求項1記載の車両用空気調和装置。
  3.  前記圧力溜りは、前記圧縮機に吸引される冷媒の低圧圧力溜りであり、
    前記低圧圧力溜りは、前記圧縮機に吸引される低圧冷媒を通す配管に、前記圧縮機に吸引される方向を流通方向とする逆止弁を介して接続されると共に、制御用電磁弁を経て一方又は他方の前記ピストン室に接続され、前記一方又は他方のピストン室から冷媒を吸引するようにしたことを特徴とする請求項1記載の車両用空気調和装置。
  4.  前記逆止弁は電磁弁である請求項2又は請求項3記載の車両用空気調和装置。
  5.  前記圧力溜りの容積は、一方又は他方の前記ピストン室の最大容積の1.5倍~3倍であることを特徴とする請求項1~請求項3のいずれか1項に記載の車両用空気調和装置。
PCT/JP2013/055073 2013-02-27 2013-02-27 車両用空気調和装置 WO2014132352A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/435,658 US9909795B2 (en) 2013-02-27 2013-02-27 Vehicular air conditioner
JP2015502619A JP5932131B2 (ja) 2013-02-27 2013-02-27 車両用空気調和装置
PCT/JP2013/055073 WO2014132352A1 (ja) 2013-02-27 2013-02-27 車両用空気調和装置
EP13876230.7A EP2963363B1 (en) 2013-02-27 2013-02-27 Vehicle air-conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/055073 WO2014132352A1 (ja) 2013-02-27 2013-02-27 車両用空気調和装置

Publications (1)

Publication Number Publication Date
WO2014132352A1 true WO2014132352A1 (ja) 2014-09-04

Family

ID=51427656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055073 WO2014132352A1 (ja) 2013-02-27 2013-02-27 車両用空気調和装置

Country Status (4)

Country Link
US (1) US9909795B2 (ja)
EP (1) EP2963363B1 (ja)
JP (1) JP5932131B2 (ja)
WO (1) WO2014132352A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111412679A (zh) * 2020-03-02 2020-07-14 珠海格力电器股份有限公司 四通阀、空调系统及其控制方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016199946A1 (ko) * 2015-06-08 2016-12-15 삼성전자주식회사 공기 조화기 및 그 제어 방법
US10953725B2 (en) 2018-09-14 2021-03-23 Ford Global Technologies, Llc Method and system for heating a vehicle
CN111120690B (zh) * 2018-10-31 2021-10-22 广东美芝精密制造有限公司 四通阀

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61153355A (ja) * 1984-12-27 1986-07-12 株式会社 鷺宮製作所 可逆冷凍サイクル用四方逆転弁
JPS61218883A (ja) * 1985-03-25 1986-09-29 Saginomiya Seisakusho Inc 可逆冷凍サイクル用四方逆転弁
JPH05264113A (ja) 1992-03-23 1993-10-12 Daikin Ind Ltd 空気調和装置の運転制御装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5980576A (ja) * 1982-10-29 1984-05-10 Hitachi Ltd 四方切換弁
JPS60245960A (ja) * 1984-05-18 1985-12-05 三菱電機株式会社 空気調和機の冷凍サイクル
JPS6159160A (ja) 1984-08-29 1986-03-26 株式会社東芝 ヒ−トポンプ式冷凍サイクルの製御方法
US4644760A (en) * 1984-11-05 1987-02-24 Kabushiki Kaisha Saginomiya Seisakusho Reversible four-way valve for reversible refrigerating cycle
JPS61181167U (ja) * 1985-04-30 1986-11-12
JPS6288882A (ja) * 1985-10-15 1987-04-23 Daikin Ind Ltd 冷凍装置用切換遮断弁
JPH1163738A (ja) * 1997-08-21 1999-03-05 Daikin Ind Ltd 冷凍装置
JP3263360B2 (ja) * 1998-04-10 2002-03-04 ダイキン工業株式会社 四路切換弁
US6481243B1 (en) * 2001-04-02 2002-11-19 Wei Fang Pressure accumulator at high pressure side and waste heat re-use device for vapor compressed air conditioning or refrigeration equipment
JP2009024945A (ja) * 2007-07-20 2009-02-05 Tgk Co Ltd 電磁弁付膨張弁
JP2011158223A (ja) * 2010-02-03 2011-08-18 Fujitsu General Ltd 四方弁及びそれを用いた冷凍サイクル
KR101201567B1 (ko) * 2010-09-27 2012-11-14 엘지전자 주식회사 공기 조화기

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61153355A (ja) * 1984-12-27 1986-07-12 株式会社 鷺宮製作所 可逆冷凍サイクル用四方逆転弁
JPS61218883A (ja) * 1985-03-25 1986-09-29 Saginomiya Seisakusho Inc 可逆冷凍サイクル用四方逆転弁
JPH05264113A (ja) 1992-03-23 1993-10-12 Daikin Ind Ltd 空気調和装置の運転制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111412679A (zh) * 2020-03-02 2020-07-14 珠海格力电器股份有限公司 四通阀、空调系统及其控制方法
CN111412679B (zh) * 2020-03-02 2021-02-23 珠海格力电器股份有限公司 四通阀、空调系统及其控制方法

Also Published As

Publication number Publication date
JP5932131B2 (ja) 2016-06-08
JPWO2014132352A1 (ja) 2017-02-02
EP2963363B1 (en) 2018-06-20
US20160010909A1 (en) 2016-01-14
US9909795B2 (en) 2018-03-06
EP2963363A4 (en) 2017-03-08
EP2963363A1 (en) 2016-01-06

Similar Documents

Publication Publication Date Title
JP4811167B2 (ja) 空気調和システム
JP5312613B2 (ja) ヒートポンプシステム
KR101702737B1 (ko) 공기 조화 시스템
EP1645818B1 (en) Air-conditioner with a dual-refrigerant circuit
KR101653945B1 (ko) 공기 조화 시스템
US20100050672A1 (en) Refrigeration device
KR102014616B1 (ko) 공기 조화 장치
WO2014132352A1 (ja) 車両用空気調和装置
JP2016097817A5 (ja)
KR20180076397A (ko) 차량용 냉난방시스템
JP2014126350A (ja) 空気調和機
WO2015060384A1 (ja) 冷凍装置
JP2015152246A (ja) 空気調和機
KR101280211B1 (ko) 착상 방지 히트펌프 시스템 및 그 히트펌프 시스템의 작동방법
JP5005011B2 (ja) 空気調和装置
WO2018097124A1 (ja) 空気調和装置
KR101320189B1 (ko) 보일러와 공조기 일체형 히트펌프 시스템 및 그 히트펌프 시스템의 작동방법
WO2015122170A1 (ja) 空気調和機
JP5803526B2 (ja) 自動車用冷凍システム、及び、自動車用温調システム
KR101838635B1 (ko) 볼텍스 튜브를 구비한 냉동사이클 장치
JP2016102598A (ja) 給湯空調システム
KR101852797B1 (ko) 캐스케이드 히트펌프 장치
JP2015117919A (ja) ヒートポンプシステム、及び、ヒートポンプ式給湯器
KR20150075701A (ko) 철도차량용 히트펌프
JP2008116078A (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13876230

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015502619

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14435658

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013876230

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE