WO2014129687A1 - 수액주입장치의 가온기용 히터모듈 및 그것의 제조방법 - Google Patents

수액주입장치의 가온기용 히터모듈 및 그것의 제조방법 Download PDF

Info

Publication number
WO2014129687A1
WO2014129687A1 PCT/KR2013/001422 KR2013001422W WO2014129687A1 WO 2014129687 A1 WO2014129687 A1 WO 2014129687A1 KR 2013001422 W KR2013001422 W KR 2013001422W WO 2014129687 A1 WO2014129687 A1 WO 2014129687A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistance
insulator
layer
conductor
pattern
Prior art date
Application number
PCT/KR2013/001422
Other languages
English (en)
French (fr)
Inventor
조용일
Original Assignee
Cho Yong Il
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cho Yong Il filed Critical Cho Yong Il
Priority to RU2014136450/14A priority Critical patent/RU2586970C1/ru
Priority to CA2867075A priority patent/CA2867075C/en
Priority to CN201380019334.7A priority patent/CN104220119B/zh
Priority to JP2015501564A priority patent/JP6158291B2/ja
Priority to AU2013378951A priority patent/AU2013378951A1/en
Priority to ES13875789T priority patent/ES2711829T3/es
Priority to EP13875789.3A priority patent/EP2959932B1/en
Priority to PL13875789T priority patent/PL2959932T3/pl
Priority to US14/382,570 priority patent/US9730273B2/en
Priority to PCT/KR2013/001422 priority patent/WO2014129687A1/ko
Publication of WO2014129687A1 publication Critical patent/WO2014129687A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/44Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests having means for cooling or heating the devices or media
    • A61M5/445Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests having means for cooling or heating the devices or media the media being heated in the reservoir, e.g. warming bloodbags
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/0014Devices wherein the heating current flows through particular resistances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F7/0085Devices for generating hot or cold treatment fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/12Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium
    • F24H1/121Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium using electric energy supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/12Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium
    • F24H1/14Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium by tubes, e.g. bent in serpentine form
    • F24H1/142Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium by tubes, e.g. bent in serpentine form using electric energy supply
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/04Waterproof or air-tight seals for heaters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/06Heater elements structurally combined with coupling elements or holders
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/26Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/28Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/36General characteristics of the apparatus related to heating or cooling
    • A61M2205/3653General characteristics of the apparatus related to heating or cooling by Joule effect, i.e. electric resistance
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/002Heaters using a particular layout for the resistive material or resistive elements
    • H05B2203/003Heaters using a particular layout for the resistive material or resistive elements using serpentine layout
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/009Heaters using conductive material in contact with opposing surfaces of the resistive element or resistive layer
    • H05B2203/01Heaters comprising a particular structure with multiple layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/017Manufacturing methods or apparatus for heaters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/021Heaters specially adapted for heating liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49082Resistor making
    • Y10T29/49085Thermally variable

Definitions

  • the present invention relates to a heater module for a heater and a method of manufacturing the same that is mounted on the infusion device to directly heat the fluid or blood to the patient.
  • sap or blood is stored refrigerated or frozen to prevent the formation of decaying or harmful substances.
  • the injected fluid or blood lowers the patient's body temperature and, in severe cases, may cause a heart shock leading to death.
  • a cold point may be felt by stimulating a cooling point in the skin where the fluid or blood is injected.
  • a heating device is attached to the fluid (blood) injection device to warm the fluid to an appropriate temperature.
  • the heater module for the heater which is installed in the heating device of the water extracting device and directly heats the sap or blood to the patient has been studied.
  • the heater module for the direct heating type of heater must have low power consumption, be able to heat up the sap quickly, and be manufactured in a small size and light weight.
  • the well-known heater module for a heater includes an insulating substrate, a resistance pattern having a pattern formed to have a resistance value set on an upper surface of the insulating substrate, and a protective layer for protecting the resistance pattern on the upper surface of the resistance pattern.
  • a heater module for a heater is disclosed in WO 2005/065193.
  • the capacitance is formed into the patient's body by taking the fluid (blood), and when the patient is equipped with a bio-electrical signal measuring device including EGC (Electrocardiogram), EEG (Electroencephalography), the patient takes the fluid (blood)
  • EGC Electrocardiogram
  • EEG Electroencephalography
  • Capacitance entering the human body acts as noise to the measurement signal of the bioelectrical signal measuring apparatus.
  • An object of the present invention is to provide a heater module for a warmer of an infusion apparatus and a method for manufacturing the same, which can measure an accurate signal in a bioelectrical signal measuring apparatus.
  • the heater module for a heater of the infusion device of the present invention the insulating substrate; A resistance pattern laminated on one surface of the insulating substrate by a pure metal or an alloy in which two or more metals are mixed in a predetermined ratio and having a resistance value set in a pattern having a length and a cross-sectional area; A first insulator layer coated on the upper surface of the resistance pattern by a predetermined technique to protect and insulate the resistance pattern; A conductor layer deposited on a top surface of the first insulator layer by a predetermined technique in which a metallic material is set; And a laminated structure of a thin film protective layer deposited on an upper surface of the conductor layer to provide insulation and waterproof, corrosion resistance, and chemical resistance of the conductor layer.
  • the resistance pattern may be operated as a heating element that generates heat according to a set resistance value when power is supplied.
  • the exposure of the part of the ground configured in the resistance pattern is maintained as it is by masking, and the conductor layer deposited on the upper surface of the first insulator layer may be in electrical contact with the exposed ground.
  • the heater module manufacturing method of the warmer of the infusion apparatus of the present invention the process of forming a metal thin plate by coating a pure metal or alloy on a predetermined surface or both surfaces of the insulating substrate; Mounting a mask to form a resistance pattern having a heat generation amount set on an upper surface of the metal thin plate; Exposing the metal sheet on which the mask is seated to a chemical for a predetermined time to corrode metal portions other than the mask pattern; Removing the mask and washing it with pure water to expose the resistance pattern, the temperature sensor mounting position, and the ground port, and applying a first insulator on the upper surface of the resistance pattern to insulate the resistance pattern; Mounting a temperature sensor by soldering and depositing a conductor of a metallic material on an upper surface of the first insulator; Electrically insulating the conductor and the outside, and depositing a thin film protective layer on the upper surface of the conductor for waterproofing, corrosion resistance, and chemical resistance.
  • the mask may include a resistance pattern for setting a resistance value for heat generation in a length and a cross section of the metal foil, a power supply terminal, a measurement terminal, a temperature sensor mounting position for measuring a temperature of a heated sap or blood, and an exposure ground in a pattern.
  • a resistance pattern for setting a resistance value for heat generation in a length and a cross section of the metal foil, a power supply terminal, a measurement terminal, a temperature sensor mounting position for measuring a temperature of a heated sap or blood, and an exposure ground in a pattern.
  • the first insulator is exposed to the ground port and the temperature sensor mounting position without masking, and the exposed ground port and the conductor may be electrically contacted during the conductor deposition process.
  • the heater module manufacturing method the insulating substrate; A heat generating layer in which a metal body is set in a pattern on the insulating substrate to generate a predetermined amount of heat according to supply of power; A first insulator layer coated on an upper surface of the heating layer to insulate the heating layer; A conductor layer which is a metallic material deposited on an upper surface of the first insulator layer and electrically connected to the ground formed on the heat generating layer; A second insulator layer deposited on an upper surface of the conductor layer to insulate the conductor layer; And a laminated structure of a thin film protective layer deposited on an upper surface of the second insulator layer to provide insulation, water resistance, corrosion resistance, and chemical resistance.
  • the heater module manufacturing method the process of forming a metal thin plate by coating a metal body on one or both sides of the insulating substrate; Mounting a mask to form a resistance pattern having a heat generation amount set on an upper surface of the metal thin plate; Exposing the metal sheet on which the mask is seated to a chemical for a predetermined time to corrode metal portions other than the mask pattern; Removing the mask and washing with pure water to expose the resistance pattern, the temperature sensor mounting position, and the ground port, and applying a first insulator on the upper surface of the resistance pattern; Mounting a temperature sensor at a temperature sensor mounting position by soldering and depositing a conductor of a metallic material on an upper surface of the first insulator to electrically connect the exposed ground port to the conductor; Electrically insulating a second insulator on the upper surface of the conductor; And depositing a thin film protective layer on an upper surface of the second insulator.
  • the heater module for the warmer of the infusion device of the present invention because the capacitance generated in the heater module of the heater can be sent to the ground through the conductor layer can prevent the noise inflow of the capacitance when measuring the signal in the EGC, EEC More accurate measurements can be made.
  • FIG. 1 is a schematic view of the heating device of the infusion device according to the present invention.
  • FIG. 2 is a view showing a laminated structure of a heater module for a heater according to a first embodiment of the present invention.
  • FIG. 3 is a flow chart of a manufacturing process of a heater module for a heater according to a first embodiment of the present invention.
  • FIG. 4 is a view showing a laminated structure of a heater module for a heater according to a second embodiment of the present invention.
  • FIG. 5 is a flow chart of a manufacturing process of a heater module for a heater according to a second embodiment of the present invention.
  • FIG. 6 is a view showing a PCB pattern of the heater module for a heater according to an embodiment of the present invention.
  • FIG 1 schematically shows a heating device applied to the infusion device.
  • the heating device 10 is provided with a case 6 having an inlet 2 which is connected to a fluid injecting device (not shown) to receive the sap and an outlet 4 which warms the supplied sap out. Since the case 6 may have a conventional structure, a detailed description thereof will be omitted.
  • the heater module 8 is used inside the case 6 as a means for warming the sap or blood to a temperature close to a human body temperature. Equipped.
  • the heater module of the present invention may use such an infusion system as disclosed, for example, in WO 2005/065193. Therefore, detailed description of the infusion system is omitted.
  • the heater module 8 for a warmer according to the first embodiment of the present invention includes an insulating substrate 101, a resistance pattern 103 stacked on one or both surfaces of the insulating substrate 101, and an upper portion of the resistance pattern 103.
  • the resistance pattern 103 stacked on one or both surfaces of the insulating substrate 101 is formed to have a resistance value set to a length and a cross-section, and is operated as a heating element that generates heat of a set resistance value when power is supplied. .
  • the resistance pattern 103 may be composed of a pure metal including copper, iron, nickel, chromium, or an alloy in which two or more metals are mixed in a predetermined ratio.
  • the size of the insulating substrate 101 can be minimized and the amount of heat generated can be maximized.
  • the first insulator layer 105 may be coated by a predetermined technique on the upper surface of the resistance pattern 103 to protect and insulate the resistance pattern 103, and may include a color such as green or white.
  • the first insulator layer 105 is exposed without being applied to a part of the ground formed in the resistance pattern 103 by masking.
  • the first insulator layer 105 may include a color such as green or white to distinguish it from the resistance pattern 103.
  • the conductor layer 107 is coated on the upper surface of the first insulator layer 105 by a predetermined technique so that the ground of the resistance pattern 103 exposed on the surface and the conductor layer 107 can be naturally contacted.
  • the conductor layer 107 may be formed of a metallic material including aluminum, copper, and the like, and may be deposited on the top surface of the first insulator layer 105.
  • the protective layer 109 is applied to the top surface of the conductor layer 107 to stabilize the deposition of the conductor layer 107, provide insulation and electrical waterproofing, and provide excellent protection against chemicals or oxidation.
  • the protective layer 109 is made of a material harmless to the human body, and formed of a thin film protective layer.
  • Capacitance is generated at 105, and the generated capacitance flows to the ground formed in the resistance pattern 103 through the conductor layer 107.
  • bioelectrical signal measuring apparatus since it does not flow to the human body through the fluid or blood input to the patient does not affect the signal measured in the bioelectrical signal measuring apparatus, it provides a stable and reliable measurement of the bioelectrical signal.
  • FIG. 6 is a flowchart illustrating a manufacturing process of a heater module for a heater according to a first embodiment of the present invention.
  • the heater module manufacturing process for a heater according to the first embodiment of the present invention is performed as follows.
  • a pure metal including copper, iron, nickel, chromium, or the like, or an alloy including two or more metals mixed in a predetermined ratio is coated on the insulating substrate 101 by a predetermined method to form a metal thin plate (S101).
  • a mask for forming a resistance pattern 103 having a resistance value set on the upper surface of the metal thin plate is seated (S102).
  • the mask includes a pattern 500 for setting a resistance value required for heat generation in a length and a cross section of the metal foil, a power supply terminal 510, a measurement terminal 530, and an infusion solution or blood.
  • the temperature sensor mounting position 550 for measuring the temperature, the exposure ground 570 and the like pattern is further included.
  • an etching process of corrosion of metal parts other than the mask pattern is formed by applying sulfuric acid or the like on the upper part of the mask for a predetermined time by a predetermined technique. It executes (S103).
  • the etching process may be performed by immersing the metal plate on which the mask is seated in a chemical substance such as sulfuric acid for a predetermined time.
  • the mask is removed and then washed with pure water to expose the resistance pattern 103 having a set resistance value, and the first insulator is coated by a predetermined technique set on the upper surface of the resistance pattern 103.
  • the resistance pattern 103 is protected and electrically insulated from the outside (S104).
  • a mask is applied to the temperature sensor mounting position 550 and the exposure ground 570 so that the first insulator is not applied.
  • the temperature sensor is attached to the temperature sensor mounting position 550 by soldering, and an epoxy is applied to the upper portion to insulate the temperature sensor (S105).
  • a conductor of a metal material including aluminum, copper, etc. is deposited on the upper surface of the first insulator so that the exposed ground 570 and the conductor may be electrically contacted naturally (S106). .
  • the thin film protective layer is deposited on the upper surface of the conductor with a material harmless to the human body to stabilize the deposition of the conductor, and to provide electrical insulation and waterproofing and corrosion resistance / chemical resistance to the outside. (S107).
  • a resistance pattern 103 is stacked on one or both surfaces of the insulating substrate 101 and the insulating substrate 101, and is disposed on the upper surface of the resistance pattern 103.
  • the first insulator layer 105 is stacked, the conductor layer 107 is stacked on the top surface of the first insulator layer 105, and the second insulator layer 111 is formed on the top surface of the conductor layer 107.
  • the protective layer 109 is stacked on the upper surface of the second insulator layer 111.
  • the resistance pattern 103 stacked on one or both surfaces of the insulating substrate 101 is formed to have a resistance value set to a length and a cross-section, and is operated as a heating element that generates heat of a set resistance value when power is supplied. .
  • the resistance pattern 103 may be composed of a pure metal including copper, iron, nickel, chromium, or an alloy in which two or more metals are mixed in a predetermined ratio.
  • the size of the insulating substrate 101 can be minimized and the amount of heat generated can be maximized.
  • the first insulator layer 105 may be coated by a predetermined technique on the upper surface of the resistance pattern 103 to protect and insulate the resistance pattern 103, and may include a color such as green or white.
  • the first insulator layer 105 is exposed without being applied to a part of the ground formed in the resistance pattern 103 by masking.
  • the conductor layer 107 is applied to the upper surface of the first insulator layer 105 by a predetermined technique so that the ground exposed from the resistance pattern 103 and the conductor layer 107 may naturally contact each other.
  • the conductor layer 107 may be formed of a metallic material including aluminum, copper, and the like, and may be deposited on the top surface of the first insulator layer 105.
  • the second insulator layer 111 is applied to the upper surface of the conductor layer 107 by a predetermined technique to stabilize the deposition of the conductor layer 107 and insulate from the outside.
  • the protective layer 109 is applied to the upper surface of the second insulator layer 111 to provide insulation from the outside and waterproof and protection from chemicals or oxidation.
  • the protective layer 109 is made of a material harmless to the human body, and formed of a thin film protective layer.
  • Capacitance is generated in the insulator layer 105, and the generated capacitance flows to the ground formed in the resistance pattern 103 through the conductor layer 107.
  • bioelectrical signal measuring apparatus since it does not flow to the human body through the fluid or blood input to the patient does not affect the signal measured by the bioelectrical signal measuring apparatus, it is possible to provide a stable and reliable measurement of the bioelectrical signal.
  • FIG. 5 is a flowchart illustrating a manufacturing process of a heater module for a heater according to a second embodiment of the present invention.
  • the heater module manufacturing process for a heater according to the second embodiment of the present invention is performed as follows.
  • a pure metal containing copper, iron, nickel, chromium or the like or an alloy in which two or more metals are mixed in a predetermined ratio is coated by a predetermined method to form a metal thin plate ( S201).
  • a mask for forming the resistance pattern 103 having a resistance value set on the upper surface of the metal thin plate is mounted (S202).
  • the temperature sensor mounting position 550 for measuring the temperature, the exposure ground 570 and the like pattern is further included.
  • an etching process of corrosion of metal parts other than the mask pattern is formed by applying sulfuric acid or the like on the upper part of the mask for a predetermined time by a predetermined technique. It executes (S203).
  • the etching process may be performed by immersing the metal plate on which the mask is seated in a chemical substance such as sulfuric acid for a predetermined time.
  • the mask is removed and then washed with pure water to expose the resistance pattern 103 having a set resistance value, and the first insulator is coated on the upper surface of the resistance pattern 103 by a predetermined technique.
  • the resistance pattern 103 is protected and electrically insulated from the outside (S204).
  • a mask is applied to the temperature sensor mounting position 550 and the exposure ground 570 so that the first insulator is not applied.
  • the temperature sensor is attached to the temperature sensor mounting position 550 by soldering, and an epoxy is applied to the upper part to insulate the insulating material (S205).
  • a conductor 107 of a metallic material including aluminum, copper, or the like is deposited on the upper surface of the first insulator so that the exposed ground 570 and the deposited conductor may be naturally contacted. (S206).
  • the second insulator is coated by a predetermined technique set on the upper surface of the conductor to insulate the conductor from the outside (S207).
  • a thin film protective layer (protection layer) is deposited on the upper surface of the second insulator with a material harmless to the human body to provide electrical insulation, waterproofness, and corrosion resistance / chemical resistance to the outside. (S208).
  • the bioelectrical signal measured as shown in FIG. 10 does not generate distortion of the waveform. It was confirmed that it was detected in a stable state.
  • the capacitance generated in the insulator layer between the resistance pattern composed of a metal object and the conductor layer in the process of heating the sap or blood input to the patient using the heater module for the heater having the laminated structure described above is provided through the insulator layer. It flows to the ground formed in the resistance pattern.
  • bioelectrical signal measuring apparatus since it does not flow to the human body through the fluid or blood input to the patient does not affect the signal measured by the bioelectrical signal measuring apparatus, it is possible to provide a stable and reliable measurement of the bioelectrical signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Vascular Medicine (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)
  • Resistance Heating (AREA)
  • Surface Heating Bodies (AREA)

Abstract

본 발명은 의료용 가온장치에 카트리지(Cartridge)로 장착되어 환자에게 투입되는 수액 또는 혈액을 직접 가열방식으로 가온시키는 수액주입장치의 가온기용 히터모듈 및 그것의 제조방법에 관한 것이다. 본 발명은 절연기판; 상기 절연기판의 일면에 순수 금속 혹은 2개 이상의 금속이 소정 비율로 혼합된 합금으로 적층되어 길이와 단면적의 패턴으로 설정된 저항값을 갖는 저항패턴; 상기 저항패턴의 상부면에 소정의 기법으로 도포되어 저항패턴을 보호하고 절연시키는 절연체층; 상기 절연체층의 상부면에 금속성 물질이 설정된 소정의 기법으로 증착되는 전도체층; 상기 전도체층의 상부면에 증착되어 전도체층의 절연과 방수, 내식성, 내화학성을 제공하는 박막 보호층의 적층 구조를 포함한다.

Description

수액주입장치의 가온기용 히터모듈 및 그것의 제조방법
본 발명은 수액주입장치에 장착되어 환자에게 수액이나 혈액을 직접 가열하는 가온기용 히터모듈 및 그것의 제조방법에 관한 것이다.
일반적으로, 수액이나 혈액은 부패되거나 유해한 물질이 생성되는 것을 방지하기 위해 냉장 혹은 냉동 상태로 보관된다.
따라서, 저온 상태의 수액 또는 혈액이 환자의 정맥을 통해 투입되는 경우 투입된 수액 또는 혈액은 환자의 체온을 떨어뜨리게 되며, 심한 경우 심장 쇼크를 발생시켜 환자를 사망에 이르게 할 수 있다.
특히, 체온 조절이 정상적으로 되지 않는 전신 마취 환자의 경우 수술 후 많은 추위를 느끼게 되며, 수액 또는 혈액이 주입되는 피부에서 냉각점을 자극하게 되어 냉통증을 느끼게 될 수 있다.
이러한 문제점들을 극복하기 위하여 수액(혈액)주입장치에 가온장치를 부착하여 수액을 적절한 온도로 가온하고 있다. 수엑주입장치의 가온장치에 장착되어 환자에게 수액이나 혈액을 직접 가열하는 방식의 가온기용 히터모듈이 연구되고 있다.
직접가열방식의 가온기용 히터모듈은 소비전력이 낮고, 수액을 신속히 가온할 수 있으며 소형경량으로 제조될 수 있어야 한다.
잘 알려진 상기 가온기용 히터모듈은 절연기판, 이 절연기판의 상부면에 설정된 저항값을 갖도록 패턴이 형성된 저항패턴, 이 저항패턴의 상부면에 저항패턴을 보호하시 위한 보호층을 포함한다. 국제공개번호 WO 2005/065193호에 가온기용 히터모듈이 개시되어 있다.
이러한 구성요소를 갖는 가온기용 히터모듈로 수액(또는 혈액)을 가온시키게 되면, 금속으로 이루어져 발열작용을 하는 상기 저항패턴과 수액(또는 혈액) 사의의 보호층에서 커패시턴스가 형성된다.
이때 형성되는 커패시턴스는 수액(혈액)을 타고 환자의 인체내로 들어가게 되는데, 환자에게 EGC(Electrocardiogram), EEG(Electroencephalography) 등을 포함하는 생체 전기신호 측정장치를 장착시킨 경우, 수액(혈액)을 타고 환자의 인체내로 들어가는 커패시턴스는 생체 전기신호 측정장치의 측정신호에 노이즈로 작용한다.
이러한 노이즈는, 생체 전기신호의 정상적인 측정을 어렵게 만들게 되므로, 환자의 상태를 파악하는데 있어서 심각한 문제를 유발시킬 수 있다.
본 발명의 목적은, 생체전기적신호 측정장치에서 정확한 신호를 측정할 수 있도록 하는 수액주입장치의 가온기용 히터모듈 및 그것의 제조방법을 제공하는데 목적이 있다.
본 발명의 수액주입장치의 가온기용 히터모듈은, 절연기판; 상기 절연기판의 일면에 순수 금속 혹은 2개 이상의 금속이 소정 비율로 혼합된 합금으로 적층되어 길이와 단면적의 패턴으로 설정된 저항값을 갖는 저항패턴; 상기 저항패턴의 상부면에 소정의 기법으로 도포되어 저항패턴을 보호하고 절연시키는 제1절연체층; 상기 제1절연체층의 상부면에 금속성 물질이 설정된 소정의 기법으로 증착되는 전도체층; 상기 전도체층의 상부면에 증착되어 전도체층의 절연과 방수, 내식성, 내화학성을 제공하는 박막 보호층의 적층 구조를 포함한다.
상기 저항패턴은 전원이 공급되는 경우 설정된 저항값에 따라 열량을 발생시키는 발열체로 동작될 수 있다.
상기 제1절연체층의 도포에서 마스킹에 의해 저항패턴에 구성된 그라운드 일부분의 노출이 그대로 유지되고, 상기 제1절연체층 상부면에 증착되는 전도체층이 노출된 그라운드와 전기적으로 접촉될 수 있다.
본 발명의 수액주입장치의 가온기용 히터모듈 제조방법은, 절연기판의 일면 혹은 양면에 순수 금속이나 합금을 설정된 소정의 기법으로 코팅시켜 금속박판을 형성하는 과정; 상기 금속박판의 상부면에 설정된 발열량을 갖는 저항패턴을 형성시키기 위해 마스크를 안착시키는 과정; 상기 마스크가 안착된 금속박판을 화학물질에 일정시간 노출시켜 마스크 패턴이 형성된 이외의 금속 부분을 부식시키는 과정; 상기 마스크를 제거한 다음 순수로 세척하여 저항패턴과 온도센서 장착위치, 그라운드 포트를 노출시키고, 저항패턴의 절연을 위해 저항패턴의 상부면에 제1절연체를 도포하는 과정; 온도센서를 솔더링으로 장착하고, 상기 제1절연체의 상부면에 금속성 물질의 전도체를 증착시키는 과정; 상기 전도체와 외부를 전기적으로 절연시키고, 방수 및 내식성, 내화학성을 위해 상기 전도체 상부면에 박막 보호층을 증착시키는 과정을 포함한다.
상기 마스크는 금속박편의 길이와 단면적으로 발열에 필요한 저항값을 설정시키는 저항패턴, 전원공급단자, 측정단자, 가온되는 수액 또는 혈액의 온도를 측정하기 위한 온도센서 장착위치, 노출 그라운드가 패턴으로 형성될 수 있다.
상기 제1절연체 도포 과정에서 그라운드 포트와 온도센서 장착위치에는 마스킹에 의해 제1절연체가 도포되지 않고 노출되며, 상기 전도체 증착 과정에서 상기 노출된 그라운드 포트와 전도체가 전기적으로 접촉될 수 있다.
또한, 본 발명의 다른 실시예에 따른 히터모듈 제조방법은, 절연기판; 상기 절연기판에 금속체가 패턴으로 설정되어 전원의 공급에 따라 설정된 소정의 열량을 발생시키는 발열층; 상기 발열층의 상부면에 도포되어 발열층을 절연시키는 제1절연체층; 상기 제1절연체층의 상부면에 증착되어 발열층에 형성된 그라운드와 전기적으로 접속되는 금속성 물질인 전도체층; 상기 전도체층의 상부면에 증착되어 전도체층을 절연시키는 제2절연체층; 상기 제2절연체층의 상부면에 증착되어 절연과 방수, 내식성, 내화학성을 제공하는 박막 보호층의 적층 구조를 포함한다.
또한, 본 발명의 또 다른 실시예에 따른 히터모듈 제조방법은, 절연기판의 일면 혹은 양면에 금속체를 코팅시켜 금속박판을 형성하는 과정; 상기 금속박판의 상부면에 설정된 발열량을 갖는 저항패턴을 형성시키기 위해 마스크를 안착시키는 과정; 상기 마스크가 안착된 금속박판을 화학물질에 일정시간 노출시켜 마스크 패턴이 형성된 이외의 금속 부분을 부식시키는 과정; 상기 마스크를 제거한 다음 순수로 세척하여 저항패턴과 온도센서 장착위치, 그라운드 포트를 노출시키고, 저항패턴의 상부면에 제1절연체를 도포하는 과정; 온도센서 장착위치에 온도센서를 솔더링으로 장착하고, 상기 제1절연체의 상부면에 금속성 물질의 전도체를 증착시켜 노출된 그라운드 포트와 전도체를 전기적으로 접속시키는 과정; 상기 전도체의 상부면에 제2절연체를 도포하여 전기적으로 절연시키는 과정; 상기 제2절연체의 상부면에 박막 보호층을 증착시키는 과정을 포함한다.
본 발명의 수액주입장치의 가온기용 히터모듈은, 가온기의 히터모듈에서 발생하는 커패시턴스를 전도체 층을 통해 그라운드로 흘려 보낼 수 있으므로 EGC, EEC에서 신호를 측정할 때 커패시턴스의 노이즈 유입을 막을 수 있어 보다 정확한 측정을 가능케 할 수 있다.
도 1은 본 발명에 따른 수액주입장치의 가온장치의 개략도.
도 2는 본 발명의 제1 실시예에 따른 가온기용 히터모듈의 적층구조를 도시하는 도면.
도 3은 본 발명의 제1 실시예에 따른 가온기용 히터모듈의 제조공정의 흐름도.
도 4는 본 발명의 제2 실시예에 따른 가온기용 히터모듈의 적층구조를 도시하는 도면.
도 5는 본 발명의 제2 실시예에 따른 가온기용 히터모듈의 제조공정의 흐름도.
도 6은 본 발명의 실시예에 따른 가온기용 히터모듈의 PCB 패턴을 도시한 도면이다.
본 발명은 여러 가지 상이한 형태로 구현될 수 있으므로, 여기에서 설명하는 실시예에 한정되지 않으며, 도면에서 본 발명을 명확하게 설명하기 위하여 설명과 관계없는 부분은 생략하였다.
도 1은 수액주입장치에 적용되는 가온장치를 개략적으로 보여 주고 있다. 가온장치(10)는 수액주입장치(미도시)와 연결되어 수액을 공급받는 입구(2) 및 공급된 수액을 가온하여 내보내는 출구(4)를 갖춘 케이스(6)를 구비하고 있다. 이 케이스(6)는 통상적인 구조의 것이 사용될 수 있으므로 더욱 상세한 설명은 생략한다.상기 케이스(6) 내측에는 수액 또는 혈액을 사람의 체온에 근접한 온도로 가온하기 위한 수단으로 히터모듈(8)을 구비한다.
본 발명의 히터모듈은 예를 들면 국제공개번호 WO 2005/065193호에서 개시하는 그러한 수액주입시스템을 사용할 수 있다. 따라서 수액주입 시스템에 대한 상세한 설명은 생략한다.
도 2는 본 발명의 제1실시예에 따른 가온기용 히터모듈의 적층 구조를 도시하고 있다. 본 발명의 제1실시예에 따른 가온기용 히터모듈(8)은 절연기판(101), 상기 절연기판(101)의 일면 혹은 양면에 적층되는 저항패턴(103), 상기 저항패턴(103)의 상부면에 적층되는 제1절연체층(105), 상기 제1절연체층(105)의 상부면에 적층되는 전도체층(107) 및 상기 전도체층(107)의 상부면에 적층되는 보호층(109)을 포함한다.
상기 절연기판(101)의 일면 혹은 양면에 적층되는 저항패턴(103)은 길이와 단면적으로 설정된 저항값을 갖도록 패턴이 형성되며, 전원이 공급되는 경우 설정된 저항값의 열량을 발생시키는 발열체로 동작된다.
상기 저항패턴(103)은 구리, 철, 니켈, 크롬 등을 포함하는 순수 금속 혹은 2개 이상의 금속이 소정의 비율로 혼합된 합금으로 구성될 수 있다.
상기 절연기판(101)의 양부에 저항패턴(103)을 동시에 형성하고 비아홀을 이용하여 전기적으로 서로 연결함으로써 절연기판(101)의 크기를 최소화하고, 발열량을 최대로 얻을 수 있다.
상기 제1절연체층(105)은 상기 저항패턴(103)의 상부면에 설정된 소정의 기법으로 도포되어 저항패턴(103)을 보호하고 절연시키며, 녹색이나 흰색 등의 컬러를 포함할 수 있다.
상기 제1절연체층(105)은 마스킹에 의해 저항패턴(103)에 구성되는 그라운드의 일부분에 대해서는 도포되지 않고 노출된다.
상기 제1절연체층(105)은 저항패턴(103)과의 구분을 위해 녹색, 흰색 등의 컬러를 포함할 수 있다.
상기 전도체층(107)은 상기 제1절연체층(105)의 상부면에 설정된 소정의 기법으로 도포되어 표면에 드러난 저항패턴(103)의 그라운드와 전도체층(107)이 자연스럽게 접촉될 수 있도록 한다.
상기 전도체층(107)은 알루미늄, 구리 등을 포함하는 금속성 물질로 구성될 수 있으며, 상기 제1절연체층(105)의 상부면에 증착될 수 있다.
상기 보호층(109)은 전도체층(107)의 상부면에 도포되어 전도체층(107)의 증착을 안정화시키고, 절연성, 전기적인 방수를 제공하며, 화학물질이나 산화작용에 뛰어난 방어력을 제공한다.
상기 보호층(109)은 인체에 무해한 물질로 구성되며, 박막 보호층으로 형성된다.
상기한 적층구조를 갖는 가온기용 히터모듈을 이용하여 환자에게 투입되는 수액 또는 혈액(200)을 체온으로 가온시키는 과정에서 금속물체로 구성되는 저항패턴(103)과 전도체층(107) 사이의 절연체층(105)에서 커패시턴스가 발생되는데, 발생되는 커패시턴스는 전도체층(107)을 통해 저항패턴(103)에 형성되는 그라운드로 흐르게 된다.
따라서, 환자에게 투입되는 수액 또는 혈액을 통해 인체로 흐르지 않아 생체 전기신호 측정장치에서 측정되는 신호에 영향을 미치지 않으므로, 안정되고 신뢰성 있는 생체 전기신호의 측정을 제공한다.
도 6은 본 발명의 제1실시예에 따른 가온기용 히터모듈의 제조 공정을 도시한 흐름도이다. 본 발명의 제1실시예에 따른 가온기용 히터모듈 제조 공정은 다음과 같이 실행된다.
절연기판(101)에 구리, 철, 니켈, 크롬 등을 포함하는 순수 금속 혹은 2개 이상의 금속이 소정의 비율로 혼합된 합금을 설정된 소정의 기법으로 코팅시켜 금속박판을 형성한다(S101).
상기 S101에서 절연기판(101)의 일면 혹은 양면에 금속박판이 형성되면 금속박판의 상부면에 설정된 저항값을 갖는 저항패턴(103)을 형성시키기 위한 마스크를 안착시킨다(S102).
상기 마스크에는 도 6에서 알 수 있는 바와 같이 금속박편의 길이와 단면적으로 발열에 필요한 저항값을 설정시키는 패턴(500)과, 전원공급단자(510), 측정단자(530), 투입되는 수액 또는 혈액의 온도를 측정하기 위한 온도센서 장착위치(550), 노출 그라운드(570) 등의 패턴이 더 포함된다.
상기 S102에서 금속박판의 상부면에 마스크의 안착이 완료되면, 마스크의 상부에 황산 등을 화학물질을 설정된 소정의 기법으로 일정시간 동안 도포하여 마스크 패턴이 형성된 이외의 금속 부분을 부식시키는 에칭공정을 실행한다(S103).
또한, 마스크가 안착된 금속박판을 황산 등의 화학물질에 일정시간 동안 담가두는 방법으로 에칭공정을 실행할 수 있다.
상기 S103의 에칭공정이 완료되면 마스크를 제거한 다음 순수로 세척하여 설정된 저항값을 갖는 저항패턴(103)을 노출시키고, 저항패턴(103)의 상부면에 설정된 소정의 기법으로 제1절연체를 도포하여 저항패턴(103)을 보호하고, 외부와 전기적으로 절연시킨다(S104).
상기 저항패턴(103)의 상부면에 제1절연체를 도포하는 과정에서 온도센서 장착위치(550)와 노출 그라운드(570)에는 제1절연체가 도포되지 않도록 마스크가 적용된다.
따라서, 상기 S104에서 제1절연체의 도포가 완료되면 온도센서 장착위치(550)에 온도센서를 솔더링으로 부착하고, 그 상부에 에폭시를 도포하여 절연시킨다(S105).
상기 S105에서 온도센서의 부착이 완료되면 제1절연체의 상부면에 알루미늄, 구리 등으로 포함하는 금속물질의 전도체를 증착시켜 노출 그라운드(570)와 전도체가 전기적으로 자연스럽게 접촉될 수 있도록 한다(S106).
상기 S106에서 전도체의 증착이 완료되면 전도체의 상부면에 인체에 무해한 물질로 박막 보호층을 증착하여 전도체의 증착을 안정화시키고, 외부와의 전기적 절연과 방수 및 내식성/내화학성을 제공될 수 있도록 한다(S107).
도 4는 본 발명의 제2실시예에 따른 가온기용 히터모듈의 적층 구조를 도시한 도면이다. 본 발명의 제2실시예에 따른 가온기용 히터모듈은 절연기판(101), 상기 절연기판(101)의 일면 혹은 양면에 저항패턴(103)이 적층되고, 상기 저항패턴(103)의 상부면에 제1절연체층(105)이 적층되며, 상기 제1절연체층(105)의 상부면에 전도체층(107)이 적층되고, 상기 전도체층(107)의 상부면에 제2절연체층(111)이 적층되며, 상기 제2절연체층(111)의 상부면에 보호층(109)이 적층된다.
상기 절연기판(101)의 일면 혹은 양면에 적층되는 저항패턴(103)은 길이와 단면적으로 설정된 저항값을 갖도록 패턴이 형성되며, 전원이 공급되는 경우 설정된 저항값의 열량을 발생시키는 발열체로 동작된다.
상기 저항패턴(103)은 구리, 철, 니켈, 크롬 등을 포함하는 순수 금속 혹은 2개 이상의 금속이 소정의 비율로 혼합된 합금으로 구성될 수 있다.
상기 절연기판(101)의 상부면과 하부면에 저항패턴(103)을 동시에 형성하고 비아홀을 이용하여 전기적으로 서로 연결함으로써 절연기판(101)의 크기를 최소화하고, 발열량을 최대로 얻을 수 있다.
상기 제1절연체층(105)은 상기 저항패턴(103)의 상부면에 설정된 소정의 기법으로 도포되어 저항패턴(103)을 보호하고 절연시키며, 녹색이나 흰색 등의 컬러를 포함할 수 있다.
상기 제1절연체층(105)은 마스킹에 의해 저항패턴(103)에 구성되는 그라운드의 일부분에 대해서는 도포되지 않고 노출된다.
상기 전도체층(107)은 상기 제1절연체층(105)의 상부면에 설정된 소정의 기법으로 도포되어 저항패턴(103)에서 노출된 그라운드와 전도체층(107)이 자연스럽게 접촉될 수 있도록 한다.
상기 전도체층(107)은 알루미늄, 구리 등을 포함하는 금속성 물질로 구성될 수 있으며, 상기 제1절연체층(105)의 상부면에 증착될 수 있다.
상기 제2절연체층(111)은 상기 전도체층(107)의 상부면에 설정된 소정의 기법으로 도포되어 전도체층(107)의 증착을 안정화시키고, 외부와 절연시킨다.
상기 보호층(109)은 제2절연체층(111)의 상부면에 도포되어 외부와의 절연성과 방수 및 화학물질이나 산화작용으로부터 방어력을 제공한다.
상기 보호층(109)은 인체에 무해한 물질로 구성되며, 박막 보호층으로 형성된다.
상기한 적층구조를 갖는 가온기용 히터모듈을 이용하여 환자에게 투입되는 수액 또는 혈액(200)을 체온으로 가온시키는 과정에서 금속물체로 구성되는 저항패턴(103)과 전도체층(107) 사이의 제1절연체층(105)에서 커패시턴스가 발생되는데, 발생되는 커패시턴스는 전도체층(107)을 통해 저항패턴(103)에 형성되는 그라운드로 흐르게 된다.
따라서, 환자에게 투입되는 수액 또는 혈액을 통해 인체로 흐르지 않아 생체 전기신호 측정장치에서 측정되는 신호에 영향을 미치지 않으므로, 안정되고 신뢰성 있는 생체 전기신호의 측정을 제공할 수 있다.
도 5는 본 발명의 제2실시예에 따른 가온기용 히터모듈의 제조 공정을 도시한 흐름도이다. 본 발명의 제2실시예에 따른 가온기용 히터모듈 제조 공정은 다음과 같이 실행된다.
절연기판(101)의 일면 혹은 양면에 구리, 철, 니켈, 크롬 등을 포함하는 순수 금속 혹은 2개 이상의 금속이 소정의 비율로 혼합된 합금을 설정된 소정의 기법으로 코팅시켜 금속박판을 형성한다(S201).
상기 S201에서 절연기판(101)의 일면 혹은 양면에 금속박판이 형성되면 금속박판의 상부면에 설정된 저항값을 갖는 저항패턴(103)을 형성시키기 위한 마스크를 안착시킨다(S202).
상기 마스크에는 도 9에서 알 수 있는 바와 같이 금속박편의 길이와 단면적으로 발열에 필요한 저항값을 설정시키는 패턴(500)과, 전원공급단자(510), 측정단자(530), 투입되는 수액 또는 혈액의 온도를 측정하기 위한 온도센서 장착위치(550), 노출 그라운드(570) 등의 패턴이 더 포함된다.
상기 S202에서 금속박판의 상부면에 마스크의 안착이 완료되면, 마스크의 상부에 황산 등을 화학물질을 설정된 소정의 기법으로 일정시간 동안 도포하여 마스크 패턴이 형성된 이외의 금속 부분을 부식시키는 에칭공정을 실행한다(S203).
또한, 마스크가 안착된 금속박판을 황산 등의 화학물질에 일정시간 동안 담가두는 방법으로 에칭공정을 실행할 수 있다.
상기 S203의 에칭공정이 완료되면 마스크를 제거한 다음 순수로 세척하여 설정된 저항값을 갖는 저항패턴(103)을 노출시키고, 저항패턴(103)의 상부면에 설정된 소정의 기법으로 제1절연체를 도포하여 저항패턴(103)을 보호하고, 외부와 전기적으로 절연시킨다(S204).
상기 저항패턴(103)의 상부면에 제1절연체를 도포하는 과정에서 온도센서 장착위치(550)와 노출 그라운드(570)에는 제1절연체가 도포되지 않도록 마스크가 적용된다.
따라서, 상기 S204에서 제1절연체의 도포가 완료되면 온도센서 장착위치(550)에 온도센서를 솔더링으로 부착하고, 그 상부에 에폭시를 도포하여 절연시킨다(S205).
상기 S205에서 온도센서의 부착이 완료되면 제1절연체의 상부면에 알루미늄, 구리 등으로 포함하는 금속성 물질의 전도체(107)를 증착시켜 노출 그라운드(570)와 증착되는 전도체가 자연스럽게 접촉될 수 있도록 한다(S206).
상기 S106에서 전도체의 증착이 완료되면 전도체의 상부면에 설정된 소정의 기법으로 제2절연체를 도포하여 전도체를 외부로부터 절연시킨다(S207).
상기 S207에서 제2절연체의 도포가 완료되면 제2절연체의 상부면에 인체에 무해한 물질로 박막 보호층(보호막)을 증착하여 외부와의 전기적 절연,방수 및 내식성/내화학성을 제공될 수 있도록 한다(S208).
상기한 제1실시예 및 제2실시예의 적층구조를 갖는 가온기용 히터모듈과 생체 전기신호 측정장치를 동시에 사용한 결과 도 10에서 알 수 있는 바와 같이 측정되는 생체 전기신호는 파형의 왜곡이 발생되지 않고 안정적인 상태로 검출됨이 확인되었다.
즉, 상기한 적층구조를 갖는 가온기용 히터모듈을 이용하여 환자에게 투입되는 수액 또는 혈액을 가온시키는 과정에서 금속물체로 구성되는 저항패턴과 전도체층 사이의 절연체층에서 발생되는 커패시턴스는 절연체층을 통해 저항패턴에 형성되는 그라운드로 흐르게 된다.
따라서, 환자에게 투입되는 수액 또는 혈액을 통해 인체로 흐르지 않아 생체 전기신호 측정장치에서 측정되는 신호에 영향을 미치지 않으므로, 안정되고 신뢰성 있는 생체 전기신호의 측정을 제공할 수 있다.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술 분야에서 통상의 지식을 가진자에 의해 본 발명의 기술 사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능할 것이다.

Claims (8)

  1. 절연기판;
    상기 절연기판의 일면에 순수 금속 혹은 2개 이상의 금속이 소정 비율로 혼합된 합금으로 적층되어 길이와 단면적의 패턴으로 설정된 저항값을 갖는 저항패턴;
    상기 저항패턴의 상부면에 소정의 기법으로 도포되어 저항패턴을 보호하고 절연시키는 제1절연체층;
    을 포함하고,
    상기 제1절연체층의 상부면에 금속성 물질이 설정된 소정의 기법으로 증착되는 전도체층;
    상기 전도체층의 상부면에 증착되어 전도체층의 절연과 방수, 내식성, 내화학성을 제공하는 박막 보호층;
    의 적층 구조를 포함하는 것을 특징으로 하는 수액주입장치의 가온기용 히터모듈.
  2. 제1항에 있어서,
    상기 저항패턴은 전원이 공급되는 경우 설정된 저항값에 따라 열량을 발생시키는 발열체로 동작되는 것을 특징으로 하는 수액주입장치의 가온기용 히터모듈.
  3. 제1항에 있어서,
    상기 제1절연체층의 도포에서 마스킹에 의해 저항패턴에 구성된 그라운드 일부분의 노출이 그대로 유지되고,
    상기 제1절연체층 상부면에 증착되는 전도체층이 노출된 그라운드와 전기적으로 접촉되는 것을 특징으로 하는 수액주입장치의 가온기용 히터모듈.
  4. 절연기판의 일면 혹은 양면에 순수 금속이나 합금을 설정된 소정의 기법으로 코팅시켜 금속박판을 형성하는 과정;
    상기 금속박판의 상부면에 설정된 발열량을 갖는 저항패턴을 형성시키기 위해 마스크를 안착시키는 과정;
    상기 마스크가 안착된 금속박판을 화학물질에 일정시간 노출시켜 마스크 패턴이 형성된 이외의 금속 부분을 부식시키는 과정;
    상기 마스크를 제거한 다음 순수로 세척하여 저항패턴과 온도센서 장착위치, 그라운드 포트를 노출시키고, 저항패턴의 절연을 위해 저항패턴의 상부면에 제1절연체를 도포하는 과정;
    온도센서를 솔더링으로 장착하고, 상기 제1절연체의 상부면에 금속성 물질의 전도체를 증착시키는 과정;
    상기 전도체와 외부를 전기적으로 절연시키고, 방수 및 내식성, 내화학성을 위해 상기 전도체 상부면에 박막 보호층을 증착시키는 과정;
    을 포함하는 수액주입장치의 가온기용 히터모듈 제조방법.
  5. 제4항에 있어서,
    상기 마스크는 금속박편의 길이와 단면적으로 발열에 필요한 저항값을 설정시키는 저항패턴, 전원공급단자, 측정단자, 가온되는 수액 또는 혈액의 온도를 측정하기 위한 온도센서 장착위치, 노출 그라운드가 패턴으로 형성되는 것을 특징으로 하는 수액주입장치의 가온기용 히터모듈 제조방법.
  6. 제4항에 있어서,
    상기 제1절연체 도포 과정에서 그라운드 포트와 온도센서 장착위치에는 마스킹에 의해 절연체가 도포되지 않도록 노출되고,
    상기 전도체 증착 과정에서 상기 노출된 그라운드 포트와 전도체가 전기적으로 접촉되는 것을 특징으로 하는 수액주입장치의 가온기용 히터모듈 제조방법.
  7. 절연기판;
    상기 절연기판에 금속체가 패턴으로 설정되어 전원의 공급에 따라 설정된 소정의 열량을 발생시키는 발열층;
    상기 발열층의 상부면에 도포되어 발열층을 절연시키는 제1절연체층;
    상기 제1절연체층의 상부면에 증착되어 발열층에 형성된 그라운드와 전기적으로 접속되는 금속성 물질인 전도체층;
    상기 전도체층의 상부면에 증착되어 전도체층을 절연시키는 제2절연체층;
    상기 제2절연체층의 상부면에 증착되어 절연과 방수, 내식성, 내화학성을 제공하는 박막 보호층;
    을 포함하는 수액주입장치의 가온기용 히터모듈.
  8. 절연기판의 일면 혹은 양면에 금속체를 코팅시켜 금속박판을 형성하는 과정;
    상기 금속박판의 상부면에 설정된 발열량을 갖는 저항패턴을 형성시키기 위해 마스크를 안착시키는 과정;
    상기 마스크가 안착된 금속박판을 화학물질에 일정시간 노출시켜 마스크 패턴이 형성된 이외의 금속 부분을 부식시키는 과정;
    상기 마스크를 제거한 다음 순수로 세척하여 저항패턴과 온도센서 장착위치, 그라운드 포트를 노출시절키고, 저항패턴의 상부면에 제1절연체를 도포하는 과정;
    온도센서 장착위치에 온도센서를 솔더링으로 장착하고, 상기 제1절연체의 상부면에 금속성 물질의 전도체를 증착시켜 노출된 그라운드 포트와 전도체를 전기적으로 접속시키는 과정;
    상기 전도체의 상부면에 제2절연체를 도포하여 전기적으로 절연시키는 과정;
    상기 제2절연체의 상부면에 박막 보호층을 증착시키는 과정;
    을 포함하는 수액주입장치의 가온기용 히터모듈 제조방법.
PCT/KR2013/001422 2013-02-22 2013-02-22 수액주입장치의 가온기용 히터모듈 및 그것의 제조방법 WO2014129687A1 (ko)

Priority Applications (10)

Application Number Priority Date Filing Date Title
RU2014136450/14A RU2586970C1 (ru) 2013-02-22 2013-02-22 Нагревательный модуль для нагревателя в устройстве для инфузии текучей среды и способ его изготовления
CA2867075A CA2867075C (en) 2013-02-22 2013-02-22 Heater module for heater of fluid infusion apparatus and manufacturing method thereof
CN201380019334.7A CN104220119B (zh) 2013-02-22 2013-02-22 用于输液装置的加热器的加热器模块及其制造方法
JP2015501564A JP6158291B2 (ja) 2013-02-22 2013-02-22 輸液注入装置の加温器用ヒーターモジュールおよびその製造方法
AU2013378951A AU2013378951A1 (en) 2013-02-22 2013-02-22 Heater module for heating device of fluid infusion apparatus and method for manufacturing same
ES13875789T ES2711829T3 (es) 2013-02-22 2013-02-22 Módulo calentador para aparato calentador de infusión de fluido y su método de fabricación
EP13875789.3A EP2959932B1 (en) 2013-02-22 2013-02-22 Heater module for heater of fluid infusion apparatus and manufacturing method thereof
PL13875789T PL2959932T3 (pl) 2013-02-22 2013-02-22 Moduł grzewczy podgrzewacza w aparacie do infuzji płynów i sposób jego wykonania
US14/382,570 US9730273B2 (en) 2013-02-22 2013-02-22 Heater module for heater of fluid infusion apparatus and manufacturing method thereof
PCT/KR2013/001422 WO2014129687A1 (ko) 2013-02-22 2013-02-22 수액주입장치의 가온기용 히터모듈 및 그것의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2013/001422 WO2014129687A1 (ko) 2013-02-22 2013-02-22 수액주입장치의 가온기용 히터모듈 및 그것의 제조방법

Publications (1)

Publication Number Publication Date
WO2014129687A1 true WO2014129687A1 (ko) 2014-08-28

Family

ID=51391459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/001422 WO2014129687A1 (ko) 2013-02-22 2013-02-22 수액주입장치의 가온기용 히터모듈 및 그것의 제조방법

Country Status (10)

Country Link
US (1) US9730273B2 (ko)
EP (1) EP2959932B1 (ko)
JP (1) JP6158291B2 (ko)
CN (1) CN104220119B (ko)
AU (1) AU2013378951A1 (ko)
CA (1) CA2867075C (ko)
ES (1) ES2711829T3 (ko)
PL (1) PL2959932T3 (ko)
RU (1) RU2586970C1 (ko)
WO (1) WO2014129687A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113663168A (zh) * 2016-08-02 2021-11-19 贝克顿·迪金森公司 用于测量输送剂量的系统和方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU170115U1 (ru) * 2016-08-25 2017-04-14 Межрегиональное общественное учреждение "Институт инженерной физики" Капельница медицинская
US10669033B2 (en) * 2017-12-21 2020-06-02 The Boeing Company Integrated lightning protection and electrical de-icing for aerodynamic structures
DE102019214588A1 (de) * 2019-09-24 2021-03-25 Vitesco Technologies GmbH Elektrische Heizvorrichtung für ein Fahrzeug
WO2024034905A1 (ko) * 2022-08-12 2024-02-15 주식회사 경동나비엔 열교환기 및 이를 구비한 물 가열 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0180910B1 (ko) * 1992-08-03 1999-05-15 사토 아키오 투명 면상 히터 및 그 제조방법
JP2004215758A (ja) * 2003-01-10 2004-08-05 Futaba Corp 液体の加温用容器及び加温器
WO2005009500A2 (en) * 2003-07-09 2005-02-03 Enginivity Llc Medical fluid warming system
WO2005065193A2 (en) 2003-12-24 2005-07-21 Mallinckrodt Inc Fluid infusion apparatus with an insulated patient line tubing for preventing heat loss
KR100553129B1 (ko) * 2003-09-17 2006-02-20 박재상 Pcb 방식으로 제작된 히터를 갖는 가온장치
WO2008111084A2 (en) * 2007-03-13 2008-09-18 Shaldag Device for heating a flow of liquid by electrical heating of a metallic conduit

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3694627A (en) * 1970-12-23 1972-09-26 Whirlpool Co Heating element & method of making
JPH0634473B2 (ja) 1988-07-23 1994-05-02 堺電子工業株式会社 電磁波遮蔽付フレキシブルプリント回路形成体
US5381510A (en) * 1991-03-15 1995-01-10 In-Touch Products Co. In-line fluid heating apparatus with gradation of heat energy from inlet to outlet
US5245693A (en) * 1991-03-15 1993-09-14 In-Touch Products Co. Parenteral fluid warmer apparatus and disposable cassette utilizing thin, flexible heat-exchange membrane
JPH07192849A (ja) 1993-12-27 1995-07-28 Mitsui Toatsu Chem Inc 透明面状ヒーターの製造方法
JPH10134944A (ja) * 1996-10-25 1998-05-22 Sharp Corp 面状電気採暖具
JPH11121908A (ja) * 1997-10-08 1999-04-30 Sumitomo Electric Ind Ltd プリント配線板とその製造方法
JP2000150119A (ja) * 1998-11-04 2000-05-30 Komatsu Ltd 薄膜ヒータ及びその製造方法
EP1066844B1 (en) * 1999-07-06 2005-10-05 Smiths Medical ASD, Inc. Intravenous fluid heating system for heating the fluid in the infusion tube
US6336003B1 (en) * 2000-09-01 2002-01-01 Automatic Medical Technologies, Inc. Max one I.V. warmer
JP4480918B2 (ja) 2001-06-01 2010-06-16 株式会社美鈴工業 通電遮断機能付きヒーター
US6608968B2 (en) 2001-11-23 2003-08-19 Allan P Bakke Convection blood warming system with disposable flattened tube envelope incorporating paperboard “needle” for inserting envelope between heating plates and employing active and passive insulation of outlet flow path to provide normothermic fluid at zero to 600 milliliters per minute
KR100577406B1 (ko) * 2003-09-17 2006-05-10 박재상 Pcb 방식을 이용한 히터 제조방법 및 히터
CN2855437Y (zh) * 2005-11-04 2007-01-10 朱荣荣 干式输液加温器
US20100245030A1 (en) * 2006-03-28 2010-09-30 Mitsui Mining & Smelting Co., Ltd. Processes for Producing Thin-Film Sensors, Thin-Film Sensors and Thin-Film Sensor Modules
JP2007294929A (ja) * 2006-03-28 2007-11-08 Mitsui Mining & Smelting Co Ltd 薄膜センサの製造方法、薄膜センサおよび薄膜センサモジュール
US20120063973A1 (en) * 2009-05-22 2012-03-15 Agency For Science, Technology And Research Flexible Fluid Storage and Warming Bag and a Fluid Storage and Warming System
WO2011113421A2 (de) 2010-03-16 2011-09-22 Barkey Gmbh & Co. Kg Vorrichtung zum erwärmen von strömenden fluiden sowie herstellungsverfahren
KR100980757B1 (ko) 2010-03-23 2010-09-10 주식회사 무한기업 의료용 가온기

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0180910B1 (ko) * 1992-08-03 1999-05-15 사토 아키오 투명 면상 히터 및 그 제조방법
JP2004215758A (ja) * 2003-01-10 2004-08-05 Futaba Corp 液体の加温用容器及び加温器
WO2005009500A2 (en) * 2003-07-09 2005-02-03 Enginivity Llc Medical fluid warming system
KR100553129B1 (ko) * 2003-09-17 2006-02-20 박재상 Pcb 방식으로 제작된 히터를 갖는 가온장치
WO2005065193A2 (en) 2003-12-24 2005-07-21 Mallinckrodt Inc Fluid infusion apparatus with an insulated patient line tubing for preventing heat loss
WO2008111084A2 (en) * 2007-03-13 2008-09-18 Shaldag Device for heating a flow of liquid by electrical heating of a metallic conduit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2959932A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113663168A (zh) * 2016-08-02 2021-11-19 贝克顿·迪金森公司 用于测量输送剂量的系统和方法
CN113663168B (zh) * 2016-08-02 2023-12-15 贝克顿·迪金森公司 用于测量输送剂量的系统和方法

Also Published As

Publication number Publication date
CA2867075A1 (en) 2014-08-28
EP2959932B1 (en) 2019-01-09
US20150359041A1 (en) 2015-12-10
AU2013378951A1 (en) 2014-09-25
CA2867075C (en) 2016-09-20
EP2959932A4 (en) 2017-05-03
RU2586970C1 (ru) 2016-06-10
JP6158291B2 (ja) 2017-07-05
US9730273B2 (en) 2017-08-08
JP2015510439A (ja) 2015-04-09
EP2959932A1 (en) 2015-12-30
CN104220119B (zh) 2017-04-12
ES2711829T3 (es) 2019-05-07
PL2959932T3 (pl) 2019-06-28
CN104220119A (zh) 2014-12-17

Similar Documents

Publication Publication Date Title
WO2014129687A1 (ko) 수액주입장치의 가온기용 히터모듈 및 그것의 제조방법
WO2017088153A1 (zh) 用于医疗器械的漏液检测装置
JP2015122523A (ja) 内部耐水性被覆を備える電子デバイス
WO2010011087A2 (ko) 의료용 가온장치
SE536618C2 (sv) Värmeväxlarplatta och plattvärmeväxlare
EP4199649A1 (en) Surface heating heater pipe
KR101281798B1 (ko) 가온기용 히터모듈 및 그것의 제조방법
ES2254213T3 (es) Dispositivos de transferencia de calor.
CN109425641A (zh) 气体传感器及具备其的气体传感器组件
WO2017171424A1 (ko) 입자상 물질 센서
WO2013065954A1 (ko) 납땜이 가능한 플렉서블 전극 및 그 제조방법
WO2017018632A1 (ko) 전기히터 방식의 센더모듈
WO2011145874A2 (ko) 히터와 판독 회로 소자가 내장된 습도 센서
WO2020162650A1 (ko) R2r 그라비아 인쇄 방법을 이용한 전기화학 센서 태그 제조 방법
CN209019758U (zh) 一种多电极式电极片
CN210351880U (zh) 一种具有防水功能的印制电路板
WO2023096234A1 (en) Aerosol generating device
WO2020201528A1 (en) Electrical insulation in garments
CN111238671A (zh) 一种惰性气体保护的高精确度柔性温度传感器及其制备方法
RU220876U1 (ru) Комбинированный электрод экг-температура
CN217744141U (zh) 一种柔性暖菜板
KR20010099356A (ko) 파릴렌코팅방법
EP3962249A1 (en) Method and device for water intrusion mitigation
WO2021215682A1 (ko) 주사기 주입형 뇌 신호 측정 및 자극용 구조체 및 이의 주사기 주입 방법
TWI625143B (zh) 電極貼片連接器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015501564

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14382570

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013875789

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2867075

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2013378951

Country of ref document: AU

Date of ref document: 20130222

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13875789

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014136450

Country of ref document: RU

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE