WO2014129255A1 - Co2及びh2sを含むガスの回収システム及び方法 - Google Patents

Co2及びh2sを含むガスの回収システム及び方法 Download PDF

Info

Publication number
WO2014129255A1
WO2014129255A1 PCT/JP2014/051282 JP2014051282W WO2014129255A1 WO 2014129255 A1 WO2014129255 A1 WO 2014129255A1 JP 2014051282 W JP2014051282 W JP 2014051282W WO 2014129255 A1 WO2014129255 A1 WO 2014129255A1
Authority
WO
WIPO (PCT)
Prior art keywords
tower
absorption
gas
supply line
liquid
Prior art date
Application number
PCT/JP2014/051282
Other languages
English (en)
French (fr)
Inventor
浩司 堀添
雄大 加藤
盛紀 村上
昌記 湯島
石田 一男
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN201480005716.9A priority Critical patent/CN104936678B/zh
Priority to AU2014220049A priority patent/AU2014220049B2/en
Priority to US14/762,525 priority patent/US9777232B2/en
Publication of WO2014129255A1 publication Critical patent/WO2014129255A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • C10K1/003Removal of contaminants of acid contaminants, e.g. acid gas removal
    • C10K1/004Sulfur containing contaminants, e.g. hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1462Removing mixtures of hydrogen sulfide and carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/16Hydrogen sulfides
    • C01B17/167Separation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • C10K1/003Removal of contaminants of acid contaminants, e.g. acid gas removal
    • C10K1/005Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/08Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/304Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the present invention is, for example, coal and biomass such a gas containing CO 2 and H 2 S to efficiently recover H 2 S from CO 2 and H 2 S contained in the gasification gas obtained by gasifying the gasification furnace
  • the present invention relates to a collection system and method.
  • a chemical absorption method for example, an amine absorption liquid (for example, (N -Methyldiethanolamine: using absorption liquid such as MDEA)) and physical absorption methods (for example, using Selexol absorption liquid using polyethylene glycol dimethyl ether) have been proposed.
  • an amine absorption liquid for example, (N -Methyldiethanolamine: using absorption liquid such as MDEA)
  • physical absorption methods for example, using Selexol absorption liquid using polyethylene glycol dimethyl ether
  • a system that combines the CO shift and CCS (carbon capture and storage) is the IGCC, the concentration of H 2 S in the CO 2 recovered by the CO 2 recovery process specified value (e.g., 10 ⁇ 20 ppm) necessary to suppress the degree There is. 4)
  • the amount of heat energy such as steam used is as small as possible. That is, it is required to efficiently and selectively separate H 2 S from a gas containing CO 2 and H 2 S in terms of thermal energy.
  • Patent Document 1 there is a proposal of an energy saving process in which a part of the absorption liquid in which the dissolved components are partially dissipated in the pressure release container (regeneration tower upper stage) is supplied from below from the uppermost part of the absorption tower (Patent Document 1). .
  • the present inventors extract a part of the absorption liquid from the middle of the absorption section of the absorption tower, and use the absorption liquid that absorbs CO 2 and H 2 S at a relatively low concentration as the regeneration section of the regeneration tower. It was proposed previously to supply in the middle (Patent Document 2).
  • H 2 S can be efficiently and selectively separated from the gas containing CO 2 and H 2 S separately from the absorption of CO 2 in terms of thermal energy, and the cost can be reduced.
  • the emergence of a system to achieve this is eagerly desired.
  • the present invention provides a gas recovery system including CO 2 and H 2 S that efficiently recovers H 2 S contained in a gasification gas obtained by gasifying coal, biomass, or the like with a gasification furnace. And providing a method.
  • the first invention of the present invention for solving the above-described problem is that a gas containing CO 2 and H 2 S is used as an introduction gas, and the introduction gas is brought into contact with an absorption liquid that absorbs CO 2 and H 2 S.
  • An absorption tower that absorbs CO 2 and H 2 S from the introduced gas, and an absorption liquid that absorbs CO 2 and H 2 S are withdrawn from the bottom of the absorption tower, and the top side of the absorption line is drawn through the first supply line.
  • an absorption liquid regeneration tower for regenerating the absorption liquid by releasing CO 2 and H 2 S by reboiler heat, a second supply line for returning the regenerated absorption liquid to the absorption tower, and the absorption
  • a third supply line for extracting an absorbing liquid that has absorbed a part of CO 2 and H 2 S from the vicinity of the middle stage of the tower, and introducing the extracted absorbing liquid to the vicinity of the middle stage of the regeneration tower; Line and the intersection of the second supply line, the absorption The tower and the middle of CO 2 and H 2 S extracted from the vicinity absorbed absorbing liquid and regenerated absorbent liquid of the gas containing CO 2 and H 2 S which is characterized by comprising a heat exchanger for heat exchange, the In the recovery system.
  • the second invention is a CO 2 and recovering method for a gas containing H 2 S with an absorption tower and the regeneration tower from an introduction gas containing CO 2 and H 2 S to recover CO 2 and H 2 S Then, a part of the absorption liquid is extracted from the vicinity of the middle stage of the absorption tower that absorbs CO 2 and H 2 S from the introduced gas, the flow rate of the absorption liquid flowing down below the absorption tower is reduced, and extracted from the bottom of the tower
  • the absorption liquid is introduced from the vicinity of the top of the regeneration tower, and the absorption liquid extracted from the vicinity of the middle stage of the absorption tower is introduced to the vicinity of the middle stage of the regeneration tower to regenerate, and the middle stage of the absorption tower
  • a method for recovering a gas containing CO 2 and H 2 S, characterized in that the absorbing solution that has absorbed CO 2 and H 2 S extracted from the vicinity exchanges heat with the regenerated absorbing solution regenerated in the regeneration tower. is there.
  • a part of the absorption liquid is extracted from the vicinity of the middle stage of the absorption tower by the third supply line, and the flow rate of the absorption liquid flowing down below the absorption tower is reduced, so that H 2 S
  • the amount of CO 2 absorbed is reduced, the selective separation of H 2 S is improved, and the amount of reboiler heat in the regeneration tower is reduced.
  • FIG. 1 is a schematic diagram of a gas recovery system including CO 2 and H 2 S according to the first embodiment.
  • FIG. 2 is a schematic diagram in which an example of a temperature condition of the gas recovery system including CO 2 and H 2 S according to the first embodiment is added.
  • FIG. 3 is a schematic diagram in which an example of a temperature condition of a gas recovery system including CO 2 and H 2 S according to a conventional example is added.
  • FIG. 1 is a schematic diagram of a gas recovery system including CO 2 and H 2 S according to the first embodiment.
  • the recovery system 10 of the gas containing CO 2 and H 2 S according to the present embodiment for example, coal CO 2 a and biomass, etc.
  • the absorption liquid (rich solution) 12A that has absorbed CO 2 and H 2 S is extracted from the tower bottom 13c of the absorption tower 13 and introduced from the tower top 14a via the first supply line L 1 .
  • An absorption liquid regeneration tower (hereinafter referred to as a “regeneration tower”) 14 that regenerates the absorption liquid 12 by releasing CO 2 and H 2 S by heat, and a regenerated absorption liquid (lean solution) 12B from the bottom of the regeneration tower 14 14c, and the absorption tower 13 A second supply line L 2 back to the top 13a, withdrawn absorption liquid (semi-rich solution) 12C that has absorbed part of the tower middle 13b near the CO 2 and H 2 S absorption tower 13, the semi-rich solution 12C taken out
  • the semi-rich solution 12C and the lean solution are interposed at the intersection of the third supply line L 3 introduced into the vicinity of the middle stage 14b of the regeneration tower 14 and the third supply line L 3 and the second supply line L 2.
  • a semi-rich solution heat exchanger 17 for exchanging heat with 12B.
  • CO 2 and H 2 S are removed by the regeneration tower 14, and the regenerated absorbent (lean solution) 12 B is reused as the absorbent 12.
  • the gasified gas obtained in the gasification furnace for gasifying coal, biomass, or the like is supplied to a gas cooling device (not shown). It is sent here, cooled by cooling water, and introduced into the absorption tower 13 as the introduction gas 11.
  • the absorption tower 13 is provided with packed portions 13A and 13B inside the tower, and the counterflow contact efficiency between the introduced gas 11 and the absorbing liquid 12 is improved when passing through these packed portions 13A and 13B.
  • a plurality of filling portions may be provided.
  • the introduction gas 11 and the absorbing liquid 12 are brought into counterflow contact by, for example, a spray method, a liquid column method, a shelf method, or the like.
  • the introduced gas 11 is in counterflow contact with, for example, an amine-based absorbing liquid 12, and CO 2 and H 2 S in the introduced gas 11 are absorbed by the absorbing liquid 12 by a chemical reaction, and CO 2 and H 2
  • the purified gas 21 from which 2 S has been removed is released out of the system.
  • the absorbing liquid 12 that has absorbed CO 2 and H 2 S is also referred to as a “rich solution” 12A.
  • the rich solution 12A is supplied to the top 14a side of the absorbent regenerator 14 through a rich solution pump (not shown) without heat exchange and with a low temperature.
  • lean solution 12B The absorbent regenerated by removing almost all of the CO 2 and H 2 S is referred to as “lean solution” 12B.
  • This lean solution 12B is indirectly heated by the saturated steam 23 in the reboiler 15, generates steam 22, and is returned to the tower bottom 14c side of the regeneration tower 14.
  • CO 2 and H 2 S gas 25 accompanied with water vapor released from the rich solution 12A and the semi-lean solution are led out from the top 14a of the regeneration tower 14 and the water vapor is condensed by the condenser 26.
  • water 28 is separated, and CO 2 and H 2 S gas 29 are discharged out of the system and recovered.
  • the water 28 separated by the separation drum 27 is supplied to the tower top portion 14 a of the absorbent regeneration tower 14.
  • the regenerated absorbing solution (lean solution) 12B is cooled by heat exchange with the semi-rich solution 12C in the semi-rich solution heat exchanger 17, and then pressurized by a lean solvent pump (not shown), and further the lean solvent. After being cooled by the cooler 30, it is supplied again to the absorption tower 13 and reused as the absorbent 12.
  • the extraction amount is determined by measuring the temperature, pressure, flow rate, CO 2 concentration, H 2 S concentration, etc. of the introduced gas, and comprehensively judging these conditions to determine the optimal extraction position and extraction amount. Like to do.
  • the extracted semi-rich solution 12C is heated by the semi-rich solution heat exchanger 17 by heat exchange with the high-temperature lean solution 12B discharged from the bottom 14c of the regeneration tower 14, and in the vicinity of the middle stage 14b of the regeneration tower 14 More preferably, it is supplied below the middle column 14b.
  • the rich solution 12A having a high CO 2 and H 2 S concentration is introduced as it is from the top 14a of the regeneration tower 14 without heat exchange, and the CO 2 and H 2 S concentrations are relatively low compared to the rich solution 12A. Since the semi-rich solution 12C is heated by the semi-rich solution heat exchanger 17 and then supplied to the vicinity of the middle stage 14b of the regeneration tower 14 or the lower side thereof, the amount of heat of the reboiler 15 can be reduced. Steam consumption by the reboiler 15 can be reduced.
  • the rich solution 12A and the semi-rich solution 12C extracted from the absorption tower 13 are respectively introduced into the flash drums 31 and 32, where non-condensable gases 33 (33a and 33b) such as N 2 , H 2 , and CO are used. ) Is separated. Then, it is combined with the CO 2 and H 2 S gas 29 separated by the separation drum 27.
  • non-condensable gases 33 33a and 33b
  • N 2 , H 2 , and CO are used.
  • FIG. 2 is a schematic diagram in which an example of a temperature condition of the gas recovery system including CO 2 and H 2 S according to the first embodiment is added.
  • the square frame indicates the temperature.
  • the introduced gas 11 is introduced into the absorption tower 13.
  • the absorption liquid 12 (lean solution 12B) is introduced into the tower so as to oppose this, and absorbs CO 2 and H 2 S. Since this absorption is an exothermic reaction, the semi-rich solution 12C withdrawn from the vicinity of the middle stage 13b of the absorption tower 13 is 46 ° C.
  • the rich solution 12A extracted from the tower bottom 13c is 44 ° C.
  • the rich solution 12A is introduced from the top 14a of the regeneration tower 14 at a temperature of 44 ° C. without heat exchange as it is.
  • the semi-rich solution 12C is heat-exchanged with the high-temperature (123 ° C.) lean solution 12B in the semi-rich solution heat exchanger 17, and the semi-rich solution 12C becomes 113 ° C. and is introduced from the vicinity of the middle stage 14b of the regeneration tower 14.
  • the temperature of the CO 2 and H 2 S gas 25 accompanied by water vapor from the top 14a of the regeneration tower 14 is 116 ° C., and the temperature after passing through the condenser 26 is 40 ° C.
  • the reboiler heat quantity of the reboiler 15 in the regeneration tower 14 is reduced.
  • FIG. 3 shows a gas recovery system of the prior art (Patent Document 2).
  • Patent Document 2 the rich solution 12A extracted from the tower bottom 13c of the absorption tower 13 is heat-exchanged by the rich solution heat exchanger 16. These are introduced from the top 14a side of the regeneration tower 14.
  • the introduced gas 11 is introduced into the absorption tower 13.
  • the absorption liquid 12 (lean solution 12B) is introduced into the tower so as to oppose this, and absorbs CO 2 and H 2 S. Since this absorption is an exothermic reaction, the semi-rich solution 12C extracted from the vicinity of the middle column 13b of the absorption tower 13 is 49 ° C.
  • the rich solution 12A extracted from the tower bottom 13c is 44 ° C.
  • the rich solution 12A and the semi-rich solution 12C are heat-exchanged in series by the high-temperature (122 ° C.) lean solution 12B in the rich solution heat exchanger 16 and the semi-rich solution heat exchanger 17, respectively.
  • the semi-rich solution 12C reaches 104 ° C. and is introduced from the vicinity of the middle column 14b of the regeneration tower 14.
  • the temperature of the CO 2 and H 2 S gas 25 with water vapor from the top 14 a of the regeneration tower 14 is 118 ° C., and the temperature after passing through the condenser 26 is 40 ° C.
  • Table 1 shows the load of the reboiler 15 of each regeneration tower, the load of the rich solution heat exchanger 16, and the load of the semi-rich solution heat exchanger 17 in the recovery system of the example and the gas recovery systems of the conventional examples 1 and 2. This is a comparison of the load of the capacitor 26.
  • Patent Document 2 the rich solution heat exchanger 16 and the semi-rich solution heat exchanger 17 exchange heat between the rich solution 12A and the semi-rich solution 12C with the lean solution 12B.
  • the rich solution 12A is heat-exchanged with the lean solution 12B by the heat exchanger 16 for rich solution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Gas Separation By Absorption (AREA)
  • Industrial Gases (AREA)
  • Treating Waste Gases (AREA)

Abstract

 導入ガス11と、CO2及びH2Sを吸収する吸収液12とを接触させ、導入ガスからCO2及びH2Sを吸収させる吸収塔13と、CO2等を吸収したリッチ溶液12Aを吸収塔13の塔底部より抜き出すと共に塔頂部14aより導入し、CO2等を放出させて吸収液12を再生する吸収液再生塔14と、再生されたリーン溶液12Bを再生塔14から吸収塔13に戻す第2の供給ラインL2と、吸収塔13の塔中段13b近傍からCO2及びH2Sの一部を吸収したセミリッチ溶液12Cを抜出し、セミリッチ溶液12Cを再生塔14の塔中段14b近傍に導入する第3の供給ラインL3と、第3の供給ラインと第2の供給ラインとの交差部に介装され、吸収塔13の塔中段13b近傍から抜き出したCO2及びH2Sを吸収したセミリッチ溶液12Cとリーン溶液12Bとを熱交換するセミリッチ溶液用熱交換器17と、を具備する。

Description

CO2及びH2Sを含むガスの回収システム及び方法
 本発明は、例えば石炭やバイオマス等をガス化炉によりガス化して得られるガス化ガスに含まれるCO2とH2SからH2Sを効率よく回収するCO2及びH2Sを含むガスの回収システム及び方法に関する。
 石炭やバイオマス等をガス化炉でガス化したガス化ガスに含まれるCO2とH2S等の酸性ガスを除去する技術として、従来より、化学吸収法(例えば、アミン吸収液(例えば(N-メチルジエタノールアミン:MDEA等の吸収液利用))や物理吸収法(例えば、ポリエチレングリコール・ジメチルエーテルを用いるSelexol吸収液利用)が提案されている。
 ところで、IGCC(石炭ガス化複合発電)技術のようなシステムの場合、以下のような要求がある。
1) 発電システムにおいて、大気汚染物質であるSOの排出を規制値未満とするために、SOの発生源となるH2Sの除去が必要となる。一方で、発電効率を上昇させる効果があるため、CO2は極力回収しないことが望ましい。
2) 回収したH2S含有ガス(オフガス)流量が少なく、H2S濃度が高い方が、回収ガスから化成品を製造する場合やH2Sを処理する場合に有利であり、H2Sを選択的に回収できることが望ましい。
3) IGCCにCOシフトとCCS(二酸化炭素回収・貯留)とを組み合わせたシステムでは、CO2回収プロセスで回収したCO2中のH2S濃度を規定値(例えば10~20ppm)程度に抑える必要がある。
4) 発電効率を向上させるためには、スチーム等の熱エネルギーの使用量は少ないほど好ましい。
 すなわち、CO2とH2Sとを含むガスから、H2Sを熱エネルギーの面で効率的、かつ選択的に分離することが求められている。
 そこで、従来では、放圧容器(再生塔上段)で溶解成分を一部放散させた吸収液の一部を、吸収塔の最上部より下方から供給する省エネプロセスの提案がある(特許文献1)。
 しかしながら、特許文献1の技術では、H2Sを含まないガスからのCO2回収に適用する場合は有効であるが、CO2とH2Sとを含有するガスからのH2Sの選択回収に適用する場合は、吸収塔の下方の吸収液中のH2S濃度が高くなることで、H2S吸収速度が大幅に低下するため、H2S除去率、H2S選択性が低下し、所望の除去率を得るためには逆に熱エネルギーの増大を招いてしまう、という問題がある。
 そこで、本発明者等は、吸収液の一部を吸収塔の吸収部の途中から抜き出し、CO2やH2Sを比較的低濃度で吸収している当該吸収液を、再生塔の再生部の途中に供給することを先に提案した(特許文献2)。
特開2010-120013号公報 特開2012-110835号公報
 特許文献2の提案では、H2Sの選択吸収性を向上させるとともに、再生熱エネルギー消費量を従来のプロセスよりも、約10%程度低減することができるが、熱交換器等の機器費や点数が増加し、システムコストが増加する、という問題がある。
 よって、化学吸収プロセスにおいて、CO2とH2Sとを含むガスから、CO2の吸収とは別にH2Sを熱エネルギーの面で効率的、選択的に分離することができ、且つコスト低減を図るシステムの出現が切望されている。
 本発明は、前記問題に鑑み、例えば石炭やバイオマス等をガス化炉によりガス化して得られるガス化ガスに含まれるH2Sを効率よく回収するCO2及びH2Sを含むガスの回収システム及び方法を提供することを課題とする。
 上述した課題を解決するための本発明の第1の発明は、CO2及びH2Sを含むガスを導入ガスとし、該導入ガスとCO2及びH2Sを吸収する吸収液とを接触させて前記導入ガスからCO2及びH2Sを吸収させる吸収塔と、CO2及びH2Sを吸収した吸収液を前記吸収塔の塔底部から抜き出し、第1の供給ラインを介して塔頂部側より導入し、リボイラの熱によりCO2及びH2Sを放出させて吸収液を再生する吸収液再生塔と、再生された再生吸収液を前記吸収塔に戻す第2の供給ラインと、前記吸収塔の塔中段近傍からCO2及びH2Sの一部を吸収した吸収液を抜き出し、抜き出した吸収液を前記再生塔の塔中段近傍に導入する第3の供給ラインと、前記第3の供給ラインと、前記第2の供給ラインとの交差部に介装され、前記吸収塔の塔中段近傍から抜き出したCO2及びH2Sを吸収した吸収液と再生吸収液とを熱交換する熱交換器と、を具備することを特徴とするCO2及びH2Sを含むガスの回収システムにある。
 第2の発明は、CO2及びH2Sを含む導入ガスからCO2及びH2Sを回収する吸収塔と再生塔とを用いたCO2及びH2Sを含むガスの回収方法であって、前記導入ガスからCO2及びH2Sを吸収させる前記吸収塔の塔中段近傍から吸収液の一部を抜き出し、吸収塔の下方に流下する吸収液の流量を低減させ、塔底部から抜き出した吸収液を前記再生塔の塔頂部近傍から導入させると共に、前記吸収塔の塔中段近傍から抜き出した吸収液を、前記再生塔の塔中段近傍に導入して再生すると共に、前記吸収塔の塔中段近傍から抜出されるCO2及びH2Sを吸収した吸収液が、前記再生塔で再生された再生吸収液と熱交換することを特徴とするCO2及びH2Sを含むガスの回収方法にある。
 本発明によれば、吸収塔の塔中段近傍から吸収液の一部を第3の供給ラインにより抜き出すようにして、吸収塔の下方に流下する吸収液の流量を低減させることで、H2Sの吸収量をほとんど低下させることなく、CO2吸収量を低下させ、H2Sの選択分離性の向上を図ると共に、再生塔におけるリボイラ熱量の低減を図る。
図1は、実施例1に係るCO2及びH2Sを含むガスの回収システムの概略図である。 図2は、実施例1に係るCO2及びH2Sを含むガスの回収システムの温度条件の一例を追加した概略図である。 図3は、従来例に係るCO2及びH2Sを含むガスの回収システムの温度条件の一例を追加した概略図である。
 以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。また、下記実施例における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。
 本発明による実施例に係るCO2及びH2Sを含むガスの回収システムについて、図面を参照して説明する。図1は、実施例1に係るCO2及びH2Sを含むガスの回収システムの概略図である。
 図1に示すように、本実施例に係るCO2及びH2Sを含むガスの回収システム10は、例えば石炭やバイオマス等をガス化するガス化炉等から得られたCO2及びH2Sを含むガス化ガスを導入ガス11とし、該導入ガス11とCO2及びH2Sを吸収する吸収液12とを接触させて前記導入ガス11からCO2及びH2Sを吸収させる吸収塔13と、CO2及びH2Sを吸収した吸収液(リッチ溶液)12Aを吸収塔13の塔底部13cより抜き出すと共に、第1の供給ラインL1を介して塔頂部14aより導入し、リボイラ15の熱によりCO2及びH2Sを放出させて吸収液12を再生する吸収液再生塔(以下「再生塔」という)14と、再生された吸収液(リーン溶液)12Bを再生塔14の塔底部14cより抜き出し、吸収塔13の塔頂部13aに戻す第2の供給ラインL2と、吸収塔13の塔中段13b近傍からCO2及びH2Sの一部を吸収した吸収液(セミリッチ溶液)12Cを抜き出し、抜き出したセミリッチ溶液12Cを再生塔14の塔中段14b近傍に導入する第3の供給ラインL3と、第3の供給ラインL3と第2の供給ラインL2との交差部に介装され、セミリッチ溶液12Cとリーン溶液12Bとを熱交換するセミリッチ溶液用熱交換器17と、を具備する。
 このシステムでは、前記再生塔14でCO2及びH2Sを除去し、再生された吸収液(リーン溶液)12Bは吸収液12として再利用される。
 このCO2及びH2Sを含むガスの回収システム10を用いた精製方法では、石炭やバイオマス等をガス化するガス化炉で得られたガス化ガスは、ガス冷却装置(図示せず)に送られ、ここで冷却水により冷却され、導入ガス11として吸収塔13に導入される。
 吸収塔13は、塔内部に充填部13A、13Bが設けられ、これらの充填部13A、13Bを通過する際、導入ガス11と吸収液12との対向流接触効率を向上させている。なお、充填部は複数設けてもよく、充填法以外に、例えばスプレー法、液柱法、棚段法等により導入ガス11と吸収液12とを対向流接触させるようにしている。
 前記吸収塔13において、導入ガス11は例えばアミン系の吸収液12と対向流接触し、導入ガス11中のCO2及びH2Sは、化学反応により吸収液12に吸収され、CO2及びH2Sが除去された浄化ガス21は系外に放出される。CO2及びH2Sを吸収した吸収液12は「リッチ溶液」12Aとも呼称される。このリッチ溶液12Aは、リッチ溶液ポンプ(図示せず)を介し、熱交換されずに温度が低いまま吸収液再生塔14の塔頂部14a側に供給される。
 この塔頂部14a側から導入されたリッチ溶液12Aは、充填部14A、14Bを有する再生塔14の塔頂部14a近傍から塔内に図示しない噴霧手段等により導入され、塔内を流下する際に、リボイラ15からの水蒸気22による吸熱反応を生じて、大部分のCO2及びH2Sを放出し、再生される。吸収液再生塔14内で一部または大部分のCO2及びH2Sを放出した吸収液12は「セミリーン溶液」と呼称される。このセミリーン溶液は、再生塔14下部に至る頃には、ほぼ全てのCO2及びH2Sが除去された吸収液となる。このほぼ全てのCO2及びH2Sが除去されることにより再生された吸収液は「リーン溶液」12Bと呼称される。このリーン溶液12Bはリボイラ15で飽和水蒸気23により間接的に加熱され、水蒸気22を発生して、再生塔14の塔底部14c側に戻されている。
 また、再生塔14の塔頂部14aからは塔内においてリッチ溶液12A及びセミリーン溶液から放出された水蒸気を伴ったCO2及びH2Sガス25が導出され、コンデンサ26により水蒸気が凝縮され、分離ドラム27にて水28が分離され、CO2及びH2Sガス29が系外に放出されて回収される。分離ドラム27にて分離された水28は吸収液再生塔14の塔頂部14aに供給される。
 再生された吸収液(リーン溶液)12Bは、セミリッチ溶液用熱交換器17にてセミリッチ溶液12Cと熱交換されて冷却され、つづいてリーンソルベントポンプ(図示せず)にて昇圧され、さらにリーンソルベントクーラ30にて冷却された後、再び吸収塔13に供給され、吸収液12として再利用される。
 本実施例では、吸収塔13の最上段より下方側の塔中段13b近傍から吸収液12の一部を第3の供給ラインL3により抜き出すようにしている。なお、抜き出し量は、導入される導入ガスの温度、圧力、流量、CO2濃度、H2S濃度等を測定し、これらの条件を総合的に判断して最適な抜き出し位置や抜き出し量を決定するようにしている。
 抜き出されたセミリッチ溶液12Cは、セミリッチ溶液用熱交換器17により、再生塔14の塔底部14cより排出される高温のリーン溶液12Bとの熱交換により加熱され、再生塔14の塔中段14b近傍、より好ましくは塔中段14bより下方側に供給する。
 ところで、導入ガス11中のCO2は、吸収塔13内ではH2Sと共に吸収液12により吸収されている。
 本発明のように、吸収塔13の塔中段13b近傍から吸収液の一部を第3の供給ラインL3により抜き出すようにして、吸収塔13の下方に流下する吸収液の流量を低減させることで、H2Sはガス側の物質移動、CO2は液側の物質移動が支配的であることから、CO2の方がより吸収速度が低下する。
 これにより、CO2吸収量が低下、すなわち吸収液中のCO2濃度が低下する分、H2Sの吸収量は増加する。
 吸収液12の流量の低下によるH2S吸収量の低下を考慮しても、H2S吸収量はほとんど低下しない。
 よって、H2Sの選択性の向上を図ることができる。
 CO2及びH2S濃度が高いリッチ溶液12Aを、熱交換せずにそのまま再生塔14の塔頂部14aから導入し、CO2及びH2S濃度がリッチ溶液12Aと比較して相対的に低いセミリッチ溶液12Cを、セミリッチ溶液用熱交換器17により加温した上で再生塔14の塔中段14b近傍、あるいはそれより下方側に供給することで、リボイラ15の熱量を低減させることができるので、リボイラ15による蒸気消費量を低減することができる。
 また、本実施例では、吸収塔13から抜出したリッチ溶液12A及びセミリッチ溶液12Cを各々フラッシュドラム31、32に導入し、ここでN2、H2、CO等の不凝縮ガス33(33a、33b)を分離している。そして、分離ドラム27にて分離されたCO2及びH2Sガス29と合流させている。
 図2は、実施例1に係るCO2及びH2Sを含むガスの回収システムの温度条件の一例を追加した概略図である。図中、四角の枠内は温度を示す。
 図2に示すように、CO2及びH2Sを含むガスの回収システム10Aにおいて、導入ガス11は吸収塔13に導入される。これに対向するように吸収液12(リーン溶液12B)は塔内に導入され、CO2及びH2Sを吸収する。
 この吸収は発熱反応であるので、吸収塔13の塔中段13b近傍から抜き出されるセミリッチ溶液12Cは46℃である。一方、塔底部13cから抜き出されるリッチ溶液12Aは44℃である。
 このリッチ溶液12Aは、そのまま熱交換せずに、再生塔14の塔頂部14aから44℃の温度のままで導入される。
 これに対し、セミリッチ溶液12Cはセミリッチ溶液用熱交換器17において、高温(123℃)のリーン溶液12Bと熱交換され、セミリッチ溶液12Cは113℃となり、再生塔14の塔中段14b近傍から導入される。なお、再生塔14の塔頂部14aからの水蒸気を伴ったCO2及びH2Sガス25の温度は116℃、コンデンサ26を通過した後の温度は40℃である。
 これにより、再生塔14でのリボイラ15のリボイラ熱量の低減を図るようにしている。
 図3は、従来技術(特許文献2)のガスの回収システムである。
 図3に示すように、CO2及びH2Sを含むガスの回収システム100では、吸収塔13の塔底部13cから抜出されるリッチ溶液12Aを、リッチ溶液用熱交換器16で熱交換した後、再生塔14の塔頂部14a側から導入するものである。
 ここで、図3に示すCO2及びH2Sを含むガスの回収システム100において、導入ガス11は吸収塔13に導入される。これに対向するように吸収液12(リーン溶液12B)は塔内に導入され、CO2及びH2Sを吸収する。
 この吸収は発熱反応であるので、吸収塔13の塔中段13b近傍から抜き出されるセミリッチ溶液12Cは49℃である。一方、塔底部13cから抜き出されるリッチ溶液12Aは44℃である。
 このリッチ溶液12Aとセミリッチ溶液12Cとは、リッチ溶液用熱交換器16及びセミリッチ溶液用熱交換器17において、それぞれ高温(122℃)のリーン溶液12Bにより直列で熱交換され、リッチ溶液12Aは77℃となり、再生塔14の塔頂部14aから導入される。またセミリッチ溶液12Cは104℃となり、再生塔14の塔中段14b近傍から導入される。再生塔14の塔頂部14aからの水蒸気を伴ったCO2及びH2Sガス25の温度は118℃、コンデンサ26を通過した後の温度は40℃である。
 表1は実施例の回収システムと従来例1及び2のガスの回収システムにおける、各々の再生塔のリボイラ15の負荷、リッチ溶液用熱交換器16の負荷、セミリッチ溶液用熱交換器17の負荷、コンデンサ26の負荷についての比較である。
 従来例1(特許文献2)は、リッチ溶液用熱交換器16及びセミリッチ溶液用熱交換器17でリッチ溶液12Aとセミリッチ溶液12Cとを、リーン溶液12Bで熱交換するものである。
 従来例2は、リッチ溶液用熱交換器16でリッチ溶液12Aをリーン溶液12Bで熱交換するものである。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、本実施例の回収システムでは、従来例2に較べて、リボイラ負荷の低減を図ることができた。
 また、従来例1及び2に較べて、再生塔14から排出される水蒸気を伴ったCO2及びH2Sガス25を冷却するコンデンサ26の負荷を、大幅に抑えることができた。
 また、熱交換器を従来例1から削減することで、コスト低減のみならず、プロセス全体の熱収支を向上することができた。
 10、10A、100 CO2及びH2Sを含むガスの回収システム
 11 導入ガス
 12 吸収液
 12A リッチ溶液
 12B リーン溶液
 12C セミリッチ溶液
 13 吸収塔
 14 吸収液再生塔(再生塔)
 15 リボイラ
 17 セミリッチ溶液用熱交換器

Claims (2)

  1.  CO2及びH2Sを含むガスを導入ガスとし、該導入ガスとCO2及びH2Sを吸収する吸収液とを接触させて前記導入ガスからCO2及びH2Sを吸収させる吸収塔と、
     CO2及びH2Sを吸収した吸収液を前記吸収塔の塔底部から抜き出し、第1の供給ラインを介して塔頂部側より導入し、リボイラの熱によりCO2及びH2Sを放出させて吸収液を再生する吸収液再生塔と、
     再生された再生吸収液を前記吸収塔に戻す第2の供給ラインと、
     前記吸収塔の塔中段近傍からCO2及びH2Sの一部を吸収した吸収液を抜き出し、抜き出した吸収液を前記再生塔の塔中段近傍に導入する第3の供給ラインと、
     前記第3の供給ラインと、前記第2の供給ラインとの交差部に介装され、前記吸収塔の塔中段近傍から抜き出したCO2及びH2Sを吸収した吸収液と再生吸収液とを熱交換する熱交換器と、を具備することを特徴とするCO2及びH2Sを含むガスの回収システム。
  2.  CO2及びH2Sを含む導入ガスからCO2及びH2Sを回収する吸収塔と再生塔とを用いたCO2及びH2Sを含むガスの回収方法であって、
     前記導入ガスからCO2及びH2Sを吸収させる前記吸収塔の塔中段近傍から吸収液の一部を抜き出し、吸収塔の下方に流下する吸収液の流量を低減させ、
     塔底部から抜き出した吸収液を前記再生塔の塔頂部近傍から導入させると共に、前記吸収塔の塔中段近傍から抜き出した吸収液を、前記再生塔の塔中段近傍に導入して再生すると共に、
     前記吸収塔の塔中段近傍から抜出されるCO2及びH2Sを吸収した吸収液が、前記再生塔で再生された再生吸収液と熱交換することを特徴とするCO2及びH2Sを含むガスの回収方法。
PCT/JP2014/051282 2013-02-21 2014-01-22 Co2及びh2sを含むガスの回収システム及び方法 WO2014129255A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480005716.9A CN104936678B (zh) 2013-02-21 2014-01-22 含co2及h2s的气体的回收系统及回收方法
AU2014220049A AU2014220049B2 (en) 2013-02-21 2014-01-22 System and method for recovering gas containing CO2 and H2S
US14/762,525 US9777232B2 (en) 2013-02-21 2014-01-22 System and method for recovering gas containing CO2 and H2S

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-032642 2013-02-21
JP2013032642A JP6071622B2 (ja) 2013-02-21 2013-02-21 Co2及びh2sを含むガスの回収システム及び方法

Publications (1)

Publication Number Publication Date
WO2014129255A1 true WO2014129255A1 (ja) 2014-08-28

Family

ID=51391052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051282 WO2014129255A1 (ja) 2013-02-21 2014-01-22 Co2及びh2sを含むガスの回収システム及び方法

Country Status (5)

Country Link
US (1) US9777232B2 (ja)
JP (1) JP6071622B2 (ja)
CN (1) CN104936678B (ja)
AU (1) AU2014220049B2 (ja)
WO (1) WO2014129255A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104535723A (zh) * 2014-12-25 2015-04-22 华能国际电力股份有限公司 一种变工况稠浆型二氧化碳捕集工艺测试系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109304078A (zh) * 2017-07-27 2019-02-05 汪上晓 二氧化碳捕捉系统与方法
JP7066563B2 (ja) * 2018-07-26 2022-05-13 三菱重工エンジニアリング株式会社 ガス化ガスの処理設備及びガス化ガスの処理方法
CN110152457B (zh) * 2019-05-16 2024-06-04 中石化石油工程技术服务有限公司 基于废热回收利用的化学吸收法二氧化碳捕集系统
CN115386402A (zh) * 2022-08-30 2022-11-25 宝钢工程技术集团有限公司 一体式脱硫再生装置及其使用方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012110835A (ja) * 2010-11-24 2012-06-14 Mitsubishi Heavy Ind Ltd Co2及びh2sを含むガスの回収システム及び方法
JP2013226476A (ja) * 2012-04-24 2013-11-07 Ihi Corp 二酸化炭素の回収方法及び回収装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1281571A (en) * 1968-07-13 1972-07-12 Vetrocoke Cokapuania Spa Improvements in or relating to the removal of CO2 and/or H2S from gaseous mixtures
US4052176A (en) * 1975-09-29 1977-10-04 Texaco Inc. Production of purified synthesis gas H2 -rich gas, and by-product CO2 -rich gas
DE2856078A1 (de) * 1978-12-23 1980-07-10 Linde Ag Verfahren zum abtrennen und gewinnen gasfoermiger komponenten aus einem gasgemisch durch physikalische waesche
DE3346038A1 (de) * 1983-12-20 1985-06-27 Linde Ag, 6200 Wiesbaden Verfahren und vorrichtung zum auswaschen von gasbestandteilen aus gasgemischen
JPS6239825U (ja) * 1985-08-28 1987-03-10
FR2722110B1 (fr) * 1994-07-08 1996-08-30 Inst Francais Du Petrole Procede de desacidification d'un gaz pour production de gaz acides concentres
JP3771708B2 (ja) * 1998-03-23 2006-04-26 三菱重工業株式会社 ガス中の二酸化炭素の除去方法
ATE473796T1 (de) * 2002-09-17 2010-07-15 Fluor Corp Konfigurationen und verfahren zur entfernung von sauren gasen
JP4690659B2 (ja) * 2004-03-15 2011-06-01 三菱重工業株式会社 Co2回収装置
ATE424541T1 (de) * 2004-08-24 2009-03-15 Advanced Extraction Technol Kombinierte verwendung von externen und internen lösungsmitteln in leichte, mittelschwere und schwere komponenten enthaltenden prozessgasen
US7384616B2 (en) * 2005-06-20 2008-06-10 Cansolv Technologies Inc. Waste gas treatment process including removal of mercury
FR2911516B1 (fr) * 2007-01-19 2009-11-13 Total Sa Procede de purification d'un melange gazeux contenant des gaz acides
US8435325B2 (en) * 2008-10-23 2013-05-07 Hitachi, Ltd. Method and device for removing CO2 and H2S
JP5586358B2 (ja) 2010-07-16 2014-09-10 株式会社東芝 二酸化炭素分離回収システム及びその運転方法
JP5591083B2 (ja) * 2010-12-01 2014-09-17 三菱重工業株式会社 Co2回収システム
CN102671510B (zh) * 2011-11-29 2015-08-12 中国石油化工股份有限公司 烟道气co2的回收工艺
CN102641653B (zh) * 2012-04-25 2014-05-21 中国石油化工股份有限公司 一种醋酸乙烯反应循环气脱除二氧化碳的工艺

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012110835A (ja) * 2010-11-24 2012-06-14 Mitsubishi Heavy Ind Ltd Co2及びh2sを含むガスの回収システム及び方法
JP2013226476A (ja) * 2012-04-24 2013-11-07 Ihi Corp 二酸化炭素の回収方法及び回収装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104535723A (zh) * 2014-12-25 2015-04-22 华能国际电力股份有限公司 一种变工况稠浆型二氧化碳捕集工艺测试系统

Also Published As

Publication number Publication date
US9777232B2 (en) 2017-10-03
AU2014220049A1 (en) 2015-08-06
JP2014161757A (ja) 2014-09-08
CN104936678A (zh) 2015-09-23
JP6071622B2 (ja) 2017-02-01
US20150361363A1 (en) 2015-12-17
AU2014220049B2 (en) 2016-11-17
CN104936678B (zh) 2018-08-24

Similar Documents

Publication Publication Date Title
JP5777751B2 (ja) Co2回収装置及びco2回収方法
JP5875245B2 (ja) Co2回収システム及びco2ガス含有水分の回収方法
JP5495520B2 (ja) 排ガス中の二酸化炭素回収装置
JP4690659B2 (ja) Co2回収装置
JP4875303B2 (ja) 二酸化炭素回収システム、これを用いた発電システムおよびこれら方法
JP5021917B2 (ja) Co2回収装置及び方法
JP5995746B2 (ja) Co2及びh2sを含むガスの回収システム及び方法
JP5591075B2 (ja) Co2及びh2sを含むガスの回収システム及び方法
JP2005254212A5 (ja)
JP2012236166A (ja) Co2回収装置およびco2回収方法
WO2013039041A1 (ja) Co2回収装置およびco2回収方法
JP5738137B2 (ja) Co2回収装置およびco2回収方法
JP2012192403A (ja) Co2回収装置
WO2014129255A1 (ja) Co2及びh2sを含むガスの回収システム及び方法
JP5591083B2 (ja) Co2回収システム
JP5174194B2 (ja) Co2回収装置及び方法
JP2012217971A (ja) Co2回収装置
JP5737916B2 (ja) Co2回収システム
JP5595243B2 (ja) Co2及びh2sを含むガスの回収システム及び方法
JP5518164B2 (ja) Co2回収装置及び方法
JP2015020079A (ja) 被処理ガス中の二酸化炭素を回収する方法およびそのための装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14754473

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14762525

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: IDP00201504688

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 2014220049

Country of ref document: AU

Date of ref document: 20140122

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14754473

Country of ref document: EP

Kind code of ref document: A1