WO2014126122A1 - セレン含有排水の処理システム、セレン含有排水の処理方法およびセレン含有排水からのセレン回収方法 - Google Patents

セレン含有排水の処理システム、セレン含有排水の処理方法およびセレン含有排水からのセレン回収方法 Download PDF

Info

Publication number
WO2014126122A1
WO2014126122A1 PCT/JP2014/053249 JP2014053249W WO2014126122A1 WO 2014126122 A1 WO2014126122 A1 WO 2014126122A1 JP 2014053249 W JP2014053249 W JP 2014053249W WO 2014126122 A1 WO2014126122 A1 WO 2014126122A1
Authority
WO
WIPO (PCT)
Prior art keywords
selenium
containing wastewater
iron
removal
sludge
Prior art date
Application number
PCT/JP2014/053249
Other languages
English (en)
French (fr)
Inventor
和仁 市原
聡 小木
武井 昇
Original Assignee
千代田化工建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013028905A external-priority patent/JP6055692B2/ja
Priority claimed from JP2013028903A external-priority patent/JP6031376B2/ja
Application filed by 千代田化工建設株式会社 filed Critical 千代田化工建設株式会社
Publication of WO2014126122A1 publication Critical patent/WO2014126122A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • C02F1/705Reduction by metals
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/101Sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the present invention relates to a selenium-containing wastewater treatment system, a selenium-containing wastewater treatment system that removes selenium from wastewater with a high selenium concentration, a selenium-containing wastewater treatment method, and a selenium-containing wastewater that recovers selenium from wastewater with a high selenium concentration. Relates to a method of recovering selenium from
  • Selenium is an essential element for the human body, and there is no problem if it is in a trace amount, but it shows toxicity when it is increased to some extent compared to the required level. Therefore, selenium is an environmental standard designation item related to water pollution, soil pollution, and the like. For example, since the coal ash treated in the ecocement production process generally contains chlorine, it must be washed with water before mixing as an ecocement raw material. The cleaning wastewater discharged at that time may contain selenium in addition to chlorine.
  • selenium may be contained in the cleaning wastewater discharged when cleaning the exhaust gas generated from the coal gasification combined cycle (IGCC) coal gasification process.
  • selenium may also be contained in waste water generated by flue gas desulfurization. These effluents are, for example, purified until they satisfy a predetermined effluent standard, and then discharged into a river or the like.
  • selenium exists mainly as tetravalent selenite ions (SeO 3 2 ⁇ ) or hexavalent selenate ions (Se0 4 2 ⁇ ).
  • fibrous iron as a contact reducing material is used, waste water is brought into contact with fibrous iron, hexavalent selenium is reduced to tetravalent selenium by oxidation of iron, and tetravalent selenium is converted into iron sludge (mainly It has been proposed to precipitate with (iron hydroxide). Tetravalent selenium is more easily precipitated than hexavalent selenium, and is precipitated in a state where originally tetravalent selenium and selenium reduced from hexavalent to tetravalent adhere to iron sludge.
  • the waste water described above contains a Chemical Oxygen Demand component (hereinafter simply referred to as “COD component”) as an inhibitor that inhibits selenium removal.
  • the COD component is an oxidizable component, for example, sulfite ion (SO 3 2 ⁇ ), thiosulfate ion (S 2 O 3 2 ⁇ ), dithionate ion (S 2 O 6 ) in water.
  • 2- sulfur oxide ions of less than 6 valences (for example, sulfur oxoacids of 5 valences or less). If these inhibitor concentrations in the wastewater are high, the selenium removal rate decreases. Therefore, in the above-mentioned Patent Document 2, an inhibitor that inhibits selenium removal is removed before the selenium removal step.
  • Patent Document 3 describes that when sulfur oxide or the like is contained in the waste water, the consumption of iron as a contact reducing material increases and the amount of iron sludge increases. In the selenium removal treatment, it is described that the supply of iron and the treatment of iron sludge become problems. Also in this case, it is possible to reduce iron consumption and iron sludge generation by removing sulfur oxides and the like before the selenium removal step.
  • JP-A-9-47790 JP 2011-72940 A Japanese Patent No. 4812987
  • Non-ferrous metal wastewater containing selenium at a high concentration includes wastewater having a high concentration of sulfate ions (SO 4 2 ⁇ ), sulfite ions and dithionate ions as the above-mentioned COD components.
  • Sulfate ions and dithionate ions are inhibitors that inhibit the removal of selenium, and it is necessary to remove COD components such as sulfate ions, sulfite ions, and dithionate ions before removing selenium.
  • coagulation precipitation treatment is performed as an inhibitor removal, that is, removal of sulfate ions and COD components, and then remains with an oxidizing agent (for example, ozone, hydrogen peroxide, potassium permanganate).
  • an oxidizing agent for example, ozone, hydrogen peroxide, potassium permanganate.
  • COD component for example, oxidation treatment of sulfite ion, thiosulfate ion, dithionate ion and the like is described.
  • At least a part of the treatment cost of the selenium-containing wastewater may be offset by the effective use of the recovered selenium, or may be profitable by the effective use of selenium.
  • Metal selenium has semiconductivity and photoconductivity, and is used for a photosensitive drum of a copying machine by utilizing this.
  • selenium is used in selenium rectifiers, in camera exposure meters due to the photovoltaic effect, and in glass colorants and decolorizers.
  • Selenium is used as a material for CIS (copper / indium / selenium) solar cells.
  • the present invention aims at effective utilization of iron used for selenium removal when the concentration of selenium in the wastewater is high and the concentration of the selenium removal inhibitor to be removed in advance is high when removing selenium from the wastewater.
  • the selenium can be recovered from wastewater when the concentration of selenium in the wastewater is high. Therefore, an object of the present invention is to provide a method for recovering selenium from selenium-containing wastewater that can reduce the cost of recovering selenium from wastewater.
  • a selenium-containing wastewater treatment system comprises a COD component removal means for removing a COD component that inhibits removal of selenium from selenium-containing wastewater, and the selenium-containing wastewater after the removal of the COD component. Reducing selenium of the selenium contained in the wastewater with iron, and selenium removing means for precipitating and removing the selenium contained in the selenium-containing wastewater together with the iron sludge oxidized during the reduction.
  • a part of the sludge generated in the selenium removing means is circulated between the selenium removing means and the COD component removing means by introducing the sludge generated in the selenium removing means into the selenium-containing wastewater. It is characterized by.
  • the method for treating selenium-containing wastewater according to the present invention includes a COD component removal step for removing a COD component that inhibits removal of selenium from the selenium-containing wastewater, and the selenium contained in the selenium-containing wastewater after the removal of the COD component.
  • the iron is used for the reduction of the reducible selenium, and the iron is used to precipitate the selenium by circulating the reduced selenium and the iron used to precipitate the originally reduced selenium.
  • the amount of iron consumed can be reduced, and in the removal of selenium from the wastewater, the cost of the iron to be input to the selenium-containing wastewater can be reduced.
  • the amount of generated sludge is reduced, it is possible to reduce the thermal energy required to dispose of the iron that has settled into sludge, thereby reducing the cost.
  • the selenium dissolved in the waste water is mainly hexavalent and tetravalent selenium as described above, and the hexavalent selenium can be reduced to tetravalent using iron as reducible selenium. .
  • iron is oxidized to divalent and trivalent iron ions, but tetravalent selenium is co-precipitated as sludge together with iron when iron is precipitated as iron hydroxide in approximately neutral to alkaline conditions.
  • tetravalent selenium tends to precipitate, but hexavalent selenium hardly precipitates.
  • iron sludge when disposing of iron sludge, for example, it may burn in a kiln to reduce the volume.
  • the heat energy used in this case is costly, by reducing the generated iron sludge, the heat energy required for the disposal of the iron sludge can be suppressed and the cost can be reduced.
  • the COD component removal means heats the selenium-containing wastewater with an acid to oxidize the COD component, and the heating
  • a COD component removal main step dithionic acid removal main step in which hydrogen peroxide and iron sulfate are added to the selenium-containing wastewater to oxidize the COD component is performed, and the sludge is subjected to the heat acid decomposition. It is preferable to throw in the selenium-containing wastewater in the process.
  • the COD component removal step is divided into a heating acid decomposition step and a COD component removal main step. Therefore, a part of the COD component is oxidized in the pretreatment heating acid decomposition step, COD component removal The COD component concentration sent to this process can be reduced, the load in this COD component removal process can be reduced, and the processing can be made more efficient.
  • the sludge that is introduced into the selenium-containing wastewater by the COD component removal means is introduced into the selenium-containing wastewater that is heated acidic.
  • iron which is hydroxide in the sludge is dissolved in the wastewater heated under acidity, and becomes reusable.
  • the iron ions dissolved in the heating acid decomposition step as described above can reduce the amount of iron sulfate charged in the COD component removal main step.
  • Iron sulfate functions as a catalyst for generating hydroxy radicals from hydrogen peroxide.
  • the selenium-containing wastewater treatment system (treatment method) of the present invention when the wastewater contains a large amount of sulfate ions, it is contained in the selenium-containing wastewater before removing the COD component from the selenium-containing wastewater.
  • sulfuric acid removing means for removing sulfate ions that inhibit the removal of selenium a sulfuric acid removing step is performed
  • sulfuric acid removing means sulfuric acid removing step
  • calcium ions are added to the selenium-containing waste water, and the sulfate ions are precipitated and removed as gypsum which is calcium sulfate.
  • the COD component removing means oxidizes the dithionate ion, which is the COD component, to make a sulfate ion, and the sulfate ion is added by the sulfuric acid removing means to form the gypsum by the calcium ion contained in the selenium-containing wastewater. It is preferable to remove it by precipitation.
  • sulfate ions that are inhibitors of selenium removal can be removed, and when dithionate ions as COD components that also serve as inhibitors are oxidized to sulfate ions, they are used to remove sulfate ions. Can be removed using the calcium ions. Thereby, the sulfate ion and dithionate ion which inhibit the removal of selenium can be removed, and the removal of selenium can be made efficient.
  • the method for recovering selenium from selenium-containing wastewater removes the selenium from selenium-containing wastewater containing tetravalent selenium and hexavalent selenium, and collects the selenium-containing wastewater when the selenium is recovered.
  • the tetravalent selenium removing step is carried out as a pretreatment by adding a part of the separated iron sludge to the selenium-containing wastewater so as to be at least a part of the iron ions.
  • the content ratio of tetravalent selenium in the iron sludge can be further increased, and the separation cost of the tetravalent selenium from the iron sludge can be reduced. That is, by replacing some of the iron ions that are added to precipitate tetravalent selenium with the separated iron sludge, the amount of iron sludge is reduced and the content of tetravalent selenium in the iron sludge is increased. Can be made.
  • the tetravalent selenium in the iron sludge also returns to the selenium-containing wastewater.
  • the tetravalent selenium returned to the selenium-containing wastewater is again removed from the tetravalent selenium. Since it precipitates and collects with iron sludge in a process, the content rate of tetravalent selenium in iron sludge becomes high.
  • the hexavalent selenium is reduced with iron to form the tetravalent selenium
  • both hexavalent selenium and tetravalent selenium can be finally removed from the selenium-containing wastewater, and the selenium concentration of the selenium-containing wastewater can be reduced to a predetermined reference value or less.
  • the removal of selenium from the wastewater is a two-stage process of removing tetravalent selenium and removing hexavalent selenium.
  • the separation cost of selenium can be reduced as described above, removal of selenium.
  • the selenium recovery cost can be reduced even if it is in two stages.
  • a sulfuric acid removing step for removing sulfate ions from the selenium-containing waste water A COD component removal step of removing a COD component that inhibits the reduction of the hexavalent selenium from the selenium-containing wastewater after the sulfuric acid removal step;
  • the selenium removal step performed after the COD component removal step It is preferable that the tetravalent selenium removing step is performed after the sulfuric acid removing step and before the selenium removing step.
  • COD components such as sulfate ions, sulfite ions, thiosulfate ions, and dithionate ions inhibit the reduction of hexavalent selenium by iron, and therefore are preferably removed before the removal of selenium. .
  • the present invention when removing selenium from selenium-containing wastewater, it is possible to reduce selenium with poor reducibility and reduce the consumption of iron used for precipitating selenium to reduce costs. it can.
  • selenium can be separated from the selenium-containing wastewater at low cost, and effective use of selenium in the wastewater can be achieved without cost problems.
  • the selenium-containing wastewater treatment system of this embodiment includes a sulfuric acid removal step (sulfuric acid removing means) 1 for mainly removing sulfate ions (SO 4 2 ⁇ ) from wastewater, and dithionate ions (S 2 O mainly) from wastewater.
  • the selenium-containing wastewater (for example, the non-ferrous metal wastewater described above) to be treated in this embodiment contains relatively high concentrations of tetravalent selenium and hexavalent selenium. As described above, these selenium is dissolved in the waste water, for example, as selenite ion (SeO 3 2 ⁇ ) or selenate ion (Se0 4 2 ⁇ ).
  • This selenium-containing wastewater contains, for example, 20 mg / L or more in total of tetravalent selenium and hexavalent selenium, and may contain, for example, about 40 to 70 mg / L. Further, the selenium-containing wastewater contains a large amount of sulfate ions, for example, about 10,000 to 70000 mg / L. The selenium-containing wastewater contains about 80 to 250 mg / L of dithionate ions.
  • the sulfuric acid removing step (sulfuric acid removing means) 1 includes a sulfuric acid removing main step (removal tank) 1a for adding calcium chloride to sulfate ions to remove it as a gypsum and a solid-liquid separating step for solid-liquid separation of gypsum ( Precipitation tank: solid-liquid separator) 1b.
  • the sulfuric acid removing step 1 in the sulfuric acid removing means for example, in the sulfuric acid removing main step 1a, calcium chloride (CaCl 2 ) and sodium hydroxide (NaOH) are introduced into the selenium-containing waste water, and hardly soluble gypsum (CaSO 4 ⁇ 2H). 2 O) is formed, the remaining sodium hydroxide is neutralized with hydrochloric acid, and gypsum precipitates and precipitates.
  • the selenium-containing wastewater from which gypsum has precipitated in this step 1a is sent to solid-liquid separation means such as a precipitation tank in solid-liquid separation step 1b, for example, and sulfate ions are removed as gypsum.
  • the alkali to be added is not limited to sodium hydroxide, and may be calcium hydroxide (slaked lime) or other alkaline hydroxide.
  • the input amount of calcium chloride to the selenium-containing waste water is, for example, 2000 to 70000 mg / L, and more preferably 5000 to 15000 mg / L.
  • the amount of sodium hydroxide (calcium hydroxide) introduced into the selenium-containing wastewater is, for example, 150 to 4000 mg / L (250 to 8000 mg / L), and more preferably 3000 to 4000 mg / L (5500 to 7500 mg). / L).
  • the temperature of the selenium-containing wastewater in the sulfuric acid removal step 1 may be room temperature (for example, 20 to 40 ° C.), and the pH of the selenium-containing wastewater is preferably 10 to 12. Moreover, it is preferable that the sulfate ion concentration after a process is 10000 mg / L or less, for example.
  • the calcium chloride and sodium hydroxide are charged into the selenium-containing waste water, and the solid-liquid separation of the gypsum generated thereby is performed.
  • the input amount of calcium chloride exceeds the saturation amount, and the calcium chloride has a saturated concentration on the liquid side after the gypsum is solid-liquid separated.
  • the COD component removal step 2 in the COD component removal means includes a heating acid decomposition step 2a as a pretreatment and a COD component removal main step (dithionic acid removal main step) 2b as a main treatment.
  • the COD component removal means includes, for example, a heating tank for performing the heating acid decomposition step 2a, an oxidation tank for performing the COD component removal main step 2b, and a solid-liquid separation step 2c. A sedimentation tank is provided.
  • the selenium-containing wastewater from which gypsum is separated into solid and liquid as described above flows into the heating tank.
  • hydrochloric acid (HCl) and selenium removal step (selenium removal means) 3 As described later, a part of the sludge (mainly iron hydroxide sludge) separated into solid and liquid is charged and heated. Thereby, the heating acid decomposition of the COD component containing dithionic acid is performed.
  • mainly pentavalent sulfur is oxidized to hexavalent, for example, a part of dithionate ion is converted to sulfate ion.
  • iron sludge containing iron hydroxide (Fe (OH) 2 , Fe (OH) 3 ) is dissolved by adding HCl.
  • the heating acid decomposition step 2a in the COD component removal step (COD component removal means) 2 oxidizes a part of dithionate ions to form sulfate ions, and dithionate ions flowing into the COD component removal main step 2b which is the main treatment. This is to reduce the load in the main step 2b of COD component removal, which is the main treatment excluding dithionic acid as a COD component, and to dissolve iron sludge.
  • iron sulfate (FeSO 4 ) is added to the selenium-containing wastewater.
  • the input amount of hydrochloric acid in the heat acid decomposition step 2a is, for example, 25 to 400 mg / L, and more preferably 50 to 200 mg / L.
  • the amount of sludge charged in the heat acid decomposition step 2a is, for example, 125 to 2000 g / L, and more preferably 500 to 1000 g / L.
  • the temperature of the selenium-containing wastewater in the heat acid decomposition step 2a is preferably 50 to 80 ° C.
  • the pH of the selenium-containing wastewater is preferably 1 to 3.
  • the dithionate ion concentration after a process is 50 mg / L or less, for example.
  • step 2b hydrogen peroxide is added as an oxidizing agent in order to oxidize most of the dithionate ions into sulfate ions.
  • iron sulfate FeSO 4
  • hydroxy radicals are generated and sulfuric acid of dithionate ions is compared with the case where only hydrogen peroxide is added. Oxidation to ions is promoted. Therefore, even if a high concentration of dithionate ions is present, the oxidation of dithionate ions can be prevented from being insufficient, and the dithionate ion concentration can be lowered.
  • the heat acid decomposition step 2a by introducing iron sludge, iron is in a state of being charged, and the amount of iron sulfate charged can be reduced.
  • the heated acid decomposition step 2a and the COD component removal main step 2b in the COD component removal step (COD component removal means) 2 increase the sulfate ion concentration in the selenium-containing wastewater.
  • the generated calcium chloride is contained in the selenium-containing wastewater at a saturated concentration, and the generated sulfate ions react with calcium ions to become gypsum.
  • This gypsum precipitates in a solid-liquid separation step 2c in a precipitation tank (solid-liquid separation device) and is solid-liquid separated.
  • the iron sludge that has not been dissolved out of the input iron sludge is subjected to solid-liquid separation.
  • the iron sludge charged in the heating acid decomposition step 2a of the COD component removal step 2 includes tetravalent selenium precipitated together with the iron sludge in the selenium removal step 3 described later.
  • the selenium-containing wastewater originally contains tetravalent selenium as described above. These tetravalent selenium is hardly oxidized in the heating acid decomposition step 2a of the COD component removal step 2 and the COD component removal main step 2b, and most of it is precipitated and separated together with iron sludge. In addition, tetravalent selenium that has not been separated by precipitation is precipitated together with iron sludge in the next selenium removal step 3.
  • tetravalent selenium is oxidized to hexavalent, in the selenium removal step 3, hexavalent selenium to be reduced using iron increases, and iron consumption increases, Since it causes an increase in iron sludge, it is not preferable that tetravalent selenium is oxidized to hexavalent.
  • the amount of hydrogen peroxide input in this step 2b is, for example, 50 to 1000 mg / L, and more preferably 200 to 400 mg / L. Further, the input amount of iron sulfate in the COD component removal step 2b is, for example, 100 to 1200 mg / L, and more preferably 500 to 900 mg / L. Further, the temperature of the selenium-containing wastewater in the COD component removal step 2b is preferably 50 to 80 ° C., and the pH of the selenium-containing wastewater is preferably 2 to 4. Moreover, it is preferable that the dithionate ion concentration after a process is 20 mg / L or less, for example.
  • the selenium removal process 3 in the selenium removal means includes a selenium removal main process (removal tank) 3a for removing selenium and a solid-liquid separation process (precipitation tank (solid tank) for solid-liquid separation of iron sludge containing tetravalent selenium generated in the selenium removal. Liquid separator)) 3b.
  • a selenium removal main process for removing selenium
  • a solid-liquid separation process precipitation tank (solid tank) for solid-liquid separation of iron sludge containing tetravalent selenium generated in the selenium removal. Liquid separator)
  • hexavalent selenium is reduced by iron that oxidizes as described above. That is, it is reduced from hexavalent selenium to tetravalent selenium that easily precipitates, and precipitates together with iron hydroxide.
  • iron hydroxide and tetravalent selenium are attached to the surface of the fibrous iron, deposits such as iron hydroxide on the iron surface are peeled off by blowing air to the fibrous iron. Iron sludge. This also exposes the surface of the iron that has not been oxidized, and the reduction of selenium proceeds.
  • the surface area per volume of fibrous iron in the selenium removal step 3 is preferably 100 to 200 m 2 / m 3 .
  • the temperature of the selenium-containing wastewater in the selenium removal step 3 is preferably 40 to 60 ° C.
  • the pH of the selenium-containing wastewater is preferably 4 to 6.
  • the residence time of the selenium-containing wastewater in the selenium removal main process (removal tank) 3a in the selenium removal process 3 is preferably, for example, 10 to 50 hours.
  • the average passing speed of the selenium-containing wastewater in the contact reaction zone in the removal tank in which fibrous iron as the contact reducing material is disposed is 0.1 to 1.0 m / sec.
  • a part of the sludge (iron sludge) generated in the selenium removal process 3 is sent to the heated acid decomposition process 2a of the COD component removal process (COD component removal means) 2 and put into the selenium-containing wastewater. Will be. Therefore, the sludge iron separated in the selenium removal process 3 is circulated in the COD component removal process 2 and the selenium removal process 3.
  • the concentration of selenium contained in the selenium-containing wastewater is high, and the amount of iron required for the reduction from hexavalent selenium to tetravalent selenium.
  • the iron sludge generated in the selenium removal process 3 is thrown into the selenium-containing wastewater in the COD component removal process 2 prior to the selenium removal process 3, that is, a part of the iron sludge is removed in the selenium removal process 3
  • the amount of iron consumed and the amount of iron sludge generated can be reduced by circulating between the COD component removing step 2 and the preceding COD component removal step.
  • the iron ions dissolved in the selenium-containing wastewater return from the COD component removal step 2 to the selenium removal step 3, contributing to the precipitation of tetravalent selenium, and the consumption of fibrous iron in the selenium removal step 3. Will be reduced.
  • a heating acid decomposition step 2a for supplying hydrochloric acid to the selenium-containing wastewater and heating is provided before the COD component removal main step 2b for oxidizing dithionic acid.
  • the amount of iron sludge dissolved in selenium-containing wastewater can be increased by introducing iron sludge mainly composed of iron hydroxide. That is, divalent and trivalent iron hydroxide can be dissolved by a hydrochloric acid solution.
  • a part of the dithionate ion is oxidized to become a sulfate ion, thereby reducing the load in the COD component removal main step 2b to promote the oxidation of dithionate and further increasing the sulfuric acid.
  • the amount of iron used can be reduced.
  • it is possible to reduce the operating cost by reducing the consumption of iron that occupies a large weight in the operating cost of the selenium-containing wastewater treatment system.
  • by reducing iron consumption and reducing iron sludge generation it is possible to reduce the thermal energy required to dispose of the generated iron sludge. Cost can be reduced.
  • the COD component removal step 2 sulfur of dithionate ions is oxidized from pentavalent to hexavalent, so that tetravalent selenium in the selenium-containing wastewater and tetravalent selenium contained in the circulated iron sludge are oxidized. In the COD component removal step 2, most of the tetravalent selenium remains tetravalent without being oxidized.
  • the method for recovering selenium from selenium-containing wastewater is a method for efficiently recovering selenium in the above-described treatment of selenium-containing wastewater for removing selenium from selenium-containing wastewater. Therefore, the method for recovering selenium from the selenium-containing wastewater is performed as part of the above-described process for removing selenium from the selenium-containing wastewater.
  • the sulfuric acid removal step 1 for mainly removing sulfate ions (SO 4 2 ⁇ ) from the wastewater, and the wastewater mainly.
  • a COD component removing step 2 for removing dithionate ions (S 2 O 6 2-), and a selenium removing step 3 for removing selenium from the wastewater.
  • a tetravalent selenium removing step 10 for removing tetravalent selenium performed before removing selenium.
  • the tetravalent selenium removal step 10 in the tetravalent selenium removal step 10 is performed after the sulfuric acid removal step 1 and before the COD component removal step 2. Note that it may be performed after the COD component removal step 2 and before the selenium removal step 3.
  • the selenium-containing wastewater of the second embodiment is the same as the selenium-containing wastewater of the first embodiment.
  • the sulfuric acid removing step 1 of the second embodiment is similar to the sulfuric acid removing step 1 of the first embodiment, and the sulfuric acid removing main step 1a and gypsum in which calcium chloride is added to sulfate ions and precipitated as gypsum. And a solid-liquid separation step 1b.
  • the input amount of calcium chloride to the selenium-containing wastewater, the input amount of sodium hydroxide (calcium hydroxide), the temperature of the selenium-containing wastewater in this step 1a for removing sulfuric acid, the pH of the selenium-containing wastewater, the sulfate ion concentration after treatment, etc. is preferably the same as in the first embodiment.
  • the tetravalent selenium removing step 10 for removing tetravalent selenium includes an iron sludge dissolving step 11 in which iron sludge described below is introduced and dissolved, a tetravalent selenium removing main step 12 for removing tetravalent selenium, and an iron sludge.
  • the solid-liquid separation process 13 which isolate
  • iron sludge dissolution step 11 iron sludge generated in the tetravalent selenium removal main step 12 and separated in the solid-liquid separation step 13, iron sulfate (FeSO 4 ), and hydrochloric acid are charged. Note that iron sulfate does not need to be constantly added. If the amount of iron sludge to be introduced is sufficient, it does not need to be added, and is added when iron is insufficient.
  • the iron sludge is mainly divalent iron hydroxide (Fe (OH) 2 ) derived from divalent iron sulfate, and is dissolved in selenium-containing wastewater with hydrochloric acid acidity. Iron sulfate is also dissolved in selenium-containing wastewater.
  • the selenium-containing wastewater in which iron ions are dissolved in this way is sent to the tetravalent selenium removal main step 12, and in this tetravalent selenium removal main step 12, sodium hydroxide is added as an alkali to be neutralized.
  • the dissolved iron sludge and iron ions derived from iron sulfate are precipitated as iron hydroxide sludge, and at this time, tetravalent selenium that precipitates more easily than hexavalent selenium is precipitated together with the sludge.
  • the selenium removal step 3 to be described later when hexavalent selenium is reduced to tetravalent selenium with iron, and the reduced tetravalent selenium and the original tetravalent selenium are reduced to the hexavalent selenium. It will settle with the iron sludge produced.
  • the amount of iron used that is, the amount of iron used for selenium reduction, is nearly 10 times the amount of iron required for precipitating tetravalent selenium.
  • the amount of iron sludge increases with respect to the amount.
  • the produced sludge is separated in the solid-liquid separation step 13.
  • the amount of sludge at this time is basically determined by the amount of sludge and iron sulfate charged in the iron sludge melting step 11.
  • the amount of iron by the sludge and iron sulfate charged in the iron sludge dissolution step 11 is preferably an amount necessary for precipitating most of the tetravalent selenium contained in the selenium-containing wastewater, but the amount of iron sludge It is preferable that the amount of precipitated tetravalent selenium with respect to the iron sludge does not decrease too much.
  • the tetravalent selenium is also selenium-containing wastewater.
  • the amount of tetravalent selenium relative to the amount of iron sludge can be increased, and the tetravalent selenium contained in the iron sludge can be concentrated.
  • the precipitated tetravalent selenium is separated together with the iron sludge in the solid-liquid separation step 13. Therefore, in order to recover tetravalent selenium, it is necessary to separate it from iron sludge.
  • iron sludge is burned in a kiln as described above to reduce the volume. At this time, exhaust gas from the kiln is cooled by a condenser (cooler), and vaporized when the sludge is burned by the kiln. Collect the selenium. Thereby, selenium can be separated from the sludge.
  • the tetravalent selenium removal step 10 is the sulfuric acid removal step 1 as described above. It is preferable to carry out later.
  • a COD component such as dithionic acid as an inhibitor is an inhibitor of reduction of tetravalent selenium to tetravalent selenium, and does not significantly affect coprecipitation of tetravalent selenium with iron.
  • the selenium valence selenium removal step 10 may be performed before or after the COD component removal step 2. Further, the tetravalent selenium removing step 10 needs to be performed before the selenium removing step 3.
  • the method for separating selenium from sludge is not limited to the above-described method using a kiln, but when selenium is vaporized and separated from sludge, the selenium concentration relative to the sludge is increased to increase the amount of sludge.
  • the thermal energy for vaporizing selenium can be reduced, the cost of selenium recovery can be reduced, and the recovery of selenium from wastewater can be economically met.
  • the input amount of hydrochloric acid in the iron sludge dissolving step 11 is preferably 0.5 to 5 g / hr as a 35% hydrochloric acid solution, for example.
  • the input amount of iron sulfate is preferably 0.5 to 5 g / hr as a 5% iron sulfate solution, for example.
  • the input amount of iron sludge is preferably 30 to 200 g / hr as the sludge separated in the solid-liquid separation step 13, for example.
  • the flow rate of the selenium-containing waste water is set to 5 L / hr when the above-described substances are charged.
  • the temperature of the selenium-containing wastewater is preferably 20 to 40 ° C.
  • the pH of the selenium-containing wastewater is preferably 2 to 3.
  • Tetravalent selenium removal The amount of sodium hydroxide added in this step 12 is preferably 0.5 to 5 g / hr as a 25% sodium hydroxide solution. Tetravalent selenium removal In this step 12, the temperature of the selenium-containing wastewater is preferably 20 to 40 ° C., and the pH of the selenium-containing wastewater is preferably 10 to 12.
  • the heat acid decomposition step 2a, the COD component removal main step (COD component removal main step) 2b as the main treatment, and the sludge and gypsum are separated.
  • the solid-liquid separation step 2c is performed.
  • the selenium-containing product is obtained by separating the gypsum into solid and liquid in the tetravalent selenium removal step 10 and separating the tetravalent selenium with iron sludge as described above. Wastewater will be treated.
  • the iron sludge that has not been dissolved out of the iron sludge that has been charged is subjected to solid-liquid separation in the solid-liquid separation step 2c.
  • most of the tetravalent selenium that easily precipitates compared to hexavalent selenium adheres to the iron sludge and precipitates together with the iron sludge.
  • most of the tetravalent selenium has already been recovered in the tetravalent selenium removal step 10.
  • iron in a state where fibrous iron having a large surface area, oxygen in the air, and hexavalent selenium are present in water, iron becomes divalent iron ions and dissolves in water. At the same time, it is further oxidized to form trivalent iron ions, which are precipitated as Fe (OH) 3 .
  • hexavalent selenium is reduced by iron that oxidizes as described above. That is, it is reduced from hexavalent selenium to tetravalent selenium that easily precipitates, and precipitates together with iron hydroxide.
  • iron hydroxide and tetravalent selenium are attached to the surface of the fibrous iron, deposits such as iron hydroxide on the iron surface are peeled off by blowing air to the fibrous iron. Iron sludge. This also exposes the surface of the iron that has not been oxidized, and the reduction of selenium proceeds.
  • both tetravalent and hexavalent selenium in the selenium-containing wastewater is converted to tetravalent as tetravalent selenium by reducing hexavalent selenium with iron.
  • the concentration of selenium in the sludge can be increased by collecting tetravalent selenium together with the sludge and collecting it before reducing hexavalent selenium. it can.
  • the first embodiment of the present invention will be described below. First, experimental conditions of the comparative example and the example will be described. The difference between the comparative example and the example is whether or not the above-described iron sludge is circulated, and other experimental conditions are set to be the same. In the comparative example and the example, the above-described sulfuric acid removal, COD component removal, and selenium removal were performed, respectively.
  • the selenium-containing wastewater used in this experiment contains 37 mg / L of hexavalent selenium and 20 mg / L of tetravalent selenium.
  • 61400 mg / L of sulfate ion and 92 mg / L of dithionate ion are included.
  • the processing amount of the selenium containing waste water was 5 liters per hour.
  • the temperature of the selenium-containing wastewater was 35 ° C., and the pH was 12.4.
  • the input amount of calcium chloride to the selenium-containing wastewater was 69.3 g / L, and the input amount of calcium hydroxide as an alkali was 2.14 g / L.
  • the concentration of sulfate ion in the selenium-containing wastewater was reduced from 61400 mg / L to 100 mg / L.
  • the selenium-containing wastewater from which sulfate ions have been removed is treated.
  • the temperature of the selenium-containing wastewater was 60 ° C.
  • the pH was 3.
  • the amount of hydrochloric acid charged into the selenium-containing waste water was set to 0.10 g / L per hour as a 35 wt% hydrochloric acid solution.
  • the dithionate ion concentration in the selenium-containing wastewater was reduced from 92 mg / L to 53 mg / L.
  • the temperature of the selenium-containing wastewater was 30 ° C. and the pH was 3 as operation conditions.
  • the input amount of hydrogen peroxide to the selenium-containing wastewater was 64 mg / L
  • the input amount of iron sulfate was 52 mg / L as iron in iron sulfate.
  • the temperature of the selenium-containing wastewater was 30 ° C. and the pH was 3 as operating conditions. Moreover, the surface area per volume of the fibrous iron used as the contact reducing material was 101 m 2 / m 3 .
  • the residence time of the selenium-containing wastewater removal tank in the selenium removal step 3 was 5 hours.
  • the average passing speed of the selenium-containing wastewater in the contact reaction zone of the contact reducing material was set to 0.3 m / sec.
  • the entire amount of sludge was discharged in the selenium removal step 3, and in the example, the heated acid of the COD component removal step 2 was circulated so that half of the sludge discharged in the selenium removal step 3 was circulated.
  • the decomposition step 2a the selenium-containing wastewater is charged. That is, in the example, the amount of sludge separated and discharged in the selenium removal step 3 and the amount of sludge separated and sent to the heated acid decomposition step 2a were set to 1: 1.
  • the selenium concentration in the waste water after the selenium removal step 3 was set to 1 mg / L or less.
  • the sludge discharge amount in the example was 80 mg / hr.
  • the discharge amount of sludge in the comparative example was 200 mg / hr.
  • the amount of sludge to be discharged can be reduced to less than half by circulating the sludge.
  • the discharge amount of sludge is reduced, the consumption amount of fibrous iron as the contact reducing material is also reduced.
  • the addition amount of the iron sulfate in the COD component removal process 2 is made the same in the above-mentioned comparative example and the example, the addition amount of the iron sulfate in the example in which iron sludge is charged is made smaller than that in the comparative example. This can also reduce the amount of iron sludge generated.
  • the inhibitory substance contained in a selenium containing wastewater is not restricted to a sulfate ion and a dithionate ion, For example, another sulfur oxide ion may be sufficient.
  • the COD component removal step 2 that is, the step of mainly removing pentavalent sulfur oxide ions may not necessarily be divided into the two steps of the heating acid decomposition step 2a and the COD component removal main step 2b.
  • the tetravalent selenium removal step 10 is provided as a method for recovering selenium from the selenium-containing wastewater in the above-described method for treating selenium-containing wastewater. That is, in the example, tetravalent selenium is recovered from the sludge separated in the solid-liquid separation in the tetravalent selenium removing step 10, and in the comparative example, the tetravalent selenium removing step 10 is not provided, and the solid-liquid is obtained in the selenium removing step 3. Selenium will be recovered from the separated sludge.
  • the selenium-containing wastewater used in this experiment contains 37 mg / L of hexavalent selenium and 20 mg / L of tetravalent selenium.
  • 61400 mg / L of sulfate ion and 92 mg / L of dithionate ion are included.
  • the processing amount (flow rate) of the selenium containing waste water was 5 liters per hour.
  • the temperature of the selenium-containing wastewater was 35 ° C., and the pH was 12.4.
  • the input amount of calcium chloride to the selenium-containing wastewater was 69.3 g / L, and the input amount of calcium hydroxide as an alkali was 2.14 g / L.
  • the concentration of sulfate ion in the selenium-containing wastewater was reduced from 61400 mg / L to 100 mg / L.
  • the selenium-containing wastewater from which sulfate ions have been removed is treated.
  • the temperature of the selenium-containing wastewater was 60 ° C.
  • the pH was 3.
  • the amount of hydrochloric acid charged into the selenium-containing waste water was 0.52 g per hour as a 35 wt% hydrochloric acid solution.
  • half of the sludge generated in the selenium removal step 3 is added to the selenium-containing waste water as described later.
  • the dithionate ion concentration in the selenium-containing wastewater was reduced from 92 mg / L to 53 mg / L.
  • the temperature of the selenium-containing wastewater was 30 ° C. and the pH was 3 as operating conditions.
  • the input amount of hydrogen peroxide to the selenium-containing wastewater was 64 mg / L
  • the input amount of iron sulfate was 52 mg / L as iron in iron sulfate.
  • the dithionate ion concentration in the selenium-containing wastewater was reduced from 53 mg / L to 18 mg / L.
  • the temperature of selenium-containing wastewater was 30 ° C. and the pH was 3 as operating conditions. Moreover, the surface area per volume of the fibrous iron used as the contact reducing material was 101 m 2 / m 3 .
  • Selenium removal The residence time of the selenium-containing wastewater in this step 3a was 5 hours. The average passing speed of the selenium-containing wastewater in the contact reaction zone of the contact reducing material was set to 0.3 m / sec.
  • the selenium-containing wastewater is added in the heating acid decomposition step 2a of the COD component removal step 2 so that half of the sludge discharged in the selenium removal step 3 is circulated. That is, the amount of sludge separated and discharged in the selenium removal step 3 and the amount of sludge separated and sent to the heated acid decomposition step 2a were set to 1: 1.
  • the tetravalent selenium removal step 10 is performed between the sulfuric acid removal step 1 and the COD component removal step 2.
  • the iron sludge dissolution step 11 of the tetravalent selenium removal step 10 the selenium-containing wastewater from which sulfate ions have been removed in the sulfuric acid removal step 1 flows, and the temperature of the selenium-containing wastewater is set to 34.1 ° C. as an operating condition.
  • the pH of the waste water was set to 2.
  • the amount of hydrochloric acid charged into the selenium-containing wastewater was 1.2 g / hr as a 35% hydrochloric acid solution.
  • the input amount of iron sulfate to the selenium-containing wastewater was 1.6 g / hr as a 5% iron sulfate solution.
  • the flow volume of the selenium containing waste water in this case is 5 L / hr mentioned above.
  • iron sludge melting step 11 sludge is not introduced into the selenium-containing wastewater, but an amount of iron sulfate corresponding to the introduction of the sludge is introduced. That is, as an experiment, a large amount of iron sulfate is used instead of sludge.
  • Tetravalent selenium removal In this step 12, selenium-containing wastewater into which hydrochloric acid and iron sulfate have been added flows in, the temperature of the selenium-containing wastewater is set to 33.6 ° C., and the pH of the selenium-containing wastewater is set to 12. .
  • the amount of sodium hydroxide introduced into the selenium-containing wastewater was 1.8 g / hr as a 25% sodium hydroxide solution.
  • the selenium-containing wastewater from which the sludge has been subjected to solid-liquid separation in the tetravalent selenium removal step 10 is sent to the COD component removal step 2 described above.
  • selenium contained in the sludge separated in the tetravalent selenium removing step 10 was separated, and the amount of selenium contained in the sludge was determined.
  • the separated selenium does not include hexavalent selenium in the selenium-containing waste water before treatment.
  • iron for reducing hexavalent selenium is not required, iron may be in an amount that allows tetravalent selenium to be precipitated. Compared to the case where hexavalent selenium is reduced to tetravalent selenium and precipitated. , The amount of iron is reduced.
  • the separated selenium includes tetravalent selenium and hexavalent selenium (reduced to tetravalent) in the selenium-containing wastewater before treatment.
  • iron for reducing hexavalent selenium to tetravalent is required, and the amount of iron is increased as compared with Examples.
  • the comparative example when separating the selenium from the sludge, when obtaining the same amount of selenium in the example and the comparative example, the comparative example requires 6 times as much sludge as the example, and the same amount of selenium is required. In order to obtain it, it is necessary to process about 6 times or more sludge. In this case, when vaporizing selenium and separating it from the sludge, a large amount of heat energy is required, and the cost for the heat energy increases.
  • a part of the sludge obtained in the selenium removal process 3 is introduced into the selenium-containing wastewater in the COD component removal process 2 to reduce the amount of sludge that is finally separated.
  • the selenium concentration in the sludge is further reduced.
  • the amount of sludge may be more than doubled, the amount of selenium per sludge is halved, and the difference in the amount of selenium in the sludge from the example is 10 It may be more than doubled. Also in the tetravalent selenium removal step 10, the amount of iron sludge is reduced by circulating iron as sludge, and the selenium concentration in the iron sludge is increased.
  • the solid-liquid separation method may be precipitation by a precipitation tank, or may be performed by other known solid-liquid separation methods.
  • the inhibitory substance contained in a selenium containing wastewater is not restricted to a sulfate ion and a dithionate ion, For example, another sulfur oxide ion may be sufficient.
  • the COD component removal step 2 that mainly removes pentavalent sulfur oxide ions may not necessarily be divided into two steps, namely, the heat acid decomposition step 2a and the COD component removal main step 2b. In order to dissolve the iron sludge during circulation, it is preferable to have a heated acid decomposition step 2a.

Abstract

 排水のセレン濃度およびセレン除去阻害物質濃度が高い場合に、セレン除去に用いられる鉄分の有効利用を図り、さらにセレンを回収することによりコストを低減することが可能なセレン含有排水の処理システムを提供する。 セレン含有排水の処理システムは、排水から主に硫酸イオン(SO 2-)を除去する硫酸除去工程1を備える、また、排水から主にジチオン酸イオン(S 2-)を除去するCOD成分除去工程2を備える。さらに、排水からセレンを除去するセレン除去工程3を備える。セレン除去工程3におけるセレンの除去においては、鉄が6価セレンを還元して4価セレンが生じる。この際に酸化された鉄が水酸化鉄となってスラッジとして沈殿する際に4価のセレンが鉄のスラッジと共沈する。このスラッジの一部をCOD成分除去工程2に循環し、セレン含有排水に投入することで、鉄の有効利用とセレン回収を図ることができる。

Description

セレン含有排水の処理システム、セレン含有排水の処理方法およびセレン含有排水からのセレン回収方法
 本発明は、セレンが含まれる排水、特に、セレン濃度が高い排水からセレンを除去するセレン含有排水の処理システムおよびセレン含有排水の処理方法と、セレン濃度が高い排水からセレンを回収するセレン含有排水からのセレン回収方法に関する。
 セレンは、人体にとって必須元素であり、微量であれば問題ないが、必要レベルに比較してある程度多くなると毒性を示す。したがって、セレンは、水質汚濁、土壌汚染等に係る環境基準指定項目となっている。
 例えば、エコセメント生成工程において処理される石炭灰は一般に塩素を含んでいるため、エコセメント原料として混合する前に水洗する必要がある。その際排出される洗浄排水には、塩素の他にセレンが含まれる場合がある。
 また、石炭ガス化複合発電(IGCC)の石炭ガス化工程等から発生する排ガスを洗浄したときに排出される洗浄排水にも、セレンが含まれることがある。また、排煙脱硫で生じる排水にもセレンが含まれる場合がある。これら排水は、例えば、所定の排水基準を満たすまで浄化された後に、河川等に放流される。
 所定の排水基準を超えるセレンを含む排水においては、排水処理に際し、セレンを除去する必要がある。例えば、セレン濃度が0.1mg/L以下となるまでセレンが除去される。セレンを含む排水中において、セレンは、例えば、主に4価の亜セレン酸イオン(SeO 2-)または、6価のセレン酸イオン(Se0 2-)として存在している。
 セレン含有排水からセレンを除去する方法としては、例えば、セレンを含む排水に鉄を接触させることによって、排水中のセレンを除去する技術が提案されている(例えば、特許文献1~3参照)。
 例えば、接触還元材としての繊維状の鉄を用い、排水を繊維状の鉄に接触させ、鉄の酸化により6価セレンを4価セレンに還元させるとともに、4価のセレンを鉄スラッジ(主に水酸化鉄)とともに沈殿させることが提案されている。4価セレンは、6価セレンに比較して、沈殿し易く、元々4価のセレンと、6価から4価に還元されたセレンが鉄スラッジに付着した状態で沈殿する。
 上述の排水中には、セレン除去を阻害する阻害物質としてChemical Oxygen Demand成分(以下、単に「COD成分」という。)が含まれる。なお、ここでのCOD成分とは、酸化可能な成分であり、例えば、水中の亜硫酸イオン(SO 2-)、チオ硫酸イオン(S 2-)、ジチオン酸イオン(S 2-)等の6価より小さい硫黄酸化物イオン(例えば、5価以下の硫黄のオキソ酸)である。排水中のこれら阻害物質濃度が高いと、セレン除去率が低下する。
 したがって、上述の特許文献2では、セレン除去工程の前に、セレンの除去を阻害する阻害物質の除去が行われる。
 なお、特許文献3には、排水中に硫黄酸化物等が含まれていると、接触還元材としての鉄の消費量が多くなるとともに、鉄スラッジの量が多くなってしまうことが記載されており、セレン除去処理において、鉄の供給と、鉄スラッジの処理が問題になることが記載されている。この場合にも、セレン除去工程の前に硫黄酸化物等を除去することにより、鉄の消費量および鉄スラッジの発生量の低減を図ることができる。
特開平9-47790号公報 特開2011-72940号公報 特許第4812987号公報
 ところで、排水中に含まれるセレン濃度が高くなれば、硫黄酸化物を前処理で除去しても、鉄の消費量と鉄スラッジの排出量が増加することになる。例えば、非鉄金属排水にセレン濃度が高いものが知られている。この場合には、鉄の消費量の増加によるコストの増大と、大量に発生する鉄スラッジの処理にコストがかかることになる。
 また、セレンを高濃度に含む非鉄金属排水には、硫酸イオン(SO 2-)や上述のCOD成分としての亜硫酸イオン、ジチオン酸イオンの濃度が高い排水がある。硫酸イオンやジチオン酸イオンは、セレンの除去を阻害する阻害物質であり、セレン除去の前に、硫酸イオンや、亜硫酸イオン、ジチオン酸イオン等のCOD成分の除去が必要である。
 例えば、特許文献2では、阻害物質の除去、すなわち、硫酸イオンとCOD成分の除去として、凝集沈殿処理を行い、その後に酸化剤(例えば、オゾン、過酸化水素、過マンガン酸カリウム)により残ったCOD成分として例えば亜硫酸イオン、チオ硫酸イオン、ジチオン酸イオン等を酸化処理することが記載されている。
 ここで、例えば、排水中のジチオン酸イオンの濃度が高い場合に、酸化処理によるジチオン酸イオンの除去が不十分になる虞がある。すなわち、チオ硫酸イオン、ジチオン酸イオン等の阻害物質は、難分解性であり、除去するためには、上述のように強い酸化剤の存在下で酸化する必要があるが、それでも十分に除去(酸化)できない虞がある。
 この場合に、酸化分解処理に際し、触媒等を用いることが考えられるが、コストの増加を招くことになる。
 また、排水中のセレン濃度が高くなった場合に、排水からセレンを回収してセレンを有効利用することが考えられる。
 上述のように排水中のセレン濃度が高くなると、排水処理のコストが増加することになるが、セレンの濃度が高くなることにより、セレンを回収した際に経済的に見合う可能性がある。
 この場合に、セレン含有排水の処理コストの少なくとも一部が回収したセレンの有効利用により相殺されたり、セレンの有効利用により利益を出したりすることができる可能性がある。
 なお、金属セレンは、半導体性、光伝導性があり、これを利用してコピー機の感光ドラムに用いられる。さらに、セレンは、セレン整流器に使われたり、光起電効果によりカメラの露出計に用いられたり、ガラスの着色剤や脱色剤に使われたりしている。また、セレンは、CIS(銅・インジウム・セレン)系の太陽電池の材料に用いられる。
 本発明は、排水のセレン濃度が高く、かつ、この排水からのセレンの除去に際し、事前に除去すべきセレン除去の阻害物質濃度が高い場合に、セレン除去に用いられる鉄分の有効利用を図ることによりコストを低減することが可能なセレン含有排水の処理システムおよびセレン含有排水の処理方法を提供するとともに、排水からのセレンの除去において、排水のセレン濃度が高い場合に、排水からセレンを回収して有効利用を可能とするために、セレンの排水からの回収コストの低減を図ることができるセレン含有排水からのセレン回収方法を提供することを目的とする。
 前記課題を解決するために、本発明のセレン含有排水の処理システムは、セレン含有排水からのセレンの除去を阻害するCOD成分を除去するCOD成分除去手段と、前記COD成分の除去後に前記セレン含有排水に含まれる前記セレンのうちの被還元性セレンを鉄により還元し、この還元に際し酸化された前記鉄のスラッジとともに前記セレン含有排水に含まれる前記セレンを沈殿させて除去するセレン除去手段とを備え、
 前記セレン除去手段で生じた前記スラッジの一部を、前記COD成分除去手段において、前記セレン含有排水に投入することにより前記鉄を前記セレン除去手段と前記COD成分除去手段との間で循環させることを特徴とする。
 また、本発明のセレン含有排水の処理方法は、セレン含有排水からのセレンの除去を阻害するCOD成分を除去するCOD成分除去工程と、前記COD成分の除去後に前記セレン含有排水に含まれる前記セレンのうちの被還元性セレンを鉄により還元し、この還元に際し酸化された前記鉄のスラッジとともに前記セレン含有排水に含まれる前記セレンを沈殿させて除去するセレン除去工程とを備え、
 前記セレン除去工程で生じた前記スラッジの一部を、前記COD成分除去工程において、前記セレン含有排水に投入することにより前記鉄を前記セレン除去工程と前記COD成分除去工程との間で循環させることを特徴とする。
 これらのような構成によれば、被還元性のセレンの還元に用いられるとともに、還元されたセレンおよび元々還元された状態のセレンの沈殿に用いられる鉄を循環させることによって、鉄がセレンの沈殿に再利用されることになり、鉄の消費量を削減することができ、排水からのセレンの除去において、セレン含有排水に投入すべき鉄にかかるコストの低減を図ることができる。
 また、発生するスラッジの量が減少することから、沈殿してスラッジとなった鉄の処分にかかる熱エネルギーの低減を図り、コストを低減することができる。
 なお、排水に溶解しているセレンは、上述のように主に6価と4価のセレンであり、6価のセレンは、被還元性セレンとして鉄を用いて4価に還元することができる。この還元に際し、鉄が酸化されて2価および3価の鉄イオンになるが、略中性からアルカリ性において鉄が水酸化鉄として沈殿する際に4価のセレンが鉄とともにスラッジとして共沈する。なお、4価のセレンは沈殿し易いが6価のセレンは沈殿し難い。
 また、鉄スラッジを処分する際に、減容化するのに、例えば、キルン等で燃焼する場合がある。この場合に使用される熱エネルギーにコストがかかることになるが、発生する鉄スラッジを減らすことにより、鉄スラッジの処分にかかる熱エネルギーを抑えてコストの低減を図ることができる。
 本発明の前記セレン含有排水の処理システム(処理方法)において、前記COD成分除去手段(工程)では、前記セレン含有排水を酸性で加熱して前記COD成分を酸化する加熱酸分解工程と、前記加熱酸分解工程後に、前記セレン含有排水に過酸化水素と硫酸鉄を加えて前記COD成分を酸化するCOD成分除去本工程(ジチオン酸除去本工程)とが行われ、前記スラッジは、前記加熱酸分解工程で前記セレン含有排水に投入されることが好ましい。
 これらのような構成によれば、COD成分除去工程が、加熱酸分解工程と、COD成分除去本工程とに分けられるので、前処理の加熱酸分解工程で、COD成分の一部を酸化し、COD成分除去本工程に送られるCOD成分濃度を低減し、COD成分除去本工程における負荷を低減し、処理の効率化を図ることができる。
 この際に、上述のようにCOD成分除去手段(COD成分除去工程)でセレン含有排水に投入されるスラッジが、酸性で加熱されているセレン含有排水に投入されることになる。これにより、例えば、スラッジにおいて水酸化物となっている鉄が酸性下で加熱された排水に溶解することになり、再利用可能な状態となる。
 例えば、上述のように加熱酸分解工程で溶解した鉄イオンにより、COD成分除去本工程で投入される硫酸鉄の量を低減することが可能になる。なお、硫酸鉄は、過酸化水素からヒドロキシラジカルを発生させる触媒として機能する。
 本発明の前記セレン含有排水の処理システム(処理方法)において、排水に硫酸イオンが多量に含まれる場合には、前記セレン含有排水から前記COD成分を除去する前に、前記セレン含有排水に含まれて、前記セレンの除去を阻害する硫酸イオンを除去する硫酸除去手段を備え(硫酸除去工程が行われ)、
 前記硫酸除去手段(硫酸除去工程)では、前記セレン含有排水にカルシウムイオンを投入し、前記硫酸イオンを硫酸カルシウムである石膏として沈殿させて除去し、
 前記COD成分除去手段は、前記COD成分であるジチオン酸イオンを酸化することにより硫酸イオンとし、この硫酸イオンを前記硫酸除去手段で投入されて前記セレン含有排水に含まれる前記カルシウムイオンにより前記石膏として沈殿させて除去することが好ましい。
 これらのような構成によれば、セレンの除去の阻害物質となる硫酸イオンを除去できるとともに、同じく阻害物質となるCOD成分としてのジチオン酸イオンを硫酸イオンに酸化した際に、硫酸イオン除去で使用されたカルシウムイオンを用いて除去することができる。これにより、セレンの除去を阻害する硫酸イオンおよびジチオン酸イオンを除去して、セレンの除去を効率化することができる。
 また、本発明のセレン含有排水からのセレン回収方法は、4価セレンと6価セレンとを含むセレン含有排水から前記セレンを除去するとともに前記セレンを回収するに際し、前記セレン含有排水に、前記4価セレンと前記6価セレンが含まれる状態で、当該セレン含有排水に鉄イオンを投入し、前記4価セレンを前記鉄イオンに基づく鉄スラッジとともに沈殿させて分離する4価セレン除去工程を備え、
 分離された前記鉄スラッジから前記セレンを回収することを特徴とする。
 このような構成によれば、4価セレンと6価セレンとを含むセレン含有排水からセレンを除去する際にセレンを回収してセレンの有効利用図る際に、セレンの回収にかかるコストの低減を図ることができる。
 セレンの除去においては、6価セレンを、鉄を用いて4価セレンに還元するとともに、この還元の際に生じる鉄スラッジとともに元々の4価セレンと、還元された4価セレンを沈殿させて排水から除去している。この場合に6価セレンを4価セレンに還元する際に多くの鉄スラッジが発生する。したがって、排水中のセレン濃度が高くても、鉄により4価に還元すべき6価セレンがある程度含まれていれば、沈殿した鉄スラッジ中の4価セレンの含有割合は多くならない。
 6価セレンを4価セレンに還元することなく、4価セレンだけを鉄スラッジ(例えば、水酸化鉄)とともに、沈殿させた場合に、6価セレンを還元させる必要がないので、少量の鉄で多くの4価セレンを沈殿させることができ、鉄スラッジ中の4価セレンの含有割合が多くなる。
 鉄スラッジから4価セレンを分離する際に、4価セレンの含有割合が少ないと、4価セレンの分離コストが高くなってコスト的に見合わないが、4価セレンの含有割合が多ければ、セレンの分離コストを下げることができ、コスト的にセレンの有効利用を図ることが可能になる。
 したがって、6価セレンを回収しないことにより、排水から分離可能なセレン量が減少しても、4価セレンだけを分離することでセレンの分離コストを低減でき、排水中のセレンの有効利用が可能になる。
 本発明の上記構成において、前記4価セレン除去工程は、前処理として、前記鉄イオンの少なくとも一部となるように、分離された前記鉄スラッジの一部を前記セレン含有排水に投入するとともに酸性下で溶解させる鉄スラッジ溶解工程と、前記鉄スラッジ溶解工程後に前記セレン含有排水にアルカリを投入して前記鉄イオンを前記鉄スラッジとして前記4価セレンと沈殿させて分離する4価セレン除去本工程とを備えることが好ましい。
 このような構成によれば、鉄スラッジ中の4価セレンの含有割合をさらに高くし、4価セレンの鉄スラッジからの分離コストの低減を図ることができる。すなわち、4価セレンを沈殿させるために投入される鉄イオンの一部を分離された鉄スラッジで置き換えることにより、鉄スラッジの量を減少させて、鉄スラッジ中の4価セレンの含有割合を増加させることができる。
 なお、鉄スラッジをセレン含有排水に投入することにより、鉄スラッジ中の4価セレンもセレン含有排水に戻ることになるが、セレン含有排水に戻された4価セレンも、再び4価セレン除去本工程で鉄スラッジとともに沈殿されて回収されるので、鉄スラッジ中の4価セレンの含有割合が高くなる。
 本発明の上記構成において、前記4価セレン除去工程の後に、残りの前記セレンを前記セレン含有排水から除去するために、前記6価セレンを鉄により還元して前記4価セレンとするとともに、前記6価セレンを還元した前記鉄に基づく鉄スラッジとともに前記4価セレンを沈殿させて分離するセレン除去工程を備えることが好ましい。
 このような構成によれば、最終的にセレン含有排水から6価セレンおよび4価セレンの両方を除去することができ、セレン含有排水のセレン濃度を所定の基準値以下とすることができる。この場合に、セレンの排水からの除去が4価セレンの除去と、6価セレンの除去との二段階になるが、セレンの分離コストを上述のように削減することができることから、セレンの除去が二段階となっても、セレン回収コストの低減を図ることができる。
 本発明の上記構成において、前記セレン含有排水から硫酸イオンを除去する硫酸除去工程と、
 前記硫酸除去工程後に、前記セレン含有排水から前記6価セレンの還元を阻害するCOD成分を除去するCOD成分除去工程と、
 前記COD成分除去工程後に行われる前記セレン除去工程とを備え、
 前記4価セレン除去工程を、前記硫酸除去工程の後で、かつ、前記セレン除去工程の前に行うことが好ましい。
 前記セレンの除去において、硫酸イオンや、亜硫酸イオン、チオ硫酸イオン、ジチオン酸イオン等のCOD成分は、6価のセレンの鉄による還元を阻害するので、セレンの除去の前に除去することが好ましい。
 本発明によれば、セレン含有排水からのセレンの除去に際し、還元性に乏しいセレンを還元するとともに、セレンを沈殿させるために使用される鉄の消費量を低減してコストの低減を図ることができる。また、セレン含有排水から低コストにセレンを分離可能になり、コスト的に問題なく排水中のセレンの有効利用を図ることができる。
本発明の第1の実施の形態におけるセレン含有排水の処理システムを用いたセレン含有排水の処理方法を説明するための工程図である。 本発明の第2の実施の形態におけるセレン含有排水からのセレンの回収を含むセレン含有排水の処理方法を説明するための工程図である。
 以下、本発明の第1の実施の形態について、図1を参照しつつ説明する。
 この実施の形態のセレン含有排水の処理システムは、排水から主に硫酸イオン(SO 2-)を除去する硫酸除去工程(硫酸除去手段)1と、排水から主にジチオン酸イオン(S 2-)を除去するCOD成分除去工程(COD成分除去手段)2と、排水からセレンを除去するセレン除去工程(セレン除去手段)3とを備える。
 この実施の形態で処理されるセレン含有排水(例えば、上述の非鉄金属排水)は、比較的高濃度の4価セレン、6価セレンを含むものである。これらセレンは、上述のように例えば亜セレン酸イオン(SeO 2-)または、セレン酸イオン(Se0 2-)として排水中に溶解している。
 このセレン含有排水には、例えば、4価セレンと6価セレンとを合わせて20mg/L以上含まれ、例えば、40~70mg/L程度含まれている可能性がある。
 また、このセレン含有排水には、硫酸イオンも多く含まれ、例えば、10000~70000mg/L程度含まれている。また、セレン含有排水には、ジチオン酸イオンが80~250mg/L程度含まれている。
 上述のように、このセレン含有排水では、硫酸イオン濃度が高く、この硫酸イオンは、セレンの除去を阻害する阻害物質となるので、硫酸イオンを除去する必要がある。
 硫酸除去工程(硫酸除去手段)1には、硫酸イオンに塩化カルシウムを投入して石膏として除去するための硫酸除去本工程(除去槽)1aと石膏を固液分離するための固液分離工程(沈殿槽:固液分離装置)1bとを備える。
 硫酸除去手段における硫酸除去工程1では、例えば、硫酸除去本工程1aにおいて、セレン含有排水に、塩化カルシウム(CaCl)と水酸化ナトリウム(NaOH)が投入され、難溶性の石膏(CaSO・2HO)が生成し、残存した水酸化ナトリウムは塩酸で中和され、石膏は析出して沈殿することになる。
 除去槽での硫酸除去本工程1aで石膏が析出したセレン含有排水は、例えば、固液分離工程1bで沈殿槽等の固液分離手段に送られ、硫酸イオンが石膏として除去される。なお、添加されるアルカリは、水酸化ナトリウムに限定されるものではなく、水酸化カルシウム(消石灰)や、その他のアルカリ性の水酸化物であってもよい。
 また、セレン含有排水への塩化カルシウムの投入量は、例えば、2000~70000mg/Lであり、より好ましくは、5000~15000mg/Lである。また、セレン含有排水への水酸化ナトリウム(水酸化カルシウム)の投入量は、例えば、150~4000mg/L(250~8000mg/L)であり、より好ましくは、3000~4000mg/L(5500~7500mg/L)である。
 また、硫酸除去工程1におけるセレン含有排水の温度は、常温であれば良く(例えば20~40℃)、セレン含有排水のpHは、10~12であることが好ましい。また、処理後の硫酸イオン濃度は、例えば、10000mg/L以下となっていることが好ましい。
 硫酸除去工程1では、上述のように塩化カルシウムおよび水酸化ナトリウムのセレン含有排水への投入と、これにより生じる石膏の固液分離が行われることになる。なお、塩化カルシウムの投入量は、飽和量を超えるものであり、石膏を固液分離した後の液体側は、塩化カルシウムが飽和濃度となっている。
 COD成分除去手段におけるCOD成分除去工程2は、前処理としての加熱酸分解工程2aと、本処理としてのCOD成分除去本工程(ジチオン酸除去本工程)2bとからなっている。また、COD成分除去手段(COD成分除去工程2)は、例えば、加熱酸分解工程2aを行うための加熱槽と、COD成分除去本工程2bを行うための酸化槽と、固液分離工程2cのための沈殿槽を備える。
 加熱酸分解工程2aでは、加熱槽に、上述のように石膏が固液分離されたセレン含有排水が流入され、このセレン含有排水に塩酸(HCl)と、セレン除去工程(セレン除去手段)3において後述のように固液分離されたスラッジ(主に水酸化鉄スラッジ)の一部が投入されるとともに加熱される。これにより、ジチオン酸を含むCOD成分の加熱酸分解が行われる。この際には、主に5価の硫黄を6価に酸化し、例えば、ジチオン酸イオンの一部を硫酸イオンとする。また、水酸化鉄(Fe(OH)、Fe(OH))を含む鉄スラッジがHClの投入により溶解する。
 COD成分除去工程(COD成分除去手段)2における加熱酸分解工程2aは、ジチオン酸イオンの一部を酸化して硫酸イオンとし、本処理であるCOD成分除去本工程2b側に流入するジチオン酸イオンの濃度を低下させて、主としてCOD成分としてのジチオン酸を除く本処理であるCOD成分除去本工程2bでの負荷を低減するとともに、鉄スラッジを溶解させるためのものである。
 また、セレン含有排水中に硫酸イオンと、鉄イオンが生じることから、セレン含有排水中に硫酸鉄(FeSO)を加えた状態になる。
 加熱酸分解工程2aにおける塩酸の投入量は、例えば、25~400mg/Lであり、より好ましくは、50~200mg/Lである。また、加熱酸分解工程2aにおけるスラッジの投入量は、例えば、125~2000g/Lであり、より好ましくは、500~1000g/Lである。
 また、加熱酸分解工程2aにおけるセレン含有排水の温度は、50~80℃であることが好ましく、セレン含有排水のpHは、1~3であることが好ましい。また、処理後のジチオン酸イオン濃度は、例えば、50mg/L以下となっていることが好ましい。
 COD成分除去本工程2bにおいては、ジチオン酸イオンの多くを酸化して硫酸イオンとするために酸化剤として過酸化水素水を投入する。また、過酸化水素水からヒドロキシラジカルを生じるための触媒として、硫酸鉄(FeSO)を投入することにより、ヒドロキシラジカルが生じ、過酸化水素だけを投入した場合に比較してジチオン酸イオンの硫酸イオンへの酸化が促進される。したがって、高濃度のジチオン酸イオンが存在しても、ジチオン酸イオンの酸化が不十分になるのを防止し、ジチオン酸イオン濃度の低下を図ることができる。
 また、上述のように、加熱酸分解工程2aにおいて、鉄スラッジを投入することにより、鉄が投入された状態となっており、硫酸鉄の投入量を削減することが可能になる。
 このCOD成分除去工程(COD成分除去手段)2における加熱酸分解工程2aと、COD成分除去本工程2bとにより、セレン含有排水中の硫酸イオン濃度が高まることになるが、硫酸除去工程1で投入された塩化カルシウムがセレン含有排水中に飽和濃度で含まれており、生成した硫酸イオンは、カルシウムイオンと反応して石膏となる。この石膏は、固液分離工程2cにおいて沈殿槽(固液分離装置)で沈殿して固液分離される。また、固液分離工程2cにおいて沈殿槽では、投入された鉄スラッジのうちの溶解しなかった鉄スラッジが固液分離される。
 また、この際に6価のセレンに比較して沈殿し易い4価のセレンの大部分が、鉄スラッジに付着して鉄スラッジとともに沈殿する。なお、この段階で6価のセレンは、還元されておらず、セレン除去工程3側に流出することになる。なお、固液分離は、次のセレン除去工程3でも行われるが、セレン除去工程3において、SS(Suspended Solid)の存在が阻害要因となるので、セレン除去工程3の前に固液分離することが好ましい。
 また、COD成分除去工程2の加熱酸分解工程2aで投入された鉄スラッジには、後述のセレン除去工程3で鉄スラッジとともに沈殿した4価のセレンが含まれる。また、セレン含有排水には、上述のように元々4価のセレンが含まれる。これら4価のセレンは、COD成分除去工程2の加熱酸分解工程2aおよびCOD成分除去本工程2bにおいて、ほとんど酸化されず、その多くが鉄スラッジとともに沈殿して分離される。また、沈殿分離されなかった4価のセレンは、次のセレン除去工程3において、鉄スラッジとともに沈殿する。なお、ここで、4価のセレンが6価に酸化されてしまうと、セレン除去工程3において、鉄を用いて還元すべき6価のセレンが増加し、鉄の消費量が増加してしまい、鉄スラッジの増加を招くため、4価のセレンが6価に酸化されるのは好ましくない。
 COD成分除去本工程2bにおける過酸化水素の投入量は、例えば、50~1000mg/Lであり、より好ましくは、200~400mg/Lである。また、COD成分除去本工程2bにおける硫酸鉄の投入量は、例えば、100~1200mg/Lであり、より好ましくは、500~900mg/Lである。
 また、COD成分除去本工程2bにおけるセレン含有排水の温度は、50~80℃であることが好ましいく、セレン含有排水のpHは、2~4であることが好ましい。また、処理後のジチオン酸イオン濃度は、例えば、20mg/L以下となっていることが好ましい。
 セレン除去手段におけるセレン除去工程3は、セレンを除去するセレン除去本工程(除去槽)3aと、セレン除去に際し生じる4価セレンを含む鉄スラッジを固液分離する固液分離工程(沈殿槽(固液分離装置))3bとを備える。
 セレン除去工程3では、水中で、表面積の大きな繊維状の鉄と、空気中の酸素と、6価のセレンとが存在する状態で、鉄が2価の鉄イオンとなって水に溶解するとともにさらに酸化されて3価の鉄イオンとなり、Fe(OH)等となって析出する。
 それに対して、6価のセレンは、上述のように酸化する鉄によって還元されることになる。すなわち、6価のセレンから沈殿し易い4価のセレンに還元され、水酸化鉄とともに沈殿することになる。なお、繊維状の鉄の表面に水酸化鉄と、4価のセレンが付着した状態となるが繊維状の鉄に空気を噴出することにより、鉄表面の水酸化鉄等の付着物が剥離されて鉄スラッジとなる。また、これにより酸化されていない鉄の表面が露出し、セレンの還元が進行することになる。
 セレン除去本工程3aで除去槽においては、繊維状の鉄が保持されている部分があり、この部分にセレン含有排水が撹拌装置等により循環する。また、除去槽では、基本的に連続処理が行われるが、セレン含有排水が繊維状の鉄の部分を流れて通過してしまうのではなく、循環しながら滞留し、滞留したセレン含有排水がセレン除去本工程(除去槽)3aから排出される。
 セレン除去工程3における繊維状の鉄の体積当たりの表面積は、100~200m/mであることが好ましい。また、セレン除去工程3におけるセレン含有排水の温度は、40~60℃であることが好ましく、セレン含有排水のpHは、4~6であることが好ましい。また、セレン除去工程3におけるセレン含有排水のセレン除去本工程(除去槽)3aでの滞留時間は、例えば、10~50時間であることが好ましい。また、接触還元材としての繊維状の鉄が配置された除去槽中の接触反応帯域のセレン含有排水の平均通過速度が、0.1~1.0m/secとなっていることが好ましい。
 セレン除去工程3で発生したスラッジ(鉄スラッジ)の一部は、上述のように、COD成分除去工程(COD成分除去手段)2の加熱酸分解工程2aに送られて、セレン含有排水に投入されることになる。したがって、セレン除去工程3で分離されたスラッジの鉄は、COD成分除去工程2と、セレン除去工程3で循環することになる。
 このようなセレン含有排水の処理システムにおけるセレン含有排水の処理方法にあっては、セレン含有排水に含まれるセレンの濃度が高く、6価セレンから4価セレンへの還元に必要とする鉄の量が多くなっても、セレン除去工程3で生じた鉄スラッジを、セレン除去工程3より前のCOD成分除去工程2でセレン含有排水に投入すること、すなわち、鉄スラッジの一部をセレン除去工程3とのその前のCOD成分除去工程2との間で循環させるようにすることにより、鉄の消費量および鉄スラッジの発生量を低減することができる。
 ここで、セレン含有排水に溶解した鉄イオンは、COD成分除去工程2からセレン除去工程3に戻ることになり、4価セレンの沈殿に寄与し、セレン除去工程3における繊維状の鉄の消費量を低減することになる。
 また、セレン含有排水のジチオン酸濃度、すなわち、COD成分濃度が高いことに対応して、COD成分除去工程2における過酸化水素によるジチオン酸の酸化に際し、2価の硫酸鉄を触媒として過酸化水素からヒドロキシラジカルを発生させる場合に、鉄スラッジを投入することにより、硫酸鉄の投入量を削減することができる。これによっても、鉄の使用量の削減を図ることができる。
 また、COD成分除去工程2においては、ジチオン酸を酸化させるCOD成分除去本工程2bの前にセレン含有排水に塩酸を投入するとともに加熱する加熱酸分解工程2aを設け、この加熱酸分解工程2aにおいて、主に水酸化鉄からなる鉄スラッジを投入することにより、鉄スラッジのセレン含有排水への溶解量を増加させることができる。すなわち、2価および3価の水酸化鉄を塩酸溶液により溶解することができる。
 また、加熱酸分解工程2aにおいて、ジチオン酸イオンの一部が酸化されて硫酸イオンとなることにより、COD成分除去本工程2bにおける負荷を低減して、ジチオン酸の酸化を促進するとともに、さらに硫酸鉄の使用量の削減を図ることができる。ここで、セレン含有排水の処理システムの運転コストにおいて大きなウエイトを占める鉄の消費量を低減することで、運転コストの低減を図ることができる。また、鉄の消費量を低減して鉄スラッジの発生量を低減することにより、発生した鉄スラッジの処分に必要とされる熱エネルギーの低減を図ることができ、これによってもセレン含有排水の運転コストの低減を図ることができる。
 また、COD成分除去工程2では、ジチオン酸イオンの硫黄を5価から6価に酸化するので、セレン含有排水中の4価のセレンや、循環させられる鉄スラッジに含まれる4価のセレンが酸化させられる虞があるが、COD成分除去工程2において、4価のセレンの多くは酸化されることなく4価のままとなっている。
 したがって、COD成分除去工程2で4価のセレンを含む鉄スラッジを投入しても、4価のセレンが6価に酸化されることにより、6価のセレンを4価に還元するために必要とされる鉄の消費量が増加してしまうようなことがない。したがって、鉄スラッジを循環させることで確実に鉄の消費量の低減を図ることができる。
 次に、本発明の第2の実施の形態について、図2を参照しつつ説明する。
 この実施の形態のセレン含有排水からのセレン回収方法は、セレン含有排水からセレンを除去するための上述のセレン含有排水の処理において、セレンを効率的に回収するための方法である。したがって、セレン含有排水からのセレン回収方法は、セレン含有排水からセレンを除去する上述の処理の一部として行われる。
 セレン含有排水(例えば、上述の非鉄金属排水)からセレンを除去する処理では、上述のように、排水から主に硫酸イオン(SO 2-)を除去する硫酸除去工程1と、排水から主にジチオン酸イオン(S 2-)を除去するCOD成分除去工程2と、排水からセレンを除去するセレン除去工程3とを備え、さらに、セレン含有排水からセレン除去工程3において主に6価セレンを除去する前に行われる4価セレンを除去する4価セレン除去工程10とを備える。
 4価セレン除去工程10における4価セレン除去本工程12は、硫酸除去工程1の後で、かつ、COD成分除去工程2の前に行われる。なお、COD成分除去工程2の後で、セレン除去工程3の前に行ってもよい。
 第2の実施の形態のセレン含有排水は、第1の実施の形態のセレン含有排水と同様のものである。また、第2の実施の形態の硫酸除去工程1は、第1の実施の形態の硫酸除去工程1と同様に、硫酸イオンに塩化カルシウムを投入して石膏として析出させる硫酸除去本工程1aと石膏を固液分離する固液分離工程1bとを備える。
 また、セレン含有排水への塩化カルシウムの投入量、水酸化ナトリウム(水酸化カルシウム)の投入量、硫酸除去本工程1aにおけるセレン含有排水の温度、セレン含有排水のpH、処理後の硫酸イオン濃度等は、第1の実施の形態の場合と同様となっていることが好ましい。
 4価セレンを除去する4価セレン除去工程10は、後述の鉄スラッジが投入されて溶解される鉄スラッジ溶解工程11と、4価のセレンを除去する4価セレン除去本工程12と、鉄スラッジを分離する固液分離工程13とを備える。
 鉄スラッジ溶解工程11では、後述のように4価セレン除去本工程12で生じるとともに固液分離工程13で分離された鉄のスラッジと、硫酸鉄(FeSO)と塩酸が投入される。なお、硫酸鉄は、常時投入する必要はなく、鉄スラッジの投入量が十分であれば、投入しなくともよく、鉄が不足する場合に投入される。
 鉄スラッジ溶解工程11では、硫酸除去工程1で硫酸イオンが除去されたセレン含有排水が流入し、このセレン含有排水に含まれる4価のセレンを鉄イオンとともに共沈させるために鉄スラッジ、硫酸鉄が投入される。鉄スラッジは、2価の硫酸鉄由来の主に2価の水酸化鉄(Fe(OH))であり、塩酸酸性でセレン含有排水に溶解することになる。また、硫酸鉄もセレン含有排水に溶解する。このように鉄イオンが溶解したセレン含有排水は、4価セレン除去本工程12に送られ、この4価セレン除去本工程12で、アルカリとして水酸化ナトリウムが投入されて中和される。
 これにより、溶解した鉄スラッジおよび硫酸鉄由来の鉄イオンは、水酸化鉄のスラッジとして沈殿し、この際に6価のセレンより沈殿し易い4価のセレンがスラッジとともに沈殿することになる。なお、後述のセレン除去工程3では、6価のセレンを鉄により4価のセレンに還元し、還元された4価のセレンと、元々4価のセレンとを6価のセレンを還元する際に生じた鉄スラッジとともに沈殿させることになる。
 この場合の鉄の使用量、すなわち、セレン還元にも使われる鉄の量は、単に4価のセレンを沈殿させるために必要な鉄の量の10倍近い量となり、これにより、沈殿するセレンの量に対して、鉄スラッジの量が多くなってしまう。
 そこで、この4価セレン除去本工程12では、金属鉄ではなく、既に酸化された状態の鉄(2価の硫酸鉄)が用いられるため6価セレンが還元されずに6価のままとなり、鉄は4価のセレンを沈殿させるために用いられる。
 生成したスラッジは、固液分離工程13で分離される。この際のスラッジの量は、基本的には、鉄スラッジ溶解工程11で投入されるスラッジと硫酸鉄の量により決まることになる。鉄スラッジ溶解工程11で投入されるスラッジおよび硫酸鉄による鉄の量は、セレン含有排水に含まれる4価セレンの大部分を沈殿させるのに必要な量となることが好ましいが、鉄スラッジの量が多くなりすぎて、鉄スラッジに対する沈殿した4価セレンの量が少なくならないようにすることが好ましい。
 また、上述のように4価セレン除去本工程12でセレン含有排水を中和することにより生じた鉄スラッジを鉄スラッジ溶解工程11でセレン含有排水に投入することにより、4価セレンもセレン含有排水に投入されることになるが、これにより鉄スラッジの量に対する4価セレンの量を増加させ、鉄スラッジに含まれる4価セレンを濃縮した状態とすることができる。
 沈殿した4価セレンは、固液分離工程13において鉄スラッジとともに分離されることになる。したがって、4価セレンを回収するには、鉄スラッジから分離する必要がある。鉄スラッジは、例えば、上述のようにキルンで燃焼して減容化することになるが、この際にキルンからでる排気をコンデンサ(冷却器)で冷却し、キルンでスラッジを燃焼する際に気化したセレンを回収する。これにより、セレンをスラッジから分離することができる。
 なお、4価セレン除去本工程12において、比較的高濃度の硫酸イオンが存在すると、鉄の溶解速度が低下することになるので、上述のように4価セレン除去工程10は、硫酸除去工程1より後に行うことが好ましい。また、阻害物質としてのジチオン酸等のCOD成分は、6価セレンへの4価への還元の阻害物質であり、4価セレンの鉄との共沈には、大きな影響を与えないので、4価セレン除去工程10を、COD成分除去工程2の前に行っても後に行ってもよい。また、4価セレン除去工程10は、セレン除去工程3の前に行われる必要がある。
 また、スラッジからのセレンの分離方法は、上述のキルンを用いた方法に限られるものではないが、セレンをスラッジから気化させて分離させる場合に、スラッジに対するセレン濃度を高くして、スラッジの量を少なくすることにより、セレンを気化させるための熱エネルギーを減少させることができ、セレン回収のコストが低減され、排水からのセレンの回収を経済的に見合うものとすることができる。
 鉄スラッジ溶解工程11における塩酸の投入量は、例えば、35%塩酸溶液として、0.5~5g/hrであることが好ましい。また、硫酸鉄の投入量は、例えば、5%硫酸鉄溶液として、0.5~5g/hrであることが好ましい。また、鉄スラッジの投入量は、例えば、固液分離工程13で分離された状態のスラッジとして、30~200g/hrであることが好ましい。なお、上述の各物質の投入に際し、セレン含有排水の流量を5L/hrとする。また、鉄スラッジ溶解工程11において、セレン含有排水の温度は、20~40℃であることが好ましく、セレン含有排水のpHは、2~3であることが好ましい。
 4価セレン除去本工程12における水酸化ナトリウムの投入量は、25%水酸化ナトリウム溶液として0.5~5g/hrであることが好ましい。4価セレン除去本工程12においてセレン含有排水の温度は、20~40℃であることが好ましく、セレン含有排水のpHは、10~12であることが好ましい。
 COD成分除去工程2では、第1の実施の形態の場合と同様に、加熱酸分解工程2aと、本処理としてのCOD成分除去本工程(COD成分除去本工程)2bと、スラッジや石膏を分離する固液分離工程2cが行われる。
 但し、第2の実施の形態では、加熱酸分解工程2aでは、上述のように4価セレン除去工程10において石膏が固液分離されるとともに4価セレンが鉄スラッジとともに固液分離されたセレン含有排水が処理されることになる。
 加熱酸分解工程2aにおいて、投入された鉄スラッジのうちの溶解しなかった鉄スラッジが固液分離工程2cで固液分離される。この際に6価のセレンに比較して沈殿し易い4価のセレンの大部分が、鉄スラッジに付着して鉄スラッジとともに沈殿する。但し、既に4価セレン除去工程10において、4価セレンの多くが回収されている。
 セレン除去を行うセレン除去工程3には、第1の実施の形態と同様に、セレンを除去するセレン除去本工程3aと、セレン除去に際し生じる4価セレンを含む鉄スラッジを固液分離する固液分離工程3bとを備える。
 セレン除去本工程3aでは、水中で、表面積の大きな繊維状の鉄と、空気中の酸素と、6価のセレンとが存在する状態で、鉄が2価の鉄イオンとなって水に溶解するとともにさらに酸化されて3価の鉄イオンとなり、Fe(OH)となって析出する。
 それに対して、6価のセレンは、上述のように酸化する鉄によって還元される。すなわち、6価のセレンから沈殿し易い4価のセレンに還元され、水酸化鉄とともに沈殿することになる。なお、繊維状の鉄の表面に水酸化鉄と、4価のセレンが付着した状態となるが繊維状の鉄に空気を噴出することにより、鉄表面の水酸化鉄等の付着物が剥離されて鉄スラッジとなる。また、これにより酸化されていない鉄の表面が露出し、セレンの還元が進行することになる。
 このようなセレン含有排水の処理方法にあっては、第1の実施の形態と同様の作用効果を奏することができる。また、セレン含有排水の処理方法におけるセレン含有排水からのセレン回収方法においては、6価セレンを鉄で還元して4価セレンとしてセレン含有排水中の4価および6価のセレンの両方を4価セレンとしてスラッジとともに沈殿させて回収するようにした場合に比較して、6価セレンを還元する前に4価セレンをスラッジとともに沈殿させて回収する方が、スラッジ中のセレン濃度を高くすることができる。
 以下に、本発明の第1実施例を説明する。
 まず、比較例と実施例の実験条件を説明する。なお、比較例と実施例の違いは、上述の鉄スラッジを循環させるか否かの違いであり、それ以外の実験条件は同じになるように設定した。また、比較例と実施例とにおいて、それぞれ上述の硫酸除去、COD成分除去、セレン除去を行った
 以下に、比較例と実施例とで共通する実験条件を説明する。
 この実験に用いるセレン含有排水には、6価セレンが37mg/L含まれ、4価セレンが20mg/L含まれている。また、硫酸イオンが61400mg/L含まれ、ジチオン酸イオンが92mg/L含まれている。
 また、セレン含有排水の処理量を毎時5リットルとした。
 硫酸除去工程1における操作条件としてセレン含有排水の温度が35℃で、pHが12.4とされた。また、セレン含有排水のへの塩化カルシウムの投入量を69.3g/Lとし、アルカリとしての水酸化カルシウムの投入量を2.14g/Lとした。
 この硫酸除去工程1により、上述のセレン含有排水中の硫酸イオン濃度が、61400mg/Lから100mg/Lに減少した。
 COD成分除去工程2の加熱酸分解工程2aでは、このように硫酸イオンが除去されたセレン含有排水を処理する。加熱酸分解工程2aにおける操作条件としてセレン含有排水の温度が60℃で、pHが3とされた。また、セレン含有排水のへの塩酸の投入量を、35wt%の塩酸溶液として毎時0.10g/Lとした。
 この加熱酸分解工程2aにより、上述のセレン含有排水中のジチオン酸イオン濃度が、92mg/Lから53mg/Lに減少した。
 COD成分除去工程2のCOD成分除去本工程2bでは、操作条件としてセレン含有排水の温度が30℃で、pHを3とした。また、セレン含有排水のへの過酸化水素の投入量を64mg/Lとし、硫酸鉄の投入量を硫酸鉄中の鉄として52mg/Lとした。
 このCOD成分除去工程2により、上述のセレン含有排水中のジチオン酸イオン濃度が、53mg/Lから18mg/Lに減少した。
 セレン除去工程3のセレン除去本工程3aでは、操作条件としてセレン含有排水の温度が30℃で、pHが3とされた。また、使用した接触還元材としての繊維状の鉄の体積当たりの表面積を101m/mとした。セレン除去工程3におけるセレン含有排水の除去槽の滞留時間を5時間とした。また、接触還元材の接触反応帯域のセレン含有排水の平均通過速度を0.3m/secとした。
 このような実験条件において、比較例では、セレン除去工程3でスラッジを全量排出し、実施例では、セレン除去工程3で排出されたスラッジの半分を循環させるようにCOD成分除去工程2の加熱酸分解工程2aでセレン含有排水に投入する。すなわち、実施例においては、セレン除去工程3で分離されて排出されるスラッジの量と、分離されて加熱酸分解工程2aに送られるスラッジの量とを1対1とした。
 また、比較例と実施例とにおいて、セレン除去工程3後の排水中のセレン濃度が1mg/L以下となるようにした。このような実験条件において、実施例におけるスラッジの排出量が80mg/hrとなった。また、比較例におけるスラッジの排出量が200mg/hrとなった。
 すなわち、スラッジを循環させることにより、排出させるスラッジの量を半分以下にすることが可能になった。この場合に、スラッジの排出量が減少していることから、接触還元材としての繊維状の鉄の消費量も減少することになる。これにより鉄の投入にかかるコストの低減を図ることができるとともに、スラッジの処理に必要な熱エネルギーを低減させてコストの低減を図ることができる。なお、上述の比較例と実施例とでは、COD成分除去工程2における硫酸鉄の添加量を同じにしているが、鉄スラッジが投入される実施例における硫酸鉄の添加量を比較例より少なくすることができ、これによっても鉄スラッジの発生量を減少させることができる。
 なお、各槽における工程では、連続処理が行われることになる。また、固液分離を沈殿槽による沈殿以外の周知の固液分離方法で行ってもよい。また、セレン含有排水に含まれる阻害物質は、硫酸イオンと、ジチオン酸イオンに限られるものではなく、例えば、その他の硫黄酸化物イオンであってもよい。また、COD成分除去工程2、すなわち、主に5価の硫黄酸化物イオンを除去する工程を、必ずしも加熱酸分解工程2aと、COD成分除去本工程2bとの二つの工程に分けなくてもよいが、鉄スラッジを循環するに際し、鉄スラッジを溶解させるためには、加熱酸分解工程2aを有することが好ましい。
 次に、本発明の第2実施例を説明する。
 まず、比較例と実施例の実験条件を説明する。なお、比較例と実施例の違いは、上述のセレン含有排水の処理方法において、セレン含有排水からのセレン回収方法として、4価セレン除去工程10を設けるか否かの違いである。すなわち、実施例では、4価セレン除去工程10で固液分離されたスラッジから4価セレンを回収することになり、比較例では、4価セレン除去工程10がなく、セレン除去工程3で固液分離されたスラッジからセレンを回収することになる。
 以下に、比較例と実施例とで共通する実験条件を説明する。
 この実験に用いるセレン含有排水には、6価セレンが37mg/L含まれ、4価セレンが20mg/L含まれている。また、硫酸イオンが61400mg/L含まれ、ジチオン酸イオンが92mg/L含まれている。
 また、セレン含有排水の処理量(流量)を毎時5リットルとした。
 硫酸除去工程1における操作条件としてセレン含有排水の温度が35℃で、pHが12.4とされた。また、セレン含有排水のへの塩化カルシウムの投入量を69.3g/Lとし、アルカリとしての水酸化カルシウムの投入量を2.14g/Lとした。
 この硫酸除去工程1により、上述のセレン含有排水中の硫酸イオン濃度が、61400mg/Lから100mg/Lに減少した。
 COD成分除去工程2の加熱酸分解工程2aでは、このように硫酸イオンが除去されたセレン含有排水を処理する。加熱酸分解工程2aにおける操作条件としてセレン含有排水の温度が60℃で、pHが3とされた。また、セレン含有排水への塩酸の投入量を、35wt%の塩酸溶液として毎時0.52gとした。また、加熱酸分解工程2aでは、後述のようにセレン除去工程3で発生したスラッジの半分がセレン含有排水に添加される。
 この加熱酸分解工程2aにより、上述のセレン含有排水中のジチオン酸イオン濃度が、92mg/Lから53mg/Lに減少した。
 COD成分除去工程2のCOD成分除去本工程2bでは、操作条件としてセレン含有排水の温度が30℃で、pHが3とされた。また、セレン含有排水のへの過酸化水素の投入量を64mg/Lとし、硫酸鉄の投入量を硫酸鉄中の鉄として52mg/Lとした。
 このCOD成分除去工程2において、上述のセレン含有排水中のジチオン酸イオン濃度が、53mg/Lから18mg/Lに減少した。
 COD成分除去本工程2bでは、操作条件としてセレン含有排水の温度が30℃で、pHが3とされた。また、使用した接触還元材としての繊維状の鉄の体積当たりの表面積を101m/mとした。セレン除去本工程3aにおけるセレン含有排水の滞留時間を5時間とした。また、接触還元材の接触反応帯域のセレン含有排水の平均通過速度を0.3m/secとした。
 また、比較例、実施例では、セレン除去工程3で排出されたスラッジの半分を循環させるようにCOD成分除去工程2の加熱酸分解工程2aでセレン含有排水に投入する。すなわち、セレン除去工程3で分離されて排出されるスラッジの量と、分離されて加熱酸分解工程2aに送られるスラッジの量とを1対1とした。
 このような実験条件において、実施例では、硫酸除去工程1と、COD成分除去工程2との間に、4価セレン除去工程10が行われる。
 4価セレン除去工程10の鉄スラッジ溶解工程11では、硫酸除去工程1で硫酸イオンが除去されたセレン含有排水が流入し、操作条件としてセレン含有排水の温度が34.1℃とされ、セレン含有排水のpHが2とされた。
 また、セレン含有排水への塩酸の投入量は、35%塩酸溶液として、1.2g/hrであった。セレン含有排水への硫酸鉄の投入量は、5%硫酸鉄溶液として、1.6g/hrであった。なお、この際のセレン含有排水の流量は、上述の5L/hrである。なお、ここでは、鉄スラッジ溶解工程11において、セレン含有排水にスラッジを投入していないが、スラッジの投入対応する量の硫酸鉄を投入している。すなわち、実験としてスラッジに代えて硫酸鉄を多く投入した状態となっている。
 4価セレン除去本工程12では、塩酸と硫酸鉄が投入されたセレン含有排水が流入し、操作条件としてセレン含有排水の温度が33.6℃とされ、セレン含有排水のpHが12とされた。セレン含有排水への水酸化ナトリウムの投入量は、25%水酸化ナトリウム溶液として、1.8g/hrであった。この4価セレン除去工程10でスラッジが固液分離された後のセレン含有排水が上述のCOD成分除去工程2に送られる。
 このような実験条件で行われ実施例においては、4価セレン除去工程10で分離されたスラッジに含まれるセレンを分離し、スラッジに含まれるセレンの量を求めた。この場合に、分離されたセレンには、処理前のセレン含有排水中の6価セレンは含まれない。また、6価セレンを還元するための鉄を必要としないので、鉄は4価セレンを沈殿させられる量があればよく、6価セレンを4価セレンに還元して沈殿させる場合に比較して、鉄の量が削減される。
 このような実施例において、スラッジ(主にFe(OH))に対するセレンの割合(重量比)は、Se/Fe(OH)=0.24となった。
 また、比較例においては、セレン除去工程3で分離されたスラッジに含まれるセレンを分離し、スラッジに含まれるセレンの量を求めた。この場合に、分離されたセレンには、処理前のセレン含有排水中の4価セレンと6価セレン(4価に還元)とが含まれることになる。また、6価セレンを4価に還元するための鉄を必要とし、実施例に比較して鉄の量が多くなる。
 このような比較例において、スラッジ(主にFe(OH))に対するセレンの割合(重量比)は、Se/Fe(OH)=0.04となった。
 以上のことから、6価セレンを鉄で還元して4価セレンとしてセレン含有排水中の4価および6価のセレンの両方を4価セレンとしてスラッジとともに沈殿させて回収するようにした場合に比較して、6価セレンを還元する前に4価セレンをスラッジとともに沈殿させて回収する方が、スラッジ中のセレン濃度を高くすることができることになる。実験では、比較例に対して実施例における鉄スラッジ中のセレン濃度が6倍になることが示された。
 これにより、スラッジからセレンを分離する際に、実施例と比較例とで同じ量のセレンを得るようにする場合に、比較例では実施例の6倍のスラッジが必要となり、同じ量のセレンを得るために6倍程度以上のスラッジを処理する必要がある。この場合に、セレンを気化させてスラッジから分離させる場合に、大きな熱エネルギーが必要となり、熱エネルギーにかかるコストが多くなってしまう。
 それに対して6価セレンを還元せずに4価セレンだけを沈殿させることにより、スラッジ中のセレン濃度が高くなり、セレンを回収する際に必要とされる熱エネルギーが低減され、低コストにセレンを得られることになり、セレン濃度の高いセレン含有排水からセレンを回収する場合に、経済的に見合うコストでセレンの回収を行うことが可能になる。
 なお、実施例および比較例では、セレン除去工程3で得られるスラッジの一部をCOD成分除去工程2でセレン含有排水に投入することにより、最終的に分離されるスラッジの量を減少させており、このようなスラッジの量を減少させることがない従来の方法でセレンを分離するものとした場合に、スラッジ中のセレン濃度がさらに低くなる。
 鉄を循環させない従来の方法を用いた場合に、スラッジの量が倍以上になる可能性があり、スラッジ当たりのセレンの量が半減し、実施例とのスラッジ中のセレンの量の差が10倍以上となる可能性がある。また、4価セレン除去工程10でも、スラッジとしての鉄を循環させることで、鉄スラッジの量を削減して、鉄スラッジ中のセレン濃度が高められる。
 なお、各工程では、連続処理が行われることになる。また、固液分離方法は、沈殿槽による沈殿であってもよいし、それ以外の周知の固液分離方法で行ってもよい。また、セレン含有排水に含まれる阻害物質は、硫酸イオンと、ジチオン酸イオンに限られるものではなく、例えば、その他の硫黄酸化物イオンであってもよい。また、主に5価の硫黄酸化物イオンを除去するCOD成分除去工程2を、必ずしも加熱酸分解工程2aと、COD成分除去本工程2bとの二つの工程に分けなくてもよいが、鉄スラッジを循環するに際し、鉄スラッジを溶解させるためには、加熱酸分解工程2aを有することが好ましい。
1  硫酸除去工程(硫酸除去手段)
2  COD成分除去工程(COD成分除去手段)
3  セレン除去工程(セレン除去手段)
10 4価セレン除去工程

Claims (10)

  1.  セレン含有排水からのセレンの除去を阻害するCOD成分を除去するCOD成分除去手段と、前記COD成分の除去後に前記セレン含有排水に含まれる前記セレンのうちの被還元性セレンを鉄により還元し、この還元に際し酸化された前記鉄のスラッジとともに前記セレン含有排水に含まれる前記セレンを沈殿させて除去するセレン除去手段とを備え、
     前記セレン除去手段で生じた前記スラッジの一部を、前記COD成分除去手段において、前記セレン含有排水に投入することにより前記鉄を前記セレン除去手段と前記COD成分除去手段との間で循環させることを特徴とするセレン含有排水の処理システム。
  2.  前記COD成分除去手段では、前記セレン含有排水を酸性で加熱して前記COD成分を酸化する加熱酸分解工程と、前記加熱酸分解工程後に、前記セレン含有排水に過酸化水素と硫酸鉄を加えて前記COD成分を酸化するCOD成分除去本工程とが行われ、前記スラッジは、前記加熱酸分解工程で前記セレン含有排水に投入されることを特徴とする請求項1に記載のセレン含有排水の処理システム。
  3.  前記セレン含有排水から前記COD成分を除去する前に、前記セレン含有排水に含まれて、前記セレンの除去を阻害する硫酸イオンを除去する硫酸除去手段を備え、
     前記硫酸除去手段では、前記セレン含有排水にカルシウムイオンを投入し、前記硫酸イオンを硫酸カルシウムである石膏として沈殿させて除去し、
     前記COD成分除去手段は、前記COD成分であるジチオン酸イオンを酸化することにより硫酸イオンとし、この硫酸イオンを前記硫酸除去手段で投入されて前記セレン含有排水に含まれる前記カルシウムイオンにより前記石膏として沈殿させて除去することを特徴とする請求項1または請求項2に記載のセレン含有排水の処理システム。
  4.  セレン含有排水からのセレンの除去を阻害するCOD成分を除去するCOD成分除去工程と、前記COD成分の除去後に前記セレン含有排水に含まれる前記セレンのうちの被還元性セレンを鉄により還元し、この還元に際し酸化された前記鉄のスラッジとともに前記セレン含有排水に含まれる前記セレンを沈殿させて除去するセレン除去工程とを備え、
     前記セレン除去工程で生じた前記スラッジの一部を、前記COD成分除去工程において、前記セレン含有排水に投入することにより前記鉄を前記セレン除去工程と前記COD成分除去工程との間で循環させることを特徴とするセレン含有排水の処理方法。
  5.  前記COD成分除去工程では、前記セレン含有排水を酸性で加熱して前記COD成分を酸化する加熱酸分解工程と、前記加熱酸分解工程後に、前記セレン含有排水に過酸化水素と硫酸鉄を加えて前記COD成分を酸化するCOD成分除去本工程とが行われ、前記スラッジは、前記加熱酸分解工程で前記セレン含有排水に投入されることを特徴とする請求項4に記載のセレン含有排水の処理方法。
  6.  前記セレン含有排水から前記COD成分を除去する前に、前記セレン含有排水に含まれて、前記セレンの除去を阻害する硫酸イオンを除去する硫酸除去工程が行われ、
     前記硫酸除去工程では、前記セレン含有排水にカルシウムイオンを投入し、前記硫酸イオンを硫酸カルシウムである石膏として沈殿させて除去し、
     前記COD成分除去工程は、前記COD成分であるジチオン酸イオンを酸化することにより硫酸イオンとし、この硫酸イオンを前記硫酸除去工程で投入されて前記セレン含有排水に含まれる前記カルシウムイオンにより前記石膏として沈殿させて除去することを特徴とする請求項4または請求項5に記載のセレン含有排水の処理方法。
  7.  4価セレンと6価セレンとを含むセレン含有排水から前記セレンを除去するとともに前記セレンを回収するに際し、前記セレン含有排水に、前記4価セレンと前記6価セレンが含まれる状態で、当該セレン含有排水に鉄イオンを投入し、前記4価セレンを前記鉄イオンに基づく鉄スラッジとともに沈殿させて分離する4価セレン除去工程を備え、
     分離された前記鉄スラッジから前記セレンを回収することを特徴とするセレン含有排水からのセレン回収方法。
  8.  前記4価セレン除去工程は、前処理として、前記鉄イオンの少なくとも一部となるように、分離された前記鉄スラッジの一部を前記セレン含有排水に投入するとともに酸性下で溶解させる鉄スラッジ溶解工程と、前記鉄スラッジ溶解工程後に前記セレン含有排水にアルカリを投入して前記鉄イオンを前記鉄スラッジとして前記4価セレンと沈殿させて分離する4価セレン除去本工程とを備えることを特徴とする請求項7に記載のセレン含有排水からのセレン回収方法。
  9.  前記4価セレン除去工程の後に、残りの前記セレンを前記セレン含有排水から除去するために、前記6価セレンを鉄により還元して前記4価セレンとするとともに、前記6価セレンを還元した前記鉄に基づく鉄スラッジとともに前記4価セレンを沈殿させて分離するセレン除去工程を備えることを特徴とする請求項7または請求項8に記載のセレン含有排水からのセレン回収方法。
  10.  前記セレン含有排水から硫酸イオンを除去する硫酸除去工程と、
     前記硫酸除去工程後に、前記セレン含有排水から前記6価セレンの還元を阻害するCOD成分を除去するCOD成分除去工程と、
     前記COD成分除去工程後に行われる前記セレン除去工程とを備え、
     前記4価セレン除去工程を、前記硫酸除去工程の後で、かつ、前記セレン除去工程の前に行うことを特徴とする請求項9に記載のセレン含有排水からのセレン回収方法。
PCT/JP2014/053249 2013-02-18 2014-02-13 セレン含有排水の処理システム、セレン含有排水の処理方法およびセレン含有排水からのセレン回収方法 WO2014126122A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013028905A JP6055692B2 (ja) 2013-02-18 2013-02-18 セレン含有排水からのセレン回収方法
JP2013-028903 2013-02-18
JP2013028903A JP6031376B2 (ja) 2013-02-18 2013-02-18 セレン含有排水の処理システムおよびセレン含有排水の処理方法
JP2013-028905 2013-02-18

Publications (1)

Publication Number Publication Date
WO2014126122A1 true WO2014126122A1 (ja) 2014-08-21

Family

ID=51354121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053249 WO2014126122A1 (ja) 2013-02-18 2014-02-13 セレン含有排水の処理システム、セレン含有排水の処理方法およびセレン含有排水からのセレン回収方法

Country Status (1)

Country Link
WO (1) WO2014126122A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115465932A (zh) * 2022-10-24 2022-12-13 中化学朗正环保科技有限公司 一种去除钙盐浓缩液中硫酸根离子的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0679286A (ja) * 1992-07-17 1994-03-22 Mitsubishi Materials Corp セレン含有廃水の処理方法
JPH08224585A (ja) * 1995-02-20 1996-09-03 Dowa Mining Co Ltd 排液中のセレンの除去方法
JPH09155368A (ja) * 1995-12-06 1997-06-17 Kurita Water Ind Ltd 排煙脱硫排水の処理方法
JPH09187778A (ja) * 1995-10-31 1997-07-22 Kurita Water Ind Ltd 排煙脱硫排水の処理方法
JPH10151470A (ja) * 1996-11-21 1998-06-09 Chiyoda Corp 排水の処理方法
JP2002126758A (ja) * 2000-10-30 2002-05-08 Taiheiyo Cement Corp 廃水処理方法
JP2011072940A (ja) * 2009-09-30 2011-04-14 Chiyoda Kako Kensetsu Kk 還元性セレン含有排水の処理方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0679286A (ja) * 1992-07-17 1994-03-22 Mitsubishi Materials Corp セレン含有廃水の処理方法
JPH08224585A (ja) * 1995-02-20 1996-09-03 Dowa Mining Co Ltd 排液中のセレンの除去方法
JPH09187778A (ja) * 1995-10-31 1997-07-22 Kurita Water Ind Ltd 排煙脱硫排水の処理方法
JPH09155368A (ja) * 1995-12-06 1997-06-17 Kurita Water Ind Ltd 排煙脱硫排水の処理方法
JPH10151470A (ja) * 1996-11-21 1998-06-09 Chiyoda Corp 排水の処理方法
JP2002126758A (ja) * 2000-10-30 2002-05-08 Taiheiyo Cement Corp 廃水処理方法
JP2011072940A (ja) * 2009-09-30 2011-04-14 Chiyoda Kako Kensetsu Kk 還元性セレン含有排水の処理方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115465932A (zh) * 2022-10-24 2022-12-13 中化学朗正环保科技有限公司 一种去除钙盐浓缩液中硫酸根离子的方法

Similar Documents

Publication Publication Date Title
JP5417927B2 (ja) 石炭ガス化排水の処理方法
JP4947640B2 (ja) 廃酸液の処理方法
WO2006132347A1 (ja) 水銀除去システムおよびその方法
KR20160003108A (ko) 철과 알루미늄 중 적어도 하나 및 인을 함유하는 물질로부터의 인산염 화합물의 생산
JP4549579B2 (ja) 塩素分および鉛分の含有量が高い廃棄物の処理方法
AU775839B2 (en) Process for reducing the concentration of dissolved metals and metalloids in an aqueous solution
JP2009106853A (ja) 排水処理方法
JPH01139126A (ja) 燃焼ガス及び燃焼残留物の処理方法
JP2006212526A (ja) 再利用水の製造方法
JP3306471B2 (ja) セメントキルン排ガスダストの処理方法
JP5355431B2 (ja) 焼却飛灰及びセメントキルン燃焼ガス抽気ダストの処理方法及び処理装置
JP6031376B2 (ja) セレン含有排水の処理システムおよびセレン含有排水の処理方法
WO2014126122A1 (ja) セレン含有排水の処理システム、セレン含有排水の処理方法およびセレン含有排水からのセレン回収方法
JP6055692B2 (ja) セレン含有排水からのセレン回収方法
JP2006102559A (ja) セレン含有排水の処理方法
JP3568569B2 (ja) 焼却灰または飛灰の無害化処理による重金属のリサイクル方法
JP3009607B2 (ja) 焼却灰や飛灰の溶融に際して生じる排ガスからの重金属類の回収方法
JP2006346618A (ja) セレン含有排水の処理方法
JP2000140795A (ja) 重金属含有飛灰の処理方法
JP3813052B2 (ja) 重金属等を含有する飛灰の処理方法
JP4118240B2 (ja) 廃棄物からの鉛の回収方法
JP2006136843A (ja) セレン含有水の処理方法
JP4288828B2 (ja) 含ヒ素排水の処理方法
JP5032784B2 (ja) 塩化ナトリウムの製造システム
JP2005305265A (ja) 塩水からのヨウ素除去方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14752116

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14752116

Country of ref document: EP

Kind code of ref document: A1