WO2014126077A1 - 固体高分子形燃料電池用の触媒及びその製造方法 - Google Patents

固体高分子形燃料電池用の触媒及びその製造方法 Download PDF

Info

Publication number
WO2014126077A1
WO2014126077A1 PCT/JP2014/053122 JP2014053122W WO2014126077A1 WO 2014126077 A1 WO2014126077 A1 WO 2014126077A1 JP 2014053122 W JP2014053122 W JP 2014053122W WO 2014126077 A1 WO2014126077 A1 WO 2014126077A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
fuel cell
manganese
platinum
cobalt
Prior art date
Application number
PCT/JP2014/053122
Other languages
English (en)
French (fr)
Inventor
石田 稔
仁 中島
耕一 松谷
Original Assignee
田中貴金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田中貴金属工業株式会社 filed Critical 田中貴金属工業株式会社
Priority to EP14751518.3A priority Critical patent/EP2958173B1/en
Priority to US14/766,236 priority patent/US9960431B2/en
Priority to CN201480009171.9A priority patent/CN105074981B/zh
Priority to JP2015500245A priority patent/JP6053223B2/ja
Priority to KR1020157023768A priority patent/KR101757088B1/ko
Publication of WO2014126077A1 publication Critical patent/WO2014126077A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8842Coating using a catalyst salt precursor in solution followed by evaporation and reduction of the precursor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8892Impregnation or coating of the catalyst layer, e.g. by an ionomer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a catalyst for a polymer electrolyte fuel cell.
  • the present invention relates to a catalyst useful for use in a cathode (air electrode) of a polymer electrolyte fuel cell.
  • Solid polymer fuel cells have the advantage of low operating temperature and compactness compared to other types of fuel cells, and from these advantages, they are promising as power sources for homes and automobiles.
  • a polymer electrolyte fuel cell has a laminated structure including a hydrogen electrode and an air electrode, and a solid polymer electrolyte membrane sandwiched between these electrodes.
  • a hydrogen-containing fuel is supplied to the hydrogen electrode, and oxygen or air is supplied to the air electrode, and electric power is taken out by oxidation and reduction reactions that occur at each electrode.
  • a mixture of a catalyst and a solid electrolyte for promoting an electrochemical reaction is generally applied to both electrodes.
  • a platinum catalyst supporting a noble metal, particularly platinum, as a catalyst metal has been widely used. This is because platinum as a catalyst metal has high activity in promoting the electrode reaction in both the fuel electrode and the hydrogen electrode.
  • the characteristics required for the practical application of the polymer electrolyte fuel cell include durability, that is, a sustained characteristic of catalytic activity, in addition to good initial activity.
  • the catalyst cannot avoid a decrease in activity (deactivation) that occurs with the passage of time, it can be said that increasing the time until deactivation is essential for the practical use of fuel cells.
  • the cathode catalyst of a polymer electrolyte fuel cell is used under severe conditions such as being exposed to a strong acidic atmosphere at a relatively high temperature of about 80 ° C. and being subjected to a high potential load. Improvement has been a major issue for practical application.
  • the present invention provides an alloy catalyst for a polymer electrolyte fuel cell obtained by alloying platinum and another metal with excellent initial activity and improved durability.
  • the present invention that solves the above-mentioned problems is a catalyst for a polymer electrolyte fuel cell in which catalyst particles comprising platinum, cobalt, and manganese are supported on a carbon powder carrier, wherein the catalyst particles are composed of platinum, cobalt, and manganese.
  • the present invention is a ternary catalyst based on a Pt—Co catalyst having relatively excellent initial activity and manganese added thereto.
  • the metal phase is characterized in that the Co—Mn alloy phase is limited to a certain amount or less and a water repellent composed of a fluorine compound is contained.
  • the catalyst according to the present invention will be described together with these characteristics.
  • composition ratio of cobalt and manganese is required to be added to some extent, but excessive addition reduces the activity. If the composition ratio of cobalt and manganese deviates from the above range, the composition ratio needs to be set because the activity is equal to or less than that of the conventional Pt—Co catalyst.
  • manganese is added, it does not suffice, but it is required to be in a predetermined form in relation to other constituent elements (platinum, cobalt) constituting the catalyst particles. That is, as the metal phase constituting the catalyst particles in the Pt—Co—Mn ternary catalyst, although the Pt phase may partially remain, the alloy phase in which the respective metals are basically alloyed with each other. Is the subject. As this alloy phase, a Mn—Pt alloy phase (MnPt 3 ), a Co—Pt alloy phase (CoPt 3 ), and a Mn—Co alloy phase (MnCo) can be considered. The types and abundances of these alloy phases are considered to differ depending on the catalyst production process.
  • MnPt 3 Mn—Pt alloy phase
  • CoPt alloy phase CoPt alloy phase
  • MnCo Mn—Co alloy phase
  • the present inventors examined the influence of each alloy phase on the catalyst activity.
  • the initial activity is greatly reduced and the effect of adding manganese disappears.
  • the active species of the Pt—Co—Mn ternary catalyst are Mn—Pt alloy phase and Co—Pt alloy phase, and the added Mn and Co are not alloyed with Pt. This is probably because when the Mn—Co alloy phase is formed, the active species are hardly formed.
  • the peak intensity of the Co—Mn alloy in the X-ray diffraction analysis of the catalyst particles is regulated.
  • the reason why the peak ratio indicating the abundance of the Mn—Co alloy phase is 0.15 or less is that, as described above, the Mn—Co alloy phase has an unfavorable effect on the catalyst activity. This is to clarify the upper limit. Therefore, this peak ratio may be zero, and is rather preferable.
  • the Mn—Pt alloy phase (MnPt 3 ) and the Co—Pt alloy phase (CoPt 3 ) are formed as much as the Mn—Co alloy phase is reduced as described above.
  • the peaks derived from these two alloy phases are the synthesis of the peak of the Mn—Pt alloy phase and the peak of the Co—Pt alloy phase and are difficult to separate. Therefore, it is preferable to determine the composite peak intensity as confirmation of the formation of these alloy phases.
  • a preferable upper limit of the peak intensity ratio is about 0.23.
  • the setting of the composition ratio of platinum, cobalt, and manganese and the regulation of the Mn—Co alloy phase described above contribute to the improvement of the initial activity of the catalyst.
  • the improvement of the initial activity is the first priority in improving the catalyst characteristics. By increasing the initial activity, the activity can be maintained even for a long time use. However, it is not possible to make a catalyst excellent in durability only by improving the initial activity, and ensuring the durability is achieved by suppressing a decrease in activity over time.
  • the present inventors paid attention to deterioration due to elution of metals (platinum, cobalt, manganese) constituting the catalyst particles among them.
  • This deterioration mechanism is disappearance due to electrochemical dissolution of each metal mediated by water produced in the fuel cell reaction on the cathode side.
  • the catalyst on the cathode side is exposed to an atmosphere such as a high temperature, an acidic atmosphere, and a high potential load.
  • an atmosphere such as a high temperature, an acidic atmosphere, and a high potential load.
  • a water repellent layer made of a fluorine compound having a C—F bond is formed on the surface of the catalyst particles. It is known that a fluorine compound having a high bonding strength called C—F bond has high stability and has unique properties such as water repellency.
  • a water repellent layer made of this fluorine compound is formed on the catalyst, the generated water is quickly discharged from the surface of the catalyst particles, and the decrease in activity is prevented by suppressing the dissolution of the catalyst metal mediated by water. Yes.
  • fluorine compound constituting the water-repellent layer examples include a fluororesin that is a water-repellent polymer material and a fluorine-based surfactant.
  • a fluororesin that is a water-repellent polymer material
  • a fluorine-based surfactant for example, known as Teflon (registered trademark), polytetrafluoroethylene (PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), tetrafluoro Known as ethylene / ethylene copolymer (ETFE), polyvinylidene fluoride (PVDF), polychlorotrifluoroethylene (PCTFE), perfluorosulfonic acid polymer known as Nafion (registered trademark), fluorinated acrylate
  • PFBS perfluorobutane
  • the amount of the fluorine compound that forms the water repellent layer is preferably 3 to 20% by mass based on the mass of the entire catalyst. This is because if it is less than 3% by mass, there is no effect, while if it exceeds 20% by mass, the original function of promoting the electrode reaction cannot be exhibited. More preferably, it is 8 to 20% by mass.
  • the water repellent layer need not be formed on the entire surface of all catalyst particles, and may be a partial layer. Further, it may be formed only on the catalyst particles, but even if a fluorine compound is supported on the carrier, the catalyst activity is not affected.
  • the catalyst particles preferably have an average particle diameter of 2 to 20 nm. This is because if it is less than 2 nm, long-term activity sustainability cannot be clearly obtained, and if it exceeds 20 nm, the initial activity of the catalyst cannot be sufficiently obtained.
  • the carbon powder as the carrier is preferably a carbon powder having a specific surface area of 250 to 1200 m 2 / g. By setting it to 250 m 2 / g or more, the area to which the catalyst adheres can be increased, so that the catalyst particles can be dispersed in a high state and the effective surface area can be increased.
  • the electrode On the other hand, if it exceeds 1200 m 2 / g, the electrode This is because the proportion of ultra-fine pores (less than about 20 mm) in which the ion exchange resin is difficult to enter during the formation increases and the utilization efficiency of the catalyst particles decreases.
  • the catalyst according to the present invention preferably has a catalyst particle loading density of 30 to 70% in consideration of the performance as an electrode of a polymer electrolyte fuel cell.
  • the loading density refers to the ratio of the mass of catalyst particles supported on the carrier (the total mass of platinum, cobalt, and manganese supported) to the total mass of the catalyst.
  • the basic process is in accordance with a general method for producing an alloy catalyst.
  • a metal that becomes catalyst particles is supported on a support, and is appropriately dried and then heat-treated to form an alloy of the supported metal. I do.
  • the catalyst according to the present invention is required to suppress the excessive formation of the Mn—Co alloy phase in the catalyst particles.
  • the catalyst metal loading step in the catalyst metal loading step, first, it is essential to prepare a catalyst on which only platinum is supported and to support cobalt and manganese on this catalyst.
  • For supporting the catalyst metal it is general and efficient to simultaneously support the constituent metal on the support (see the example of Patent Document 1). In such simultaneous support, the Mn—Co alloy phase is formed. It is formed exceeding the specified value of the present invention.
  • the platinum catalyst is first prepared (manufactured) and the formation of the Mn-Co alloy phase is suppressed by supporting cobalt and manganese separately, it is not clear, but by doing so, platinum, cobalt, platinum and This is considered to be because alloying with manganese is facilitated and formation of the Mn—Pt alloy phase (MnPt 3 ) and the Co—Pt alloy phase (CoPt 3 ) is given priority.
  • a conventional platinum catalyst manufacturing method may be prepared.
  • a commercially available platinum catalyst may be used.
  • a platinum catalyst is produced by bringing a platinum salt solution into contact with a support (impregnation, dropping) and then reducing treatment to form platinum particles.
  • ⁇ Cobalt and manganese are supported on the platinum catalyst by a general method.
  • a metal salt solution of cobalt and manganese is brought into contact with the platinum catalyst, and reduction treatment is performed to deposit cobalt and manganese in a metal state in the vicinity of the platinum particles.
  • As the metal salt solution of cobalt cobalt chloride hexahydrate, cobalt nitrate, cobalt acetate tetrahydrate, etc. can be used.
  • As the metal salt solution of manganese manganese chloride tetrahydrate, manganese nitrate hexahydrate, acetic acid Manganese tetrahydrate can be used.
  • the order of contact between the platinum catalyst and the metal salt solution at this time is not particularly limited, and any one of the metal salt solutions may be contacted first, or a mixed solution of cobalt and manganese metal salt solutions.
  • a platinum catalyst may be contacted.
  • the concentration and amount of the metal salt solution should be set so that the supported amount of cobalt and manganese is the ratio set within the above-described range of the composition ratio of cobalt and manganese while taking the supported amount of platinum catalyst into consideration. It ’s fine. However, when processing with an oxidizing solution described later, the supported amount of cobalt and manganese is about 1.5 to 5 times for cobalt and about 1.5 to 3 times for manganese with respect to the set composition ratio. Then add it.
  • heat treatment is performed to alloy each metal.
  • the heat treatment temperature for alloying is set to 700 to 1100 ° C.
  • Heat treatment at less than 700 ° C. results in a catalyst having poor activity due to insufficient alloying, particularly the formation of Mn—Pt alloy phase and Co—Pt alloy phase.
  • the higher the heat treatment temperature the easier the alloying proceeds and the formation of the Mn—Pt alloy phase and the Co—Pt alloy phase is promoted.
  • the heat treatment above 1100 ° C. may cause the catalyst particles to become coarse. And this is the upper limit because it becomes difficult in terms of equipment.
  • This heat treatment is preferably performed in a non-oxidizing atmosphere, particularly preferably in a reducing atmosphere (hydrogen gas atmosphere or the like).
  • the catalyst that has undergone the above heat treatment process has catalyst particles in which the Mn—Co alloy phase is reduced and the formation of the Mn—Pt alloy phase and the Co—Pt alloy phase is promoted, and the Pt—Co—Mn ternary system having excellent initial activity. It becomes a catalyst.
  • the Pt—Co—Mn ternary catalyst produced above is immersed in a fluorine compound solution, and the solvent of the fluorine compound solution is volatilized or removed by evaporation to carry the fluorine compound on the catalyst.
  • the fluorine compound solution is obtained by dissolving a fluorine compound in a solvent capable of dissolving the above fluorine compound, and the solvent may be either a fluorine-based solvent or a non-fluorinated solvent.
  • the solvent and the amount of the fluorine compound are adjusted so that the fluorine content of the fluorine compound solution becomes equal to the amount of fluorine supported on the catalyst.
  • the immersion treatment for supporting the fluorine compound is preferably performed with stirring for 1 to 48 hours.
  • the temperature of the fluorine compound solution is 30 to 150 ° C., but is selected according to the type of solvent.
  • the fluorine compound solution in which the catalyst is dispersed is heated with a dryer or the like, and held until all the solvent disappears.
  • the catalyst according to the present invention can be produced.
  • the catalyst before supporting the fluorine compound is preferably brought into contact with the oxidizing solution at least once.
  • the ratio of cobalt and manganese is important, but it may be difficult to perform the adjustment only by their supporting steps. Therefore, in the step of supporting cobalt and manganese, it is supported more frequently than planned, and by treating with an oxidizing solution, cobalt and manganese can be eluted to adjust the supported amount.
  • oxidizing solution used in this treatment step a solution of sulfuric acid, nitric acid, phosphorous acid, potassium permanganate, hydrogen peroxide, hydrochloric acid, chloric acid, hypochlorous acid, chromic acid or the like is preferable.
  • concentration of these oxidizing solutions is preferably 0.1 to 1 mol / L, and the catalyst is preferably immersed in the solution.
  • the contact time is preferably 1 to 10 hours, and the treatment temperature is preferably 40 to 90 ° C.
  • the oxidizing solution treatment may be repeated not only when the catalyst is brought into contact with the oxidizing solution once, but also multiple times. Moreover, when performing acid treatment in multiple times, you may change the kind of solution for every process.
  • the polymer solid oxide fuel cell catalyst according to the present invention adopts the form of a ternary catalyst in which manganese is added to the Pt—Co catalyst, and limits the constituent ratio of cobalt and manganese. Furthermore, by specifying the alloy phase in the catalyst particles, the initial activity is excellent. And by forming the water-repellent layer made of a fluorine compound at least on the surface of the catalyst particles, the electrochemical dissolution of the catalyst metal can be suppressed to ensure the durability.
  • [Supporting catalytic metal] A commercially available platinum catalyst was prepared and loaded with cobalt and manganese.
  • As the platinum catalyst 5 g (2.325 g (11.92 mmol) of platinum catalyst in terms of platinum) of 46.5% by mass of platinum supported on a fine carbon powder (specific surface area of about 900 m 2 / g) was prepared.
  • the catalyst was immersed in a metal salt solution in which cobalt chloride (CoCl 2 ⁇ 6H 2 O) and manganese chloride (MnCl 2 ⁇ 4H 2 O) were dissolved in 100 mL of ion-exchanged water, and stirred with a magnetic stirrer.
  • the catalyst carrying the catalyst metal was subjected to heat treatment for alloying.
  • the heat treatment was performed in 100% hydrogen gas at a heat treatment temperature of 900 ° C. for 30 minutes.
  • the catalyst after alloying heat treatment was treated with an oxidizing solution.
  • the catalyst after the heat treatment was treated in a 0.2 mol / L sulfuric acid aqueous solution at 80 ° C. for 2 hours, followed by filtration, washing and drying. Thereafter, it was treated in a 1.0 mol / L nitric acid aqueous solution (dissolved oxygen content 0.01 cm 3 / cm 3 (STP conversion)) at 70 ° C. for 2 hours, followed by filtration, washing and drying.
  • Example 2 A commercially available fluorinated ethylene propylene resin (trade name: Teflon (registered trademark) FEP-120J: manufactured by Mitsui DuPont Fluorochemical Co., Ltd.) was used as the fluorine compound solution.
  • FEP-120J sold by Mitsui DuPont Fluorochemical Co., Ltd.
  • 3.4 g of the catalyst was immersed in the fluorine compound solution and stirred overnight at 60 ° C., then kept at 60 ° C. in a dryer, and evaporated until the solvent was completely removed. Then heated for 30 minutes in N 2 340 ° C..
  • a catalyst having a water repellent layer in which a fluorine compound was supported on the catalyst was produced.
  • Comparative Example 1 As a comparative example for Example 1, a conventional Pt—Co catalyst without addition of manganese was produced. In this comparative example, the platinum catalyst was immersed in a solution containing only a cobalt salt.
  • a Pt—Co—Mn ternary catalyst was produced by simultaneously loading platinum, cobalt, and manganese.
  • 5 g of a carbon support (specific surface area of about 900 m 2 / g) is prepared, and this is added to a predetermined amount of Pt dinitrodiamine nitric acid solution (Pt (NO 2 ) 2 (NH 3 ) 2 ), cobalt chloride (CoCl 2 ⁇ 6H 2 O).
  • Pt (NO 2 ) 2 (NH 3 ) 2 ) Pt dinitrodiamine nitric acid solution
  • CoCl 2 ⁇ 6H 2 O cobalt chloride
  • manganese chloride (MnCl 2 .4H 2 O) was immersed in a metal salt solution dissolved in 100 mL of ion-exchanged water, and stirred with a magnetic stirrer.
  • the ratio of platinum, cobalt, and manganese in the catalyst particles was measured, and the amount of the fluorine compound supported was measured for the catalyst (Example 1) treated with the fluorine compound solution. These measurements were performed based on ICP analysis of the catalyst, the mass ratio of each metal and carbon support, and the measured values.
  • X-ray diffraction analysis was performed on each catalyst, and the structure of the catalyst particles was examined.
  • JDX-8030 manufactured by JEOL was used as the X-ray diffractometer. The sample is made into a fine powder form and placed in a glass cell.
  • Cu (k ⁇ ray) as an X-ray source, tube voltage 40 kV, tube current 30 mA, 2 ⁇ 20 to 90 °, scan speed 7 ° / min, step angle 0.1 Performed at °.
  • the Pt—Co—Mn ternary catalysts of Examples and Reference Examples all exhibit good initial activity when based on the Pt—Co catalyst of Comparative Example 1. This is thought to be due to the addition of manganese and the proper composition of the catalyst particles (the amount of Co—Mn phase produced). Comparing the examples with the reference examples, the examples supporting the fluorine compound are slightly superior in initial activity, but there is no great difference. When a large amount of Co—Mn phase was generated as in Comparative Example 2, it was confirmed that the initial activity was inferior to that of the Pt—Co catalyst (Comparative Example 1).
  • a durability test for durability evaluation was performed.
  • a cathode electrode air electrode
  • an accelerated deterioration test was performed in which the cathode cell potential was swept with a triangular wave, and the power generation characteristics after deterioration were measured.
  • Accelerated degradation is performed by sweeping between 650-1050 mV at a sweep rate of 40 mV / s for 20 hours to clean the catalyst particle surface, and then between 650-1050 mV at a sweep rate of 100 mV / s for 20, 40, 68 hours. Sweeped and deteriorated.
  • Mass Activity was measured about the catalyst after deterioration on each condition. The evaluation results after this accelerated deterioration test are shown in Table 2.
  • Second Embodiment Here, in the same process as in the first embodiment, the amount of the fluorine compound supported was changed to produce a catalyst, and the initial activity was evaluated. The amount of the fluorine compound supported was changed by adjusting the amount of the fluorine resin material dissolved in the solvent with respect to the fluorine compound solution. Other processing conditions are the same as those in the first embodiment. And Mass Activity was measured similarly to 1st Embodiment. The results are shown in Table 3.
  • the present invention as an electrode catalyst for a polymer electrolyte fuel cell, it is possible to improve durability while improving initial power generation characteristics.
  • the present invention contributes to the widespread use of fuel cells, and as a basis for solving environmental problems.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Abstract

 初期活性に優れ、耐久性も良好な固体高分子形燃料電池用触媒及びその製造方法を提供すること。 本発明は、白金、コバルト、マンガンからなる触媒粒子が炭素粉末担体上に担持されてなる固体高分子形燃料電池用触媒において、前記触媒粒子は、白金、コバルト、マンガンの構成比(モル比)が、Pt:Co:Mn=1:0.06~0.39:0.04~0.33であり、前記触媒粒子についてのX線回折分析において、2θ=27°近傍に現れるCo-Mn合金のピーク強度比が、2θ=40°近傍に現れるメインピークを基準として0.15以下であり、更に、少なくとも触媒粒子の表面に、C-F結合を有するフッ素化合物が担持されていることを特徴とする固体高分子形燃料電池用触媒である。フッ素化合物の担持量は、触媒全体の質量を基準として、3~20%とするのが好ましい。

Description

固体高分子形燃料電池用の触媒及びその製造方法
 本発明は、固体高分子形燃料電池用の触媒に関する。特に、固体高分子形燃料電池のカソード(空気極)での使用に有用な触媒に関する。
 固体高分子形燃料電池は、他の形式の燃料電池と比較して動作温度が低くかつコンパクトであるという利点があり、これらのメリットから、家庭用、自動車用の電源として有望視されている。固体高分子形燃料電池は、水素極及び空気極と、これらの電極に挟持される固体高分子電解質膜とからなる積層構造を有する。そして、水素極へは水素を含む燃料が、空気極へは酸素又は空気がそれぞれ供給され、各電極で生じる酸化、還元反応により電力を取り出すようにしている。また両電極は、電気化学的反応を促進させるための触媒と固体電解質との混合体が一般に適用されている。
 上記の電極を構成する触媒として、触媒金属として貴金属、特に、白金を担持させた白金触媒が従来から広く用いられている。触媒金属としての白金は、燃料極及び水素極の双方における電極反応を促進させる上で高い活性を有するからである。
 ここで、触媒コストの低減のため白金使用量を低減しつつ触媒活性を確保するため、触媒金属として白金と他の金属との合金を適用する白金合金触媒についての検討例が近年になって増えている。この白金合金触媒としては、白金とコバルトとの合金を触媒粒子とするPt-Co触媒が、白金使用量を低減しながらも白金触媒以上の活性を発揮し得るものとして知られている。また、前記Pt-Co触媒を更に改良するため、第3の合金元素を合金化する3元系合金触媒も報告されている(特許文献1)
特開2011-150867号公報
 固体高分子形燃料電池の実用化のために要求される特性としては、初期活性が良好であることに加えて、耐久性、即ち、触媒活性の持続特性が挙げられる。触媒は、時間経過と共に生じる活性低下(失活)を避けることができないが、失活までの時間を増大させることは燃料電池の実用化に向けて必須といえる。特に、固体高分子形燃料電池のカソード触媒は、80℃程度の比較的高温下で、強い酸性雰囲気に晒され、更に高電位負荷を受けるという厳しい条件下にて使用されるため、耐久性能の向上は実用化に向けて大きな課題となっていた。
 Pt-Co触媒をはじめとする白金合金触媒は、これまでコスト低減や初期活性の観点ではある程度の検討がなされた触媒である。しかし、近年の燃料電池の普及が現実的なものとなっていることを考えれば、耐久性の更なる改善が必要といえる。そこで本発明は、白金と他の金属とを合金化した固体高分子形燃料電池用の合金触媒について、初期活性に優れると共に耐久性が改善されたものを提供する。
 上記課題を解決する本発明は、白金、コバルト、マンガンからなる触媒粒子が炭素粉末担体上に担持されてなる固体高分子形燃料電池用触媒において、前記触媒粒子は、白金、コバルト、マンガンの構成比(モル比)が、Pt:Co:Mn=1:0.06~0.39:0.04~0.33であり、前記触媒粒子についてのX線回折分析において、2θ=27°近傍に現れるCo-Mn合金のピーク強度比が、2θ=40°近傍に現れるメインピークを基準として0.15以下であり、更に、少なくとも触媒粒子の表面にフッ素化合物が担持されていることを特徴とする固体高分子形燃料電池用触媒である。
 本発明は、比較的初期活性に優れるPt-Co触媒を基本とし、ここにマンガンを添加した3元系触媒である。そして、その金属相の構成としてCo-Mn合金相を一定量以下に制限すること、及び、フッ素化合物からなる撥水剤を含有することを特徴とするものである。以下、これらの特徴と共に本発明に係る触媒について説明する。
 本発明において、Pt-Co-Mn3元系触媒を適用するのは、本発明者等によるスクリーニング試験の結果、マンガン添加により従来のPt-Co触媒以上の活性を発揮する可能性があるからである。これは、Pt-Co触媒に第3の金属元素としてマンガンを添加することで、酸素分子の4電子還元機能がより効率的に発揮され触媒活性が向上することによるものと考察される。そして、Pt-Co触媒以上の初期活性を発揮させるため、白金、コバルト、マンガンの構成比は、Pt:Co:Mn=1:0.06~0.39:0.04~0.33とする。マンガンはある程度の添加が要求されるが、過剰添加は却って活性を低下させる。コバルト、マンガンの構成比が上記範囲を逸脱すると、従来のPt-Co触媒と同等程度或いはそれ以下の活性となるため構成比の設定が必要となる。尚、コバルト、マンガンの構成比のより好ましい範囲は、Pt:Co:Mn=1:0.06~0.26:0.09~0.33であり、この範囲で最大の初期活性を示す。
 そして、マンガンは添加すればそれで良いというわけではなく、触媒粒子を構成する他の構成元素(白金、コバルト)との関係において所定の存在形態にあることが要求される。即ち、Pt-Co-Mn3元系触媒における触媒粒子を構成する金属相としては、部分的にPt相が残存している可能性はあるものの、基本的に各金属が相互に合金化した合金相が主体となる。この合金相としては、Mn-Pt合金相(MnPt)、Co-Pt合金相(CoPt)、Mn-Co合金相(MnCo)が考えられる。これらの合金相の種類、存在量は、触媒の製造工程により相違すると考えられる。
 本発明者等は、各合金相の触媒活性に対する影響を検討したところ、触媒粒子中にMn-Co合金相が存在する場合、初期活性が大きく低下しマンガン添加の効果が消失する。この要因については明確ではないが、Pt-Co-Mn3元系触媒の活性種はMn-Pt合金相、Co-Pt合金相であると推察され、添加したMn及びCoがPtと合金化せずにMn-Co合金相となった場合、前記の活性種が形成され難くなるためと考えられる。
 そこで、本発明ではMn-Co合金相の存在量を制限するため、触媒粒子についてのX線回折分析における、Co-Mn合金のピーク強度を規制する。具体的には、2θ=27°近傍に現れるCo-Mn合金のピーク強度比が、2θ=40°近傍に現れるメインピークを基準として0.15以下とする。Mn-Co合金相の存在量を示すピーク比を0.15以下とするのは、上記の通り、Mn-Co合金相は触媒活性に好ましくない影響を及ぼすことから、好適な触媒を得るための上限を明確にするためである。従って、このピーク比は0であっても良く、むしろ好ましい。
 Mn-Co合金相の存在量規定のためにX線回折分析の結果を用いるのは、X線回折分析は比較的簡易な分析方法でありながら、触媒粒子の状態を正確に測ることができ、基準ピークを適切に設定することにより定量性も有するからである。上記の通り、本発明では、基準ピークとして、2θ=40°~41°で現れるメインピーク(Pt、MnPt、CoPtの合成ピーク)を用い、Mn-Co合金相のピークは2θ=27°近傍のピークを適用する。尚、Mn-Co合金相のピークは、33°近傍、43°近傍、52°近傍、76°近傍でも現れるときがある。但し、2θ=27°近傍のピークが、Mn-Co合金相の有無に対して感受性が高いことから、このピークが適用される。
 また、触媒粒子を構成する合金相の分布に関しては、上記の通りMn-Co合金相を低減させた分、Mn-Pt合金相(MnPt)及びCo-Pt合金相(CoPt)を形成させたものが好ましい。これらの合金相は、酸素分子の4電子還元作用を有し活性向上に寄与する。X線回折分析では、これらの合金相はいずれも2θ=24°、32°、41°付近に現れるが、2θ=32°近傍で現れるピークにより判定するのが好ましい。この2つの合金相に由来するピークは、Mn-Pt合金相のピークとCo-Pt合金相ピークとの合成であり分離が困難である。そこで、これらの合金相形成の確認としてこの合成ピーク強度に判断することが好ましい。そして、好ましいピーク強度は、2θ=32°近傍で現れるピーク強度が、2θ=40°~41°で現れるメインピークを基準として0.13以上であるものが好ましい。尚、このピーク強度比の好ましい上限値は、0.23程度となる。
 ところで、以上説明した、白金、コバルト、マンガンの構成比の設定、及び、Mn-Co合金相の規制は、触媒の初期活性の向上に寄与する構成である。初期活性の向上は、触媒特性の改善においてまず優先される事項であり、初期活性を高めることで長時間の使用に対しても活性を保持することができる。もっとも、初期活性向上のみで耐久性に優れた触媒とすることはできず、耐久性の確保は経時的な活性の落ち込みを抑制することで達成される。
 この耐久性向上の課題に関し、触媒の経時的な活性低下の要因としては、触媒粒子の粗大化等いくつか考えられる。ここで本発明者等は、それらの中で触媒粒子を構成する金属(白金、コバルト、マンガン)の溶出による劣化に着目した。この劣化機構は、カソード側の燃料電池反応において生成する水が介在する各金属の電気化学的溶解による消失である。上記したように、カソード側の触媒は、高温、酸性雰囲気、高電位負荷といった雰囲気に晒されており、ここに水が存在すると金属の溶解・溶出が加速される。
 そこで、本発明では、触媒粒子の表面にC-F結合を有するフッ素化合物からなる撥水層を形成することとした。C-F結合という高い結合力を有するフッ素化合物は安定性が高く、撥水性等の特異な性質を有することが知られている。本発明では、触媒にこのフッ素化合物からなる撥水層を形成し、生成した水を速やかに触媒粒子表面から排出させ、水が介在する触媒金属の溶解を抑制することで活性低下を防ぐこととしている。
 この撥水層を構成するフッ素化合物としては、撥水性高分子材料であるフッ素樹脂、フッ素系界面活性剤等がある。例えば、テフロン(登録商標)として知られる、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・エチレン共重合体(ETFE)、ポリビニリデンフルオライド(PVDF)、ポリクロロトリフルオロエチレン(PCTFE)や、ナフィオン(登録商標)として知られているパーフルオロスルホン酸系ポリマ、フッ化アクリレートとして知られているパーフルオロアクリル酸エステルが挙げられる。また、フッ素系界面活性剤としてパーフルオロブタンスルホン酸基(PFBS)系の界面活性剤も効果がある。
 本発明において、撥水層を形成するフッ素化合物の担持量は、触媒全体の質量を基準として3~20質量%となるようにしたものが好ましい。3質量%未満では効果がなく、20質量パーセント%を超えると電極反応促進という触媒本来の機能が発揮できなくなるからである。より好ましくは、8~20質量%である。
 尚、撥水層は全ての触媒粒子について全面に対して形成されている必要はなく、部分的なもので良い。また、触媒粒子のみに形成されていても良いが、担体に対してフッ素化合物が担持されていても触媒活性に影響は生じない。
 本発明において、触媒粒子は、平均粒径2~20nmのものが好ましい。2nm未満は長時間の活性持続特性が明確に得られなくなるからであり、20nmを超えると触媒の初期活性が十分に得られなくなるからである。また、担体である炭素粉末は、比表面積が250~1200m/gの炭素粉末を適用するのが好ましい。250m/g以上とすることで、触媒が付着する面積を増加させることができるので触媒粒子を高い状態で分散させ有効表面積を高くすることができる一方、1200m/gを超えると、電極を形成する際にイオン交換樹脂の浸入しにくい超微細孔(約20Å未満)の存在割合が高くなり触媒粒子の利用効率が低くなるからである。
 また、本発明に係る触媒は、固体高分子形燃料電池の電極としての性能を考慮し、触媒粒子の担持密度を30~70%とするのが好ましい。ここでの担持密度とは、担体に担持させる触媒粒子質量(担持させた白金、コバルト、マンガンの合計質量)の触媒全体の質量に対する比をいう。
 次に、本発明に係る固体高分子形燃料電池の触媒の製造方法について説明する。本発明に係る触媒の製造にあたっては、基本的工程は一般的な合金触媒の製造方法に準じ、担体に触媒粒子となる金属を担持し、適宜に乾燥した後に熱処理を行い担持した金属の合金化を行う。但し、本発明に係る触媒は、触媒粒子中でMn-Co合金相が過剰に形成するのを抑制することが要求される。
 この触媒粒子中の合金相の調整について、本発明では、触媒金属の担持工程において、まず、白金のみが担持された触媒を用意し、これにコバルト及びマンガンを担持することを必須とする。触媒金属の担持には、構成金属を担体に同時に担持することが一般的でありまた効率的でもあるが(特許文献1の実施例を参照)、このような同時担持ではMn-Co合金相が本発明の規定値を超えて形成される。白金触媒をまず用意し(製造し)、別途コバルト及びマンガンを担持することでMn-Co合金相の形成が抑制される要因は明確ではないが、このようにすることで白金とコバルト、白金とマンガンとの合金化が容易となり、Mn-Pt合金相(MnPt)及びCo-Pt合金相(CoPt)の形成が優先されるためと考える。
 白金触媒の準備については、従来の白金触媒の製造方法によるものを用意すれば良い。市販の白金触媒を利用しても良い。通常、白金触媒は担体に白金塩溶液を接触(含浸、滴下)させた後、還元処理して白金粒子を形成して製造される。
 白金触媒へのコバルト及びマンガンの担持も、それ自体は一般的な方法による。白金触媒にコバルト及びマンガンの金属塩溶液を接触させ、還元処理して白金粒子の近傍に金属状態のコバルト及びマンガンを析出させる。コバルトの金属塩溶液としては塩化コバルト6水和物、硝酸コバルト、酢酸コバルト4水和物等が使用でき、マンガンの金属塩溶液としては塩化マンガン4水和物、硝酸マンガン6水和物、酢酸マンガン4水和物等が使用できる。このときの白金触媒と金属塩溶液の接触の順序は、特に限定されることはなく、いずれかの金属塩溶液を先に接触させても良いし、コバルト、マンガンの金属塩溶液の混合液と白金触媒とを接触させても良い。
 尚、コバルト及びマンガンの担持量は、白金触媒の担持量を考慮しつつ、上記のコバルト及びマンガンの構成比の範囲内で設定した比率となるように、金属塩溶液の濃度及び量を設定すれば良い。但し、後述の酸化性溶液による処理を行う場合には、コバルト及びマンガンの担持量を、設定した構成比に対して、コバルトでは1.5~5倍程度、マンガンでは1.5~3倍程度では上乗せすると良い。
 白金触媒へのコバルト及びマンガンの担持後は、必要に応じて乾燥した後、熱処理して各金属を合金化する。ここで合金化のための熱処理温度は700~1100℃とする。700℃未満の熱処理では合金化、特に、Mn-Pt合金相とCo-Pt合金相の形成が不十分であり活性に乏しい触媒となる。また、熱処理温度は高いほど合金化が進行しやすく、Mn-Pt合金相とCo-Pt合金相の形成も促進されるが、1100℃を超える熱処理は、触媒粒子の粗大化が懸念されること、及び、設備的にも困難となることからこれを上限とした。この熱処理は非酸化性雰囲気で行うのが好ましく、特に還元雰囲気(水素ガス雰囲気等)で行うのが好ましい。
 上記熱処理工程を経た触媒は、Mn-Co合金相が低減されMn-Pt合金相及びCo-Pt合金相の形成が促進された触媒粒子を備え、初期活性に優れたPt-Co-Mn3元系触媒となる。
 そして、触媒粒子表面に撥水層を形成する。この処理は、上記で製造したPt-Co-Mn3元系触媒をフッ素化合物溶液に浸漬し、フッ素化合物溶液の溶媒を揮発又は蒸発して除去することでフッ素化合物を触媒に担持させるものである。ここで、フッ素化合物溶液は、上記のフッ素化合物を溶解することのできる溶媒にフッ素化合物を溶解させたものであり、溶媒はフッ素系溶剤でも、非フッ素系溶剤いずれでも良い。このとき、フッ素化合物溶液のフッ素含有量が、触媒に担持させるフッ素量と等しくなるように、溶媒及びフッ素化合物量を調整する。
 フッ素化合物担持のための浸漬処理について、その浸漬時間は1~48時間として、攪拌しつつ行うのが好ましい。フッ素化合物溶液の温度は、30~150℃とするが、溶媒の種類により選定する。そして、浸漬後は、触媒が分散するフッ素化合物溶液を乾燥機等で加温し、溶媒が全て消失するまで保持する。
 以上の処理により、本発明に係る触媒を製造することができる。尚、上記製造工程において、合金化の熱処理後、フッ素化合物担持前の触媒について、少なくとも1回酸化性溶液に接触させることが好ましい。本発明に係る触媒の触媒粒子では、コバルト及びマンガンの比率が重要であるが、その調整をそれらの担持工程のみで行うのは困難な場合がある。そこで、コバルト、マンガンの担持工程では予定の比率より多目に担持し、酸化性溶液で処理することでコバルト、マンガンを溶出させ担持量を調整することができる。
 この処理工程で使用する酸化性溶液としては、硫酸、硝酸、亜リン酸、過マンガン酸カリウム、過酸化水素、塩酸、塩素酸、次亜塩素酸、クロム酸等の溶液が好ましい。これらの酸化性溶液の濃度は、0.1~1mol/Lとするのが好ましく、溶液に触媒を浸漬するのが好ましい。酸化性溶液処理の条件としては、接触時間は、1~10時間が好ましく、処理温度は、40~90℃が好ましい。尚、酸化性溶液処理は、触媒を酸化性溶液に1回接触させる場合のみならず、複数回繰り返し行っても良い。また、複数回の酸処理を行う場合には、処理ごとに溶液の種類を変更しても良い。
 以上説明したように本発明に係る高分子固体電解質型燃料電池用の触媒は、Pt-Co触媒にマンガンを添加する3元系触媒の形態を採用しつつ、コバルト及びマンガンの構成比率を限定し、更に、触媒粒子中の合金相を特定することで初期活性に優れたものとなっている。そして、少なくとも触媒粒子表面について、フッ素化合物からなる撥水層を形成したことで、触媒金属の電気化学的溶解を抑制して耐久性を確保することができる。
実施例1、比較例1、2の各触媒のX線回折パターン。
第1実施形態:撥水層を有するPt-Co-Mn3元系触媒を製造し、触媒初期活性及び耐久性の評価を行った。触媒製造の基本工程は下記の通りである。
[触媒金属の担持] 
 市販の白金触媒を用意しこれにコバルト、マンガンを担持した。白金触媒は、炭素微粉末(比表面積約900m/g)を担体とする白金担持率46.5質量%の白金触媒を5g(白金換算で2.325g(11.92mmol)用意した。この白金触媒を、塩化コバルト(CoCl・6HO)と塩化マンガン(MnCl・4HO)をイオン交換水100mLに溶解させた金属塩溶液に浸漬し、マグネティックスターラーにて攪拌した。そして、この溶液に濃度1質量%の水素化ホウ素ナトリウム(SBH)溶液500mLを滴下し攪拌して還元処理し、白金触媒にコバルト、マンガンを担持した。その後、ろ過・洗浄・乾燥した。
[合金化熱処理] 
 触媒金属を担持した触媒について合金化のための熱処理を行った。本実施形態では、100%水素ガス中で熱処理温度を900℃として30分の熱処理を行った。
[酸化性溶液による処理] 
 合金化熱処理後の触媒について酸化性溶液処理を行った。この処理は、熱処理後の触媒を、0.2mol/Lの硫酸水溶液中80℃にて2時間処理した後、濾過・洗浄・乾燥した。その後1.0mol/Lの硝酸水溶液(溶存酸素量0.01cm/cm(STP換算))中70℃にて2時間処理した後、濾過・洗浄・乾燥した。
[撥水層の形成] 
 そして、製造したPt-Co-Mn3元系触媒について、フッ素化合物溶液にて処理して撥水層を形成した。フッ素化合物溶液として市販のフッ素樹脂材料(商品名:EGC-1700、住友スリーエム(株)製、フッ素樹脂含有量1~3%))20mLを、溶剤であるハイドロフルオロエーテル(商品名:HFE-7100:住友スリーエム(株)製)20mLに溶解させたものを使用した。この処理では、触媒5gを上記フッ素化合物溶液に浸漬して60℃で5時間攪拌した後、乾燥機にて60℃で保持し、溶剤が完全になくなるまで蒸発させた。この処理により、フッ素化合物が触媒に担持され撥水層を有する触媒が製造された(実施例1)。
実施例2:フッ素化合物溶液として、市販のフッ化エチレンプロピレン樹脂(商品名:テフロン(登録商標)FEP-120J:三井・デュポンフルオロケミカル社製)を使用した。この処理では、触媒3.4gを上記フッ素化合物溶液に浸漬して60℃で1晩攪拌した後、乾燥機にて60℃で保持し、溶剤が完全になくなるまで蒸発させた。その後、N中340℃で30分加熱した。この処理により、フッ素化合物が触媒に担持され撥水層を有する触媒が製造された。
参考例1:上記の触媒製造工程において、熱処理後のPt-Co-Mn3元系触媒について、フッ素化合物溶液による処理を行わないものを用意した。即ち、白金、コバルト、マンガンの構成比及び合金相の状態は最適化しつつ、撥水層を形成しないものを用意した。
比較例1:また、実施例1に対する比較例として、マンガンを添加しない従来のPt-Co触媒を製造した。この比較例は、白金触媒をコバルト塩のみを含む溶液に浸漬して製造した。
比較例2:触媒金属の担持工程について、白金、コバルト、マンガンを同時に担持することでPt-Co-Mn3元系触媒を製造した。炭素担体(比表面積約900m/g)を5g用意し、これを所定量のPtジニトロジアミン硝酸溶液(Pt(NO(NH)、塩化コバルト(CoCl・6HO)、塩化マンガン(MnCl・4HO)をイオン交換水100mLに溶解させた金属塩溶液に浸漬し、マグネティックスターラーにて攪拌した。そして、この溶液に濃度1質量%の水素化ホウ素ナトリウム(SBH)溶液500mLを滴下し攪拌して還元処理し、炭素担体に白金、コバルト、マンガンを担持した。その後、ろ過・洗浄・乾燥し、水素気流下900℃にて30分熱処理することで合金化させた。
 以上製造した触媒について、触媒粒子の白金、コバルト、マンガンの比率を測定すると共に、フッ素化合物溶液による処理を行った触媒(実施例1)について、フッ素化合物の担持量の測定を行った。これらの測定は、触媒をICP分析して、各金属、及び、カーボン担体の質量比を測定しそれらの測定値を基に算出した。
 また、各触媒についてX線回折分析を行い、触媒粒子の構成を検討した。X線回折装置は、JEOL製JDX-8030を用いた。試料は微粉末状にしてガラス製セルに入れ、X線源としてCu(kα線)、管電圧40kV、管電流30mA,2θ=20~90°までスキャン速度7°/min、ステップ角度0.1°で行った。
 図1は、各触媒のX線回折パターンを示す。図1から、全ての触媒で見られる2θ=40°付近に現れるピークは、金属Pt、CoPt、MnPt(実施例1)の合成ピークである。そして、実施例1についての2θ=32°付近(32~34°)のピークは、金属Ptに影響されないMnPtとCoPtとの合成ピークである。一方、比較例2においては、各実施例・比較例にはほとんど見られないピークが2θ=27°付近で見られるが、これはCo-Mn合金に由来するものと考えられる。
 次に、実施例1、2、参考例1、比較例1、2の触媒について、初期性能試験を行った。この性能試験は、Mass Activityを測定することにより行った。実験には単セルを用い、プロトン伝導性高分子電解質膜を電極面積5cm×5cm=25cm2のカソード及びアノード電極で挟み合わせた膜/電極接合体(Membrane Electrode Assembly、MEA)を作製し評価した。前処理として、水素流量=1000mL/min、酸素流量=1000mL/min、セル温度=80℃、アノード加湿温度=90℃、カソード加湿温度=30℃の条件にて電流/電圧曲線を引いた。その後、本測定として、Mass Activityを測定した。試験方法は0.9Vでの電流値(A)を測定し、電極上に塗布したPt重量からPt1gあたりの電流値(A/g-Pt)を求めてMass Activityを算出した。表1にその結果を示す。尚、表1には、図1の各触媒のX線回折パターンから算出したCo-Mn合金(2θ=27°近傍)のピーク強度比、MnPtとCoPt(2θ=32°近傍)のピーク強度比も示している。
Figure JPOXMLDOC01-appb-T000001
 表1から、実施例及び参考例のPt-Co-Mn3元系触媒は、比較例1のPt-Co触媒を基準としたとき、いずれも良好な初期活性を発揮する。これはマンガンを添加するとともに、触媒粒子の構成(Co-Mn相の生成量)を適正にしたことによるものと考えられる。実施例と参考例とを比較すると、フッ素化合物を担持した実施例はわずかに初期活性が優れているが、大差はない。そして、比較例2のようにCo-Mn相が多く生成する場合、Pt-Co触媒(比較例1)よりも初期活性が劣ることが確認された。
 次に、実施例1、2、参考例1、比較例1について、耐久性評価のための耐久試験を行った。耐久試験は、触媒からカソード電極(空気極)を製造して燃料電池を構成し、カソードのセル電位を三角波で掃引する加速劣化試験を行い、劣化後の発電特性を測定した。加速劣化は、650-1050mVの間を掃引速度40mV/sで20時間掃引して触媒粒子表面をクリーニングし、その後、650-1050mVの間を掃引速度100mV/sで20時間、40時間、68時間掃引させて劣化させた。各条件で劣化後の触媒についてMass Activityを測定した。この加速劣化試験後の評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2から、撥水層を形成した実施例1及び実施例2の触媒は、従来のPt-Co触媒(比較例1)に対して加速劣化後の活性の落ち込みが抑制されている。尚、参考例1の撥水層のない触媒については、比較例1のPt-Co触媒よりも劣っていた。この要因について考察するに、今回の耐久試験における過酷な電位条件(650-1050mV)では、金属(コバルト及び/又はマンガン)の溶出がPt-Co触媒よりも進行し易いためであると考えられる。この点、参考例1は初期活性は優れていたことから(表1)、触媒開発にあたっては、初期活性のみではなく耐久性も考慮した検討が肝要であることが確認できる。
第2実施形態:ここでは、第1実施形態と同様の工程で、フッ素化合物の担持量を変化させて触媒を製造し、初期活性を評価した。フッ素化合物の担持量は、フッ素化合物溶液について溶媒に溶解させるフッ素樹脂材料の量を調整して変化させた。それ以外の処理条件は、第1実施形態と同様である。そして、第1実施形態と同様にMass Activityを測定した。この結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 第1実施形態から、フッ素化合物の担持の効果は、初期活性の向上にはなく耐久性の確保にあることが確認されている。表3から、フッ素化合物の担持量が20%を超えて過剰となると、初期活性が低下することがわかる。
 本発明によれば、固体高分子形燃料電池の電極触媒として、初期発電特性を向上させつつ、の耐久性の改善をも達成することができる。本発明は、燃料電池の普及に資するものであり、ひいては環境問題解決の基礎となるものである。

Claims (9)

  1.  白金、コバルト、マンガンからなる触媒粒子が炭素粉末担体上に担持されてなる固体高分子形燃料電池用触媒において、
     前記触媒粒子は、白金、コバルト、マンガンの構成比(モル比)が、Pt:Co:Mn=1:0.06~0.39:0.04~0.33であり、
     前記触媒粒子についてのX線回折分析において、2θ=27°近傍に現れるCo-Mn合金のピーク強度比が、2θ=40°近傍に現れるメインピークを基準として0.15以下であり、
     更に、少なくとも触媒粒子の表面に、C-F結合を有するフッ素化合物が担持されていることを特徴とする固体高分子形燃料電池用触媒。
  2.  触媒全体の質量を基準として、3~20質量%のフッ素化合物が担持されている請求項1記載の固体高分子形燃料電池用触媒。
  3.  フッ素化合物は、フッ素樹脂、フッ素系界面活性剤である請求項1又は請求項2記載の固体高分子形燃料電池用触媒。
  4.  触媒粒子についてのX線回折分析において、2θ=32°近傍に現れるCoPt合金のピーク及びMnPt合金のピーク比が、2θ=40°近傍に現れるメインピークを基準として0.13以上である請求項1~請求項3のいずれかに記載の固体高分子形燃料電池用触媒。
  5.  触媒粒子の担持密度は、30~70%である請求項1~請求項4のいずれかに記載の固体高分子形燃料電池用の触媒。
  6. 請求項1~請求項5のいずれか1項に記載の固体高分子形燃料電池用触媒の製造方法であって、
     炭素粉末担体上に白金粒子が担持されてなる白金触媒に、コバルト及びマンガンを担持する工程と、
     前記担持工程によりコバルト及びマンガンが担持された白金触媒を700~1100℃で熱処理する工程と、
     前記熱処理工程後の触媒と、フッ素化合物を含む溶液とを接触させて前記触媒にフッ素化合物からなる撥水層を形成する工程と、
     含む固体高分子形燃料電池用触媒の製造方法。
  7.  熱処理後の触媒を少なくとも1回酸化性溶液に接触させ、触媒粒子表面のコバルト及びマンガンを溶出させる工程を含む請求項6記載の固体高分子形燃料電池用触媒の製造方法。
  8.  酸化性溶液は、硫酸、硝酸、亜リン酸、過マンガン酸カリウム、過酸化水素、塩酸、塩素酸、次亜塩素酸、クロム酸である請求項7記載の固体高分子形燃料電池用触媒の製造方法。
  9.  酸化性溶液との接触処理は、処理温度を40~90℃とし、接触時間を1~10時間とする請求項7又は請求項8記載の固体高分子形燃料電池用触媒の製造方法。
PCT/JP2014/053122 2013-02-15 2014-02-12 固体高分子形燃料電池用の触媒及びその製造方法 WO2014126077A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14751518.3A EP2958173B1 (en) 2013-02-15 2014-02-12 Catalyst for solid polymer fuel cells and method for producing same
US14/766,236 US9960431B2 (en) 2013-02-15 2014-02-12 Catalyst for solid polymer fuel cell and method for manufacturing the same
CN201480009171.9A CN105074981B (zh) 2013-02-15 2014-02-12 用于固体高分子型燃料电池的催化剂及其制造方法
JP2015500245A JP6053223B2 (ja) 2013-02-15 2014-02-12 固体高分子形燃料電池用の触媒及びその製造方法
KR1020157023768A KR101757088B1 (ko) 2013-02-15 2014-02-12 고체 고분자형 연료 전지용 촉매 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-027758 2013-02-15
JP2013027758 2013-02-15

Publications (1)

Publication Number Publication Date
WO2014126077A1 true WO2014126077A1 (ja) 2014-08-21

Family

ID=51354077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053122 WO2014126077A1 (ja) 2013-02-15 2014-02-12 固体高分子形燃料電池用の触媒及びその製造方法

Country Status (6)

Country Link
US (1) US9960431B2 (ja)
EP (1) EP2958173B1 (ja)
JP (1) JP6053223B2 (ja)
KR (1) KR101757088B1 (ja)
CN (1) CN105074981B (ja)
WO (1) WO2014126077A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014216231A (ja) * 2013-04-26 2014-11-17 日産自動車株式会社 燃料電池
WO2016021399A1 (ja) * 2014-08-05 2016-02-11 田中貴金属工業株式会社 固体高分子形燃料電池用の触媒及びその製造方法
JP2018198182A (ja) * 2017-05-25 2018-12-13 パナソニックIpマネジメント株式会社 燃料電池用電極触媒層およびその製造方法
WO2020040040A1 (ja) * 2018-08-22 2020-02-27 田中貴金属工業株式会社 固体高分子形燃料電池用触媒及び固体高分子形燃料電池用触媒の選定方法
JP2020061247A (ja) * 2018-10-09 2020-04-16 凸版印刷株式会社 燃料電池用膜電極接合体及び固体高分子形燃料電池
WO2020075777A1 (ja) * 2018-10-09 2020-04-16 凸版印刷株式会社 燃料電池用膜電極接合体及び固体高分子形燃料電池
JP2020061248A (ja) * 2018-10-09 2020-04-16 凸版印刷株式会社 燃料電池用膜電極接合体及び固体高分子形燃料電池
JP2020061249A (ja) * 2018-10-09 2020-04-16 凸版印刷株式会社 燃料電池用膜電極接合体及び固体高分子形燃料電池
WO2021024657A1 (ja) * 2019-08-02 2021-02-11 日清紡ホールディングス株式会社 金属担持触媒、電池電極及び電池
JP2021093270A (ja) * 2019-12-09 2021-06-17 日本製鉄株式会社 固体高分子形燃料電池用合金触媒及びその製造方法
JP2022513631A (ja) * 2018-12-26 2022-02-09 コーロン インダストリーズ インク 触媒、その製造方法、それを含む電極、それを含む膜-電極アセンブリー、及びそれを含む燃料電池

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI696493B (zh) 2017-09-27 2020-06-21 日商田中貴金屬工業股份有限公司 固態高分子型燃料電池用觸媒及其製造方法
US11894566B2 (en) 2020-05-12 2024-02-06 Robert Bosch Gmbh Catalyst materials for a fuel cell stack
WO2022108586A1 (en) * 2020-11-19 2022-05-27 Robert Bosch Gmbh Fuel cell catalyst materials
CN117790827B (zh) * 2024-02-26 2024-05-03 上海唐锋能源科技有限公司 一种具有表面CFx键的碳载体负载合金催化剂的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04141236A (ja) * 1990-09-29 1992-05-14 Stonehard Assoc Inc 白金合金触媒とその製法
JP2007209979A (ja) * 2006-02-07 2007-08-23 Samsung Sdi Co Ltd 金属触媒とその製造方法、電極とその製造方法、及び燃料電池
JP2009512163A (ja) * 2005-10-12 2009-03-19 スリーエム イノベイティブ プロパティズ カンパニー 燃料電池用ナノ触媒
JP2009523066A (ja) * 2006-01-10 2009-06-18 キャボット コーポレイション 合金触媒組成物ならびに同組成物の製造方法および使用方法
JP2011150867A (ja) 2010-01-21 2011-08-04 Toyota Motor Corp 燃料電池用3元系電極触媒の製造方法、及びそれを用いた固体高分子型燃料電池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5281221B2 (ja) * 2001-08-03 2013-09-04 トヨタ自動車株式会社 貴金属−卑金属合金系触媒とその評価および製造方法
JP2003109623A (ja) * 2001-09-28 2003-04-11 Matsushita Electric Ind Co Ltd 高分子電解質型燃料電池
US7635533B2 (en) * 2002-02-27 2009-12-22 Symyx Solutions, Inc. Fuel cell electrocatalyst of Pt-Mn-Co
JP2006012476A (ja) * 2004-06-23 2006-01-12 Nissan Motor Co Ltd 燃料電池用膜−電極接合体
US20080280190A1 (en) * 2005-10-20 2008-11-13 Robert Brian Dopp Electrochemical catalysts
CN104037430A (zh) * 2006-03-29 2014-09-10 株式会社科特拉 燃料电池用导电性碳载体、燃料电池用电极催化剂以及具备该电极催化剂的固体高分子型燃料电池
JP2007273340A (ja) * 2006-03-31 2007-10-18 Cataler Corp 高耐久性燃料電池用電極触媒、及びその電極触媒を用いた燃料電池
US8637193B2 (en) * 2008-08-25 2014-01-28 3M Innovative Properties Company Fuel cell nanocatalyst with voltage reversal tolerance
US8865359B2 (en) * 2010-07-27 2014-10-21 GM Global Technology Operations LLC Fuel cell having improved thermal characteristics

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04141236A (ja) * 1990-09-29 1992-05-14 Stonehard Assoc Inc 白金合金触媒とその製法
JP2009512163A (ja) * 2005-10-12 2009-03-19 スリーエム イノベイティブ プロパティズ カンパニー 燃料電池用ナノ触媒
JP2009523066A (ja) * 2006-01-10 2009-06-18 キャボット コーポレイション 合金触媒組成物ならびに同組成物の製造方法および使用方法
JP2007209979A (ja) * 2006-02-07 2007-08-23 Samsung Sdi Co Ltd 金属触媒とその製造方法、電極とその製造方法、及び燃料電池
JP2011150867A (ja) 2010-01-21 2011-08-04 Toyota Motor Corp 燃料電池用3元系電極触媒の製造方法、及びそれを用いた固体高分子型燃料電池

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014216231A (ja) * 2013-04-26 2014-11-17 日産自動車株式会社 燃料電池
US10892496B2 (en) 2014-08-05 2021-01-12 Tanaka Kikinzoku Kogyo K.K. Catalyst for solid polymer fuel cell and production method for the same
WO2016021399A1 (ja) * 2014-08-05 2016-02-11 田中貴金属工業株式会社 固体高分子形燃料電池用の触媒及びその製造方法
JPWO2016021399A1 (ja) * 2014-08-05 2017-05-18 田中貴金属工業株式会社 固体高分子形燃料電池用の触媒及びその製造方法
JP2018198182A (ja) * 2017-05-25 2018-12-13 パナソニックIpマネジメント株式会社 燃料電池用電極触媒層およびその製造方法
WO2020040040A1 (ja) * 2018-08-22 2020-02-27 田中貴金属工業株式会社 固体高分子形燃料電池用触媒及び固体高分子形燃料電池用触媒の選定方法
JP7349436B2 (ja) 2018-08-22 2023-09-22 田中貴金属工業株式会社 固体高分子形燃料電池用触媒の選定方法
JPWO2020040040A1 (ja) * 2018-08-22 2021-08-26 田中貴金属工業株式会社 固体高分子形燃料電池用触媒及び固体高分子形燃料電池用触媒の選定方法
JP7131276B2 (ja) 2018-10-09 2022-09-06 凸版印刷株式会社 燃料電池用膜電極接合体及び固体高分子形燃料電池
JP2020061249A (ja) * 2018-10-09 2020-04-16 凸版印刷株式会社 燃料電池用膜電極接合体及び固体高分子形燃料電池
JP2020061247A (ja) * 2018-10-09 2020-04-16 凸版印刷株式会社 燃料電池用膜電極接合体及び固体高分子形燃料電池
JP2020061248A (ja) * 2018-10-09 2020-04-16 凸版印刷株式会社 燃料電池用膜電極接合体及び固体高分子形燃料電池
WO2020075777A1 (ja) * 2018-10-09 2020-04-16 凸版印刷株式会社 燃料電池用膜電極接合体及び固体高分子形燃料電池
JP7131274B2 (ja) 2018-10-09 2022-09-06 凸版印刷株式会社 燃料電池用膜電極接合体及び固体高分子形燃料電池
JP7131275B2 (ja) 2018-10-09 2022-09-06 凸版印刷株式会社 燃料電池用膜電極接合体及び固体高分子形燃料電池
US11931724B2 (en) 2018-12-26 2024-03-19 Kolon Industries, Inc. Catalyst, method for producing same, electrode comprising same, membrane-electrode assembly comprising same, and fuel cell comprising same
JP7181404B2 (ja) 2018-12-26 2022-11-30 コーロン インダストリーズ インク 触媒、その製造方法、それを含む電極、それを含む膜-電極アセンブリー、及びそれを含む燃料電池
JP2022513631A (ja) * 2018-12-26 2022-02-09 コーロン インダストリーズ インク 触媒、その製造方法、それを含む電極、それを含む膜-電極アセンブリー、及びそれを含む燃料電池
JP7158350B2 (ja) 2019-08-02 2022-10-21 日清紡ホールディングス株式会社 金属担持触媒、電池電極及び電池
JP2021023873A (ja) * 2019-08-02 2021-02-22 日清紡ホールディングス株式会社 金属担持触媒、電池電極及び電池
WO2021024657A1 (ja) * 2019-08-02 2021-02-11 日清紡ホールディングス株式会社 金属担持触媒、電池電極及び電池
JP2021093270A (ja) * 2019-12-09 2021-06-17 日本製鉄株式会社 固体高分子形燃料電池用合金触媒及びその製造方法
JP7303443B2 (ja) 2019-12-09 2023-07-05 日本製鉄株式会社 固体高分子形燃料電池用合金触媒及びその製造方法

Also Published As

Publication number Publication date
EP2958173B1 (en) 2017-11-15
KR20150115869A (ko) 2015-10-14
US9960431B2 (en) 2018-05-01
EP2958173A1 (en) 2015-12-23
JPWO2014126077A1 (ja) 2017-02-02
KR101757088B1 (ko) 2017-07-11
JP6053223B2 (ja) 2016-12-27
EP2958173A4 (en) 2016-10-05
CN105074981A (zh) 2015-11-18
CN105074981B (zh) 2017-04-26
US20160013495A1 (en) 2016-01-14

Similar Documents

Publication Publication Date Title
JP6053223B2 (ja) 固体高分子形燃料電池用の触媒及びその製造方法
JP6300934B2 (ja) 固体高分子形燃料電池用の触媒及びその製造方法
JP5152942B1 (ja) 固体高分子形燃料電池用の触媒及びその製造方法
WO2014119707A1 (ja) 固体高分子形燃料電池用の触媒及びその製造方法
KR102339556B1 (ko) 고체 고분자형 연료 전지용 촉매 및 그 제조 방법
KR102286905B1 (ko) 고체 고분자형 연료 전지용 촉매 및 그 제조 방법
KR102600857B1 (ko) 고체 고분자형 연료 전지용 촉매 및 고체 고분자형 연료 전지용 촉매의 선정 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480009171.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14751518

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015500245

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14766236

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014751518

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014751518

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157023768

Country of ref document: KR

Kind code of ref document: A