WO2016021399A1 - 固体高分子形燃料電池用の触媒及びその製造方法 - Google Patents

固体高分子形燃料電池用の触媒及びその製造方法 Download PDF

Info

Publication number
WO2016021399A1
WO2016021399A1 PCT/JP2015/070678 JP2015070678W WO2016021399A1 WO 2016021399 A1 WO2016021399 A1 WO 2016021399A1 JP 2015070678 W JP2015070678 W JP 2015070678W WO 2016021399 A1 WO2016021399 A1 WO 2016021399A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
fuel cell
platinum
polymer electrolyte
electrolyte fuel
Prior art date
Application number
PCT/JP2015/070678
Other languages
English (en)
French (fr)
Inventor
石田 稔
耕一 松谷
Original Assignee
田中貴金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田中貴金属工業株式会社 filed Critical 田中貴金属工業株式会社
Priority to US15/323,286 priority Critical patent/US10892496B2/en
Priority to JP2016540141A priority patent/JP6300934B2/ja
Priority to KR1020177001414A priority patent/KR101927007B1/ko
Priority to CN201580042093.7A priority patent/CN106575773B/zh
Priority to EP15829740.8A priority patent/EP3179545B1/en
Publication of WO2016021399A1 publication Critical patent/WO2016021399A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8689Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a catalyst for a polymer electrolyte fuel cell.
  • the present invention relates to a catalyst useful for use in a cathode (air electrode) of a polymer electrolyte fuel cell.
  • Fuel cells are highly expected as next-generation power generation systems. Among them, polymer electrolyte fuel cells are particularly advantageous in that they have a lower operating temperature and are more compact than other types of fuel cells. is there. From these merits, the polymer electrolyte fuel cell is regarded as promising as a power source for automobiles and a household power source.
  • This polymer electrolyte fuel cell has a laminated structure comprising a hydrogen electrode (anode) and an air electrode (cathode) and a solid polymer electrolyte membrane sandwiched between these electrodes.
  • a hydrogen-containing fuel is supplied to the hydrogen electrode, and oxygen or air is supplied to the air electrode, and electric power is taken out by oxidation and reduction reactions that occur at each electrode.
  • a mixture of a catalyst and a solid electrolyte for promoting an electrochemical reaction is generally applied to both electrodes.
  • a platinum catalyst supporting a noble metal, particularly platinum, as a catalyst metal has been widely used. This is because platinum as a catalyst metal has high activity in promoting the electrode reaction in both the hydrogen electrode and the air electrode (Patent Document 1).
  • Patent Document 1 A platinum alloy catalyst based on this platinum catalyst is also known.
  • the fuel cell catalyst centered on the platinum catalyst.
  • improvement of the initial activity is mentioned as the direction of improvement of the fuel cell catalyst.
  • the initial activity of the catalyst is a characteristic that determines the performance of the fuel cell electrode, and its improvement is a top priority.
  • improvement of durability is also requested
  • the activity of the catalyst is reduced due to environmental changes associated with the operation of the fuel cell. When the rate of decrease is large, it is difficult to say that the catalyst is a useful catalyst no matter how high the initial activity is. This decrease in activity is difficult to avoid completely, but it is necessary to suppress it as much as possible.
  • an object of the present invention is to provide a catalyst for a solid polymer fuel cell that is excellent in both initial activity and durability, and a method for producing the same.
  • the present invention for solving the above-mentioned problems is directed to a polymer electrolyte fuel cell catalyst in which catalyst particles made of platinum or a platinum alloy are supported on a carbon powder carrier, and at least a sulfo group (—SO 3 H) is formed on the catalyst particles. And a catalyst for a solid polymer fuel cell, wherein a fluorine compound having a C—F bond is supported on at least the catalyst particles.
  • the fuel cell catalyst according to the present invention is a sulfo group (—SO 3 H) with respect to a catalyst (platinum catalyst, platinum alloy catalyst) in which platinum or a platinum alloy is supported on a carbon powder carrier (carbon powder carrier) as a catalyst metal. ) And formation of a water-repellent layer having a C—F bond of a fluorine compound.
  • a catalyst platinum catalyst, platinum alloy catalyst
  • carbon powder carrier carbon powder carrier
  • the reason for introducing a sulfo group into the fuel cell catalyst is to impart proton conductivity to the catalyst and improve the activity (initial activity) of the catalyst. This is because, as can be seen from the reaction at the air electrode of the fuel cell (O 2 + 4H + + 4e ⁇ ⁇ 2H 2 O), improving proton conductivity contributes to promoting the reaction at the air electrode. .
  • the present invention improves the initial activity by efficiently supplying protons by adding a sulfo group to the catalyst particles.
  • the amount of the sulfo group contained in the catalyst can be defined by the content of the sulfur (S) element.
  • the sulfur content is preferably 800 ppm or more and 5000 ppm or less based on the mass of the entire catalyst. If it is less than 800 ppm, the effect of improving the activity does not occur, and if it exceeds 5000 ppm, the electronic conductivity of the catalyst is lowered and the catalyst performance is lowered.
  • the sulfur content is more preferably from 1000 ppm to 4500 ppm, and even more preferably from 1500 ppm to 4500 ppm, based on the mass of the catalyst.
  • the catalyst activity may be different by controlling the arrangement state. is there. Since the electrode reaction proceeds in the proximity of the three phases of the reaction gas (oxygen), the electron conductive substance (catalyst particles), and the solid electrolyte, the electrode reaction is particularly useful in the vicinity of the catalyst particles. It is considered to be a sulfo group.
  • At least a catalyst group has a sulfo group, and in EDX analysis (energy dispersive X-ray analysis). And the ratio (I S / I Pt ) between the sulfur peak intensity (I S ) and the platinum peak intensity (I Pt ) on the catalyst particles is found to be in the range of 0.0044 or more and 0.0090 or less. .
  • the above preferred conditions define the amount of sulfo groups arranged on the catalyst particles based on the sulfur peak intensity by EDX analysis. That is, the amount of sulfo groups introduced into the catalyst is specified on the catalyst particles.
  • the sulfur peak intensity (I S ) in the EDX analysis is used as a reference
  • the ratio (I S / I Pt ) with the intensity (I Pt ) of the platinum peak is used as the basis for evaluation in the present invention. This is in order to eliminate analysis errors derived from the sensitivity of individual analyzers, which are included in the value of the sulfur peak intensity detected by EDX analysis. This is based on the idea that the analysis error derived from the apparatus does not change when measuring the same sample in EDX analysis.
  • the initial performance is particularly good.
  • the suitable introduction amount of the sulfo group This is thought to be because an excessive sulfo group may inhibit the electron conduction by the catalyst particles.
  • elemental analysis was performed from the energy intensity by detecting characteristic X-rays by EDX analysis.
  • the sulfur peak intensity (I s ) was measured from the energy intensity of the K ⁇ ray near 2.307 keV
  • the platinum peak intensity (I pt ) was measured from the energy intensity of the 2.0 ⁇ keV M ⁇ ray.
  • the K ⁇ ray is a characteristic X-ray generated when an electron transits from the L orbital to the K orbital in the electron orbit of the sample constituent atom
  • the M ⁇ ray is generated when the electron transits from the N orbital to the M orbital. Characteristic X-ray.
  • the sulfur peak intensity measured above contained a superimposed portion derived from the Pt spectrum, which is a catalyst metal, and therefore the sulfur peak intensity was around 2.307 keV. It was calculated by subtracting the separately measured Pt standard spectrum waveform from the measured value of the energy intensity.
  • a water repellent layer of a fluorine compound In addition to the introduction of the sulfo group described above, in the present invention, it is also essential to form a water repellent layer of a fluorine compound. This water-repellent layer is applied for the purpose of ensuring the durability of the catalyst and suppressing the decline in activity over time.
  • the present inventors paid attention to deterioration due to elution of the metal constituting the catalyst particles (addition metal constituting platinum and the platinum alloy) among them.
  • This deterioration mechanism is disappearance due to electrochemical dissolution of each metal mediated by water produced in the fuel cell reaction (O 2 + 4H + + 4e ⁇ ⁇ 2H 2 O) on the cathode side.
  • the catalyst on the cathode side is exposed to an atmosphere such as a high temperature, an acidic atmosphere, and a high potential load.
  • water is present here, dissolution / elution of the metal is accelerated.
  • a water repellent layer made of a fluorine compound having a C—F bond is formed on the surface of the catalyst particles. It is known that a fluorine compound having a high bonding strength called C—F bond has high stability and has unique properties such as water repellency.
  • a water repellent layer made of this fluorine compound is formed on the catalyst, the generated water is quickly discharged from the surface of the catalyst particles, and the decrease in activity is prevented by suppressing the dissolution of the catalyst metal mediated by water. Yes.
  • examples of the fluorine compound constituting the water-repellent layer include a fluororesin that is a water-repellent polymer material and a fluorine-based surfactant.
  • a fluororesin that is a water-repellent polymer material
  • a fluorine-based surfactant for example, known as Teflon (registered trademark), polytetrafluoroethylene (PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), tetrafluoro Known as ethylene / ethylene copolymer (ETFE), polyvinylidene fluoride (PVDF), polychlorotrifluoroethylene (PCTFE), perfluorosulfonic acid polymer known as Nafion (registered trademark), fluorinated acrylate Perfluoroacrylic acid ester.
  • the amount of the fluorine compound that forms the water repellent layer is preferably 3% by mass or more and 24% by mass or less based on the mass of the entire catalyst. This is because if it is less than 3% by mass, there is no effect, while if it exceeds 24% by mass, the original function of promoting the electrode reaction cannot be exhibited. More preferably, the content is 5% by mass or more and 20% by mass or less.
  • the water repellent layer need not be formed on the entire surface of all catalyst particles, and may be a partial layer. Further, it may be formed only on the catalyst particles, but even if a fluorine compound is supported on the carrier, the catalyst activity is not affected.
  • the catalyst according to the present invention in which the sulfo group and the fluorine compound described above are introduced is not limited in other configurations.
  • the catalyst particles are made of platinum or a platinum alloy.
  • the sulfonation and water repellent layer formation in the present invention is considered effective for catalyst particles made of platinum and catalyst particles made of a platinum alloy.
  • Platinum alloy obtained by alloying other metals with platinum as catalyst particles is also useful from the viewpoint of reducing the amount of platinum used.
  • Some catalyst particles made of a platinum alloy have excellent properties such as initial activity.
  • an alloy of platinum and cobalt (PtCo alloy) is useful as a platinum alloy catalyst for fuel cells.
  • the present inventors also used platinum, cobalt and manganese alloy catalysts (PtCoMn catalyst, preferably a molar ratio based on Pt (number of moles of Pt) as other useful platinum alloy catalysts for fuel cells.
  • the catalyst particles made of platinum or a platinum alloy are preferably those having an average particle diameter of 2 nm or more and 20 nm or less. This is because if it is less than 2 nm, long-term activity sustainability cannot be clearly obtained, and if it exceeds 20 nm, the initial activity of the catalyst cannot be sufficiently obtained.
  • carbon powder as a carrier has a specific surface area preferably applied to the following carbon powder 250 meters 2 / g or more 1200 m 2 / g. By setting it to 250 m 2 / g or more, the area to which the catalyst adheres can be increased, so that the catalyst particles can be dispersed in a high state and the effective surface area can be increased.
  • the electrode On the other hand, if it exceeds 1200 m 2 / g, the electrode This is because the proportion of ultra-fine pores (less than about 20 mm) in which the ion exchange resin is difficult to enter during the formation increases and the utilization efficiency of the catalyst particles decreases.
  • the catalyst according to the present invention preferably has a catalyst particle loading density of 30% or more and 70% or less in consideration of performance as an electrode of a polymer electrolyte fuel cell.
  • the loading density refers to the ratio of the mass of catalyst particles supported on the carrier (the total mass of platinum and alloy elements supported) to the total mass of the catalyst.
  • a method for producing a catalyst for a polymer electrolyte fuel cell according to the present invention will be described.
  • a treatment for imparting a sulfo group and a treatment for forming a water repellent layer with a fluorinated compound are performed on the platinum catalyst or the platinum alloy catalyst.
  • the catalyst according to the present invention is produced by preparing the platinum catalyst or the platinum alloy catalyst and then performing the following two treatments.
  • the catalyst is brought into contact with a mixed solution composed of concentrated sulfuric acid and fuming sulfuric acid, and a sulfo group is introduced into the catalyst.
  • medical solution used for sulfonation shall contain both concentrated sulfuric acid and fuming sulfuric acid as above-mentioned. According to the present inventors, by using such a chemical solution, a sulfo group can be imparted on the catalyst particles in a suitable state.
  • Concentrated sulfuric acid is sulfuric acid having a purity of 90 wt% or more, preferably 95% purity, and more preferably 96% purity or more.
  • the fuming sulfuric acid preferably has an SO 3 content of 15 vol% or more and 30 vol% or less.
  • the mixing ratio of concentrated sulfuric acid and fuming sulfuric acid is preferably 0.7 or more and 4.0 or less, and more preferably 1.0 or more and 2.0 or less in a volume ratio (volume of concentrated sulfuric acid / volume of fuming sulfuric acid).
  • the amount of the chemical solution is preferably 10 ml or more and 20 ml or less per gram of the catalyst.
  • the temperature of the mixed solution for this sulfonation treatment is preferably 30 ° C. or higher and 110 ° C. or lower. More preferably, it is set to 40 ° C. or higher and 90 ° C. or lower.
  • the higher the temperature of the solution the more the sulfo group introduction amount can be increased, but the catalyst has a high initial performance when applied to a fuel cell, and the introduction amount of the sulfo group should simply be large. is not. For this reason, in the manufacturing method of this invention, it has the upper limit about the solution temperature in the case of sulfonation. If it is less than 30 ° C., the sulfo group is not sufficiently introduced, and if it exceeds 110 ° C., when the sulfonated catalyst is applied to a fuel cell, it is difficult to achieve high initial performance.
  • the treatment time for sulfonation is preferably 8 hours or more and 24 hours or less. If it is less than 8 hours, the sulfo group is not sufficiently introduced, and even if it is treated for a longer time than 24 hours, the introduction amount of the sulfo group hardly increases, and the initial performance when applied to a fuel cell is hardly improved.
  • a treatment for forming a water repellent layer on the surface of the catalyst particles is performed.
  • the catalyst is immersed in the fluorine compound solution, and the solvent of the fluorine compound solution is removed by volatilization or evaporation to carry the fluorine compound on the catalyst.
  • the fluorine compound solution is obtained by dissolving a fluorine compound in a solvent (diluent) capable of dissolving the above-described fluorine compound, and the solvent may be either a fluorine-based solvent or a non-fluorinated solvent.
  • the solvent and the amount of the fluorine compound are adjusted so that the fluorine content of the fluorine compound solution becomes equal to the amount of fluorine supported on the catalyst.
  • the immersion treatment for supporting the fluorine compound is performed while stirring with an immersion time of 1 hour to 48 hours.
  • the temperature of the fluorine compound solution is 30 ° C. or higher and 150 ° C. or lower, and is selected according to the type of solvent. After the immersion, the fluorine compound solution in which the catalyst is dispersed is heated with a dryer or the like, and held until all the solvent disappears.
  • the order of performing the sulfonation treatment and the water repellent layer formation treatment is not particularly limited. Therefore, the catalyst may be first sulfonated, and then the water-repellent layer may be formed, or sulfonated after the water-repellent layer is formed.
  • the platinum catalyst When preparing a platinum catalyst or platinum alloy catalyst to be treated, the platinum catalyst may be prepared by a conventional platinum catalyst manufacturing method. A commercially available platinum catalyst may also be used. The platinum catalyst is usually produced by bringing a platinum salt solution into contact (impregnation, dripping) with a support, followed by reduction treatment to form platinum particles.
  • the basic process is in accordance with a general method for producing an alloy catalyst.
  • the metal constituting the catalyst particles platinum and metal to be alloyed
  • Heat treatment is performed to alloy the supported metal.
  • the loading of the metal constituting the catalyst particles may be performed simultaneously.
  • a platinum catalyst on which only platinum is supported is manufactured or prepared, and an additive metal (cobalt, manganese, magnesium, etc.) to be alloyed thereon is supported, and each metal is alloyed to form a platinum alloy catalyst. Obtainable.
  • the catalyst on which each metal is supported it is preferable to heat-treat the catalyst on which each metal is supported at 700 ° C. or higher and 1100 ° C. or lower.
  • This heat treatment is preferably performed in a non-oxidizing atmosphere, particularly preferably in a reducing atmosphere (hydrogen gas atmosphere or the like).
  • the polymer electrolyte fuel cell catalyst according to the present invention is excellent in both initial activity and durability. This effect is exhibited by a predetermined sulfonation treatment and a water repellent layer forming treatment with a fluorine compound, and exhibits particularly excellent characteristics due to a synergistic effect of these actions.
  • the platinum-cobalt catalyst (PtCo catalyst) was subjected to sulfonation treatment and water repellent layer formation treatment.
  • the catalyst used is a commercially available PtCo catalyst (TEC36F52HT2, manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.).
  • TEC36F52HT2 manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.
  • the support is a carbon powder having a specific surface area of 800 m 2 / g.
  • the following sulfonation treatment and water repellent layer formation treatment were performed on this PtCo catalyst.
  • the PtCo catalyst (Example 1) subjected to both the sulfonation treatment and the water-repellent layer forming treatment, the PtCo catalyst (Comparative Example 1) subjected only to the sulfonation, and the PtCo catalyst (None) ( Conventional example) was produced. They were subjected to sulfur analysis and fluorine analysis. And the initial activity and durability of each catalyst were evaluated.
  • Sulfur analysis Sulfur content (ppm) in the catalyst is measured by an automatic halogen / sulfur analysis system (SQ-10 electric furnace and HSU-35 type absorption unit, manufactured by Yanaco Development Laboratory) and ion chromatography (manufactured by Toa DKK). did. While circulating Air at a flow rate of 2.2 l / min in an electric furnace with 0.05 g of catalyst, the temperature was raised from 450 ° C. to 750 ° C. at normal pressure and held for 5 minutes, and then raised to 900 ° C. Hold for a minute.
  • Combustion cracking gas containing sulfur component (sulfur dioxide SO 2 ) generated in the combustion process is dissolved and collected with hydrogen peroxide solution, and sulfate ion (SO 4 2 ⁇ ) is separated and quantified by ion chromatography. (Ppm) was calculated.
  • Mass Activity was measured as this measurement.
  • the current value (A) at 0.9 V was measured, the current value per 1 g of Pt (A / g-Pt) was obtained from the Pt weight applied on the electrode, and Mass Activity was calculated.
  • a cathode electrode air electrode
  • an accelerated deterioration test was performed in which the cathode cell potential was swept with a triangular wave, and the power generation characteristics after deterioration were measured.
  • the surface of the catalyst particles was cleaned by sweeping between 650-1050 mV at a sweep rate of 40 mV / s for 20 hours, and then between 650-1050 mV at a sweep rate of 100 mV / s for 20, 40, 68 hours. Sweeped and deteriorated. Mass activity was measured about the catalyst after deterioration on each condition.
  • Table 1 shows the analysis results and evaluation test results for the catalysts of Example 1, Comparative Example 1, and the conventional example.
  • Example 1 From Table 1, it can be confirmed that the catalyst of Example 1 obtained by subjecting the platinum alloy catalyst to sulfonation and water repellent layer formation is excellent in both initial activity and durability. And compared with the catalyst which performed only sulfonation like the comparative example 1, although the improvement of initial activity was seen also with the catalyst of the comparative example 1 with respect to the prior art example, when considering durability, it was about 20 hours. The activity decreased over time, and after 68 hours, the activity was less than half of the initial value. Sulfonation is effective in improving the initial activity, but it can hardly contribute to durability, and it is confirmed that synergistic improvement in catalytic properties occurs by simultaneously forming the water-repellent layer. It was.
  • Second Embodiment Here, a PtCo catalyst with different sulfonation conditions was treated with a fluorine compound to produce a plurality of catalysts, and sulfur analysis and initial activity were evaluated.
  • the sulfonation conditions were changed by changing the mixing ratio and temperature of the mixed solution composed of concentrated sulfuric acid and fuming sulfuric acid.
  • TEM-EDX analysis In this embodiment, TEM-EDX analysis of the catalyst was also performed. Each catalyst was observed with a TEM (transmission electron microscope, Cs-corrected STEM device manufactured by JEOL Ltd., model number JEM-ARM200F) in a circular region having an acceleration voltage of 80 kV, a STEM beam diameter of less than 0.2 nm, and an analysis region of about 2 nm ⁇ . The peak intensity of any 7 points on the catalyst particles (Pt-Co) was measured with an EDX (energy dispersive X-ray analysis) device of an SDD detector manufactured by JEOL Ltd. and a Noran System 7 system analyzer manufactured by Thermo Fisher Scientific. The integration time was measured for 60 seconds.
  • TEM transmission electron microscope, Cs-corrected STEM device manufactured by JEOL Ltd., model number JEM-ARM200F
  • the following analyzes (1) and (2) were performed in order to remove the superposed portion derived from Pt contained in the measured value.
  • (1) Seven points on the catalyst particles of the non-sulfonated catalyst were subjected to EDX analysis, and the obtained spectrum was used as a Pt standard spectrum.
  • a catalyst particle having the same average particle diameter as that of the sulfonated catalyst was used.
  • Table 2 shows the analysis results and initial activity evaluation results of the catalysts according to each example.
  • Third embodiment As a water repellent, a catalyst is produced in which the amount of addition of fluororesin material (EGC-1700) and hydrofluoroether (HFE-7100) as a solvent is changed, and initial activity and durability are evaluated. A test was conducted. A catalyst was produced in the same manner as in Example 1 except that the mixing ratio of the water repellent was as shown in the following table. Various performance evaluations were performed with the same contents as in the first embodiment.
  • fluororesin material ECC-1700
  • HFE-7100 hydrofluoroether
  • the polymer electrolyte fuel cell catalyst according to the present invention is excellent in balance with respect to both initial activity and durability.
  • Solid polymer fuel cells are expected as next-generation power generation systems for automobile power supplies, household power supplies, and the like. Recently, the start of commercialization of fuel cell vehicles is also a hot topic.
  • the present invention is an invention that contributes to the practical application of this fuel cell.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Catalysts (AREA)

Abstract

 本発明は、初期活性に優れ、耐久性も良好な固体高分子形燃料電池用触媒及びその製造方法を提供する。 本発明は、白金又は白金合金からなる触媒粒子が炭素粉末担体上に担持されてなる固体高分子形燃料電池用触媒において、少なくとも前記触媒粒子上にスルホ基(-SOH)を有し、更に、少なくとも前記触媒粒子上にC-F結合を有するフッ素化合物が担持されていることを特徴とする固体高分子形燃料電池用触媒である。ここで、硫黄含有量は、触媒全体の質量基準で、800ppm以上5000ppm以下であるもの、及び、フッ素化合物量は、触媒全体の質量を基準として3質量%以上24質量%以下であるものが好ましい。

Description

固体高分子形燃料電池用の触媒及びその製造方法
 本発明は、固体高分子形燃料電池用の触媒に関する。特に、固体高分子形燃料電池のカソード(空気極)での使用に有用な触媒に関する。
 燃料電池は、次世代の発電システムとして大いに期待されるものであり、その中でも特に固体高分子形燃料電池は、他形式の燃料電池と比較して動作温度が低く、かつコンパクトであるという利点がある。そして、これらのメリットから、固体高分子形燃料電池は自動車用電源や家庭用電源として有望視されている。この固体高分子形燃料電池は、水素極(アノード)及び空気極(カソード)と、これらの電極に挟持される固体高分子電解質膜とからなる積層構造を有する。そして、水素極へは水素を含む燃料が、空気極へは酸素又は空気がそれぞれ供給され、各電極で生じる酸化、還元反応により電力を取り出すようにしている。また、両電極共に、電気化学的反応を促進させるための触媒と固体電解質との混合体が一般に適用されている。
 上記の電極を構成する触媒として、触媒金属として貴金属、特に、白金を担持させた白金触媒が従来から広く用いられている。触媒金属としての白金は、水素極及び空気極の双方における電極反応を促進させる上で高い活性を有するからである(特許文献1)。また、この白金触媒をベースとした白金合金触媒も知られている。
 但し、燃料電池の実用化のためには白金触媒を中心とした燃料電池触媒に対して更なる特性改善が要求される。ここで、燃料電池触媒の改良の方向性としては、初期活性の改善が挙げられる。触媒の初期活性は燃料電池電極の性能を決定付ける特性であり、その向上は最優先事項ともいえる。そして、初期活性と共に耐久性の向上も要求される。触媒は、燃料電池の稼動に伴う環境変化により活性低下が生じる、その低下率が大きい場合、如何に初期活性が高くても有用な触媒とは言いがたい。この活性低下は、完全に回避することは困難であるが、極力抑制することが必要である。
特開平6-52871号公報
 これまでの燃料電池触媒の開発においては、初期活性の改善と耐久性の改善とを別個の課題として捉えたものが主であった。それぞれの課題に関連する原理や課題解決のための理論が相違するからであり、それ自体は間違った対応ではない。しかし、活性と耐久性の双方を同時に改善することができるのであれば最良の対策といえる。そこで本発明は、固体高分子形燃料電池の触媒として初期活性と耐久性の双方において優れたもの、及び、その製造方法を提供することを目的とした。
 上記課題を解決する本発明は、白金又は白金合金からなる触媒粒子が炭素粉末担体上に担持されてなる固体高分子形燃料電池用触媒において、少なくとも前記触媒粒子上にスルホ基(-SOH)を有し、更に、少なくとも前記触媒粒子上にC-F結合を有するフッ素化合物が担持されていることを特徴とする固体高分子形燃料電池用触媒である。
 本発明に係る燃料電池触媒は、白金又は白金合金を触媒金属として炭素粉末担体(カーボン粉末担体)に担持してなる触媒(白金触媒、白金合金触媒)に対して、スルホ基(-SOH)の付与と、フッ素化合物のC-F結合を有する撥水層の形成を行ったものである。本発明者等によれば、本発明で付加されたこれら2つの機能的構成は、それぞれが独自の機構で触媒特性に影響を及ぼすが、それらは相乗的に触媒特性を向上させている。以下、各構成について説明する。
 燃料電池触媒に対してスルホ基を導入するのは、触媒にプロトン伝導性を付与し、触媒の活性(初期活性)を向上させるためである。これは、燃料電池の空気極における反応(O+4H+4e→2HO)を考慮すればわかるように、プロトン伝導性を向上させることが空気極での反応促進に寄与するためである。本発明は、触媒粒子にスルホ基を付加することで、プロトンを効率的に供給し初期活性を向上させる。
 ここで、触媒に含まれるスルホ基の量としては、硫黄(S)元素の含有量で規定することができる。本発明においては、硫黄含有量が触媒全体の質量を基準として800ppm以上5000ppm以下とすることが好ましい。800ppm未満では活性向上の効果が生じないし、5000ppmを超えると触媒の電子伝導性が低下し触媒性能が低下するからである。硫黄含有量は触媒の質量基準で1000ppm以上4500ppm以下とするのがより好ましく、1500ppm以上4500ppm以下とするのが更に好ましい。
 ところで、本発明者等の検討によれば、本発明のように既存の触媒に対して官能基(スルホ基)を導入する場合において、その配置状態を制御することで触媒活性が相違することがある。上記電極反応は、反応ガス(酸素)、電子伝導性物質(触媒粒子)、固体電解質の3相の近接する部分で進行するものであるから、特に有用に作用するのは触媒粒子近傍に配置されたスルホ基であると考えられる。
 このスルホ基の配置状態に関し、本発明者等が好適な条件を検討したところ、好適な触媒の構成として、少なくとも触媒粒子上にスルホ基を有し、EDX分析(エネルギー分散型X線分析)において、触媒粒子上における硫黄ピーク強度(I)と白金ピーク強度(IPt)との比(I/IPt)が、0.0044以上0.0090以下の範囲内にあるものを見出している。
 上記の好適条件は、EDX分析による硫黄ピーク強度を基準として、触媒粒子上に配置されたスルホ基の量を規定している。即ち、触媒に導入されたスルホ基のうち、触媒粒子上に配置された量を特定している。かかる本発明の触媒では、固体高分子形燃料電池に適用した際、固体電解質の添加量を削減しつつ、初期性能を向上させることができる。
 EDX分析の硫黄ピーク強度(I)を基準とするに際し、本発明では、白金ピークの強度(IPt)との比(I/IPt)を評価の基礎としている。これは、EDX分析で検出される硫黄ピーク強度の値に含まれる、個々の分析装置の感度に由来する分析誤差を排除するためである。これは、EDX分析において、同一試料の測定では、装置に由来する分析誤差が変化しないとの考えに基づく。
 ピークの強度比(I/IPt)は、0.0044以上0.0090以下では初期性能が特に良好なものとなる。以上のように、初期性能向上に着目すると、スルホ基の好適な導入量には上限がある。これは、過剰なスルホ基は、触媒粒子による電子伝導を阻害することがあるため、と考えられる。
 本発明では、EDX分析により特性X線を検出することで、そのエネルギー強度から元素分析を行った。具体的には、2.307keV付近のKα線のエネルギー強度より硫黄ピーク強度(I)を、2.0485keVのMα線のエネルギー強度より白金ピーク強度(Ipt)を測定した。尚、Kα線は、試料構成原子の電子軌道において、L軌道からK軌道に電子が遷移したときに発生した特性X線であり、Mα線はN軌道からM軌道に電子が遷移したときに発生した特性X線である。本発明者等が実際にEDX分析したところ、上記で測定した硫黄ピーク強度には、触媒金属であるPtスペクトルに由来する重畳分が含まれていたことから、硫黄ピーク強度は、2.307keV付近のエネルギー強度の測定値より、別途測定したPtの標準スペクトルの波形を差し引いて算出した。
 以上説明したスルホ基の導入に加え、本発明は、フッ素化合物による撥水層を形成することも必須の構成としている。この撥水層は、触媒の耐久性の確保を目的とし、経時的な活性の落ち込みを抑制するために適用されたものである。
 ここで耐久性向上の課題に関し、触媒活性が経時的に低下する要因としては、触媒粒子の粗大化を筆頭にいくつかの要因が考えられる。ここで本発明者等は、それらの中で触媒粒子を構成する金属(白金及び白金合金を構成する添加金属)の溶出による劣化に着目した。この劣化機構は、カソード側の燃料電池反応(O+4H+4e→2HO)において生成する水が介在する各金属の電気化学的溶解による消失である。上記したように、カソード側の触媒は、高温、酸性雰囲気、高電位負荷といった雰囲気に晒されており、ここに水が存在すると金属の溶解・溶出が加速される。
 そこで、触媒粒子の表面にC-F結合を有するフッ素化合物からなる撥水層を形成したのが本発明である。C-F結合という高い結合力を有するフッ素化合物は安定性が高く、撥水性等の特異な性質を有することが知られている。本発明では、触媒にこのフッ素化合物からなる撥水層を形成し、生成した水を速やかに触媒粒子表面から排出させ、水が介在する触媒金属の溶解を抑制することで活性低下を防ぐこととしている。
 ここで、撥水層を構成するフッ素化合物としては、撥水性高分子材料であるフッ素樹脂、フッ素系界面活性剤等がある。例えば、テフロン(登録商標)として知られる、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・エチレン共重合体(ETFE)、ポリビニリデンフルオライド(PVDF)、ポリクロロトリフルオロエチレン(PCTFE)や、ナフィオン(登録商標)として知られているパーフルオロスルホン酸系ポリマ、フッ化アクリレートとして知られているパーフルオロアクリル酸エステルが挙げられる。また、フッ素系界面活性剤としてパーフルオロブタンスルホン酸基(PFBS)系の界面活性剤も効果がある。
 そして、本発明において、撥水層を形成するフッ素化合物の担持量は、触媒全体の質量を基準として3質量%以上24質量%以下となるようにしたものが好ましい。3質量%未満では効果がなく、24質量%を超えると電極反応促進という触媒本来の機能が発揮できなくなるからである。より好ましくは、5質量%以上20質量%以下とする。
 尚、撥水層は全ての触媒粒子について全面に対して形成されている必要はなく、部分的なもので良い。また、触媒粒子のみに形成されていても良いが、担体に対してフッ素化合物が担持されていても触媒活性に影響は生じない。
 以上説明したスルホ基及びフッ素化合物が導入された本発明に係る触媒は、その他の構成においては限定されるものではない。ここで、上記で言及されなかった触媒の構成について述べると、まず、触媒粒子は白金又は白金合金からなる。本発明におけるスルホン化及び撥水層形成は、白金からなる触媒粒子及び白金合金とからなる触媒粒子に有効と考えられる。
 触媒粒子として白金に他の金属を合金化した白金合金を適用することは、白金使用量の低減の観点からも有用である。また、白金合金からなる触媒粒子には、初期活性等の特性が優れたものがある。例えば、白金とコバルトとの合金(PtCo合金)は燃料電池用の白金合金触媒として有用である。また、本発明者等は、この他に有用な燃料電池用の白金合金触媒として、白金とコバルトとマンガンとの合金触媒(PtCoMn触媒、好ましくは、Ptを基準とするモル比(Ptのモル数を1としたときのモル比)が、Co/Pt=0.06以上0.39以下、Mn/Pt=0.04以上0.33以下の構成のPtCoMn触媒)への適用が好ましい。また、白金とコバルトとマグネシウムとの合金触媒(PtCoMg触媒、好ましくは、Ptを基準とするモル比(Ptのモル数を1としたときのモル比)が、Co/Pt=0.4以上0.5以下、Mg/Pt=0.00070以上0.00095以下の構成のPtCoMg触媒)、更には、白金とマグネシウムとの合金触媒(PtMg触媒、好ましくは、Ptを基準とするモル比(Ptのモル数を1としたときのモル比)が、Mg/Pt=0.005以上0.06以下の構成のPtMg触媒)等の白金合金触媒にも有用である。
 白金又は白金合金からなる触媒粒子は、平均粒径2nm以上20nm以下のものが好ましい。2nm未満は長時間の活性持続特性が明確に得られなくなるからであり、20nmを超えると触媒の初期活性が十分に得られなくなるからである。また、担体である炭素粉末は、比表面積が250m/g以上1200m/g以下の炭素粉末を適用するのが好ましい。250m/g以上とすることで、触媒が付着する面積を増加させることができるので触媒粒子を高い状態で分散させ有効表面積を高くすることができる一方、1200m/gを超えると、電極を形成する際にイオン交換樹脂の浸入しにくい超微細孔(約20Å未満)の存在割合が高くなり触媒粒子の利用効率が低くなるからである。
 また、本発明に係る触媒は、固体高分子形燃料電池の電極としての性能を考慮し、触媒粒子の担持密度を30%以上70%以下とするのが好ましい。ここでの担持密度とは、担体に担持させる触媒粒子質量(担持させた白金及び合金元素の合計質量)の触媒全体の質量に対する比をいう。
 次に、本発明に係る固体高分子形燃料電池の触媒の製造方法について説明する。本発明に係る触媒の製造にあたっては、白金触媒又は白金合金触媒に対してスルホ基付与のための処理と、フッ化化合物による撥水層形成のための処理を行うこととなる。本発明に係る触媒は、白金触媒又は白金合金触媒を用意した後、以下の2つの処理を行うことで製造される。
 まず、触媒を濃硫酸と発煙硫酸とからなる混合溶液に接触させ、触媒にスルホ基を導入する。ここで、スルホン化に用いる薬液は、前記の通り、濃硫酸と発煙硫酸の両方を含むものとする。本発明者等によれば、かかる薬液を用いることで、触媒粒子の上にスルホ基を好適な状態で付与できる。濃硫酸とは、純度90wt%以上の硫酸のことであり、純度95%が好適であり、純度96%以上がさらに好適である。発煙硫酸はSO含有率15vol%以上30vol%以下が好ましい。濃硫酸と発煙硫酸との混合比は、体積比(濃硫酸の体積/発煙硫酸の体積)で0.7以上4.0以下とするのが好ましく、1.0以上2.0以下が更に好ましい。薬液の量は触媒1g当たりに対し10ml以上20ml以下が好ましい。
 このスルホン化処理のために混合溶液の温度は、30℃以上110℃以下とするのが好ましい。より好ましくは、40℃以上90℃以下とする。溶液の温度が高い程、スルホ基の導入量を増大させることはできるが、燃料電池に適用した場合における初期性能の高い触媒とするものであり、スルホ基導入量は単純に多ければ良いというものではない。このため、本発明の製造方法では、スルホン化の際の溶液温度について、その上限を有するものである。30℃未満では、スルホ基が充分に導入されにくく、110℃を超えると、スルホン化した触媒を燃料電池に適用した場合に、初期性能の高いものとなり難い。
 スルホン化のための処理時間は8時間以上24時間以下が好ましい。8時間未満では、スルホ基が充分に導入されにくく、24時間より長時間処理しても、スルホ基の導入量は殆ど増加せず、燃料電池に適用した場合における初期性能も向上しにくい。
 本発明に係る触媒の製造においては、次に、触媒粒子表面に撥水層を形成するための処理を行う。この処理は、触媒をフッ素化合物溶液に浸漬し、フッ素化合物溶液の溶媒を揮発又は蒸発して除去することでフッ素化合物を触媒に担持させるものである。ここで、フッ素化合物溶液は、上記したフッ素化合物を溶解することのできる溶媒(希釈液)にフッ素化合物を溶解させたものであり、溶媒はフッ素系溶剤でも、非フッ素系溶剤いずれでも良い。このとき、フッ素化合物溶液のフッ素含有量が、触媒に担持させるフッ素量と等しくなるように、溶媒及びフッ素化合物量を調整する。
 フッ素化合物担持のための浸漬処理について、その浸漬時間は1時間以上48時間以下として、攪拌しつつ行うのが好ましい。フッ素化合物溶液の温度は、30℃以上150℃以下とするが、溶媒の種類により選定する。そして、浸漬後は、触媒が分散するフッ素化合物溶液を乾燥機等で加温し、溶媒が全て消失するまで保持する。
 上記のスルホン化処理と撥水層形成処理を行う順序は、特に限定されない。従って、まず触媒をスルホン化し、その後撥水層形成を行っても良いし、撥水層形成後にスルホン化を行っても良い。
 尚、処理対象となる白金触媒又は白金合金触媒を用意する際、白金触媒の準備については、従来の白金触媒の製造方法により製造されたものを用意すれば良い。また、市販の白金触媒を利用しても良い。白金触媒は、通常、担体に白金塩溶液を接触(含浸、滴下)させた後、還元処理して白金粒子を形成して製造される。
 一方、白金合金触媒の製造については、基本的工程は一般的な合金触媒の製造方法に準じ、担体に触媒粒子を構成する金属(白金及び合金化する金属)を担持し、適宜に乾燥した後に熱処理を行い担持した金属の合金化を行う。触媒粒子を構成する金属の担持は同時でも良い。また、各金属を別々に担持しても良い。この場合、まず、白金のみが担持された白金触媒を製造又は用意し、これに合金化する添加金属(コバルト、マンガン、マグネシウム等)を担持し、各金属を合金化することで白金合金触媒を得ることができる。白金合金触媒製造の際の合金化処理は、各金属が担持された状態の触媒を700℃以上1100℃以下で熱処理するのが好ましい。この熱処理は非酸化性雰囲気で行うのが好ましく、特に還元雰囲気(水素ガス雰囲気等)で行うのが好ましい。
 以上説明したように本発明に係る固体高分子形燃料電池触媒は、初期活性と耐久性の双方において優れる。この効果は、所定のスルホン化処理及びフッ素化合物による撥水層形成処理により発揮されるものであり、これらの作用の相乗的効果により特に優れた特性を発揮している。
第1実施形態:以下、本発明の好適な実施形態を説明する。本実施形態では白金-コバルト触媒(PtCo触媒)にスルホン化処理及び撥水層形成処理を行った。使用した触媒は、市販のPtCo触媒(TEC36F52HT2、田中貴金属工業株式会社製)である。このPtCo触媒は、触媒粒子としてモル比でCo/Pt=0.455(1/2.2)の白金合金(PtCo合金)が担持されたものであり、触媒粒子の平均粒径は4.2nmである。担体は、比表面積800m/gの炭素粉末である。このPtCo触媒に対して以下のスルホン化処理、撥水層形成処理を行った。
[触媒のスルホン化]
 純度96wt%の濃硫酸30mlと、SO含有率25vol%の発煙硫酸20mlに、触媒10gを浸漬し、液温40℃で8時間攪拌して、スルホン化させた。スルホン化処理後、ろ過して70℃のイオン交換水3L中に浸漬して30分間攪拌して、再度ろ過する洗浄を行い、未反応の硫酸及び発煙硫酸を除去した。この洗浄工程は、洗浄水が中性となるまで2回行った。洗浄後は、60℃の空気中で一晩乾燥させた後、乳鉢で粉砕してスルホン化触媒を得た。
[触媒の撥水層形成]
 フッ素化合物溶液として市販のフッ素樹脂材料(商品名:EGC-1700、住友スリーエム(株)製、フッ素樹脂含有量1%以上3%以下))40mLを、溶剤であるハイドロフルオロエーテル(商品名:HFE-7100:住友スリーエム(株)製)40mLに溶解させたものを用意した。このフッ素化合物溶液に、触媒10gを浸漬して60℃で5時間攪拌した後、乾燥器にて60℃で保持し、溶剤が完全になくなるまで蒸発させた。この処理により、触媒に撥水層形成処理を行った。
 本実施形態では、上記のスルホン化処理、撥水層形成処理の双方を行ったPtCo触媒(実施例1)、スルホン化のみを行ったPtCo触媒(比較例1)、いずれも行わないPtCo触媒(従来例)を製造した。それらについて硫黄分析及びフッ素分析を行った。そして、各触媒の初期活性及び耐久性を評価した。
[硫黄分析]
 触媒中の硫黄量(ppm)を、自動ハロゲン・硫黄分析システム(SQ-10電気炉及びHSU―35型吸収ユニット、ヤナコ機器開発研究所製)、及び、イオンクロマトグラフィー(東亜ディーケーケー製)により測定した。触媒0.05gを電気炉にて、流速2.2l/minでAirを流通しながら、常圧で450℃から750℃まで昇温させて5分間保持した後、900℃まで昇温させて5分間保持した。燃焼過程で発生した硫黄成分(二酸化硫黄SO)を含む燃焼分解ガスを、過酸化水素水で溶解捕集し、イオンクロマトグラフィーで硫酸イオン(SO 2-)を分離・定量して硫黄濃度(ppm)を算出した。
[フッ素分析]
 触媒についてICP分析を行って元素分析を行い、各金属、カーボン担体の質量比を考慮しつつ測定値を基にフッ素濃度を算出した。
[初期活性評価試験]
 上記実施例及び比較例の触媒について、燃料電池の初期性能試験を行った。この性能試験は、Mass Activityを測定することにより行った。実験には単セルを用い、プロトン伝導性高分子電解質膜を電極面積5cm×5cm=25cmのカソード及びアノード電極で挟み合わせた膜/電極接合体(Membrane Electrode Assembly:MEA)を作製し評価した。前処理として、水素流量1000mL/min、セル温度80℃、アノード加湿温度90℃、カソード加湿温度30℃にて電流/電圧曲線を作成した。その後、本測定として、Mass Activityを測定した。試験方法は、0.9Vでの電流値(A)を測定し、電極上に塗布したPt重量からPt 1gあたりの電流値(A/g-Pt)を求めてMass Activityを算出した。
[耐久性評価試験]
 耐久試験は、触媒からカソード電極(空気極)を製造して燃料電池を構成し、カソードのセル電位を三角波で掃引する加速劣化試験を行い、劣化後の発電特性を測定した。加速劣化は、650-1050mVの間を掃引速度40mV/sで20時間掃引して触媒粒子表面をクリーニングし、その後、650-1050mVの間を掃引速度100mV/sで20時間、40時間、68時間掃引させて劣化させた。各条件で劣化後の触媒についてMass Activityを測定した。
 実施例1、比較例1、従来例の触媒についての分析結果、評価試験結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から、白金合金触媒に対してスルホン化及び撥水層形成を施した実施例1の触媒は初期活性と耐久性の双方に優れることが確認できる。そして、比較例1のようなスルホン化のみを行った触媒と比較すると、比較例1の触媒でも従来例に対して初期活性の向上は見られたものの、耐久性に関して検討すると、20時間程度の時間経過でも活性低下が生じ、68時間後には初期の半分以下の活性となっていた。スルホン化は、初期活性の向上に有効であるが、耐久性に対してはほとんど寄与することができず、撥水層形成を同時に行うことで相乗的な触媒特性の改善が生じることが確認された。
第2実施形態:ここでは、スルホン化の条件を変更したPtCo触媒をフッ素化合物で処理して複数の触媒を製造して、硫黄分析及び初期活性を評価した。スルホン化の条件変更は、濃硫酸と発煙硫酸とからなる混合溶液についての混合比及び溶液の温度を変更したものを適用した。
[TEM-EDX分析]
 また、本実施形態では触媒のTEM-EDX分析も行った。各触媒を、加速電圧80kV、STEMビーム径0.2nm未満、分析領域約2nmΦの円形領域で、TEM(透過型電子顕微鏡、日本電子社製Cs-corrected STEM装置、型番JEM-ARM200F)観察し、触媒粒子(Pt-Co)上の任意7点につき、日本電子社製SDD検出器、及びサーモフィッシャーサイエンティフィック製Noran System7システムアナライザーのEDX(エネルギー分散型X線分析)装置により、ピーク強度を、積算時間60秒間測定した。
 測定したEDXデータのうち、硫黄ピーク強度(2.307keV付近)については、測定値に含まれるPt由来の重畳分を除くべく、以下(1)(2)の解析を行った。
 (1)スルホン化していない触媒の触媒粒子上7点をEDX分析し、得られたスペクトルをPt標準スペクトルとした。尚、Pt標準スペクトルの測定には、触媒粒子の平均粒径がスルホン化した触媒と同程度のものを用いた。
 (2)スルホン化した触媒の触媒粒子上7点をEDX分析し、得られた各スペクトルと、(1)のPt標準スペクトルとの波形の差分を各測定点ごとに算出し、硫黄ピーク強度(S-Kα強度)とした。
 上記で算出した硫黄ピーク強度(S-Kα強度)と、EDXで実測した白金ピーク強度(2.0485keV付近)について、測定点7点分値の平均値を算出した(I、IPt)。また、ピーク強度比(I/IPt)は、各測定点についてピーク強度比を算出した後、7点分の平均値として算出した。
 各実施例に係る触媒の分析結果及び初期活性評価の結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2から、スルホン化処理による初期活性向上効果の再確認ができる。これはEDX分析の結果からも確認でき、ピーク強度比(I/IPt)が0.0044以上0.0090以下の範囲内にある実施例1、2は好適な活性を示す。
 第3実施形態:撥水剤として、フッ素樹脂材料(EGC-1700)と、溶剤であるハイドロフルオロエーテル(HFE-7100)の添加量を、種々変更した触媒を製造し、初期活性及び耐久性評価試験を行った。撥水剤の配合割合を下記表のとおりにした以外は、実施例1と同様の方法で触媒を製造した。また、各種性能評価も、第1実施形態と同様の内容で行った。
Figure JPOXMLDOC01-appb-T000003
 本発明に係る固体高分子形燃料電池触媒は、初期活性と耐久性の双方についてバランス良く優れたものである。固体高分子形燃料電池は、自動車用電源や家庭用電源等について次世代の発電システムとして期待されるものであり、最近では燃料電池搭載車の市販開始も話題となっている。本発明は、この燃料電池の実用化の流れに資する発明である。

Claims (9)

  1.  白金又は白金合金からなる触媒粒子が炭素粉末担体上に担持されてなる固体高分子形燃料電池用触媒において、
     少なくとも前記触媒粒子上にスルホ基(-SOH)を有し、
     更に、少なくとも前記触媒粒子上にC-F結合を有するフッ素化合物が担持されていることを特徴とする固体高分子形燃料電池用触媒。
  2.  硫黄(S)含有量が、触媒全体の質量基準で、800ppm以上5000ppm以下である請求項1に記載の固体高分子形燃料電池用触媒。
  3.  フッ素化合物量が、触媒全体の質量を基準として、3質量%以上24質量%以下である請求項1又は請求項2記載の固体高分子形燃料電池用触媒。
  4.  フッ素化合物は、フッ素樹脂、又は、フッ素系界面活性剤である請求項1~請求項3のいずれかに記載の固体高分子形燃料電池用触媒。
  5.  EDX分析において、触媒粒子上における硫黄ピーク強度(I)と白金ピーク強度(IPt)との比(I/IPt)が、0.0044以上0.0090以下の範囲内である請求項1~請求項4のいずれかに記載の固体高分子形燃料電池用触媒。
  6.  触媒粒子は、白金、白金-コバルト合金、白金-コバルト-マンガン合金、白金-コバルト-マグネシウム合金のいずれかよりなる請求項1~請求項5のいずれかに記載の固体高分子形燃料電池用触媒。
  7.  触媒粒子の担持密度は、30%以上70%以下である請求項1~請求項6のいずれかに記載の固体高分子形燃料電池用触媒。
  8.  請求項1~請求項7のいずれか1項に記載の固体高分子形燃料電池用触媒の製造方法であって、
    (a)炭素粉末担体上に白金粒子又は白金合金粒子が担持されてなる触媒を用意する工程と、
    (b)前記触媒と、濃硫酸と発煙硫酸とからなる混合溶液とを接触させて触媒にスルホ基を担持させる工程と、
    (c)前記触媒と、フッ素化合物を含む溶液とを接触させて触媒にフッ素化合物からなる撥水層を形成する工程と、
     を含む固体高分子形燃料電池用触媒の製造方法。
  9.  (b)工程の混合溶液の温度は30℃以上110℃以下である請求項8記載の固体高分子形燃料電池用触媒の製造方法。
PCT/JP2015/070678 2014-08-05 2015-07-21 固体高分子形燃料電池用の触媒及びその製造方法 WO2016021399A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/323,286 US10892496B2 (en) 2014-08-05 2015-07-21 Catalyst for solid polymer fuel cell and production method for the same
JP2016540141A JP6300934B2 (ja) 2014-08-05 2015-07-21 固体高分子形燃料電池用の触媒及びその製造方法
KR1020177001414A KR101927007B1 (ko) 2014-08-05 2015-07-21 고체 고분자형 연료 전지용 촉매 및 그 제조 방법
CN201580042093.7A CN106575773B (zh) 2014-08-05 2015-07-21 固体高分子型燃料电池用催化剂及其制造方法
EP15829740.8A EP3179545B1 (en) 2014-08-05 2015-07-21 Catalyst for proton exchange membrane fuel cell and production method for catalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-159156 2014-08-05
JP2014159156 2014-08-05

Publications (1)

Publication Number Publication Date
WO2016021399A1 true WO2016021399A1 (ja) 2016-02-11

Family

ID=55263671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070678 WO2016021399A1 (ja) 2014-08-05 2015-07-21 固体高分子形燃料電池用の触媒及びその製造方法

Country Status (6)

Country Link
US (1) US10892496B2 (ja)
EP (1) EP3179545B1 (ja)
JP (1) JP6300934B2 (ja)
KR (1) KR101927007B1 (ja)
CN (1) CN106575773B (ja)
WO (1) WO2016021399A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018198182A (ja) * 2017-05-25 2018-12-13 パナソニックIpマネジメント株式会社 燃料電池用電極触媒層およびその製造方法
WO2019208310A1 (ja) * 2018-04-25 2019-10-31 ステラケミファ株式会社 燃料電池用触媒、燃料電池用膜電極接合体及びそれを備えた燃料電池
WO2020040040A1 (ja) * 2018-08-22 2020-02-27 田中貴金属工業株式会社 固体高分子形燃料電池用触媒及び固体高分子形燃料電池用触媒の選定方法
WO2020075777A1 (ja) * 2018-10-09 2020-04-16 凸版印刷株式会社 燃料電池用膜電極接合体及び固体高分子形燃料電池
JP2020061247A (ja) * 2018-10-09 2020-04-16 凸版印刷株式会社 燃料電池用膜電極接合体及び固体高分子形燃料電池
JP2020061248A (ja) * 2018-10-09 2020-04-16 凸版印刷株式会社 燃料電池用膜電極接合体及び固体高分子形燃料電池
JP2020061249A (ja) * 2018-10-09 2020-04-16 凸版印刷株式会社 燃料電池用膜電極接合体及び固体高分子形燃料電池

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015019953A1 (ja) * 2013-08-08 2015-02-12 田中貴金属工業株式会社 固体高分子形燃料電池用の触媒及びその製造方法
TWI696493B (zh) * 2017-09-27 2020-06-21 日商田中貴金屬工業股份有限公司 固態高分子型燃料電池用觸媒及其製造方法
CN109817998A (zh) * 2018-12-24 2019-05-28 岭南师范学院 一种S掺杂碳材料负载Pt复合催化剂及其制备方法和应用
EP3903936A1 (en) * 2018-12-26 2021-11-03 Kolon Industries, Inc. Catalyst, method for producing same, electrode comprising same, membrane-electrode assembly comprising same, and fuel cell comprising same
CN117790827B (zh) * 2024-02-26 2024-05-03 上海唐锋能源科技有限公司 一种具有表面CFx键的碳载体负载合金催化剂的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6286668A (ja) * 1985-10-11 1987-04-21 Hitachi Ltd メタノ−ル改質型燃料電池
WO2002017428A1 (en) * 2000-08-22 2002-02-28 Hitachi Maxell, Ltd. Air-hydrogen cell
JP2007209979A (ja) * 2006-02-07 2007-08-23 Samsung Sdi Co Ltd 金属触媒とその製造方法、電極とその製造方法、及び燃料電池
JP2011228268A (ja) * 2010-03-31 2011-11-10 Equos Research Co Ltd 触媒の製造方法及びその装置、並びに触媒を用いた燃料電池用反応層の特性制御方法
WO2014126077A1 (ja) * 2013-02-15 2014-08-21 田中貴金属工業株式会社 固体高分子形燃料電池用の触媒及びその製造方法
WO2015019953A1 (ja) * 2013-08-08 2015-02-12 田中貴金属工業株式会社 固体高分子形燃料電池用の触媒及びその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2842150B2 (ja) 1992-06-02 1998-12-24 株式会社日立製作所 固体高分子型燃料電池
JP2001093531A (ja) * 1999-09-28 2001-04-06 Asahi Glass Co Ltd 固体高分子型燃料電池及びそのための電極触媒の製造方法
EP1263073A1 (en) * 2001-05-31 2002-12-04 Asahi Glass Co., Ltd. Membrane-electrode assembly for solid polymer electrolyte fuel cells and process for its production
JP4218255B2 (ja) * 2001-05-31 2009-02-04 旭硝子株式会社 固体高分子型燃料電池用膜・電極接合体の製造方法
JP2004241362A (ja) * 2002-12-09 2004-08-26 Toyota Motor Corp 膜電極接合体およびその製造方法
JP4684678B2 (ja) * 2005-02-18 2011-05-18 本田技研工業株式会社 固体高分子型燃料電池用膜−電極構造体及び固体高分子型燃料電池
US8349520B2 (en) * 2008-08-01 2013-01-08 Toppan Printing Co., Ltd. Fuel cell and catalyst layer thereof, and membrane electrode assembly using the same
CN101773853B (zh) * 2009-01-14 2012-02-29 中国科学院大连化学物理研究所 一种非担载型催化剂浆料及其制备和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6286668A (ja) * 1985-10-11 1987-04-21 Hitachi Ltd メタノ−ル改質型燃料電池
WO2002017428A1 (en) * 2000-08-22 2002-02-28 Hitachi Maxell, Ltd. Air-hydrogen cell
JP2007209979A (ja) * 2006-02-07 2007-08-23 Samsung Sdi Co Ltd 金属触媒とその製造方法、電極とその製造方法、及び燃料電池
JP2011228268A (ja) * 2010-03-31 2011-11-10 Equos Research Co Ltd 触媒の製造方法及びその装置、並びに触媒を用いた燃料電池用反応層の特性制御方法
WO2014126077A1 (ja) * 2013-02-15 2014-08-21 田中貴金属工業株式会社 固体高分子形燃料電池用の触媒及びその製造方法
WO2015019953A1 (ja) * 2013-08-08 2015-02-12 田中貴金属工業株式会社 固体高分子形燃料電池用の触媒及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3179545A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018198182A (ja) * 2017-05-25 2018-12-13 パナソニックIpマネジメント株式会社 燃料電池用電極触媒層およびその製造方法
WO2019208310A1 (ja) * 2018-04-25 2019-10-31 ステラケミファ株式会社 燃料電池用触媒、燃料電池用膜電極接合体及びそれを備えた燃料電池
US11469424B2 (en) 2018-04-25 2022-10-11 Stella Chemifa Corporation Fuel cell catalyst, membrane electrode assembly for fuel cell, and fuel cell including the same
JPWO2020040040A1 (ja) * 2018-08-22 2021-08-26 田中貴金属工業株式会社 固体高分子形燃料電池用触媒及び固体高分子形燃料電池用触媒の選定方法
WO2020040040A1 (ja) * 2018-08-22 2020-02-27 田中貴金属工業株式会社 固体高分子形燃料電池用触媒及び固体高分子形燃料電池用触媒の選定方法
US12015161B2 (en) 2018-08-22 2024-06-18 Tanaka Kikinzoku Kogyo K.K. Catalyst for solid polymer fuel cell and method for selecting catalyst for solid polymer fuel cell
JP7349436B2 (ja) 2018-08-22 2023-09-22 田中貴金属工業株式会社 固体高分子形燃料電池用触媒の選定方法
JP2020061249A (ja) * 2018-10-09 2020-04-16 凸版印刷株式会社 燃料電池用膜電極接合体及び固体高分子形燃料電池
JP7131275B2 (ja) 2018-10-09 2022-09-06 凸版印刷株式会社 燃料電池用膜電極接合体及び固体高分子形燃料電池
JP7131276B2 (ja) 2018-10-09 2022-09-06 凸版印刷株式会社 燃料電池用膜電極接合体及び固体高分子形燃料電池
JP7131274B2 (ja) 2018-10-09 2022-09-06 凸版印刷株式会社 燃料電池用膜電極接合体及び固体高分子形燃料電池
JP2020061248A (ja) * 2018-10-09 2020-04-16 凸版印刷株式会社 燃料電池用膜電極接合体及び固体高分子形燃料電池
JP2020061247A (ja) * 2018-10-09 2020-04-16 凸版印刷株式会社 燃料電池用膜電極接合体及び固体高分子形燃料電池
WO2020075777A1 (ja) * 2018-10-09 2020-04-16 凸版印刷株式会社 燃料電池用膜電極接合体及び固体高分子形燃料電池

Also Published As

Publication number Publication date
KR20170021840A (ko) 2017-02-28
US20170149069A1 (en) 2017-05-25
KR101927007B1 (ko) 2018-12-07
US10892496B2 (en) 2021-01-12
EP3179545A1 (en) 2017-06-14
CN106575773A (zh) 2017-04-19
EP3179545B1 (en) 2019-02-06
JPWO2016021399A1 (ja) 2017-05-18
CN106575773B (zh) 2019-05-17
JP6300934B2 (ja) 2018-03-28
EP3179545A4 (en) 2018-01-03

Similar Documents

Publication Publication Date Title
JP6300934B2 (ja) 固体高分子形燃料電池用の触媒及びその製造方法
JP6053223B2 (ja) 固体高分子形燃料電池用の触媒及びその製造方法
JP6889735B2 (ja) 燃料電池用膜−電極アセンブリ
JP6313764B2 (ja) 固体高分子形燃料電池用の触媒及びその製造方法
US11276866B2 (en) Catalyst for solid polymer fuel cells and method for producing the same
Gharibi et al. Palladium/Cobalt Coated on Multi‐Walled Carbon Nanotubes as an Electro‐catalyst for Oxygen Reduction Reaction in Passive Direct Methanol Fuel Cells
JP6478677B2 (ja) 燃料電池用電極
KR102600857B1 (ko) 고체 고분자형 연료 전지용 촉매 및 고체 고분자형 연료 전지용 촉매의 선정 방법
JP2006179427A (ja) 燃料電池用電極触媒及び燃料電池
JP2006147345A (ja) 電極触媒層およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15829740

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016540141

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15323286

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177001414

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015829740

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015829740

Country of ref document: EP