WO2014125973A1 - Resin multi-layer substrate with built-in component, and resin multi-layer substrate - Google Patents

Resin multi-layer substrate with built-in component, and resin multi-layer substrate Download PDF

Info

Publication number
WO2014125973A1
WO2014125973A1 PCT/JP2014/052664 JP2014052664W WO2014125973A1 WO 2014125973 A1 WO2014125973 A1 WO 2014125973A1 JP 2014052664 W JP2014052664 W JP 2014052664W WO 2014125973 A1 WO2014125973 A1 WO 2014125973A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
resin
resin multilayer
multilayer substrate
main surface
Prior art date
Application number
PCT/JP2014/052664
Other languages
French (fr)
Japanese (ja)
Inventor
喜人 大坪
酒井 範夫
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2015500201A priority Critical patent/JP6139653B2/en
Publication of WO2014125973A1 publication Critical patent/WO2014125973A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4688Composite multilayer circuits, i.e. comprising insulating layers having different properties
    • H05K3/4694Partitioned multilayer circuits having adjacent regions with different properties, e.g. by adding or inserting locally circuit layers having a higher circuit density
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • H05K1/141One or more single auxiliary printed circuits mounted on a main printed circuit, e.g. modules, adapters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/403Edge contacts; Windows or holes in the substrate having plural connections on the walls thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15312Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a pin array, e.g. PGA
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • H05K1/183Components mounted in and supported by recessed areas of the printed circuit board
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0364Conductor shape
    • H05K2201/0382Continuously deformed conductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/13Moulding and encapsulation; Deposition techniques; Protective layers
    • H05K2203/1305Moulding and encapsulation
    • H05K2203/1316Moulded encapsulation of mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/13Moulding and encapsulation; Deposition techniques; Protective layers
    • H05K2203/1305Moulding and encapsulation
    • H05K2203/1327Moulding over PCB locally or completely
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/325Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by abutting or pinching, i.e. without alloying process; mechanical auxiliary parts therefor
    • H05K3/326Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by abutting or pinching, i.e. without alloying process; mechanical auxiliary parts therefor the printed circuit having integral resilient or deformable parts, e.g. tabs or parts of flexible circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4092Integral conductive tabs, i.e. conductive parts partly detached from the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4697Manufacturing multilayer circuits having cavities, e.g. for mounting components

Definitions

  • the present invention relates to a component built-in resin multilayer substrate and a resin multilayer substrate.
  • Patent Document 1 Japanese Patent Laid-Open No. 9-18112
  • connection electrode When an electronic component is mounted on the connection electrode on the main surface of the flexible substrate, stress is directly applied to the electronic component against bending or twisting of the flexible substrate. As a result, there arises a problem that the connection reliability between the electronic component and the flexible substrate is lowered.
  • an object of the present invention is to provide a component-embedded resin multilayer substrate that can improve the connection reliability between a composite substrate mounted on a flexible resin multilayer substrate and the resin multilayer substrate, and a resin multilayer substrate.
  • the component built-in resin multilayer substrate according to the present invention includes a resin multilayer substrate and a composite substrate.
  • the resin multilayer substrate is formed by laminating a plurality of resin layers.
  • the resin multilayer substrate has a main surface.
  • Wiring is formed inside the resin multilayer substrate, and a cavity is formed on the main surface.
  • the composite substrate is disposed in the cavity.
  • the composite substrate includes a component, a core substrate on which the component is mounted, a sealing resin that seals the component, and a connection terminal that electrically connects the wiring and the core substrate.
  • the cavity has an inner surface.
  • the wiring includes side electrodes exposed on the inner side surface.
  • the composite substrate has an outer surface.
  • the connection terminal is exposed on the outer surface and is electrically connected to the side electrode.
  • connection reliability between the composite substrate and the resin multilayer substrate is achieved. Can be improved.
  • FIG. 14 is a cross-sectional view taken along line XIV-XIV shown in FIG. It is explanatory drawing of the 4th process of the manufacturing method of the composite substrate in Embodiment 1 based on this invention. It is sectional drawing of the component built-in resin multilayer substrate in Embodiment 2 based on this invention. It is sectional drawing of the state before mounting the composite substrate in the resin multilayer substrate in Embodiment 2 based on this invention.
  • the component built-in resin multilayer substrate 101 includes a resin multilayer substrate 2 and a composite substrate 3.
  • the resin multilayer substrate 2 has a main surface 4.
  • the component built-in resin multilayer substrate 101 is formed by mounting the composite substrate 3 on the main surface 4 of the resin multilayer substrate 2.
  • the resin multilayer substrate 2 is formed by laminating and integrating a plurality of resin layers 21.
  • the direction in which the plurality of resin layers 21 are stacked, that is, the vertical direction in the cross-sectional view shown in FIG. 1 is referred to as the thickness direction of the resin multilayer substrate 2.
  • conductive wiring 8 is formed inside the resin multilayer substrate 2.
  • the wiring 8 includes a plurality of via conductors 6 and a plurality of conductor patterns 7.
  • the via conductor 6 extends in the thickness direction of the resin layer 21 and is formed so as to penetrate the resin layer 21 in the thickness direction.
  • the conductor pattern 7 extends in a plane direction orthogonal to the thickness direction of the resin layer 21 and is disposed on the main surface of the resin layer 21. Via conductors 6 formed so as to penetrate the resin layer 21 in the thickness direction electrically connect the conductor patterns 7 formed in the different resin layers 21, thereby forming the wiring 8.
  • cavities 22 for mounting the composite substrate 3 are formed on the main surfaces 4 on both sides of the resin multilayer substrate 2.
  • the cavity 22 is formed in a shape in which a part of the main surface 4 of the resin multilayer substrate 2 is recessed.
  • the cavity 22 is open to the main surface 4, has a bottom surface 25 and an inner surface 26, and defines a hollow space therein.
  • the inner side surface 26 is a surface that extends along the thickness direction of the resin multilayer substrate 2 and forms the inner wall of the cavity 22.
  • a part of the via conductor 6 constituting the wiring 8 is exposed on the inner side surface 26 of the cavity 22.
  • the wiring 8 includes a side electrode 29 exposed on the inner side surface 26.
  • the side electrode 29 is formed by the via conductor 6.
  • the composite substrate 3 includes a core substrate 31.
  • the core substrate 31 has a facing surface 37 facing the resin multilayer substrate 2 and a back surface 38 opposite to the facing surface 37.
  • the core substrate 31 has a flat outer shape, and one of a pair of main surfaces is formed as a facing surface 37 and the other is formed as a back surface 38.
  • a surface conductor (not shown) is provided on the facing surface 37 and the back surface 38 of the core substrate 31, and an internal conductor (not shown) is provided inside the core substrate 31.
  • a plurality of components 32 are mounted on the facing surface 37 side of the core substrate 31.
  • the second component 34 is mounted on the back surface 38 side of the core substrate 31.
  • the composite substrate 3 includes a plurality of components 32 mounted on the facing surface 37 of the core substrate 31 and a second component 34 mounted on the back surface 38 of the core substrate 31.
  • Each of the plurality of components 32 is electrically connected to a surface conductor provided on the facing surface 37.
  • the second component 34 is bonded to the back surface 38 of the core substrate 31 by a bonding member 35 such as a solder ball, and is electrically connected to the surface conductor provided on the back surface 38.
  • a sealing resin 33 for sealing the component 32 is provided on the facing surface 37 side of the core substrate 31.
  • a sealing resin 36 that seals the second component 34 is provided on the back surface 38 side of the core substrate 31.
  • the part 32 and the second part 34 are protected from the external environment such as stress or moisture by being covered with the sealing resins 33 and 36, respectively.
  • the composite substrate 3 is a double-sided mounting type substrate in which components are mounted on both main surfaces of the core substrate 31, and a double-sided sealing type substrate in which both main surfaces of the core substrate 31 are sealed with resin. It is.
  • the composite substrate 3 is mounted on the main surface 4 of the resin multilayer substrate 2 by being fitted into the cavity 22. In a state where the composite substrate 3 is mounted on the main surface 4 of the resin multilayer substrate 2, the composite substrate 3 is disposed in the cavity 22, and the opposing surface 37 of the core substrate 31 and a plurality of components mounted on the opposing surface 37.
  • the component 32 is built in the resin multilayer substrate 2.
  • the back surface 38 of the core substrate 31 and the second component 34 mounted on the back surface 38 are disposed outside the resin multilayer substrate 2.
  • the component built-in resin multilayer substrate 101 also includes a connection terminal 9.
  • the connection terminal 9 is made of a conductive material, and is fixed to the facing surface 37 of the core substrate 31.
  • the connection terminal 9 extends in the thickness direction of the core substrate 31.
  • the connection terminal 9 has a pin shape, and a plurality of connection terminals 9 are arranged along the outer periphery of the core substrate 31.
  • a plurality of components 32 and a plurality of pin-shaped connection terminals 9 are arranged on the facing surface 37 side of the core substrate 31.
  • a component 32 is mounted on the facing surface 37 on which the pin-shaped connection terminals 9 are formed.
  • the composite substrate 3 has an outer surface 39.
  • the outer side surface 39 is a surface of the composite substrate 3 that extends in a direction intersecting the facing surface 37 and the back surface 38 of the core substrate 31, typically in a direction orthogonal thereto.
  • the outer side surface 39 extends along the thickness direction of the resin multilayer substrate 2.
  • a part of the outer peripheral surface of the connection terminal 9 is exposed on the outer surface 39.
  • the connection terminal 9 has an exposed surface that is not covered with the sealing resin 33 at a part of its front end surface and outer peripheral surface.
  • connection terminal 9 is fixed to the core substrate 31 and is electrically connected to the surface conductor formed on the facing surface 37.
  • the tip end surface at the other end of the connection terminal 9 is in contact with the conductor pattern 7 constituting a part of the wiring 8.
  • the connection terminal 9 has a length that can reliably reach the tip of the wiring terminal 8 formed inside the resin multilayer substrate 2 in the thickness direction of the core substrate 31.
  • connection terminal 9 electrically connects the wiring 8 that is an electrode on the resin multilayer substrate 2 side and the core substrate 31 that is an electrode on the composite substrate 3 side.
  • the main surface 4 of the resin multilayer substrate 2 is formed with a hollow cavity 22 in which the main surface 4 is depressed, and the composite substrate 3 is mounted on the resin multilayer substrate 2.
  • the part 32 is accommodated in the cavity 22.
  • the entire composite substrate 3 is not mounted so as to protrude from the main surface 4 of the resin multilayer substrate 2, and a part of the composite substrate 3 including the component 32 is built in the resin multilayer substrate 2.
  • the thickness of the composite substrate 3 protruding from the main surface 4 of the resin multilayer substrate 2 can be reduced, so that the dimension in the thickness direction of the component-embedded resin multilayer substrate 101 can be reduced and the height can be reduced. Can be achieved.
  • Part of the composite substrate 3 is embedded in the cavity 22.
  • the composite substrate 3 is surrounded by the resin multilayer substrate 2 in the entire circumferential direction.
  • the component 32 is covered with the sealing resin 33 and the resin multilayer substrate 2 and protected from the external environment. Since the resin multilayer substrate 2 has flexibility and elasticity, the adhesion between the resin multilayer substrate 2 and the composite substrate 3 is improved, and the holding power of the composite substrate 3 is enhanced. In addition, since the impact applied to the component 32 when the component-embedded resin multilayer substrate 101 is dropped is reduced, the impact resistance of the component-embedded resin multilayer substrate 101 can be improved.
  • the component 32 is an electronic component such as a multilayer ceramic capacitor, an integrated circuit, or a semiconductor element, and generates heat when a current flows.
  • the component 32 according to the present embodiment is mounted on the core substrate 31, and one of the outer peripheral surfaces of the component 32 faces the core substrate 31.
  • the heat generated in the component 32 is transmitted from the component 32 to the core substrate 31 and is transmitted to the outside via the core substrate 31.
  • heat dissipation from the component 32 is performed efficiently. Since the heat dissipation of the component 32 can be improved, the occurrence of problems due to overheating of the component 32 can be suppressed.
  • pin-shaped connection terminals 9 are provided on the composite substrate 3, and the connection terminals 9 are exposed on the outer surface 39 of the composite substrate 3.
  • a cavity 22 is formed on the main surface 4 of the resin multilayer substrate 2, and the wiring 8 is exposed on the inner side surface 26 of the cavity 22 to form side electrodes 29.
  • the composite substrate 3 is mounted on the resin multilayer substrate 2 by embedding a part of the composite substrate 3 in the cavity 22 formed on the main surface 4 of the resin multilayer substrate 2.
  • the connection terminal 9 is electrically connected to the side electrode 29.
  • the electrical resistance can be reduced as compared with a configuration in which only the via conductor 6 is used for electrical connection between the wiring 8 and the core substrate 31.
  • the metal pins By extending the metal pins in the thickness direction of the resin multilayer substrate 2, the bending stress acting on the core substrate 31 when the bending stress acts on the resin multilayer substrate 2 can be reduced. Therefore, the composite substrate 3 and the resin multilayer substrate 2 can be reduced. Connection reliability can be improved.
  • the outer peripheral surface of the connection terminal 9 exposed on the outer surface 39 of the composite substrate 3 is exposed on the inner surface 26 of the cavity 22.
  • the core substrate 31 of the composite substrate 3 and the wiring 8 are electrically connected by contacting the side electrode 29 that is present.
  • the composite substrate 3 having the solder applied to the side electrode 29 is inserted into the cavity 22, the side electrode 29 is brought into contact with the wiring 8, the solder is melted in this state, and then cooled, so that the side electrode 29 The metal is joined to 8 via solder. If the side electrode 29 and the wiring 8 are fixed in this way, the composite substrate 3 can be prevented from coming out of the cavity 22.
  • the composite substrate 3 can be attached to and detached from the resin multilayer substrate 2 by electrically connecting the side electrode 29 and the wiring 8 by physical contact.
  • the side electrode 29 extending in the thickness direction of the resin multilayer substrate 2 is less susceptible to the stress caused by bending or twisting of the resin multilayer substrate 2. Therefore, the bonding strength between the composite substrate 3 and the resin multilayer substrate 2 can be improved by bonding using the side surface in addition to the front end surface of the connection terminal 9. Connection reliability can be improved.
  • the electrodes that electrically connect the composite substrate 3 and the resin multilayer substrate 2 are not exposed to the outside. As a result, since the electrode can be prevented from being directly subjected to electrostatic discharge, the electrostatic resistance of the component-embedded resin multilayer substrate 101 can be improved.
  • the side electrode 29 is formed by the via conductor 6 extending in the thickness direction of the resin layer 21 constituting the resin multilayer substrate 2.
  • the side electrode 29 can be easily formed without the need for complicated work steps in forming the side electrode 29.
  • the composite substrate 3 includes a component 32 mounted on the facing surface 37 side of the core substrate 31 and a second component 34 mounted on the back surface 38 side of the core substrate 31.
  • the composite substrate 3 having components mounted on both sides of the core substrate 31 is mounted on the resin multilayer substrate 2, so that the mounting density of components on the resin multilayer substrate 2 can be further increased.
  • the method for manufacturing the component-embedded resin multilayer substrate 101 in the present embodiment includes a step of preparing a perforated resin sheet in which a plurality of through holes penetrating in the thickness direction are formed, a resin sheet, and another resin sheet are laminated.
  • the composite substrate 3 including the step of forming the resin multilayer substrate 2 having the cavity 22 formed on the main surface 4 by pressure bonding and the core substrate 31 and the plurality of components 32 mounted on the core substrate 31 is inserted into the through hole. And mounting on the resin multilayer substrate 2.
  • FIG. 3 to FIG. 15 the method for manufacturing the component-embedded resin multilayer substrate 101 in the present embodiment will be described in more detail.
  • the resin sheet with conductor foil 12 is a sheet having a structure in which the conductor foil 17 is attached to one surface of the resin layer 21.
  • the resin layer 21 is made of, for example, a thermoplastic resin.
  • the thermoplastic resin may be, for example, LCP (liquid crystal polymer), PEEK (polyether ether ketone), PEI (polyether imide), PPS (poniphenylene sulfide), thermoplastic PI (polyimide), and the like.
  • the material of the conductor foil 17 may be Cu, Ag, Al, SUS, Ni, Au, or may be an alloy of two or more different metals selected from these metals.
  • the thickness of the conductor foil 17 may be any thickness that allows circuit formation of about 2 ⁇ m to 50 ⁇ m.
  • the conductor foil 17 may be a foil having a thickness of 18 ⁇ m.
  • the surface of the conductive foil 17 is formed so that the surface roughness Rz is 3 ⁇ m, for example.
  • the following conductor pattern forming operation may proceed. However, as another method, Next, prepare a plurality of resin sheets with strip-shaped areas that should be cut out individually, proceed with the formation work of the following conductor patterns etc. in large size, and then cut into strips Also good. Here, the description will be continued assuming that the strip-shaped resin sheet 12 with conductive foil has already been cut out.
  • the resin layer 21 is penetrated by irradiating the surface of the resin layer 21 side opposite to the surface to which the conductor foil 17 of the resin sheet 12 with conductor foil adheres with a carbon dioxide laser beam.
  • the via hole 11 is formed as described above.
  • the via hole 11 penetrates the resin layer 21 but does not penetrate the conductor foil 17.
  • the smear in the via hole 11 is removed by chemical treatment such as permanganic acid as necessary.
  • a laser beam of a different type from the carbon dioxide laser beam may be used. However, it is preferable to use laser light that penetrates the resin layer 21 but does not penetrate the conductor foil 17.
  • a method other than laser beam irradiation, such as punching may be employed.
  • a resist pattern 13 corresponding to a desired circuit pattern is printed on the surface of the conductor foil 17 of the resin sheet 12 with a conductor foil by a method such as screen printing.
  • etching is performed using the resist pattern 13 as a mask, and as shown in FIG. 6, the portion of the conductor foil 17 that is not covered with the resist pattern 13 is removed. A portion of the conductor foil 17 remaining after the etching becomes the conductor pattern 7. Thereafter, the resist pattern is removed using a cleaning solution or the like.
  • the order of forming the via hole 11 and the conductor pattern 7 is not limited to the order described above, and may be the order in which the via hole 11 is formed after the conductor pattern 7 is formed.
  • a conductive paste is filled into the via hole 11 formed in the resin layer 21 by screen printing or the like. Screen printing is performed from the surface on the side where the conductor pattern 7 is not disposed, that is, the lower surface in FIG. Actually, when performing screen printing, the orientation of the perforated resin sheet may be appropriately changed.
  • the conductive paste to be filled may contain an appropriate amount of metal powder that forms an alloy layer with the metal that is the material of the conductor pattern 7 at the temperature when the laminated resin layer 21 is thermocompression bonded later. preferable.
  • This conductive paste preferably contains at least one of Ag, Cu, and Ni and at least one of Sn, Bi, and Zn.
  • the configuration shown in FIG. 8 is obtained in which the via conductor 6 is inserted into the through hole of the perforated resin sheet and the via conductor 6 penetrating the resin layer 21 in the thickness direction is formed.
  • through holes 14 are formed in the resin layer 21 by punching.
  • the through hole 14 has an area corresponding to the projected area of the composite substrate 3.
  • the punching die and the resin layer 21 are relatively moved in a direction along the thickness direction of the resin layer 21.
  • the mold moves relative to the resin layer 21 so that the periphery of the mold passes through the via conductor 6.
  • the resin layer 21 is punched out so that the via conductor 6 is partially cut, and the through hole 14 is formed.
  • the via conductor 6 is exposed on the inner surface of the through hole 14.
  • a plurality of resin layers 21 including the perforated resin sheet shown in FIG. 9 and another resin sheet are laminated to form a laminate.
  • the plurality of resin layers forming the laminated body include a resin layer in which the through holes 14 are formed and a resin layer in which the through holes 14 are not formed.
  • pressure and heat are applied to the laminate of the plurality of resin layers 21.
  • the plurality of resin layers 21 included in the laminate are thermocompression bonded together, and as a result, the resin multilayer substrate 2 shown in FIG. 10 is formed.
  • the resin multilayer substrate 2 shown in FIG. 10 two resin layers 21 having through holes 14 are stacked on a resin layer 21 having no through holes 14 formed thereon.
  • a cavity 22 is formed by combining two through holes 14.
  • the resin layer 21 has an arbitrary depth (that is, a distance between the main surface 4 and the bottom surface 25 in the thickness direction of the resin multilayer substrate 2).
  • a cavity 22 is formed.
  • the perforated resin sheet shown in FIG. 9 is on the side away from the main surface 4 of the resin multilayer substrate 2, that is, on the bottom surface 25 of the cavity 22, of the two resin layers 21 forming the cavity 22. Laminated on the near side. As a result, a side electrode 29 where the wiring 8 is exposed to the inner side surface 26 of the cavity 22 is formed on a part of the inner side surface 26 of the cavity 22 on the side close to the bottom surface 25.
  • the composite substrate 3 is prepared.
  • the composite substrate 3 is manufactured by the following steps. First, as shown in FIG. 11, a base substrate 131 is prepared.
  • the base substrate 131 is a collective substrate that can cut out a plurality of substrates to be the core substrate 31 by being cut along a cutting line CL indicated by a two-dot chain line in FIG.
  • the base substrate 131 has a front surface 137 and a back surface 138.
  • the surface 137 is one main surface of the base substrate 131 corresponding to the facing surface 37 of the core substrate 31.
  • the back surface 138 is the other main surface of the base substrate 131 corresponding to the back surface 38 of the core substrate 31.
  • the base substrate 131 is formed of a printed circuit board (PCB), a low-temperature co-fired ceramic (LTCC), an alumina substrate, a glass substrate, a composite material substrate, a single layer substrate, a multilayer substrate, or the like using a resin or a polymer material.
  • the base substrate 131 may be formed by selecting an optimal material as appropriate according to the purpose of use of the composite substrate 3.
  • the base substrate 131 is a multilayer ceramic substrate in which a plurality of ceramic green sheets are laminated and fired.
  • the ceramic green sheet is a sheet obtained by forming a slurry in which a mixed powder such as alumina and glass is mixed with an organic binder and a solvent. Via holes are formed at predetermined positions of the ceramic green sheet by laser processing, etc., and the via holes formed are filled with a conductor paste containing Ag, Cu, etc., and via conductors for interlayer connection are formed.
  • the electrode pattern is formed. Thereafter, the ceramic green sheets are laminated and pressed to form a ceramic laminate, and the ceramic laminate is fired at a low temperature of about 1000 ° C. at a so-called low temperature to form the base substrate 131.
  • the base substrate 131 is provided with various electrode patterns such as mounting electrodes and external connection electrodes on which the internal wiring, the terminal assembly, and the component 32 are mounted.
  • the base substrate 131 is formed using the LTCC substrate, first, a ceramic slurry is coated on a PET film and then dried to form a ceramic green sheet having a thickness of 10 to 200 ⁇ m. A via hole having a diameter of about 0.1 mm is formed on the prepared ceramic green sheet from the PET film side by a mold, a laser, or the like. Next, an electrode paste kneaded with metal powder containing silver or copper as a main component, resin, and organic solvent is filled in the via hole and dried. Then, an equivalent electrode paste is screen-printed in a desired pattern on the ceramic green sheet and dried.
  • a plurality of ceramic green sheets are stacked and pressure-bonded at a pressure of 100-1500 kg / cm 2 and a temperature of 40-100 ° C.
  • the electrode paste is mainly composed of silver
  • the electrode paste is fired at about 850 ° C. in air, and when copper is the main component, it is fired at about 950 ° C. in a nitrogen atmosphere.
  • a base substrate 131 is formed by depositing Au or the like by wet plating or the like.
  • solder 132 is printed on a desired surface electrode among the surface electrodes of the base substrate 131.
  • the solder 132 is printed at a position where a plurality of components 32 are to be mounted, and the solder 132 is printed so as to straddle both sides of the cutting line CL.
  • a plurality of components 32 that are electronic components such as various chip components, integrated circuits, or semiconductor elements are printed on the solder 132 on the surface 137 that is one main surface of the base substrate 131.
  • the surface electrode Mount on the surface electrode.
  • the second component 34 which is an electronic component, is mounted at a predetermined position on the back surface 138, which is the other main surface of the base substrate 131, using the bonding member 35.
  • a plurality of terminal connection substrates 109 are further mounted on the surface 137.
  • the terminal connection substrate 109 is mounted on the surface electrode of the base substrate 131 at a position where it does not come into contact with the plurality of components 32 mounted on the surface 137.
  • the terminal connection substrate 109 may be arranged on two opposite sides of the outer periphery of the base substrate 131, or the terminal connection substrate 109 may be arranged on the four sides of the outer periphery of the base substrate 131. Also good.
  • the terminal connection substrate 109 is formed of a copper foil having a predetermined thickness. The thickness of the terminal connection substrate 109 is determined so that the height at which the terminal connection substrate 109 protrudes from the surface 137 is larger than the height at which the component 32 protrudes from the surface 137.
  • the copper foil may be made of pure copper, or may be made of a copper alloy such as an alloy in which iron is mixed with copper at a ratio of 0.1% to 20%, phosphor bronze, brass or the like. Since copper alloy has higher workability than pure copper, it has the advantage that burrs and elongation are less likely to occur during subsequent cutting with a dicer and polishing of the upper surface.
  • the terminal connection substrate 109 may be formed of another metal conductor such as Au, Ag, or Al.
  • the component 32, the second component 34, and the terminal connection substrate 109 may be mounted by a general surface mounting technique such as ultrasonic vibration bonding in addition to solder reflow.
  • the base substrate 131 is cut along the cutting line CL using a dicer.
  • the terminal connection substrate 109 is also divided at the same time.
  • the base substrate 131 is singulated and the core substrate 31 is formed.
  • the core substrate 31 has a facing surface 37 and a back surface 38, a plurality of components 32 and connection terminals 9 are mounted on the facing surface 37, and a second component 34 is mounted on the back surface 38. Since the terminal connection substrate 109 is disposed so as to straddle the cutting line CL, a structure in which the connection terminal 9 is exposed to the side surface is obtained as shown in FIGS.
  • a resin sheet is laminated on both the facing surface 37 and the back surface 38 of the core substrate 31.
  • a sealing resin 33 for sealing the component 32 mounted on the opposing surface 37 and a sealing resin 36 for sealing the second component 34 mounted on the back surface 38 are formed.
  • the facing surface 37 of the core substrate 31 is filled with the sealing resin 33, and the component 32 mounted on the facing surface 37 of the core substrate 31 is sealed with the sealing resin 33.
  • the back surface 38 of the core substrate 31 is filled with the sealing resin 36, and the second component 34 mounted on the back surface 38 of the core substrate 31 is sealed with the sealing resin 36.
  • the resin sheet may be formed of a composite resin formed by mixing an inorganic filler such as aluminum oxide, silica (silicon dioxide), or titanium dioxide with a thermosetting resin such as an epoxy resin, a phenol resin, or a cyanate resin.
  • an inorganic filler such as aluminum oxide, silica (silicon dioxide), or titanium dioxide
  • a thermosetting resin such as an epoxy resin, a phenol resin, or a cyanate resin.
  • the sealing resins 33 and 36 may be formed using a general molding technique for forming a resin layer, such as a potting technique using a liquid resin, a transfer molding technique, or a compression molding technique.
  • the resin sheets may be laminated and cured together on both the opposing surface 37 and the back surface 38, but the resin sheets may be laminated and cured separately on the opposing surface 37 and the back surface 38, respectively.
  • the surface of the sealing resin 33 on the side away from the core substrate 31, that is, the upper surface of the sealing resin 33 shown in FIG. 15 may be polished using a roller blade or the like. Thereby, even when the heights of the plurality of connection terminals 9 vary, the shape of the plurality of connection terminals 9 exposed from the top surface of the sealing resin 33 as a result of polishing the cured sealing resin 33. Can be substantially matched.
  • the composite substrates 3 shown in FIG. 15 may be individually manufactured according to the above-described steps. However, after forming an aggregate of a plurality of composite substrates 3, the composite substrates 3 are separated into individual composite substrates 3. May be manufactured.
  • the composite substrate 3 manufactured in this way is mounted on the main surface 4 of the resin multilayer substrate 2.
  • a cavity 22 is formed on the main surface 4 of the resin multilayer substrate 2, and a side electrode 29 is exposed on the inner side surface 26 of the cavity 22.
  • the connection terminals 9 are exposed on the outer surface 39 of the composite substrate 3. Therefore, by inserting the composite substrate 3 into the cavity 22, the side electrode 29 and the connection terminal 9 are in surface contact, and the wiring 8 and the core substrate 31 are electrically connected.
  • the composite substrate 3 is bonded to the resin multilayer substrate 2 using solder, whereby the mounting of the composite substrate 3 on the resin multilayer substrate 2 is completed, and the component built-in resin multilayer substrate 101 shown in FIG. 1 is obtained.
  • the manufacturing method in this way it is possible to easily obtain the component built-in resin multilayer substrate 101 in which the composite substrate 3 is partially accommodated in the cavity 22 and the thickness is reduced. Due to the flexibility of the resin multilayer substrate 2, the adhesion between the resin multilayer substrate 2 and the composite substrate 3 can be improved, and the holding power of the composite substrate 3 can be increased. Since the composite substrate 3 and the resin multilayer substrate 2 are electrically connected when the side surface of the connection terminal 9 is in contact with the side electrode 29, the connection strength between the composite substrate 3 and the resin multilayer substrate 2 is improved. The reliability can be improved and the static electricity resistance of the component built-in resin multilayer substrate 101 can be improved.
  • FIGS. 1 and 2 A component built-in resin multilayer substrate 101 according to the second embodiment of the present invention will be described with reference to FIGS.
  • the entire core substrate 31 is accommodated in a cavity 22 formed on the main surface 4 of the resin multilayer substrate 2.
  • the number of portions of the composite substrate 3 that are embedded in the resin multilayer substrate 2 is increased as compared with the first embodiment. With this configuration, the holding power of the composite substrate 3 by the resin multilayer substrate 2 can be further improved.
  • connection terminals 9 exposed on the outer surface 39 of the composite substrate 3 are pierced by via conductors 6 formed inside the resin multilayer substrate 2.
  • the via conductor 6 is made of a conductive paste mainly composed of Ag, a conductive paste mainly composed of Sn—Ag alloy, a conductive paste mainly composed of bismuth, a tin solder material, or a conductive material such as copper. Is formed. Since the formation material of the via conductor 6 becomes soft when heated, the formation material of the connection terminal 9 becomes relatively hard compared to the formation material of the via conductor 6.
  • the composite substrate 3 is inserted into the cavity 22 and the tip end surface of the connection terminal 9 is in contact with the via conductor 6 while being heated to about the reflow temperature, the composite substrate 3 is further directed into the resin multilayer substrate 2.
  • the via conductor 6 is easily deformed by pushing it forward.
  • the structure shown in FIG. 16 in which the connection terminal 9 is pierced into the via conductor 6 is obtained.
  • the outer peripheral surface of the connection terminal 9 is in contact with the side electrode 29 formed by the deformed via conductor 6. Thereby, the electrical connection between the wiring 8 and the core substrate 31 via the connection terminal 9 can be reliably formed.
  • FIG. 18 illustrates a state in which the resin layer 21 in which the via conductors 6 are formed through the same process as in the first embodiment is viewed in a plan view.
  • a two-dot chain line shown in FIG. 18 indicates a cutting line CL where a part of the resin layer 21 is cut by the laser processing of the resin layer 21.
  • the via conductor is formed in the cavity 22 formed by melting the resin layer 21.
  • the structure shown in FIG. 19 in which 6 remains is obtained. Thereby, a configuration in which the side electrode 29 is exposed on the inner side surface 26 of the cavity 22 is obtained.
  • the side electrode 29 is disposed at a position corresponding to the connection terminal 9 provided on the composite substrate 3 in plan view. Therefore, as described above, the connection terminal 9 can be reliably connected to the wiring 8 by fitting the composite substrate 3 into the cavity 22.
  • Laser processing of the resin layer 21 along the cutting line CL may be performed after laminating only the plurality of resin layers 21 in which through holes for forming the cavity 22 are to be formed.
  • the main surface 4 of the resin multilayer substrate 2 has a first main surface 4a and a second main surface 4b opposite to the first main surface 4a.
  • a conductor pattern 7 extending in the surface direction of the resin layer 21 is formed on the main surface of one of the resin layers 21 constituting the resin multilayer substrate 2.
  • a part of the conductor pattern 7 protrudes into the cavity 22.
  • the conductor pattern 7 has an end 7 a that protrudes into the cavity 22.
  • the side electrode 29 is formed of a conductor pattern 7 whose end 7a is bent away from the first main surface 4a and closer to the second main surface 4b.
  • the side electrode 29 is exposed from the inner side surface 26 of the cavity 22 and disposed inside the cavity 22.
  • the cavity 22 of the third embodiment has an area that is slightly larger than the projected area of the composite substrate 3 in plan view.
  • the conductor pattern 7 extends in the surface direction.
  • the end 7 a of the conductor pattern 7 protrudes toward the inner side of the cavity 22 with respect to the inner side surface 26 of the cavity 22.
  • FIG. 21 shows a configuration in which the end portions 7a of the pair of conductor patterns 7 protrude into the cavity 22 on both the left and right sides in the figure, and the pair of end portions 7a are respectively seen in plan view in the composite substrate 3. It overlaps with the projection.
  • the conductor pattern 7 is formed of conductor foil as described in the first embodiment, it can be easily elastically deformed.
  • the composite substrate 3 and the resin multilayer substrate 2 are moved relative to each other so that the composite substrate 3 is disposed inside the cavity 22 from the state where the composite substrate 3 shown in FIG. Contacts the end 7 a of the conductor pattern 7. Further, by pushing the composite substrate 3 into the cavity 22, the conductor pattern 7 in contact with the composite substrate 3 is such that the end portion 7a is away from the first main surface 4a and approaches the second main surface 4b as shown in FIG. Bend to. Then, in the state shown in FIG. 20 where the mounting of the composite substrate 3 on the resin multilayer substrate 2 is completed, the end 7a of the conductor pattern 7 is electrically connected to the surface exposed to the outer surface 39 of the connection terminal 9.
  • the side electrode 29 is formed.
  • the bonding strength between the composite substrate 3 and the resin multilayer substrate 2 is increased. Can be improved.
  • the conductor pattern 7 forming the side electrode 29 is elastically deformed again and returns to the shape extending in the surface direction shown in FIG. Therefore, the component built-in resin multilayer substrate 101 in which the composite substrate 3 can be freely attached to and detached from the resin multilayer substrate 2 can be provided.
  • the conductor pattern 7 forming the side electrode 29 is disposed inside the resin multilayer substrate 2.
  • the conductor pattern 7 of the fourth embodiment is the resin multilayer substrate 2. Is arranged on the first main surface 4a.
  • FIG. 24 a component built-in resin multilayer substrate 101 according to the fifth embodiment of the present invention will be described.
  • the end portion 7a of the conductor pattern 7 and the resin layer 21 on the second main surface 4b side with respect to the conductor pattern 7 are the first main surface. It is bent integrally on the side away from 4a and approaching the second main surface 4b.
  • the bent conductor pattern 7 forms a side electrode 29.
  • the main surface 4 of the resin multilayer substrate 2 has a first main surface 4a and a second main surface 4b opposite to the first main surface 4a.
  • the composite substrate 3 is mounted on both the first main surface 4a and the second main surface 4b.
  • each of the connection terminals 9 penetrates the via conductor 6.
  • the composite substrate 3 When viewing the component built-in resin multilayer substrate 101 in a plan view, the composite substrate 3 is mounted on the upper first main surface 4a in FIG. 25, and is mounted on the lower second main surface 4b in FIG. The composite substrate 3 is disposed so as to overlap each other.
  • the components 32 are mounted on both main surfaces 4 of the resin multilayer substrate 2, so that the mounting density of the components 32 on the resin multilayer substrate 2 can be increased. Therefore, the size of the component built-in resin multilayer substrate 101 can be reduced.
  • the composite substrate among the resin multilayer substrates 2 is more difficult to bend. Therefore, since the bending stress acting on the composite substrate 3 can be further reduced, the connection stability between the composite substrate 3 and the resin multilayer substrate 2 can be further improved.
  • the composite substrate 3 that is detachable from the resin multilayer substrate 2 described in the third and fourth embodiments has both the first main surface 4a and the second main surface 4b as in the sixth embodiment. Has been implemented. Thereby, since the mounting density of the components 32 on the resin multilayer substrate 2 can be increased, the size of the component-embedded resin multilayer substrate 101 can be reduced.
  • the composite substrate 3 mounted on the surface 4b is disposed so as to overlap each other. From the viewpoint of suppressing deformation of the resin multilayer substrate 2 sandwiched between the composite substrates 3, the arrangement of the sixth embodiment in which the pair of composite substrates 3 almost completely overlap each other in the thickness direction of the resin multilayer substrate 2 is most preferable.
  • 2 resin multilayer substrate 3 composite substrate, 4 main surface, 4a first main surface, 4b second main surface, 6 via conductor, 7 conductor pattern, 7a end, 8 wiring, 9 connection terminal, 21 resin layer, 22 cavity , 25 bottom surface, 26 inner surface, 29 side electrode, 31 core substrate, 32 components, 33, 36 sealing resin, 34 second component, 35 bonding member, 37 facing surface, 38 back surface, 39 outer surface, 101 component built-in Resin multilayer substrate.

Abstract

Provided is a resin multi-layer substrate with built-in component which is capable of improving reliability of a connection between a composite substrate and the resin multi-layer substrate. A resin multi-layer substrate with built-in component (101) is provided with a resin multi-layer substrate (2), and a composite substrate (3). The resin multi-layer substrate (2) is formed by stacking a plurality of resin layers (21), a wire (8) is formed in the interior of the substrate, and a cavity is formed in the main surface (4) thereof. The composite substrate (3) includes components (32), a core substrate (31) mounting the components (32), and connection terminals (9) which electrically connect the wire (8) and the core substrate (31). The wire (8) includes side surface electrodes (29) which are exposed on inner side surfaces of the cavity. The connection terminals (9) are exposed on outer side surfaces (39) of the composite substrate, and are electrically connected to the side surface electrodes (29).

Description

部品内蔵樹脂多層基板および樹脂多層基板Component built-in resin multilayer substrate and resin multilayer substrate
 本発明は、部品内蔵樹脂多層基板および樹脂多層基板に関するものである。 The present invention relates to a component built-in resin multilayer substrate and a resin multilayer substrate.
 従来、フレキシブルプリント基板の主表面に接続パッドを設け、電子部品の端子を接続パッドに当接させた状態で半田付け固定することにより、電子部品をフレキシブルプリント基板の主表面に実装する技術が提案されている(たとえば特開平9-18112号公報(特許文献1)参照)。 Conventionally, a technology has been proposed for mounting electronic components on the main surface of a flexible printed circuit board by providing connection pads on the main surface of the flexible printed circuit board and soldering and fixing the electronic component terminals in contact with the connection pads. (See, for example, Japanese Patent Laid-Open No. 9-18112 (Patent Document 1)).
特開平9-18112号公報Japanese Patent Laid-Open No. 9-18112
 フレキシブル基板の主表面の接続用電極に電子部品を実装すると、フレキシブル基板の折り曲げやねじりに対して、電子部品に直接応力が加わる。その結果、電子部品とフレキシブル基板との接続信頼性が低下する問題が生じる。 When an electronic component is mounted on the connection electrode on the main surface of the flexible substrate, stress is directly applied to the electronic component against bending or twisting of the flexible substrate. As a result, there arises a problem that the connection reliability between the electronic component and the flexible substrate is lowered.
 そこで、本発明は、柔軟性を有する樹脂多層基板に実装される複合基板と樹脂多層基板との接続信頼性を向上することができる部品内蔵樹脂多層基板、および樹脂多層基板を提供することを目的とする。 Accordingly, an object of the present invention is to provide a component-embedded resin multilayer substrate that can improve the connection reliability between a composite substrate mounted on a flexible resin multilayer substrate and the resin multilayer substrate, and a resin multilayer substrate. And
 上記目的を達成するため、本発明に基づく部品内蔵樹脂多層基板は、樹脂多層基板と、複合基板とを備えている。樹脂多層基板は、複数の樹脂層が積層されて形成されている。樹脂多層基板は、主表面を有している。樹脂多層基板の内部に配線が形成されており、主表面にキャビティが形成されている。複合基板は、キャビティ内に配置されている。複合基板は、部品と、部品を搭載するコア基板と、部品を封止する封止樹脂と、配線とコア基板とを電気的に接続する接続端子とを含んでいる。キャビティは、内側面を有している。配線は、内側面に露出する側面電極を含んでいる。複合基板は、外側面を有している。接続端子は、外側面に露出しており、側面電極と電気的に接続されている。 In order to achieve the above object, the component built-in resin multilayer substrate according to the present invention includes a resin multilayer substrate and a composite substrate. The resin multilayer substrate is formed by laminating a plurality of resin layers. The resin multilayer substrate has a main surface. Wiring is formed inside the resin multilayer substrate, and a cavity is formed on the main surface. The composite substrate is disposed in the cavity. The composite substrate includes a component, a core substrate on which the component is mounted, a sealing resin that seals the component, and a connection terminal that electrically connects the wiring and the core substrate. The cavity has an inner surface. The wiring includes side electrodes exposed on the inner side surface. The composite substrate has an outer surface. The connection terminal is exposed on the outer surface and is electrically connected to the side electrode.
 本発明によれば、複合基板の外側面に露出している接続端子がキャビティの内側面に露出している側面電極と電気的に接続されているので、複合基板と樹脂多層基板との接続信頼性を向上することができる。 According to the present invention, since the connection terminal exposed on the outer side surface of the composite substrate is electrically connected to the side electrode exposed on the inner side surface of the cavity, the connection reliability between the composite substrate and the resin multilayer substrate is achieved. Can be improved.
本発明に基づく実施の形態1における部品内蔵樹脂多層基板の断面図である。It is sectional drawing of the component built-in resin multilayer substrate in Embodiment 1 based on this invention. 本発明に基づく実施の形態1における、複合基板を樹脂多層基板へ実装する前の状態の断面図である。It is sectional drawing of the state before mounting the composite substrate in the resin multilayer substrate in Embodiment 1 based on this invention. 本発明に基づく実施の形態1における樹脂多層基板の製造方法の第1の工程の説明図である。It is explanatory drawing of the 1st process of the manufacturing method of the resin multilayer substrate in Embodiment 1 based on this invention. 本発明に基づく実施の形態1における樹脂多層基板の製造方法の第2の工程の説明図である。It is explanatory drawing of the 2nd process of the manufacturing method of the resin multilayer substrate in Embodiment 1 based on this invention. 本発明に基づく実施の形態1における樹脂多層基板の製造方法の第3の工程の説明図である。It is explanatory drawing of the 3rd process of the manufacturing method of the resin multilayer substrate in Embodiment 1 based on this invention. 本発明に基づく実施の形態1における樹脂多層基板の製造方法の第4の工程の説明図である。It is explanatory drawing of the 4th process of the manufacturing method of the resin multilayer substrate in Embodiment 1 based on this invention. 本発明に基づく実施の形態1における樹脂多層基板の製造方法の第5の工程の説明図である。It is explanatory drawing of the 5th process of the manufacturing method of the resin multilayer substrate in Embodiment 1 based on this invention. 本発明に基づく実施の形態1における樹脂多層基板の製造方法の第6の工程の説明図である。It is explanatory drawing of the 6th process of the manufacturing method of the resin multilayer substrate in Embodiment 1 based on this invention. 本発明に基づく実施の形態1における樹脂多層基板の製造方法の第7の工程の説明図である。It is explanatory drawing of the 7th process of the manufacturing method of the resin multilayer substrate in Embodiment 1 based on this invention. 本発明に基づく実施の形態1における樹脂多層基板の製造方法の第8の工程の説明図である。It is explanatory drawing of the 8th process of the manufacturing method of the resin multilayer substrate in Embodiment 1 based on this invention. 本発明に基づく実施の形態1における複合基板の製造方法の第1の工程の説明図である。It is explanatory drawing of the 1st process of the manufacturing method of the composite substrate in Embodiment 1 based on this invention. 本発明に基づく実施の形態1における複合基板の製造方法の第2の工程の説明図である。It is explanatory drawing of the 2nd process of the manufacturing method of the composite substrate in Embodiment 1 based on this invention. 本発明に基づく実施の形態1における複合基板の製造方法の第3の工程の説明図である。It is explanatory drawing of the 3rd process of the manufacturing method of the composite substrate in Embodiment 1 based on this invention. 図13中に示すXIV-XIV線に沿う断面図である。FIG. 14 is a cross-sectional view taken along line XIV-XIV shown in FIG. 本発明に基づく実施の形態1における複合基板の製造方法の第4の工程の説明図である。It is explanatory drawing of the 4th process of the manufacturing method of the composite substrate in Embodiment 1 based on this invention. 本発明に基づく実施の形態2における部品内蔵樹脂多層基板の断面図である。It is sectional drawing of the component built-in resin multilayer substrate in Embodiment 2 based on this invention. 本発明に基づく実施の形態2における、複合基板を樹脂多層基板へ実装する前の状態の断面図である。It is sectional drawing of the state before mounting the composite substrate in the resin multilayer substrate in Embodiment 2 based on this invention. 本発明に基づく実施の形態2における樹脂多層基板の製造方法の第1の工程の説明図である。It is explanatory drawing of the 1st process of the manufacturing method of the resin multilayer substrate in Embodiment 2 based on this invention. 本発明に基づく実施の形態2における樹脂多層基板の製造方法の第2の工程の説明図である。It is explanatory drawing of the 2nd process of the manufacturing method of the resin multilayer substrate in Embodiment 2 based on this invention. 本発明に基づく実施の形態3における部品内蔵樹脂多層基板の断面図である。It is sectional drawing of the component built-in resin multilayer substrate in Embodiment 3 based on this invention. 本発明に基づく実施の形態3における、複合基板を樹脂多層基板へ実装する前の状態の断面図である。It is sectional drawing of the state before mounting the composite substrate in the resin multilayer substrate in Embodiment 3 based on this invention. 本発明に基づく実施の形態3における、複合基板を樹脂多層基板へ実装している途中の状態の断面図である。It is sectional drawing of the state in the middle of mounting the composite substrate in the resin multilayer substrate in Embodiment 3 based on this invention. 本発明に基づく実施の形態4における部品内蔵樹脂多層基板の断面図である。It is sectional drawing of the component built-in resin multilayer substrate in Embodiment 4 based on this invention. 本発明に基づく実施の形態5における部品内蔵樹脂多層基板の断面図である。It is sectional drawing of the component built-in resin multilayer substrate in Embodiment 5 based on this invention. 本発明に基づく実施の形態6における部品内蔵樹脂多層基板の断面図である。It is sectional drawing of the component built-in resin multilayer substrate in Embodiment 6 based on this invention. 本発明に基づく実施の形態7における部品内蔵樹脂多層基板の断面図である。It is sectional drawing of the component built-in resin multilayer substrate in Embodiment 7 based on this invention.
 (実施の形態1)
 (構成)
 図1,2を参照して、本発明に基づく実施の形態1における部品内蔵樹脂多層基板101について説明する。部品内蔵樹脂多層基板101は、樹脂多層基板2と複合基板3とを備えている。樹脂多層基板2は、主表面4を有している。部品内蔵樹脂多層基板101は、樹脂多層基板2の主表面4に複合基板3が実装されて形成されている。
(Embodiment 1)
(Constitution)
A component built-in resin multilayer substrate 101 according to the first embodiment of the present invention will be described with reference to FIGS. The component built-in resin multilayer substrate 101 includes a resin multilayer substrate 2 and a composite substrate 3. The resin multilayer substrate 2 has a main surface 4. The component built-in resin multilayer substrate 101 is formed by mounting the composite substrate 3 on the main surface 4 of the resin multilayer substrate 2.
 樹脂多層基板2は、複数の樹脂層21が積層されて一体化されることによって形成されている。複数の樹脂層21が積層されている方向、すなわち図1に示す断面図中の上下方向を、樹脂多層基板2の厚み方向と称する。樹脂多層基板2の内部には、導電性の配線8が形成されている。配線8は、複数のビア導体6と、複数の導体パターン7とを含んでいる。ビア導体6は、樹脂層21の厚み方向に延在しており、樹脂層21を厚み方向に貫通して形成されている。導体パターン7は、樹脂層21の厚み方向と直交する面方向に延在しており、樹脂層21の主表面に配置されている。樹脂層21を厚み方向に貫通して形成されているビア導体6が、異なる樹脂層21に形成されている導体パターン7を電気的に接続しており、これにより配線8が形成されている。 The resin multilayer substrate 2 is formed by laminating and integrating a plurality of resin layers 21. The direction in which the plurality of resin layers 21 are stacked, that is, the vertical direction in the cross-sectional view shown in FIG. 1 is referred to as the thickness direction of the resin multilayer substrate 2. Inside the resin multilayer substrate 2, conductive wiring 8 is formed. The wiring 8 includes a plurality of via conductors 6 and a plurality of conductor patterns 7. The via conductor 6 extends in the thickness direction of the resin layer 21 and is formed so as to penetrate the resin layer 21 in the thickness direction. The conductor pattern 7 extends in a plane direction orthogonal to the thickness direction of the resin layer 21 and is disposed on the main surface of the resin layer 21. Via conductors 6 formed so as to penetrate the resin layer 21 in the thickness direction electrically connect the conductor patterns 7 formed in the different resin layers 21, thereby forming the wiring 8.
 図2を参照して、樹脂多層基板2の両側の主表面4には、複合基板3を実装するためのキャビティ22が形成されている。キャビティ22は、樹脂多層基板2の主表面4の一部が窪んだ形状に形成されている。キャビティ22は、主表面4に対し開口し、底面25と内側面26とを有しており、その内部に中空の空間を規定している。内側面26は、樹脂多層基板2の厚み方向に沿って延びる面であって、キャビティ22の内壁を形成する面である。配線8を構成するビア導体6の一部は、キャビティ22の内側面26に露出している。配線8は、内側面26に露出する側面電極29を含んでいる。側面電極29は、ビア導体6により形成されている。 2, cavities 22 for mounting the composite substrate 3 are formed on the main surfaces 4 on both sides of the resin multilayer substrate 2. The cavity 22 is formed in a shape in which a part of the main surface 4 of the resin multilayer substrate 2 is recessed. The cavity 22 is open to the main surface 4, has a bottom surface 25 and an inner surface 26, and defines a hollow space therein. The inner side surface 26 is a surface that extends along the thickness direction of the resin multilayer substrate 2 and forms the inner wall of the cavity 22. A part of the via conductor 6 constituting the wiring 8 is exposed on the inner side surface 26 of the cavity 22. The wiring 8 includes a side electrode 29 exposed on the inner side surface 26. The side electrode 29 is formed by the via conductor 6.
 複合基板3は、コア基板31を含んでいる。コア基板31は、樹脂多層基板2に対向する対向面37と、対向面37と反対側の裏面38とを有している。コア基板31は平板状の外形を有しており、一対の主表面のうちの一方が対向面37として形成されており、他方が裏面38として形成されている。コア基板31の対向面37と裏面38とには、図示しない表面導体が設けられており、コア基板31の内部には、図示しない内部導体が設けられている。 The composite substrate 3 includes a core substrate 31. The core substrate 31 has a facing surface 37 facing the resin multilayer substrate 2 and a back surface 38 opposite to the facing surface 37. The core substrate 31 has a flat outer shape, and one of a pair of main surfaces is formed as a facing surface 37 and the other is formed as a back surface 38. A surface conductor (not shown) is provided on the facing surface 37 and the back surface 38 of the core substrate 31, and an internal conductor (not shown) is provided inside the core substrate 31.
 コア基板31の対向面37側には、複数の部品32が搭載されている。コア基板31の裏面38側には、第2の部品34が搭載されている。複合基板3は、コア基板31の対向面37に実装されている複数の部品32と、コア基板31の裏面38に実装されている第2の部品34とを含んでいる。複数の部品32はそれぞれ、対向面37に設けられた表面導体に電気的に接続されている。第2の部品34は、はんだボールなどの接合部材35によってコア基板31の裏面38に接合されており、裏面38に設けられた表面導体に電気的に接続されている。 A plurality of components 32 are mounted on the facing surface 37 side of the core substrate 31. The second component 34 is mounted on the back surface 38 side of the core substrate 31. The composite substrate 3 includes a plurality of components 32 mounted on the facing surface 37 of the core substrate 31 and a second component 34 mounted on the back surface 38 of the core substrate 31. Each of the plurality of components 32 is electrically connected to a surface conductor provided on the facing surface 37. The second component 34 is bonded to the back surface 38 of the core substrate 31 by a bonding member 35 such as a solder ball, and is electrically connected to the surface conductor provided on the back surface 38.
 コア基板31の対向面37側には、部品32を封止する封止樹脂33が設けられている。コア基板31の裏面38側には、第2の部品34を封止する封止樹脂36が設けられている。部品32と第2の部品34とは、それぞれ封止樹脂33,36で覆われることにより、応力または水分などの外部環境から保護されている。封止樹脂33,36を設けることにより、コア基板31と部品32および第2の部品34との密着が維持されており、また、複合基板3の実装時のピックアップ性が向上している。複合基板3は、コア基板31の主表面の両方に部品が実装された両面実装型の基板であり、かつ、コア基板31の主表面の両方が樹脂で封止された両面封止型の基板である。 A sealing resin 33 for sealing the component 32 is provided on the facing surface 37 side of the core substrate 31. A sealing resin 36 that seals the second component 34 is provided on the back surface 38 side of the core substrate 31. The part 32 and the second part 34 are protected from the external environment such as stress or moisture by being covered with the sealing resins 33 and 36, respectively. By providing the sealing resins 33 and 36, the close contact between the core substrate 31, the component 32, and the second component 34 is maintained, and the pickup property when the composite substrate 3 is mounted is improved. The composite substrate 3 is a double-sided mounting type substrate in which components are mounted on both main surfaces of the core substrate 31, and a double-sided sealing type substrate in which both main surfaces of the core substrate 31 are sealed with resin. It is.
 複合基板3は、キャビティ22内へ嵌め入れられることにより、樹脂多層基板2の主表面4に実装されている。複合基板3が樹脂多層基板2の主表面4に実装されている状態において、複合基板3はキャビティ22内に配置されており、コア基板31の対向面37および対向面37に搭載された複数の部品32は樹脂多層基板2に内蔵されている。一方、コア基板31の裏面38および裏面38に搭載された第2の部品34は、樹脂多層基板2の外部に配置されている。 The composite substrate 3 is mounted on the main surface 4 of the resin multilayer substrate 2 by being fitted into the cavity 22. In a state where the composite substrate 3 is mounted on the main surface 4 of the resin multilayer substrate 2, the composite substrate 3 is disposed in the cavity 22, and the opposing surface 37 of the core substrate 31 and a plurality of components mounted on the opposing surface 37. The component 32 is built in the resin multilayer substrate 2. On the other hand, the back surface 38 of the core substrate 31 and the second component 34 mounted on the back surface 38 are disposed outside the resin multilayer substrate 2.
 部品内蔵樹脂多層基板101はまた、接続端子9を備えている。接続端子9は、導電性の材料により形成されており、コア基板31の対向面37に固定されている。接続端子9は、コア基板31の厚み方向に延在している。接続端子9はピン状の形状を有しており、複数の接続端子9がコア基板31の外周に沿って配列されている。コア基板31の対向面37側には、複数の部品32と、複数のピン形状の接続端子9とが配置されている。ピン形状の接続端子9が形成されている対向面37に、部品32が搭載されている。 The component built-in resin multilayer substrate 101 also includes a connection terminal 9. The connection terminal 9 is made of a conductive material, and is fixed to the facing surface 37 of the core substrate 31. The connection terminal 9 extends in the thickness direction of the core substrate 31. The connection terminal 9 has a pin shape, and a plurality of connection terminals 9 are arranged along the outer periphery of the core substrate 31. A plurality of components 32 and a plurality of pin-shaped connection terminals 9 are arranged on the facing surface 37 side of the core substrate 31. A component 32 is mounted on the facing surface 37 on which the pin-shaped connection terminals 9 are formed.
 複合基板3は、外側面39を有している。外側面39は、コア基板31の対向面37および裏面38に対し交差する方向、典型的には直交する方向に延びる、複合基板3の表面である。図1に示す、複合基板3が樹脂多層基板2に実装されている状態において、外側面39は、樹脂多層基板2の厚み方向に沿って延びている。接続端子9は、その外周面の一部が外側面39に露出している。接続端子9は、その先端面および外周面の一部において、封止樹脂33により覆われていない露出面を有している。 The composite substrate 3 has an outer surface 39. The outer side surface 39 is a surface of the composite substrate 3 that extends in a direction intersecting the facing surface 37 and the back surface 38 of the core substrate 31, typically in a direction orthogonal thereto. In the state where the composite substrate 3 is mounted on the resin multilayer substrate 2 shown in FIG. 1, the outer side surface 39 extends along the thickness direction of the resin multilayer substrate 2. A part of the outer peripheral surface of the connection terminal 9 is exposed on the outer surface 39. The connection terminal 9 has an exposed surface that is not covered with the sealing resin 33 at a part of its front end surface and outer peripheral surface.
 複合基板3が樹脂多層基板2に実装されている状態において、複合基板3の外側面39の一部はキャビティ22の内側面26に対向しており、外側面39の一部と内側面26とは面接触している。接続端子9の一方の端部は、コア基板31に固定されており、対向面37に形成された表面導体と電気的に接続されている。接続端子9の他方の端部における先端面は、配線8の一部を構成する導体パターン7に接触している。接続端子9は、コア基板31の厚み方向において、樹脂多層基板2の内部に形成された配線8にその先端が確実に到達し得る長さを有している。さらに、外側面39に露出する接続端子9の外周面は、内側面26に露出する側面電極29に接触し、側面電極29と電気的に接続されている。これにより接続端子9は、樹脂多層基板2側の電極である配線8と、複合基板3側の電極であるコア基板31とを、電気的に接続している。 In a state where the composite substrate 3 is mounted on the resin multilayer substrate 2, a part of the outer side surface 39 of the composite substrate 3 faces the inner side surface 26 of the cavity 22, and a part of the outer side surface 39 and the inner side surface 26. Are in surface contact. One end of the connection terminal 9 is fixed to the core substrate 31 and is electrically connected to the surface conductor formed on the facing surface 37. The tip end surface at the other end of the connection terminal 9 is in contact with the conductor pattern 7 constituting a part of the wiring 8. The connection terminal 9 has a length that can reliably reach the tip of the wiring terminal 8 formed inside the resin multilayer substrate 2 in the thickness direction of the core substrate 31. Further, the outer peripheral surface of the connection terminal 9 exposed on the outer side surface 39 is in contact with the side electrode 29 exposed on the inner side surface 26 and is electrically connected to the side electrode 29. Thus, the connection terminal 9 electrically connects the wiring 8 that is an electrode on the resin multilayer substrate 2 side and the core substrate 31 that is an electrode on the composite substrate 3 side.
 (作用・効果)
 本実施の形態では、樹脂多層基板2の主表面4には、主表面4が窪んだ形状の中空のキャビティ22が形成されており、複合基板3が樹脂多層基板2に実装されている状態において、部品32はキャビティ22内に収容されている。複合基板3は、その全体が樹脂多層基板2の主表面4から突出して実装されておらず、部品32を含む複合基板3の一部は樹脂多層基板2に内蔵されている。これにより、部品内蔵樹脂多層基板101において複合基板3が樹脂多層基板2の主表面4から突出する厚みを小さくできるので、部品内蔵樹脂多層基板101の厚み方向の寸法を低減でき、低背化を達成することができる。
(Action / Effect)
In the present embodiment, the main surface 4 of the resin multilayer substrate 2 is formed with a hollow cavity 22 in which the main surface 4 is depressed, and the composite substrate 3 is mounted on the resin multilayer substrate 2. The part 32 is accommodated in the cavity 22. The entire composite substrate 3 is not mounted so as to protrude from the main surface 4 of the resin multilayer substrate 2, and a part of the composite substrate 3 including the component 32 is built in the resin multilayer substrate 2. As a result, in the component-embedded resin multilayer substrate 101, the thickness of the composite substrate 3 protruding from the main surface 4 of the resin multilayer substrate 2 can be reduced, so that the dimension in the thickness direction of the component-embedded resin multilayer substrate 101 can be reduced and the height can be reduced. Can be achieved.
 複合基板3は、その一部がキャビティ22内に埋め込まれている。部品内蔵樹脂多層基板101を平面的に見れば、複合基板3は、その周方向の全体において樹脂多層基板2によって取り囲まれている。部品32は、封止樹脂33および樹脂多層基板2によって覆われて、外部環境から保護されている。樹脂多層基板2が柔軟性および弾性を有しているために、樹脂多層基板2と複合基板3との密着性が向上し、複合基板3の保持力が高められている。加えて、部品内蔵樹脂多層基板101の落下時などに部品32に加わる衝撃が緩和されるので、部品内蔵樹脂多層基板101の耐衝撃性を向上することができる。 Part of the composite substrate 3 is embedded in the cavity 22. When the component built-in resin multilayer substrate 101 is viewed in plan, the composite substrate 3 is surrounded by the resin multilayer substrate 2 in the entire circumferential direction. The component 32 is covered with the sealing resin 33 and the resin multilayer substrate 2 and protected from the external environment. Since the resin multilayer substrate 2 has flexibility and elasticity, the adhesion between the resin multilayer substrate 2 and the composite substrate 3 is improved, and the holding power of the composite substrate 3 is enhanced. In addition, since the impact applied to the component 32 when the component-embedded resin multilayer substrate 101 is dropped is reduced, the impact resistance of the component-embedded resin multilayer substrate 101 can be improved.
 部品32は、積層セラミックコンデンサ、集積回路または半導体素子などの電子部品であって、電流が流れる際に発熱する。本実施の形態の部品32はコア基板31に搭載されており、部品32の外周面のうち一面はコア基板31に面している。その結果、部品32で発生した熱は、部品32からコア基板31へ伝達され、コア基板31を経由して外部に伝達される。これにより、部品32からの放熱が効率よく行なわれる。部品32の放熱性を向上することができるので、部品32の過熱による不具合の発生を抑制することができる。 The component 32 is an electronic component such as a multilayer ceramic capacitor, an integrated circuit, or a semiconductor element, and generates heat when a current flows. The component 32 according to the present embodiment is mounted on the core substrate 31, and one of the outer peripheral surfaces of the component 32 faces the core substrate 31. As a result, the heat generated in the component 32 is transmitted from the component 32 to the core substrate 31 and is transmitted to the outside via the core substrate 31. Thereby, heat dissipation from the component 32 is performed efficiently. Since the heat dissipation of the component 32 can be improved, the occurrence of problems due to overheating of the component 32 can be suppressed.
 本実施の形態では、複合基板3にピン形状の接続端子9が設けられており、接続端子9は複合基板3の外側面39に露出している。樹脂多層基板2の主表面4にはキャビティ22が形成されており、キャビティ22の内側面26に配線8が露出して側面電極29が形成されている。樹脂多層基板2の主表面4に形成されたキャビティ22内に複合基板3の一部が埋め込まれることにより、複合基板3は樹脂多層基板2に実装されている。複合基板3が樹脂多層基板2の主表面4に実装されている状態において、接続端子9は側面電極29と電気的に接続されている。この構成を採用することで、複合基板3をキャビティ22内に嵌入すれば部品32を所定の位置にすることができるので、樹脂多層基板2に対する複合基板3の位置ずれを防止でき、部品32を精度よく配置することができる。 In this embodiment, pin-shaped connection terminals 9 are provided on the composite substrate 3, and the connection terminals 9 are exposed on the outer surface 39 of the composite substrate 3. A cavity 22 is formed on the main surface 4 of the resin multilayer substrate 2, and the wiring 8 is exposed on the inner side surface 26 of the cavity 22 to form side electrodes 29. The composite substrate 3 is mounted on the resin multilayer substrate 2 by embedding a part of the composite substrate 3 in the cavity 22 formed on the main surface 4 of the resin multilayer substrate 2. In a state where the composite substrate 3 is mounted on the main surface 4 of the resin multilayer substrate 2, the connection terminal 9 is electrically connected to the side electrode 29. By adopting this configuration, if the composite substrate 3 is fitted into the cavity 22, the component 32 can be placed in a predetermined position, so that the displacement of the composite substrate 3 with respect to the resin multilayer substrate 2 can be prevented. It can be arranged with high accuracy.
 ピン形状の接続端子9を用いることにより、配線8とコア基板31との電気的接続のためにビア導体6のみを使用する構成と比較して、電気抵抗を低減することができる。樹脂多層基板2の厚み方向に金属ピンを延在させることにより、樹脂多層基板2に曲げ応力が作用するときにコア基板31に作用する曲げ応力を低減できるので、複合基板3と樹脂多層基板2との接続信頼性を向上することができる。 By using the pin-shaped connection terminal 9, the electrical resistance can be reduced as compared with a configuration in which only the via conductor 6 is used for electrical connection between the wiring 8 and the core substrate 31. By extending the metal pins in the thickness direction of the resin multilayer substrate 2, the bending stress acting on the core substrate 31 when the bending stress acts on the resin multilayer substrate 2 can be reduced. Therefore, the composite substrate 3 and the resin multilayer substrate 2 can be reduced. Connection reliability can be improved.
 ピン形状の接続端子9の先端面が導体パターン7に接触することに加えて、複合基板3の外側面39に露出している接続端子9の外周面がキャビティ22の内側面26に露出している側面電極29に接触することで、複合基板3のコア基板31と配線8とが電気的に接続されている。このとき、側面電極29に半田を塗布した複合基板3をキャビティ22内に挿入して、側面電極29を配線8に接触させ、その状態で半田を溶かしその後冷却することにより、側面電極29が配線8に半田を介して金属間接合される。このようにして側面電極29と配線8とを固定すれば、複合基板3がキャビティ22から抜けることを抑制できる。一方、側面電極29と配線8とを物理接触による電気的接続を行なうことで、樹脂多層基板2に対し複合基板3が着脱可能となる。 In addition to the tip end surface of the pin-shaped connection terminal 9 contacting the conductor pattern 7, the outer peripheral surface of the connection terminal 9 exposed on the outer surface 39 of the composite substrate 3 is exposed on the inner surface 26 of the cavity 22. The core substrate 31 of the composite substrate 3 and the wiring 8 are electrically connected by contacting the side electrode 29 that is present. At this time, the composite substrate 3 having the solder applied to the side electrode 29 is inserted into the cavity 22, the side electrode 29 is brought into contact with the wiring 8, the solder is melted in this state, and then cooled, so that the side electrode 29 The metal is joined to 8 via solder. If the side electrode 29 and the wiring 8 are fixed in this way, the composite substrate 3 can be prevented from coming out of the cavity 22. On the other hand, the composite substrate 3 can be attached to and detached from the resin multilayer substrate 2 by electrically connecting the side electrode 29 and the wiring 8 by physical contact.
 接続端子9の先端面と比較して、樹脂多層基板2の厚み方向に延びる側面電極29は、樹脂多層基板2の折り曲げやひねりによる応力の影響を受けにくい。そのため、接続端子9の先端面に加えて側面も利用して接合することにより、複合基板3と樹脂多層基板2との接合強度を向上することができ、複合基板3と樹脂多層基板2との接続信頼性を向上することができる。複合基板3が樹脂多層基板2に実装されている状態で、複合基板3と樹脂多層基板2とを電気的に接続する電極は外部に露出していない。その結果、当該電極が静電気放電を直接受けることを防止できるので、部品内蔵樹脂多層基板101の耐静電気性を向上することができる。 Compared with the front end face of the connection terminal 9, the side electrode 29 extending in the thickness direction of the resin multilayer substrate 2 is less susceptible to the stress caused by bending or twisting of the resin multilayer substrate 2. Therefore, the bonding strength between the composite substrate 3 and the resin multilayer substrate 2 can be improved by bonding using the side surface in addition to the front end surface of the connection terminal 9. Connection reliability can be improved. In a state where the composite substrate 3 is mounted on the resin multilayer substrate 2, the electrodes that electrically connect the composite substrate 3 and the resin multilayer substrate 2 are not exposed to the outside. As a result, since the electrode can be prevented from being directly subjected to electrostatic discharge, the electrostatic resistance of the component-embedded resin multilayer substrate 101 can be improved.
 また、本実施の形態では、側面電極29は、樹脂多層基板2を構成する樹脂層21の厚み方向に延在するビア導体6により形成されている。この構成を採用することにより、側面電極29の形成にあたって複雑な作業工程を必要とせず、側面電極29を容易に形成することができる。 In the present embodiment, the side electrode 29 is formed by the via conductor 6 extending in the thickness direction of the resin layer 21 constituting the resin multilayer substrate 2. By adopting this configuration, the side electrode 29 can be easily formed without the need for complicated work steps in forming the side electrode 29.
 また、本実施の形態では、複合基板3は、コア基板31の対向面37側に搭載された部品32と、コア基板31の裏面38側に搭載された第2の部品34を含む。この構成を採用することにより、コア基板31の両面に部品が搭載された複合基板3が樹脂多層基板2に実装されるので、樹脂多層基板2への部品の実装密度をより高めることができる。 In the present embodiment, the composite substrate 3 includes a component 32 mounted on the facing surface 37 side of the core substrate 31 and a second component 34 mounted on the back surface 38 side of the core substrate 31. By adopting this configuration, the composite substrate 3 having components mounted on both sides of the core substrate 31 is mounted on the resin multilayer substrate 2, so that the mounting density of components on the resin multilayer substrate 2 can be further increased.
 (製造方法)
 本実施の形態における部品内蔵樹脂多層基板101の製造方法は、厚み方向に貫通する複数の貫通孔が形成された孔空き樹脂シートを準備する工程と、樹脂シートと、他の樹脂シートとを積層圧着し、主表面4にキャビティ22の形成された樹脂多層基板2を形成する工程と、コア基板31とコア基板31に搭載された複数の部品32とを含む複合基板3を貫通孔に嵌入させて樹脂多層基板2に実装する工程とを備えている。図3~図15を参照して、本実施の形態における部品内蔵樹脂多層基板101の製造方法について、より詳細に説明する。
(Production method)
The method for manufacturing the component-embedded resin multilayer substrate 101 in the present embodiment includes a step of preparing a perforated resin sheet in which a plurality of through holes penetrating in the thickness direction are formed, a resin sheet, and another resin sheet are laminated. The composite substrate 3 including the step of forming the resin multilayer substrate 2 having the cavity 22 formed on the main surface 4 by pressure bonding and the core substrate 31 and the plurality of components 32 mounted on the core substrate 31 is inserted into the through hole. And mounting on the resin multilayer substrate 2. With reference to FIG. 3 to FIG. 15, the method for manufacturing the component-embedded resin multilayer substrate 101 in the present embodiment will be described in more detail.
 まず、図3に示すような導体箔付き樹脂シート12を用意する。導体箔付き樹脂シート12は、樹脂層21の片面に導体箔17が付着した構造のシートである。樹脂層21は、たとえば熱可塑性樹脂製である。熱可塑性樹脂は、たとえばLCP(液晶ポリマー)、PEEK(ポリエーテルエーテルケトン)、PEI(ポリエーテルイミド)、PPS(ポニフェニレンスルファイド)、熱可塑性PI(ポリイミド)などであってもよい。導体箔17の材料は、Cu、Ag、Al、SUS、Ni、Auであってもよく、これらの金属のうちから選択された2以上の異なる金属の合金であってもよい。導体箔17の厚みは、2μm以上50μm以下程度の回路形成が可能な厚みであればよく、たとえば導体箔17は厚さ18μmの箔であってもよい。導体箔17は、たとえば表面粗さRzが3μmとなるように表面が形成されている。 First, a resin sheet 12 with a conductive foil as shown in FIG. 3 is prepared. The resin sheet with conductor foil 12 is a sheet having a structure in which the conductor foil 17 is attached to one surface of the resin layer 21. The resin layer 21 is made of, for example, a thermoplastic resin. The thermoplastic resin may be, for example, LCP (liquid crystal polymer), PEEK (polyether ether ketone), PEI (polyether imide), PPS (poniphenylene sulfide), thermoplastic PI (polyimide), and the like. The material of the conductor foil 17 may be Cu, Ag, Al, SUS, Ni, Au, or may be an alloy of two or more different metals selected from these metals. The thickness of the conductor foil 17 may be any thickness that allows circuit formation of about 2 μm to 50 μm. For example, the conductor foil 17 may be a foil having a thickness of 18 μm. The surface of the conductive foil 17 is formed so that the surface roughness Rz is 3 μm, for example.
 複数枚の短冊状の導体箔付き樹脂シート12を用意してから以下の導体パターンの形成作業などを進めてもよいが、他の方法として、大判の1枚の導体箔付き樹脂シート12の中に、のちに複数の樹脂シートとして個別に切り出されるべき短冊状の領域が設定されたものを用意して、大判サイズのまま以下の導体パターンなどの形成作業を進め、その後に短冊状に切り出してもよい。ここでは、既に短冊状の導体箔付き樹脂シート12に切り出されているものとして説明を続ける。 After preparing a plurality of strip-shaped resin sheets 12 with conductor foil, the following conductor pattern forming operation may proceed. However, as another method, Next, prepare a plurality of resin sheets with strip-shaped areas that should be cut out individually, proceed with the formation work of the following conductor patterns etc. in large size, and then cut into strips Also good. Here, the description will be continued assuming that the strip-shaped resin sheet 12 with conductive foil has already been cut out.
 次に、図4に示すように、導体箔付き樹脂シート12の導体箔17が付着する面とは反対側の樹脂層21側の表面に炭酸ガスレーザ光を照射することによって、樹脂層21を貫通するようにビア孔11を形成する。ビア孔11は、樹脂層21を貫通しているが導体箔17は貫通していない。その後、必要に応じて、過マンガン酸などの薬液処理によりビア孔11のスミアを除去する。ビア孔11を形成するために炭酸ガスレーザ光と異なる種類のレーザ光を用いてもよい。ただし、樹脂層21は貫通するが導体箔17は貫通しないレーザ光を用いることが好ましい。また、ビア孔11を形成するために、たとえばパンチ加工などの、レーザ光照射以外の方法を採用してもよい。 Next, as shown in FIG. 4, the resin layer 21 is penetrated by irradiating the surface of the resin layer 21 side opposite to the surface to which the conductor foil 17 of the resin sheet 12 with conductor foil adheres with a carbon dioxide laser beam. The via hole 11 is formed as described above. The via hole 11 penetrates the resin layer 21 but does not penetrate the conductor foil 17. Thereafter, the smear in the via hole 11 is removed by chemical treatment such as permanganic acid as necessary. In order to form the via hole 11, a laser beam of a different type from the carbon dioxide laser beam may be used. However, it is preferable to use laser light that penetrates the resin layer 21 but does not penetrate the conductor foil 17. Further, in order to form the via hole 11, a method other than laser beam irradiation, such as punching, may be employed.
 次に、図5に示すように、導体箔付き樹脂シート12の導体箔17の表面に、スクリーン印刷などの方法で、所望の回路パターンに対応するレジストパターン13を印刷する。次に、レジストパターン13をマスクとしてエッチングを行ない、図6に示すように、導体箔17のうちレジストパターン13で被覆されていない部分を除去する。導体箔17のうちエッチングの後に残った部分が導体パターン7となる。その後、洗浄液などを用いて、レジストパターンを除去する。 Next, as shown in FIG. 5, a resist pattern 13 corresponding to a desired circuit pattern is printed on the surface of the conductor foil 17 of the resin sheet 12 with a conductor foil by a method such as screen printing. Next, etching is performed using the resist pattern 13 as a mask, and as shown in FIG. 6, the portion of the conductor foil 17 that is not covered with the resist pattern 13 is removed. A portion of the conductor foil 17 remaining after the etching becomes the conductor pattern 7. Thereafter, the resist pattern is removed using a cleaning solution or the like.
 このようにして、樹脂層21を厚み方向に貫通するビア孔11が複数形成されており、かつ樹脂層21の一方の表面に所望の導体パターン7が形成されて、図7に示す孔空き樹脂シートが得られる。なお、ビア孔11の形成と導体パターン7の形成との順序は、上述した順序に限定されず、導体パターン7を形成した後にビア孔11を形成する順序としてもよい。 In this way, a plurality of via holes 11 penetrating through the resin layer 21 in the thickness direction are formed, and a desired conductor pattern 7 is formed on one surface of the resin layer 21, so that the perforated resin shown in FIG. A sheet is obtained. Note that the order of forming the via hole 11 and the conductor pattern 7 is not limited to the order described above, and may be the order in which the via hole 11 is formed after the conductor pattern 7 is formed.
 次に、樹脂層21に形成されたビア孔11に、スクリーン印刷などにより導電性ペーストを充填する。スクリーン印刷は、ビア孔11の両側の開口のうち、導体パターン7が配置されていない側の面、すなわち図7における下側の面から行なわれる。実際には、スクリーン印刷を行なう際には、孔空き樹脂シートの姿勢を適宜変えてもよい。充填する導電性ペーストは、のちに積層した樹脂層21を熱圧着する際の温度において導体パターン7の材料である金属との間で合金層を形成するような、金属粉を適量含むものであることが好ましい。この導電性ペーストは、Ag,Cu,Niのうち少なくとも1種類と、Sn,Bi,Znのうち少なくとも1種類とを含むことが好ましい。 Next, a conductive paste is filled into the via hole 11 formed in the resin layer 21 by screen printing or the like. Screen printing is performed from the surface on the side where the conductor pattern 7 is not disposed, that is, the lower surface in FIG. Actually, when performing screen printing, the orientation of the perforated resin sheet may be appropriately changed. The conductive paste to be filled may contain an appropriate amount of metal powder that forms an alloy layer with the metal that is the material of the conductor pattern 7 at the temperature when the laminated resin layer 21 is thermocompression bonded later. preferable. This conductive paste preferably contains at least one of Ag, Cu, and Ni and at least one of Sn, Bi, and Zn.
 こうして導電性ペーストを充填したことにより、孔空き樹脂シートの貫通孔にビア導体6が挿入され、樹脂層21を厚み方向に貫通するビア導体6が形成された図8に示す構成が得られる。 By filling the conductive paste in this manner, the configuration shown in FIG. 8 is obtained in which the via conductor 6 is inserted into the through hole of the perforated resin sheet and the via conductor 6 penetrating the resin layer 21 in the thickness direction is formed.
 ここまで、ある1枚の樹脂層21における処理を例にとって説明したが、他の樹脂層21においても、同様に処理を行なって所望の領域に導体パターン7を適宜形成し、必要に応じてビア導体6を形成する。 Up to this point, the processing in one resin layer 21 has been described as an example. However, in the other resin layers 21 as well, the same processing is performed to appropriately form a conductor pattern 7 in a desired region, and vias are provided as necessary. A conductor 6 is formed.
 次に、図9に示すように、樹脂層21に対してパンチ加工により貫通孔14を形成する。貫通孔14を平面的に見れば、貫通孔14は複合基板3の投影面積に対応した面積を有している。貫通孔14を形成するためのパンチ加工の際、パンチ加工用の金型と樹脂層21とは、樹脂層21の厚み方向に沿う方向に相対移動する。金型は、その周縁がビア導体6を通過するように樹脂層21に対して相対移動する。これにより、ビア導体6が一部削られるようにして樹脂層21が打ち抜かれて、貫通孔14が形成される。その結果、貫通孔14の内側面には、ビア導体6が露出している。 Next, as shown in FIG. 9, through holes 14 are formed in the resin layer 21 by punching. When the through hole 14 is viewed in plan, the through hole 14 has an area corresponding to the projected area of the composite substrate 3. At the time of punching for forming the through hole 14, the punching die and the resin layer 21 are relatively moved in a direction along the thickness direction of the resin layer 21. The mold moves relative to the resin layer 21 so that the periphery of the mold passes through the via conductor 6. As a result, the resin layer 21 is punched out so that the via conductor 6 is partially cut, and the through hole 14 is formed. As a result, the via conductor 6 is exposed on the inner surface of the through hole 14.
 次に、図9に示す孔空き樹脂シートと他の樹脂シートとを含む複数の樹脂層21を積層して、積層体を形成する。積層体を形成する複数の樹脂層は、貫通孔14が形成されている樹脂層と、貫通孔14が形成されていない樹脂層とを含んでいる。続いて、複数の樹脂層21の積層体に圧力および熱を加える。こうして、積層体に含まれていた複数の樹脂層21が互いに熱圧着し、その結果として、図10に示す樹脂多層基板2が形成される。積層体の上下面に離型材を重ね、そのさらに上下からプレス板で挟み込むことによって加熱および加圧してもよい。離型材を用いることによって、熱圧着後に得られる樹脂多層基板2をプレス板の間から取り出す作業を、円滑に行なうことができる。 Next, a plurality of resin layers 21 including the perforated resin sheet shown in FIG. 9 and another resin sheet are laminated to form a laminate. The plurality of resin layers forming the laminated body include a resin layer in which the through holes 14 are formed and a resin layer in which the through holes 14 are not formed. Subsequently, pressure and heat are applied to the laminate of the plurality of resin layers 21. In this way, the plurality of resin layers 21 included in the laminate are thermocompression bonded together, and as a result, the resin multilayer substrate 2 shown in FIG. 10 is formed. You may heat and pressurize by putting a release material on the upper and lower surfaces of a laminated body, and also inserting | pinching with the press board from the upper and lower sides. By using the release material, the work of taking out the resin multilayer substrate 2 obtained after thermocompression bonding from between the press plates can be performed smoothly.
 図10に示す樹脂多層基板2では、貫通孔14が形成されていない樹脂層21の上に、貫通孔14が形成された樹脂層21を2層重ねている。貫通孔14が2層分組み合わさることによって、キャビティ22が形成されている。樹脂層21に形成された貫通孔14が任意の層数分組み合わさることにより、任意の深さ(すなわち、樹脂多層基板2の厚み方向における主表面4と底面25との間の距離)を有するキャビティ22が形成される。 In the resin multilayer substrate 2 shown in FIG. 10, two resin layers 21 having through holes 14 are stacked on a resin layer 21 having no through holes 14 formed thereon. A cavity 22 is formed by combining two through holes 14. By combining the through holes 14 formed in the resin layer 21 by an arbitrary number of layers, the resin layer 21 has an arbitrary depth (that is, a distance between the main surface 4 and the bottom surface 25 in the thickness direction of the resin multilayer substrate 2). A cavity 22 is formed.
 樹脂多層基板2において、図9に示す孔空き樹脂シートは、キャビティ22を形成する2層分の樹脂層21のうち、樹脂多層基板2の主表面4から離れる側、すなわちキャビティ22の底面25に近い側に積層されている。これにより、キャビティ22の内側面26のうち、底面25に近接する側の一部に、配線8がキャビティ22の内側面26に露出する側面電極29が形成される。 In the resin multilayer substrate 2, the perforated resin sheet shown in FIG. 9 is on the side away from the main surface 4 of the resin multilayer substrate 2, that is, on the bottom surface 25 of the cavity 22, of the two resin layers 21 forming the cavity 22. Laminated on the near side. As a result, a side electrode 29 where the wiring 8 is exposed to the inner side surface 26 of the cavity 22 is formed on a part of the inner side surface 26 of the cavity 22 on the side close to the bottom surface 25.
 次に、複合基板3を準備する。複合基板3は以下の各工程によって製造される。まず、図11に示すように、ベース基板131を準備する。ベース基板131は、図11中に二点鎖線で示す切断線CLに沿って切断されることによりコア基板31となる複数の基板を切り出すことができる、集合基板である。ベース基板131は、表面137と裏面138とを有している。表面137は、コア基板31の対向面37に相当するベース基板131の一方の主表面である。裏面138は、コア基板31の裏面38に相当するベース基板131の他方の主表面である。ベース基板131は、樹脂やポリマー材料などを用いた、プリント基板(PCB)、低温同時焼成セラミックス(LTCC)、アルミナ系基板、ガラス基板、複合材料基板、単層基板、多層基板などで形成することができ、複合基板3の使用目的に応じて、適宜最適な材質を選択してベース基板131を形成すればよい。 Next, the composite substrate 3 is prepared. The composite substrate 3 is manufactured by the following steps. First, as shown in FIG. 11, a base substrate 131 is prepared. The base substrate 131 is a collective substrate that can cut out a plurality of substrates to be the core substrate 31 by being cut along a cutting line CL indicated by a two-dot chain line in FIG. The base substrate 131 has a front surface 137 and a back surface 138. The surface 137 is one main surface of the base substrate 131 corresponding to the facing surface 37 of the core substrate 31. The back surface 138 is the other main surface of the base substrate 131 corresponding to the back surface 38 of the core substrate 31. The base substrate 131 is formed of a printed circuit board (PCB), a low-temperature co-fired ceramic (LTCC), an alumina substrate, a glass substrate, a composite material substrate, a single layer substrate, a multilayer substrate, or the like using a resin or a polymer material. The base substrate 131 may be formed by selecting an optimal material as appropriate according to the purpose of use of the composite substrate 3.
 ベース基板131は、複数のセラミックグリーンシートが積層されて焼成された多層セラミック基板である。セラミックグリーンシートは、アルミナおよびガラスなどの混合粉末が有機バインダおよび溶剤などと一緒に混合されたスラリーがシート化されたものである。セラミックグリーンシートの所定位置に、レーザー加工などによりビアホールが形成され、形成されたビアホールにAgやCuなどを含む導体ペーストが充填されて層間接続用のビア導体が形成され、導体ペーストによる印刷により種々の電極パターンが形成される。その後、各セラミックグリーンシートが積層、圧着されることによりセラミック積層体が形成されて、セラミック積層体が約1000℃前後の低い温度で、所謂、低温焼成されることにより、ベース基板131が形成される。このように、ベース基板131には、内部配線、端子集合体および部品32が実装される実装用電極および外部接続用電極などの、種々の電極パターンが設けられている。 The base substrate 131 is a multilayer ceramic substrate in which a plurality of ceramic green sheets are laminated and fired. The ceramic green sheet is a sheet obtained by forming a slurry in which a mixed powder such as alumina and glass is mixed with an organic binder and a solvent. Via holes are formed at predetermined positions of the ceramic green sheet by laser processing, etc., and the via holes formed are filled with a conductor paste containing Ag, Cu, etc., and via conductors for interlayer connection are formed. The electrode pattern is formed. Thereafter, the ceramic green sheets are laminated and pressed to form a ceramic laminate, and the ceramic laminate is fired at a low temperature of about 1000 ° C. at a so-called low temperature to form the base substrate 131. The As described above, the base substrate 131 is provided with various electrode patterns such as mounting electrodes and external connection electrodes on which the internal wiring, the terminal assembly, and the component 32 are mounted.
 LTCC基板を用いてベース基板131を作成する場合、まずPETフィルム上にセラミックスラリーをコーティングした後、乾燥させ、厚み10~200μmのセラミックグリーンシートを作成する。作成したセラミックグリーンシートに金型、レーザ等により直径略0.1mmのビアホールをPETフィルム側から形成する。次に、銀又は銅を主成分とする金属粉、樹脂、有機溶剤を混練した電極ペーストをビアホール内に充填して乾燥させる。そして、セラミックグリーンシート上に同等の電極ペーストを所望のパターンにスクリーン印刷等し、乾燥させる。この状態で複数のセラミックグリーンシートを積み重ね、圧力100~1500kg/cm、温度40~100℃にて圧着する。その後、電極ペーストが銀を主成分とする場合には空気中で略850℃、銅を主成分とする場合には窒素雰囲気中で略950℃にて焼成し、電極にNi/Sn又はNi/Au等を湿式メッキ等で成膜することで、ベース基板131を作成する。 When the base substrate 131 is formed using the LTCC substrate, first, a ceramic slurry is coated on a PET film and then dried to form a ceramic green sheet having a thickness of 10 to 200 μm. A via hole having a diameter of about 0.1 mm is formed on the prepared ceramic green sheet from the PET film side by a mold, a laser, or the like. Next, an electrode paste kneaded with metal powder containing silver or copper as a main component, resin, and organic solvent is filled in the via hole and dried. Then, an equivalent electrode paste is screen-printed in a desired pattern on the ceramic green sheet and dried. In this state, a plurality of ceramic green sheets are stacked and pressure-bonded at a pressure of 100-1500 kg / cm 2 and a temperature of 40-100 ° C. Thereafter, when the electrode paste is mainly composed of silver, the electrode paste is fired at about 850 ° C. in air, and when copper is the main component, it is fired at about 950 ° C. in a nitrogen atmosphere. A base substrate 131 is formed by depositing Au or the like by wet plating or the like.
 次に、ベース基板131の表面電極のうち、所望の表面電極上に半田132を印刷する。本実施の形態の場合、図11に示すように、複数の部品32を実装すべき位置に半田132を印刷するとともに、切断線CLの両側にまたがるように半田132を印刷する。 Next, solder 132 is printed on a desired surface electrode among the surface electrodes of the base substrate 131. In the case of the present embodiment, as shown in FIG. 11, the solder 132 is printed at a position where a plurality of components 32 are to be mounted, and the solder 132 is printed so as to straddle both sides of the cutting line CL.
 次に、図12に示すように、各種のチップ部品、集積回路または半導体素子などの電子部品である複数の部品32を、ベース基板131の一方主面である表面137の半田132が印刷されている表面電極上に実装する。同様に、電子部品である第2の部品34が、ベース基板131の他方主面である裏面138の所定位置に、接合部材35を用いて実装される。 Next, as shown in FIG. 12, a plurality of components 32 that are electronic components such as various chip components, integrated circuits, or semiconductor elements are printed on the solder 132 on the surface 137 that is one main surface of the base substrate 131. Mount on the surface electrode. Similarly, the second component 34, which is an electronic component, is mounted at a predetermined position on the back surface 138, which is the other main surface of the base substrate 131, using the bonding member 35.
 表面137にはさらに、複数の端子接続基板109が実装される。端子接続基板109は、表面137に実装されている複数の部品32と接触しない位置において、ベース基板131の表面電極上に実装される。例えば、図12に示すように、ベース基板131の外周辺の対向する二辺に端子接続基板109を配置してもよいし、ベース基板131の外周辺の四辺に端子接続基板109を配置してもよい。 A plurality of terminal connection substrates 109 are further mounted on the surface 137. The terminal connection substrate 109 is mounted on the surface electrode of the base substrate 131 at a position where it does not come into contact with the plurality of components 32 mounted on the surface 137. For example, as shown in FIG. 12, the terminal connection substrate 109 may be arranged on two opposite sides of the outer periphery of the base substrate 131, or the terminal connection substrate 109 may be arranged on the four sides of the outer periphery of the base substrate 131. Also good.
 端子接続基板109は、所定の厚みを有する銅箔により形成されている。端子接続基板109が表面137から突出する高さが、部品32が表面137から突出する高さよりも大きくなるように、端子接続基板109の厚みが決定されている。銅箔は、純銅製であってもよく、または銅に0.1%~20%の割合で鉄が混合された合金、リン青銅、黄銅などの銅合金製であってもよい。銅合金は純銅と比較して加工性が高いので、後のダイサーによる分断時および上面研磨時に、バリ、延びなどが発生しにくい利点を有している。なお、端子接続基板109は、Au、AgまたはAlなどのその他の金属導体により形成されてもよい。 The terminal connection substrate 109 is formed of a copper foil having a predetermined thickness. The thickness of the terminal connection substrate 109 is determined so that the height at which the terminal connection substrate 109 protrudes from the surface 137 is larger than the height at which the component 32 protrudes from the surface 137. The copper foil may be made of pure copper, or may be made of a copper alloy such as an alloy in which iron is mixed with copper at a ratio of 0.1% to 20%, phosphor bronze, brass or the like. Since copper alloy has higher workability than pure copper, it has the advantage that burrs and elongation are less likely to occur during subsequent cutting with a dicer and polishing of the upper surface. Note that the terminal connection substrate 109 may be formed of another metal conductor such as Au, Ag, or Al.
 部品32、第2の部品34および端子接続基板109は、半田リフローの他、超音波振動接合などの一般的な表面実装技術により実装されてもよい。 The component 32, the second component 34, and the terminal connection substrate 109 may be mounted by a general surface mounting technique such as ultrasonic vibration bonding in addition to solder reflow.
 続いて、ダイサーを用いて、切断線CLに沿ってベース基板131を分断する。この分断により、端子接続基板109も同時に分断される。このようにしてベース基板131が個片化され、コア基板31が形成される。コア基板31は対向面37および裏面38を有しており、対向面37に複数の部品32および接続端子9が搭載されているとともに、裏面38に第2の部品34が搭載されている。端子接続基板109が切断線CLを跨ぐように配置されているので、ダイサーによる分断後、図13、14に示すように、接続端子9が側面に露出している構成が得られる。 Subsequently, the base substrate 131 is cut along the cutting line CL using a dicer. By this division, the terminal connection substrate 109 is also divided at the same time. In this way, the base substrate 131 is singulated and the core substrate 31 is formed. The core substrate 31 has a facing surface 37 and a back surface 38, a plurality of components 32 and connection terminals 9 are mounted on the facing surface 37, and a second component 34 is mounted on the back surface 38. Since the terminal connection substrate 109 is disposed so as to straddle the cutting line CL, a structure in which the connection terminal 9 is exposed to the side surface is obtained as shown in FIGS.
 続いて、コア基板31の対向面37および裏面38の両方に樹脂シートをラミネートする。これにより、対向面37に実装された部品32を封止する封止樹脂33と、裏面38に実装された第2の部品34を封止する封止樹脂36とを形成する。コア基板31の対向面37に封止樹脂33を充填し、コア基板31の対向面37に実装された部品32を封止樹脂33を用いて封止する。また、コア基板31の裏面38に封止樹脂36を充填し、コア基板31の裏面38に実装された第2の部品34を封止樹脂36を用いて封止する。 Subsequently, a resin sheet is laminated on both the facing surface 37 and the back surface 38 of the core substrate 31. Thereby, a sealing resin 33 for sealing the component 32 mounted on the opposing surface 37 and a sealing resin 36 for sealing the second component 34 mounted on the back surface 38 are formed. The facing surface 37 of the core substrate 31 is filled with the sealing resin 33, and the component 32 mounted on the facing surface 37 of the core substrate 31 is sealed with the sealing resin 33. In addition, the back surface 38 of the core substrate 31 is filled with the sealing resin 36, and the second component 34 mounted on the back surface 38 of the core substrate 31 is sealed with the sealing resin 36.
 樹脂シートは、エポキシ樹脂やフェノール樹脂、シアネート樹脂などの熱硬化性の樹脂に、酸化アルミニウムやシリカ(二酸化ケイ素)、二酸化チタンなどの無機フィラーが混合されて形成された複合樹脂により形成することができる。たとえば、PETフィルム上に複合樹脂を成型して半硬化させた樹脂シートを用いて封止樹脂33,36を形成する場合には、所望の厚みを有するスペーサ(型)が周囲に配置された状態のコア基板31に樹脂シートを被せ、樹脂の厚みがスペーサの厚みになるように樹脂シートを加熱プレスした後、コア基板31をオーブンにより加熱して樹脂を硬化させる。これにより、所望の厚みを有する封止樹脂33,36を形成することができる。 The resin sheet may be formed of a composite resin formed by mixing an inorganic filler such as aluminum oxide, silica (silicon dioxide), or titanium dioxide with a thermosetting resin such as an epoxy resin, a phenol resin, or a cyanate resin. it can. For example, when the sealing resins 33 and 36 are formed using a resin sheet obtained by molding a composite resin on a PET film and semi-cured, a spacer (mold) having a desired thickness is arranged around The core substrate 31 is covered with a resin sheet, and the resin sheet is heated and pressed so that the thickness of the resin becomes the thickness of the spacer, and then the core substrate 31 is heated in an oven to cure the resin. Thereby, the sealing resins 33 and 36 having a desired thickness can be formed.
 なお、封止樹脂33,36は、液状の樹脂を用いたポッティング技術やトランスファーモールド技術、コンプレッションモールド技術など、樹脂層を形成する一般的な成型技術を用いて形成すればよい。対向面37と裏面38との両方に樹脂シートを一括してラミネートして硬化させてもよいが、対向面37と裏面38とにそれぞれ別個に樹脂シートをラミネートして硬化させてもよい。 The sealing resins 33 and 36 may be formed using a general molding technique for forming a resin layer, such as a potting technique using a liquid resin, a transfer molding technique, or a compression molding technique. The resin sheets may be laminated and cured together on both the opposing surface 37 and the back surface 38, but the resin sheets may be laminated and cured separately on the opposing surface 37 and the back surface 38, respectively.
 封止樹脂33のコア基板31から離れる側の表面、すなわち、図15に示す封止樹脂33の上面を、ローラ型ブレード等を用いて研磨してもよい。これにより、複数の接続端子9の高さがばらついている場合であっても、硬化した封止樹脂33を研磨した結果として、封止樹脂33の天面から露出した複数の接続端子9の形状を略一致させることができる。 The surface of the sealing resin 33 on the side away from the core substrate 31, that is, the upper surface of the sealing resin 33 shown in FIG. 15 may be polished using a roller blade or the like. Thereby, even when the heights of the plurality of connection terminals 9 vary, the shape of the plurality of connection terminals 9 exposed from the top surface of the sealing resin 33 as a result of polishing the cured sealing resin 33. Can be substantially matched.
 上記した工程に従って、図15に示す複合基板3を個別に製造してもよいが、複数の複合基板3の集合体を形成した後に、個々の複合基板3に個片化することにより複合基板3を製造してもよい。 The composite substrates 3 shown in FIG. 15 may be individually manufactured according to the above-described steps. However, after forming an aggregate of a plurality of composite substrates 3, the composite substrates 3 are separated into individual composite substrates 3. May be manufactured.
 このようにして製造された複合基板3を、樹脂多層基板2の主表面4に実装する。樹脂多層基板2の主表面4にはキャビティ22が形成されており、キャビティ22の内側面26には側面電極29が露出している。一方、複合基板3の外側面39には、接続端子9が露出している。そのため、複合基板3をキャビティ22内に嵌入することにより、側面電極29と接続端子9とが面接触し、配線8とコア基板31とが電気的に接続される。その状態で半田を用いて複合基板3を樹脂多層基板2へ接合することにより、複合基板3の樹脂多層基板2への実装が完了し、図1に示す部品内蔵樹脂多層基板101が得られる。 The composite substrate 3 manufactured in this way is mounted on the main surface 4 of the resin multilayer substrate 2. A cavity 22 is formed on the main surface 4 of the resin multilayer substrate 2, and a side electrode 29 is exposed on the inner side surface 26 of the cavity 22. On the other hand, the connection terminals 9 are exposed on the outer surface 39 of the composite substrate 3. Therefore, by inserting the composite substrate 3 into the cavity 22, the side electrode 29 and the connection terminal 9 are in surface contact, and the wiring 8 and the core substrate 31 are electrically connected. In this state, the composite substrate 3 is bonded to the resin multilayer substrate 2 using solder, whereby the mounting of the composite substrate 3 on the resin multilayer substrate 2 is completed, and the component built-in resin multilayer substrate 101 shown in FIG. 1 is obtained.
 このようにして製造方法を実施することにより、複合基板3が一部キャビティ22内に収容されて厚みが低減した部品内蔵樹脂多層基板101を容易に得ることができる。樹脂多層基板2の柔軟性のために、樹脂多層基板2と複合基板3との密着性を向上させ、複合基板3の保持力を高めることができる。接続端子9の側面が側面電極29に接触することにより複合基板3と樹脂多層基板2とが電気的に接続されているので、複合基板3と樹脂多層基板2との接合強度を向上させて接続信頼性を向上できるとともに、部品内蔵樹脂多層基板101の耐静電気性を向上することができる。 By carrying out the manufacturing method in this way, it is possible to easily obtain the component built-in resin multilayer substrate 101 in which the composite substrate 3 is partially accommodated in the cavity 22 and the thickness is reduced. Due to the flexibility of the resin multilayer substrate 2, the adhesion between the resin multilayer substrate 2 and the composite substrate 3 can be improved, and the holding power of the composite substrate 3 can be increased. Since the composite substrate 3 and the resin multilayer substrate 2 are electrically connected when the side surface of the connection terminal 9 is in contact with the side electrode 29, the connection strength between the composite substrate 3 and the resin multilayer substrate 2 is improved. The reliability can be improved and the static electricity resistance of the component built-in resin multilayer substrate 101 can be improved.
 (実施の形態2)
 図16,17を参照して、本発明に基づく実施の形態2における部品内蔵樹脂多層基板101について説明する。実施の形態2の部品内蔵樹脂多層基板101では、コア基板31の全体が樹脂多層基板2の主表面4に形成されたキャビティ22内に収容されている。実施の形態2の部品内蔵樹脂多層基板101では、実施の形態1と比較して、複合基板3のうち樹脂多層基板2に内蔵されている部分がより増加している。この構成により、樹脂多層基板2による複合基板3の保持力をより向上することができる。
(Embodiment 2)
A component built-in resin multilayer substrate 101 according to the second embodiment of the present invention will be described with reference to FIGS. In the component built-in resin multilayer substrate 101 according to the second embodiment, the entire core substrate 31 is accommodated in a cavity 22 formed on the main surface 4 of the resin multilayer substrate 2. In the component-embedded resin multilayer substrate 101 according to the second embodiment, the number of portions of the composite substrate 3 that are embedded in the resin multilayer substrate 2 is increased as compared with the first embodiment. With this configuration, the holding power of the composite substrate 3 by the resin multilayer substrate 2 can be further improved.
 複合基板3の外側面39に露出する接続端子9は、樹脂多層基板2の内部に形成されたビア導体6に突き通されている。ビア導体6はAgを主成分とする導電性ペースト、Sn-Ag系合金を主成分とする導電性ペースト、ビスマスを主成分とする導電性ペースト、錫系はんだ材料または銅などの導電性材料により形成されている。ビア導体6の形成材料は加熱すれば柔らかくなるので、接続端子9の形成材料がビア導体6の形成材料に比較して相対的に硬くなる。そのため、リフロー温度程度に加熱した状態で、複合基板3をキャビティ22に挿入して接続端子9の先端面がビア導体6に接触した状態から、さらに複合基板3を樹脂多層基板2の内部へ向かって押し進めることにより、ビア導体6は容易に変形する。これにより、接続端子9がビア導体6に突き刺さった図16に示す構造が得られる。接続端子9の先端面が配線8に接触しているのに加えて、変形したビア導体6によって形成される側面電極29に接続端子9の外周面が接触している。これにより、接続端子9を介した配線8とコア基板31との電気的接続を、確実に形成することができる。 The connection terminals 9 exposed on the outer surface 39 of the composite substrate 3 are pierced by via conductors 6 formed inside the resin multilayer substrate 2. The via conductor 6 is made of a conductive paste mainly composed of Ag, a conductive paste mainly composed of Sn—Ag alloy, a conductive paste mainly composed of bismuth, a tin solder material, or a conductive material such as copper. Is formed. Since the formation material of the via conductor 6 becomes soft when heated, the formation material of the connection terminal 9 becomes relatively hard compared to the formation material of the via conductor 6. Therefore, from the state where the composite substrate 3 is inserted into the cavity 22 and the tip end surface of the connection terminal 9 is in contact with the via conductor 6 while being heated to about the reflow temperature, the composite substrate 3 is further directed into the resin multilayer substrate 2. The via conductor 6 is easily deformed by pushing it forward. Thus, the structure shown in FIG. 16 in which the connection terminal 9 is pierced into the via conductor 6 is obtained. In addition to the tip end surface of the connection terminal 9 being in contact with the wiring 8, the outer peripheral surface of the connection terminal 9 is in contact with the side electrode 29 formed by the deformed via conductor 6. Thereby, the electrical connection between the wiring 8 and the core substrate 31 via the connection terminal 9 can be reliably formed.
 図18,19を参照して、本発明に基づく実施の形態2における樹脂多層基板2の製造について説明する。図18には、実施の形態1と同様の工程を経てビア導体6が形成された樹脂層21を、平面的に見た状態が図示されている。図18中に示す二点鎖線は、樹脂層21がレーザ加工されることにより樹脂層21の一部が切断される切断線CLを示している。 Referring to FIGS. 18 and 19, the production of resin multilayer substrate 2 in the second embodiment based on the present invention will be described. FIG. 18 illustrates a state in which the resin layer 21 in which the via conductors 6 are formed through the same process as in the first embodiment is viewed in a plan view. A two-dot chain line shown in FIG. 18 indicates a cutting line CL where a part of the resin layer 21 is cut by the laser processing of the resin layer 21.
 樹脂層21の形成材料はビア導体6を形成する金属材料よりも溶けやすいため、切断線CLに沿って樹脂層21をレーザ加工すると、樹脂層21が溶けて形成されたキャビティ22内にビア導体6が残存した図19に示す構成が得られる。これにより、キャビティ22の内側面26に側面電極29が露出した構成が得られる。側面電極29は、平面的に見て、複合基板3に設けられている接続端子9に対応する位置に配置されている。したがって、上述した通り、複合基板3をキャビティ22に嵌入することで、確実に接続端子9を配線8と接続することができる。切断線CLに沿った樹脂層21のレーザ加工は、キャビティ22を構成するための貫通孔が形成されるべき複数の樹脂層21のみを積層した後に、行なわれてもよい。 Since the forming material of the resin layer 21 is easier to melt than the metal material forming the via conductor 6, when the resin layer 21 is laser processed along the cutting line CL, the via conductor is formed in the cavity 22 formed by melting the resin layer 21. The structure shown in FIG. 19 in which 6 remains is obtained. Thereby, a configuration in which the side electrode 29 is exposed on the inner side surface 26 of the cavity 22 is obtained. The side electrode 29 is disposed at a position corresponding to the connection terminal 9 provided on the composite substrate 3 in plan view. Therefore, as described above, the connection terminal 9 can be reliably connected to the wiring 8 by fitting the composite substrate 3 into the cavity 22. Laser processing of the resin layer 21 along the cutting line CL may be performed after laminating only the plurality of resin layers 21 in which through holes for forming the cavity 22 are to be formed.
 (実施の形態3)
 図20~22を参照して、本発明に基づく実施の形態3における部品内蔵樹脂多層基板101について説明する。実施の形態3の部品内蔵樹脂多層基板101では、樹脂多層基板2の主表面4は、第1主表面4aと、第1主表面4aとは反対側の第2主表面4bとを有している。樹脂多層基板2を構成する樹脂層21のうちの1つの層の主表面に、樹脂層21の面方向に延在する導体パターン7が形成されている。導体パターン7は、その一部がキャビティ22の内部に突出している。導体パターン7は、キャビティ22内に突出する端部7aを有している。側面電極29は、端部7aが第1主表面4aから離れ第2主表面4bに近づく側に曲がった導体パターン7により形成されている。側面電極29は、キャビティ22の内側面26から露出してキャビティ22の内部に配置されている。
(Embodiment 3)
A component built-in resin multilayer substrate 101 according to the third embodiment of the present invention will be described with reference to FIGS. In the component-embedded resin multilayer substrate 101 of the third embodiment, the main surface 4 of the resin multilayer substrate 2 has a first main surface 4a and a second main surface 4b opposite to the first main surface 4a. Yes. A conductor pattern 7 extending in the surface direction of the resin layer 21 is formed on the main surface of one of the resin layers 21 constituting the resin multilayer substrate 2. A part of the conductor pattern 7 protrudes into the cavity 22. The conductor pattern 7 has an end 7 a that protrudes into the cavity 22. The side electrode 29 is formed of a conductor pattern 7 whose end 7a is bent away from the first main surface 4a and closer to the second main surface 4b. The side electrode 29 is exposed from the inner side surface 26 of the cavity 22 and disposed inside the cavity 22.
 実施の形態3のキャビティ22は、平面的に見れば、複合基板3の投影面積よりもやや大きい面積を有している。図21に示す複合基板3が樹脂多層基板2に実装されていない状態で、導体パターン7は面方向に延在している。導体パターン7の端部7aは、キャビティ22の内側面26に対して、キャビティ22の内部側に突出している。図21には、図中左右両側に一対の導体パターン7の端部7aがキャビティ22内に突出している構成が図示されており、一対の端部7aは、平面的に見て各々複合基板3の投影に重なっている。 The cavity 22 of the third embodiment has an area that is slightly larger than the projected area of the composite substrate 3 in plan view. In a state where the composite substrate 3 shown in FIG. 21 is not mounted on the resin multilayer substrate 2, the conductor pattern 7 extends in the surface direction. The end 7 a of the conductor pattern 7 protrudes toward the inner side of the cavity 22 with respect to the inner side surface 26 of the cavity 22. FIG. 21 shows a configuration in which the end portions 7a of the pair of conductor patterns 7 protrude into the cavity 22 on both the left and right sides in the figure, and the pair of end portions 7a are respectively seen in plan view in the composite substrate 3. It overlaps with the projection.
 導体パターン7は、実施の形態1で説明した通り、導体箔によって形成されているので、容易に弾性変形可能である。図21に示す複合基板3がキャビティ22の外にある状態から、複合基板3がキャビティ22の内部に配置されるように複合基板3と樹脂多層基板2とを相対移動することにより、複合基板3は導体パターン7の端部7aに接触する。さらに複合基板3をキャビティ22内に押し込むことにより、複合基板3と接触した導体パターン7は、図22に示すように、端部7aが第1主表面4aから離れ第2主表面4bに近づく側に折れ曲がる。そして、複合基板3の樹脂多層基板2への実装が完了した図20に示す状態において、導体パターン7の端部7aは、接続端子9の外側面39に露出する面と電気的に接続しており、側面電極29を形成している。 Since the conductor pattern 7 is formed of conductor foil as described in the first embodiment, it can be easily elastically deformed. The composite substrate 3 and the resin multilayer substrate 2 are moved relative to each other so that the composite substrate 3 is disposed inside the cavity 22 from the state where the composite substrate 3 shown in FIG. Contacts the end 7 a of the conductor pattern 7. Further, by pushing the composite substrate 3 into the cavity 22, the conductor pattern 7 in contact with the composite substrate 3 is such that the end portion 7a is away from the first main surface 4a and approaches the second main surface 4b as shown in FIG. Bend to. Then, in the state shown in FIG. 20 where the mounting of the composite substrate 3 on the resin multilayer substrate 2 is completed, the end 7a of the conductor pattern 7 is electrically connected to the surface exposed to the outer surface 39 of the connection terminal 9. The side electrode 29 is formed.
 この構成を採用することで、接続端子9の先端面だけではなく側面も利用して樹脂多層基板2と複合基板3とが接合されるので、複合基板3と樹脂多層基板2との接合強度を向上することができる。複合基板3をキャビティ22から抜き取れば、側面電極29を形成する導体パターン7は、再び弾性変形して、図21に示す面方向に延在している形状に戻る。したがって、複合基板3を樹脂多層基板2に自在に着脱可能な部品内蔵樹脂多層基板101を提供することができる。 By adopting this configuration, since the resin multilayer substrate 2 and the composite substrate 3 are bonded using not only the front end surface but also the side surface of the connection terminal 9, the bonding strength between the composite substrate 3 and the resin multilayer substrate 2 is increased. Can be improved. When the composite substrate 3 is extracted from the cavity 22, the conductor pattern 7 forming the side electrode 29 is elastically deformed again and returns to the shape extending in the surface direction shown in FIG. Therefore, the component built-in resin multilayer substrate 101 in which the composite substrate 3 can be freely attached to and detached from the resin multilayer substrate 2 can be provided.
 (実施の形態4)
 図23を参照して、本発明に基づく実施の形態4における部品内蔵樹脂多層基板101について説明する。実施の形態3では、側面電極29を形成する導体パターン7は樹脂多層基板2の内部に配置されていたが、図23に示すように、実施の形態4の導体パターン7は、樹脂多層基板2の第1主表面4aに配置されている。この構成を採用することで、実施の形態3と同様に、複合基板3を樹脂多層基板2に対して自在に着脱可能とすることのできる、部品内蔵樹脂多層基板101を提供することができる。
(Embodiment 4)
With reference to FIG. 23, a component built-in resin multilayer substrate 101 according to the fourth embodiment of the present invention will be described. In the third embodiment, the conductor pattern 7 forming the side electrode 29 is disposed inside the resin multilayer substrate 2. However, as shown in FIG. 23, the conductor pattern 7 of the fourth embodiment is the resin multilayer substrate 2. Is arranged on the first main surface 4a. By adopting this configuration, it is possible to provide a component-embedded resin multilayer substrate 101 that can freely attach and detach the composite substrate 3 to and from the resin multilayer substrate 2 as in the third embodiment.
 (実施の形態5)
 図24を参照して、本発明に基づく実施の形態5における部品内蔵樹脂多層基板101について説明する。図24に示すように、実施の形態5の部品内蔵樹脂多層基板101では、導体パターン7の端部7aと導体パターン7に対し第2主表面4b側の樹脂層21とが、第1主表面4aから離れ第2主表面4bに近づく側に一体に折れ曲がっている。折れ曲げられた導体パターン7は、側面電極29を形成している。この構成を採用することで、実施の形態3と同様に、複合基板3を樹脂多層基板2に対して自在に着脱可能とすることのできる、部品内蔵樹脂多層基板101を提供することができる。キャビティ2内に突き出した導体パターン7の端部7aと樹脂層21とが一体で折れ曲がって側面電極29を形成する構成のため、側面電極29の強度を向上することができる。
(Embodiment 5)
With reference to FIG. 24, a component built-in resin multilayer substrate 101 according to the fifth embodiment of the present invention will be described. As shown in FIG. 24, in the component-embedded resin multilayer substrate 101 of the fifth embodiment, the end portion 7a of the conductor pattern 7 and the resin layer 21 on the second main surface 4b side with respect to the conductor pattern 7 are the first main surface. It is bent integrally on the side away from 4a and approaching the second main surface 4b. The bent conductor pattern 7 forms a side electrode 29. By adopting this configuration, it is possible to provide a component-embedded resin multilayer substrate 101 that can freely attach and detach the composite substrate 3 to and from the resin multilayer substrate 2 as in the third embodiment. Since the end portion 7a of the conductor pattern 7 protruding into the cavity 2 and the resin layer 21 are bent together to form the side electrode 29, the strength of the side electrode 29 can be improved.
 (実施の形態6)
 図25を参照して、本発明に基づく実施の形態6における部品内蔵樹脂多層基板101について説明する。実施の形態6では、樹脂多層基板2の主表面4は、第1主表面4aと、第1主表面4aとは反対側の第2主表面4bとを有している。複合基板3は、第1主表面4aと第2主表面4bとの両方に実装されている。主表面4の両側に実装されている複合基板3は、各々接続端子9がビア導体6に突き通されている。これにより、接続端子9の外周面が側面電極29に面接触するため、配線8とコア基板31との電気的接続が確実に形成されている。部品内蔵樹脂多層基板101を平面的に見て、図25中の上側の第1主表面4aに実装されている複合基板3と、図25中の下側の第2主表面4bに実装されている複合基板3とは、互いに重なって配置されている。
(Embodiment 6)
With reference to FIG. 25, a component built-in resin multilayer substrate 101 according to the sixth embodiment of the present invention will be described. In the sixth embodiment, the main surface 4 of the resin multilayer substrate 2 has a first main surface 4a and a second main surface 4b opposite to the first main surface 4a. The composite substrate 3 is mounted on both the first main surface 4a and the second main surface 4b. In the composite substrate 3 mounted on both sides of the main surface 4, each of the connection terminals 9 penetrates the via conductor 6. Thereby, since the outer peripheral surface of the connection terminal 9 is in surface contact with the side electrode 29, the electrical connection between the wiring 8 and the core substrate 31 is reliably formed. When viewing the component built-in resin multilayer substrate 101 in a plan view, the composite substrate 3 is mounted on the upper first main surface 4a in FIG. 25, and is mounted on the lower second main surface 4b in FIG. The composite substrate 3 is disposed so as to overlap each other.
 この構成を採用することにより、樹脂多層基板2の両主表面4に部品32が実装されるので、樹脂多層基板2への部品32の実装密度を高めることができる。したがって、部品内蔵樹脂多層基板101のサイズを小型化できる。また、一対の複合基板3が樹脂多層基板2を挟んだ構造が形成されているため、柔軟性を有している樹脂多層基板2に曲げ応力が作用するとき、樹脂多層基板2のうち複合基板3で挟まれた部分はより曲がりにくくなる。そのため、複合基板3に作用する曲げ応力をより低減できるので、複合基板3と樹脂多層基板2との接続安定性を一層向上することができる。 By adopting this configuration, the components 32 are mounted on both main surfaces 4 of the resin multilayer substrate 2, so that the mounting density of the components 32 on the resin multilayer substrate 2 can be increased. Therefore, the size of the component built-in resin multilayer substrate 101 can be reduced. In addition, since a structure in which the pair of composite substrates 3 sandwich the resin multilayer substrate 2 is formed, when a bending stress acts on the resin multilayer substrate 2 having flexibility, the composite substrate among the resin multilayer substrates 2 The portion sandwiched between 3 is more difficult to bend. Therefore, since the bending stress acting on the composite substrate 3 can be further reduced, the connection stability between the composite substrate 3 and the resin multilayer substrate 2 can be further improved.
 (実施の形態7)
 図26を参照して、本発明に基づく実施の形態7における部品内蔵樹脂多層基板101について説明する。実施の形態7では、実施の形態3,4で説明した樹脂多層基板2に対し着脱自在の複合基板3が、実施の形態6と同様に第1主表面4aと第2主表面4bとの両方に実装されている。これにより、樹脂多層基板2への部品32の実装密度を高めることができるので、部品内蔵樹脂多層基板101のサイズを小型化することができる。
(Embodiment 7)
With reference to FIG. 26, a component built-in resin multilayer substrate 101 according to the seventh embodiment of the present invention will be described. In the seventh embodiment, the composite substrate 3 that is detachable from the resin multilayer substrate 2 described in the third and fourth embodiments has both the first main surface 4a and the second main surface 4b as in the sixth embodiment. Has been implemented. Thereby, since the mounting density of the components 32 on the resin multilayer substrate 2 can be increased, the size of the component-embedded resin multilayer substrate 101 can be reduced.
 実施の形態7の部品内蔵樹脂多層基板101では、実施の形態6と同様に、部品内蔵樹脂多層基板101を平面視した場合に、第1主表面4aに実装された複合基板3と第2主表面4bに実装された複合基板3とが互いに重なって配置されている。複合基板3によって挟まれた樹脂多層基板2の変形を抑制する観点からは、樹脂多層基板2の厚み方向において一対の複合基板3がほぼ完全に重なった、実施の形態6の配置が最も好ましい。ただし、樹脂多層基板2の両側の複合基板3が樹脂多層基板2の厚み方向において一部重なった図26に示す配置であっても、樹脂多層基板2の変形量を低減して複合基板3に作用する応力を低減できる効果を、同様に得ることができる。 In the component-embedded resin multilayer substrate 101 of the seventh embodiment, as in the sixth embodiment, when the component-embedded resin multilayer substrate 101 is viewed in plan, the composite substrate 3 mounted on the first main surface 4a and the second main substrate 4a. The composite substrate 3 mounted on the surface 4b is disposed so as to overlap each other. From the viewpoint of suppressing deformation of the resin multilayer substrate 2 sandwiched between the composite substrates 3, the arrangement of the sixth embodiment in which the pair of composite substrates 3 almost completely overlap each other in the thickness direction of the resin multilayer substrate 2 is most preferable. However, even if the composite substrate 3 on both sides of the resin multilayer substrate 2 partially overlaps in the thickness direction of the resin multilayer substrate 2, the deformation amount of the resin multilayer substrate 2 is reduced and the composite substrate 3 is reduced. An effect of reducing the acting stress can be obtained similarly.
 なお、今回開示した上記実施の形態はすべての点で例示であって制限的なものではない。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更を含むものである。 It should be noted that the above-described embodiment disclosed herein is illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 2 樹脂多層基板、3 複合基板、4 主表面、4a 第1主表面、4b 第2主表面、6 ビア導体、7 導体パターン、7a 端部、8 配線、9 接続端子、21 樹脂層、22 キャビティ、25 底面、26 内側面、29 側面電極、31 コア基板、32 部品、33,36 封止樹脂、34 第2の部品、35 接合部材、37 対向面、38 裏面、39 外側面、101 部品内蔵樹脂多層基板。 2 resin multilayer substrate, 3 composite substrate, 4 main surface, 4a first main surface, 4b second main surface, 6 via conductor, 7 conductor pattern, 7a end, 8 wiring, 9 connection terminal, 21 resin layer, 22 cavity , 25 bottom surface, 26 inner surface, 29 side electrode, 31 core substrate, 32 components, 33, 36 sealing resin, 34 second component, 35 bonding member, 37 facing surface, 38 back surface, 39 outer surface, 101 component built-in Resin multilayer substrate.

Claims (5)

  1.  複数の樹脂層が積層されて形成され、主表面を有し、内部に配線が形成されており、前記主表面にキャビティが形成されている、樹脂多層基板と、
     前記キャビティ内に配置された複合基板とを備え、
     前記複合基板は、部品と、前記部品を搭載するコア基板と、前記部品を封止する封止樹脂と、前記配線と前記コア基板とを電気的に接続する接続端子とを含み、
     前記キャビティは、内側面を有し、
     前記配線は、前記内側面に露出する側面電極を含み、
     前記複合基板は、外側面を有し、
     前記接続端子は、前記外側面に露出し、前記側面電極と電気的に接続されている、部品内蔵樹脂多層基板。
    A plurality of resin layers are formed by laminating, having a main surface, wiring is formed inside, a resin multilayer substrate having a cavity formed in the main surface;
    A composite substrate disposed in the cavity,
    The composite substrate includes a component, a core substrate on which the component is mounted, a sealing resin that seals the component, and a connection terminal that electrically connects the wiring and the core substrate.
    The cavity has an inner surface;
    The wiring includes a side electrode exposed on the inner surface,
    The composite substrate has an outer surface;
    The connection terminal is exposed to the outer surface and is electrically connected to the side electrode.
  2.  前記配線は、前記樹脂層の厚み方向に延在するビア導体を含み、
     前記側面電極は前記ビア導体により形成されている、請求項1に記載の部品内蔵樹脂多層基板。
    The wiring includes a via conductor extending in the thickness direction of the resin layer,
    The component built-in resin multilayer board according to claim 1, wherein the side electrode is formed of the via conductor.
  3.  前記主表面は、第1主表面と、前記第1主表面とは反対側の第2主表面とを有し、
     前記配線は、前記樹脂層の面方向に延在する導体パターンを含み、前記導体パターンは前記キャビティ内に突出する端部を有し、
     前記側面電極は、前記端部が前記第1主表面から離れ前記第2主表面に近づく側に曲がった前記導体パターンにより形成されている、請求項1に記載の部品内蔵樹脂多層基板。
    The main surface has a first main surface and a second main surface opposite to the first main surface;
    The wiring includes a conductor pattern extending in a surface direction of the resin layer, and the conductor pattern has an end protruding into the cavity,
    2. The component-embedded resin multilayer substrate according to claim 1, wherein the side electrode is formed by the conductive pattern having the end bent from the first main surface and the second main surface.
  4.  前記主表面は、第1主表面と、前記第1主表面とは反対側の第2主表面とを有し、
     前記第1主表面と前記第2主表面との両方に前記複合基板が実装されている、請求項1から3のいずれかに記載の部品内蔵樹脂多層基板。
    The main surface has a first main surface and a second main surface opposite to the first main surface;
    4. The component built-in resin multilayer substrate according to claim 1, wherein the composite substrate is mounted on both the first main surface and the second main surface. 5.
  5.  複数の樹脂層が積層されて形成され、内部に配線が形成されており、主表面にキャビティが形成されている、樹脂多層基板であって、
     前記キャビティは、内側面を有し、
     前記配線は、前記内側面に露出する側面電極を含む、樹脂多層基板。
    A resin multi-layer substrate in which a plurality of resin layers are laminated, wiring is formed inside, and a cavity is formed on the main surface,
    The cavity has an inner surface;
    The said wiring is a resin multilayer substrate containing the side electrode exposed to the said inner surface.
PCT/JP2014/052664 2013-02-12 2014-02-05 Resin multi-layer substrate with built-in component, and resin multi-layer substrate WO2014125973A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015500201A JP6139653B2 (en) 2013-02-12 2014-02-05 Component built-in resin multilayer board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-024530 2013-02-12
JP2013024530 2013-02-12

Publications (1)

Publication Number Publication Date
WO2014125973A1 true WO2014125973A1 (en) 2014-08-21

Family

ID=51353980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052664 WO2014125973A1 (en) 2013-02-12 2014-02-05 Resin multi-layer substrate with built-in component, and resin multi-layer substrate

Country Status (2)

Country Link
JP (1) JP6139653B2 (en)
WO (1) WO2014125973A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014220428A (en) * 2013-05-09 2014-11-20 株式会社デンソー Multilayer wiring board and manufacturing method therefor
JP2016134593A (en) * 2015-01-22 2016-07-25 京セラ株式会社 Electronic component storing package, electronic device, and manufacturing method for electronic component storing package
JP2016136615A (en) * 2015-01-23 2016-07-28 サムソン エレクトロ−メカニックス カンパニーリミテッド. Printed circuit board with embedded electronic component and manufacturing method of the same
JP2020527702A (en) * 2017-07-09 2020-09-10 日本テキサス・インスツルメンツ合同会社 Test fixture with sintered connection between motherboard and daughterboard
WO2022102444A1 (en) * 2020-11-10 2022-05-19 株式会社村田製作所 Electronic component module, and method for manufacturing electronic component module
US11355427B2 (en) * 2016-07-01 2022-06-07 Intel Corporation Device, method and system for providing recessed interconnect structures of a substrate
US11448914B2 (en) 2019-10-31 2022-09-20 Canon Kabushiki Kaisha Method of manufacturing electronic module, method of manufacturing optical module, electronic module, optical module, and device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3709777A1 (en) * 2019-03-11 2020-09-16 AT & S Austria Technologie & Systemtechnik Aktiengesellschaft Solder-free component carrier connection using an elastic element, and method
CN114980481A (en) * 2021-05-06 2022-08-30 英诺赛科(苏州)科技有限公司 Printed circuit board suitable for implementing nitride-based semiconductor device, semiconductor module and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0750482A (en) * 1993-08-05 1995-02-21 Fujitsu Ltd Connecting method for printed board
JPH10321987A (en) * 1997-05-15 1998-12-04 Sony Corp Printed wiring board and manufacture thereof
JP2003045762A (en) * 2001-07-31 2003-02-14 Matsushita Electric Ind Co Ltd Circuit module
JP2005317908A (en) * 2004-03-31 2005-11-10 Alps Electric Co Ltd Board with built-in element and its manufacturing method
JP2008177506A (en) * 2007-01-22 2008-07-31 Fujifilm Corp Electronic component packaging method and electronic component packaging apparatus using same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000200977A (en) * 1998-10-26 2000-07-18 Taiyo Yuden Co Ltd Hybrid module
JP4501524B2 (en) * 2004-05-07 2010-07-14 株式会社村田製作所 Ceramic multilayer substrate and manufacturing method thereof
JP4765330B2 (en) * 2005-02-02 2011-09-07 株式会社村田製作所 MULTILAYER WIRING BOARD HAVING MULTILAYER ELECTRONIC COMPONENT AND METHOD FOR PRODUCING MULTILAYER WIRING BOARD

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0750482A (en) * 1993-08-05 1995-02-21 Fujitsu Ltd Connecting method for printed board
JPH10321987A (en) * 1997-05-15 1998-12-04 Sony Corp Printed wiring board and manufacture thereof
JP2003045762A (en) * 2001-07-31 2003-02-14 Matsushita Electric Ind Co Ltd Circuit module
JP2005317908A (en) * 2004-03-31 2005-11-10 Alps Electric Co Ltd Board with built-in element and its manufacturing method
JP2008177506A (en) * 2007-01-22 2008-07-31 Fujifilm Corp Electronic component packaging method and electronic component packaging apparatus using same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014220428A (en) * 2013-05-09 2014-11-20 株式会社デンソー Multilayer wiring board and manufacturing method therefor
JP2016134593A (en) * 2015-01-22 2016-07-25 京セラ株式会社 Electronic component storing package, electronic device, and manufacturing method for electronic component storing package
JP2016136615A (en) * 2015-01-23 2016-07-28 サムソン エレクトロ−メカニックス カンパニーリミテッド. Printed circuit board with embedded electronic component and manufacturing method of the same
US11355427B2 (en) * 2016-07-01 2022-06-07 Intel Corporation Device, method and system for providing recessed interconnect structures of a substrate
JP2020527702A (en) * 2017-07-09 2020-09-10 日本テキサス・インスツルメンツ合同会社 Test fixture with sintered connection between motherboard and daughterboard
JP7339237B2 (en) 2017-07-09 2023-09-05 テキサス インスツルメンツ インコーポレイテッド Test fixture with sintered connection between motherboard and daughterboard
US11448914B2 (en) 2019-10-31 2022-09-20 Canon Kabushiki Kaisha Method of manufacturing electronic module, method of manufacturing optical module, electronic module, optical module, and device
WO2022102444A1 (en) * 2020-11-10 2022-05-19 株式会社村田製作所 Electronic component module, and method for manufacturing electronic component module

Also Published As

Publication number Publication date
JP6139653B2 (en) 2017-05-31
JPWO2014125973A1 (en) 2017-02-02

Similar Documents

Publication Publication Date Title
JP6139653B2 (en) Component built-in resin multilayer board
JP6149920B2 (en) Rigid flexible substrate and manufacturing method thereof
JP4453702B2 (en) COMPOSITE ELECTRONIC COMPONENT AND MANUFACTURING METHOD THEREOF
JP5610064B2 (en) Component built-in resin substrate and manufacturing method thereof
JP5093353B2 (en) Manufacturing method of component built-in module and component built-in module
WO2012137548A1 (en) Multilayer substrate with integrated chip component and method for manufacturing same
TW201251556A (en) Printed circuit board and method for manufacturing the same
JP2014107552A (en) Multilayer printed circuit board and method of manufacturing the same
JP2007273654A (en) Flexible circuit board, method for manufacturing the same, and electronic component
JPWO2009037833A1 (en) Three-dimensional printed wiring board, method for manufacturing the same, and electronic component module
WO2012117872A1 (en) Resin substrate with built-in electronic component
JPWO2011148915A1 (en) Module substrate and manufacturing method thereof
JP2012064600A (en) Multilayer substrate and method of manufacturing the same
TW201429326A (en) Printed circuit board with burried element and method for manufacture same and package structure
JP2007335675A (en) Power supply and method for manufacturing power supply
JP4598140B2 (en) Component built-in wiring board, method of manufacturing component built-in wiring board
JP2010021368A (en) Wiring board with built-in component and manufacturing method thereof
JP2008182039A (en) Multilayer wiring board and its manufacturing method
JP2014157857A (en) Resin multilayer substrate with built-in component and method of manufacturing the same
JP2012089568A (en) Organic multilayer substrate and manufacturing method therefor
KR101109287B1 (en) Printed circuit board with electronic components embedded therein and method for fabricating the same
TWI477214B (en) Printed circuit board having buried component and method for manufacturing same
JP2005045228A (en) Circuit board with built-in electronic component and its manufacturing method
JP6387226B2 (en) Composite board
KR100797693B1 (en) Fabricating Method of Embedded Chip Printed Circuit Board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14752021

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015500201

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14752021

Country of ref document: EP

Kind code of ref document: A1