WO2014125840A1 - 方向性電磁鋼板の窒化処理方法および窒化処理装置 - Google Patents

方向性電磁鋼板の窒化処理方法および窒化処理装置 Download PDF

Info

Publication number
WO2014125840A1
WO2014125840A1 PCT/JP2014/000818 JP2014000818W WO2014125840A1 WO 2014125840 A1 WO2014125840 A1 WO 2014125840A1 JP 2014000818 W JP2014000818 W JP 2014000818W WO 2014125840 A1 WO2014125840 A1 WO 2014125840A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitriding
molten salt
salt bath
strip
grain
Prior art date
Application number
PCT/JP2014/000818
Other languages
English (en)
French (fr)
Other versions
WO2014125840A8 (ja
Inventor
松田 広志
高橋 秀行
山口 広
之啓 新垣
早川 康之
敬 寺島
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013029380A external-priority patent/JP5942887B2/ja
Priority claimed from JP2013029358A external-priority patent/JP5942885B2/ja
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to EP14750977.2A priority Critical patent/EP2957651B1/en
Priority to KR1020157024706A priority patent/KR101662971B1/ko
Priority to US14/764,650 priority patent/US10214793B2/en
Priority to RU2015139583A priority patent/RU2620403C2/ru
Priority to CN201480009184.6A priority patent/CN104995327B/zh
Publication of WO2014125840A1 publication Critical patent/WO2014125840A1/ja
Publication of WO2014125840A8 publication Critical patent/WO2014125840A8/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
    • C23C8/42Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions only one element being applied
    • C23C8/48Nitriding
    • C23C8/50Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes
    • C25D9/10Electrolytic coating other than with metals with inorganic materials by cathodic processes on iron or steel

Definitions

  • the present invention relates to a nitriding treatment method and a nitriding apparatus for a grain-oriented electrical steel sheet suitable for nitriding a grain-oriented electrical steel sheet.
  • Oriented electrical steel sheet is a soft magnetic material used as an iron core material for transformers and generators, and is required to have excellent magnetization characteristics, particularly low iron loss.
  • This steel sheet has a texture in which the ⁇ 001> direction, which is the easy axis of iron, is highly aligned in the rolling direction of the steel sheet.
  • Such a texture is preferentially large in the grain of (110) [001] orientation called the Goss orientation during the secondary recrystallization annealing during the manufacturing process of the grain-oriented electrical steel sheet. It is formed through so-called secondary recrystallization.
  • such grain-oriented electrical steel sheets were heated to 1300 ° C. or higher by heating a slab containing 4.5 mass% or less of Si and an inhibitor component such as MnS, MnSe, or AlN to temporarily dissolve the inhibitor component.
  • the final sheet thickness is obtained by one or more cold rollings sandwiching intermediate annealing, followed by primary recrystallization annealing in a wet hydrogen atmosphere
  • an annealing separator mainly composed of magnesia (MgO) the final recrystallization and inhibitor components are purified at 1200 ° C. for about 5 hours. It has been manufactured by performing finish annealing (for example, Patent Document 1, Patent Document 2, and Patent Document 3).
  • the high-temperature heating of the slab not only increases the equipment cost for realizing the heating, but also increases the amount of scale generated during hot rolling, thereby reducing the yield and further complicating the maintenance of the equipment. Therefore, there has been a problem that it has not been possible to meet the recent demands for reducing manufacturing costs.
  • the inhibitor is strengthened and stabilized after the primary recrystallization annealing and before the completion of the secondary recrystallization even if the inhibitor component is not included in the slab.
  • a technique (Patent Document 5) that can cause secondary recrystallization and a technique (Patent Document 6) that installs a reduction zone to give a reduction action to the oxide layer on the steel sheet surface before the nitriding zone are proposed. ing.
  • Patent Document 7 a method of adjusting the nitriding gas supplied by a nozzle or spray by dividing the steel plate at the center and both ends of the steel plate has been proposed. 7).
  • Patent Document 4 the amount of vulcanization in the coil changes due to temperature and atmosphere unevenness when the coil is heated, resulting in a difference in secondary recrystallization behavior. Variations may occur. Further, since the techniques disclosed in Patent Documents 5 to 7 are methods for nitriding by spraying a nitriding gas onto a steel sheet, nitriding in a pipe due to temporal and positional non-uniformity in the furnace temperature or heat. Depending on the amount of decomposition of the reactive gas, the amount of increase in nitriding may differ depending on the portion of the strip, resulting in non-uniform secondary recrystallization and deterioration of magnetic properties.
  • the present invention was developed in view of the above situation, and in the production of grain-oriented electrical steel sheets, even when the slab does not contain an inhibitor component, an appropriate nitriding treatment is performed before secondary recrystallization,
  • the nitriding method of grain oriented electrical steel sheet which is extremely useful for obtaining excellent magnetic properties without variation by uniformly dispersing the inhibitor-forming elements over the entire length and width of the strip, is suitable for use in its implementation. It is intended to be provided with a device.
  • nitriding treatment using the molten salt is used in batch processing for surface layer curing of automobile parts and the like.
  • grain oriented electrical steel sheets require significantly less nitridation than the surface hardening of these parts, and the range of optimum nitridation is extremely narrow, so the immersion time must be controlled with high accuracy.
  • batch processing is inherently more advantageous, but in the case of grain-oriented electrical steel sheets, nitriding is continuously performed on strips with a total weight ranging from several tons to several tens of tons. There is a need.
  • the inventors have a problem when utilizing such a molten salt bath treatment for continuous strip processing, as a method that can easily and accurately cope with changes in necessary immersion time and plate passing speed, (3) A method of adjusting the moving distance of the strip in the molten salt bath by making the sink roll installed in the molten salt bath movable is advantageous. (4) Further, when nitriding is performed in molten salt, the amount of nitriding can be controlled by energization, and when this energization is used, the time required for nitriding can be shortened. Obtained knowledge. The present invention has been completed based on the above findings.
  • the gist configuration of the present invention is as follows. 1. A grain-oriented electrical steel sheet that continuously undergoes nitriding treatment by immersing the strip in a molten salt bath at the stage after cold rolling and before secondary recrystallization annealing during the production process of the grain-oriented electrical steel sheet Nitriding method.
  • a sink roll capable of vertical movement or horizontal movement is installed inside the molten salt bath, and the sink roll is moved to adjust a dipping time of the strip in the molten salt bath.
  • a method for nitriding a grain-oriented electrical steel sheet is installed inside the molten salt bath, and the sink roll is moved to adjust a dipping time of the strip in the molten salt bath.
  • a plurality of sink rolls that can move vertically or horizontally are arranged in the molten salt bath, and the direction in which the immersion distance of the strip in the molten salt bath can be changed by moving each sink roll. Nitriding equipment for heat-resistant electrical steel sheets.
  • a plurality of sink rolls that can move up and down or horizontally move in the molten salt bath, and a plurality of deflector rolls that can move up and down or horizontally move outside the molten salt bath.
  • a grain-oriented electrical steel sheet having a heating / temperature adjusting device a sink roll supporting a strip passing through the molten salt bath, and an electrode for applying a voltage to the strip passing through the molten salt bath Nitriding equipment.
  • the present invention it is possible to stably secure a uniform amount of nitriding in all strips while suppressing variations in nitriding treatment, so that excellent magnetic characteristics can be stably obtained over the entire length and width of the strip. Since it can respond simply and accurately to changes in the immersion time and the plate passing speed, its industrial utility value is extremely large. In particular, when the amount of nitriding is controlled by energization, the nitriding time that directly affects the production efficiency can be shortened.
  • the present invention will be specifically described.
  • the case where the nitriding treatment is performed by simply immersing the strip in the molten salt bath is the first embodiment, and the case where the nitriding treatment is performed by performing the electrolytic treatment while immersing the strip in the molten salt bath.
  • each embodiment will be described individually.
  • FIG. 1 shows an example of a nitriding apparatus suitable for use in the first embodiment.
  • reference numeral 1 is a molten salt bath
  • 2 is a container containing the molten salt bath
  • 3 is a sink roll
  • 4 is a heating / temperature adjusting device
  • 5 is a strip (steel plate).
  • a salt bath containing cyanate as a main component for example, a mixed salt bath of alkali cyanate, alkali cyanide and alkali carbonate, alkali cyanate and cyanuric, or the like.
  • a mixed salt bath of an acid alkali and an alkali carbonate is advantageously suitable, but is not limited to this, and any salt bath (electrolyte salt bath) capable of nitriding the strip can be used.
  • the molten salt bath 1 in the container 2 can be heated and maintained at a desired temperature by the heating / temperature adjusting device 4.
  • the installation position is not limited to this position, The appropriate position inside and outside of the container 2 is shown. It is sufficient to arrange as many as necessary.
  • the temperature of the molten salt bath is preferably about 400 to 700 ° C.
  • the immersion time is preferably about 5 to 1000 s.
  • the nitriding amount by the above nitriding treatment is preferably 50 ppm or more and 3000 ppm or less. This is because if the amount of nitriding is less than 50 ppm, the effect cannot be obtained sufficiently, while if it exceeds 3000 ppm, the amount of precipitation of silicon nitride or the like becomes excessive, and secondary recrystallization hardly occurs.
  • a preferable nitriding amount is in a range of 150 ppm to 1000 ppm.
  • the sink roll 3 immersed in the molten salt bath 1 is at least vertically movable or horizontally movable (up and down in FIG. 1) so that the strip 5 is immersed in the molten salt bath.
  • the distance and thus the immersion time can be adjusted. Therefore, when it is necessary to change the plate passing speed during plate passing, the immersion time is kept constant by adjusting the strip immersion distance by moving the sink roll appropriately in the vertical direction or horizontal direction. Even when it is necessary to change the immersion time for each strip, it can be easily handled.
  • the movement of the sink roll is not limited to the vertical direction or the horizontal direction, and may be moved in other directions such as an oblique direction.
  • FIG. 1 shows a case where one sink roll 3 is arranged in the molten salt bath 1, but a plurality of the sink rolls 3 can also be arranged in the molten salt bath as shown in FIGS.
  • the range in which the immersion time can be made constant can be expanded even when it is necessary to change the plate passing speed. Appropriate measures can be taken without increasing the length, and running costs can be reduced.
  • FIG. 4 shows the case where the sink roll 3 is disposed in the molten salt bath and the deflector roll 6 is disposed outside the molten salt bath.
  • the strip 5 is adjacent to the sink roll 3 in the molten salt bath.
  • the immersion time can also be adjusted by wrapping between the deflector rolls 6 outside the bath. In actual equipment, these methods may be appropriately selected and applied in accordance with the required immersion time and the adjustment amount.
  • FIG. 5 shows an example of a nitriding apparatus suitable for use in the implementation of the second embodiment.
  • reference numeral 1 is a molten salt bath
  • 2 is a container containing the molten salt bath 1
  • 3 is a sink roll
  • 4 is a heating / temperature adjusting device
  • 5 is a strip (steel plate)
  • 7 is a counter electrode.
  • the sink roll 3 is a semi-immersed roll 3 a in which the lower half of the roll is immersed in the molten salt bath 1 as illustrated.
  • the semi-immersed roll 3a also functions as an electrode roll that also serves as an electrode for applying a voltage to the strip.
  • a suitable molten salt bath is the same as that in the first embodiment.
  • the molten salt bath 1 in the container 2 is the same as in the first embodiment in that the molten salt bath 1 is heated and maintained at a desired temperature by the heating / temperature adjusting device 4.
  • the strip 5 is immersed in the molten salt bath 1 through the semi-immersed roll 3a, and between the semi-immersed roll 3a (electrode roll) and the counter electrode provided opposite to the semi-immersed roll 3a.
  • the surface of the strip 5 is nitrided under a stable plate and in a short time.
  • nitriding apparatus shown in FIG. 5 nitriding can be performed only on one side of the strip. Therefore, when nitriding is performed on both sides of the strip, another pair of nitriding apparatuses is required.
  • the temperature of the molten salt bath is preferably about 300 to 700 ° C. Particularly preferred is a range of 400 to 600 ° C.
  • the immersion time is preferably about 3 to 300 s. Particularly preferred is the range of 3 to 100 s.
  • the nitriding time can be shortened to about 1 ⁇ 2 compared to the case where such electrolytic treatment is not performed.
  • the nitriding amount by the nitriding treatment is preferably 50 ppm or more and 3000 ppm or less, as in the case described in the first embodiment.
  • the applied voltage that is, the current density is changed. Therefore, a simple and quick response is possible.
  • the current density during energization is preferably about 1 to 20 A / dm 2. Within this range, the current density is appropriately determined in consideration of the electrode life and nitriding efficiency. Adjust it.
  • FIG. 5 shows a case where the sink roll 3 is a semi-immersed roll 3a.
  • the sink roll 3 is a completely immersed roll 3b, and the sink roll 3 is introduced into and discharged from the molten salt via the fully immersed roll 3b.
  • a counter electrode 7 for applying a voltage is provided on both sides of the strip 5 and nitriding by electrolytic treatment is performed on both sides of the strip 5.
  • the complete immersion roll 3b also serves as an electrode roll.
  • the counter electrodes 7 are disposed on both sides of the strip 5, and both surfaces of the strip can be uniformly processed at a time, so that nitriding can be performed in a shorter time.
  • FIG. 7 shows that the power supply to the strip 5 is performed from the electrode roll 8 installed outside the molten salt bath.
  • the processing method and the processing apparatus of the present invention perform not only the nitriding treatment but also the carburizing / nitriding treatment or the sulfurizing / nitriding treatment. It can also be applied when applied.
  • the apparatus of the present invention may be an independent facility for continuously performing nitriding treatment or the like, but it may be attached to a process line for performing other treatments, and if it is a continuous line, an optimum location including efficiency is provided. It only has to be attached to.
  • the strip that is the material to be treated is not particularly limited, and any conventionally known strip can be used as long as it is a directional electromagnetic steel strip.
  • any conventionally known strip can be used as long as it is a directional electromagnetic steel strip.
  • limiting in particular about processes other than the nitriding process using a molten salt bath during the manufacturing process of a grain-oriented electrical steel strip All the conventionally well-known manufacturing processes can be applied.
  • Example 1 Continuously cast slabs for grain-oriented electrical steel sheets containing 3.3% by mass of Si are heated to slabs and then hot-rolled to a thickness of 2.5mm, then hot-rolled and annealed, and then cold-rolled to obtain thickness.
  • the nitriding amount was measured for each of the front and back surfaces of the strip after nitriding treatment thus obtained, and the difference in the nitriding amount between the front and back surfaces was investigated.
  • the nitriding amount was measured by chemical analysis after cutting out a 50 mm ⁇ 30 mm nitriding sample and grinding and polishing the opposite side of the measurement surface to the center of the plate thickness. The obtained results are also shown in Table 1.
  • the difference in nitriding amount on the front and back surfaces was very small as less than 7%, and as a result, the strip with little variation in nitriding amount was obtained. It can be seen that is obtained stably.
  • Example 2 Continuously cast slabs for grain-oriented electrical steel sheets containing 3.3% by mass of Si are heated to slabs and then hot-rolled to a thickness of 2.5mm, then hot-rolled and annealed, and then cold-rolled to obtain thickness.
  • the nitriding amount was measured for each of the front and back surfaces of the strip after nitriding treatment thus obtained, and the difference in the nitriding amount between the front and back surfaces was investigated.
  • the nitriding amount was measured by chemical analysis after cutting out a 50 mm ⁇ 30 mm nitriding sample and grinding and polishing the opposite side of the measurement surface to the center of the plate thickness. The obtained results are also shown in Table 2.
  • the difference in nitriding amount on the front and back surfaces was very small as less than 7%, and as a result, the strip with little variation in nitriding amount was obtained. It can be seen that is obtained stably.

Abstract

 方向性電磁鋼板の製造工程中、冷間圧延後、二次再結晶焼鈍前の段階において、ストリップを溶融塩浴に浸漬させることにより、該ストリップに対し連続的に窒化処理を施し、もってインヒビター形成元素をストリップの全長・全幅にわたって均一に分散させることにより、バラツキのない優れた磁気特性を得る上で極めて有用な方向性電磁鋼板の窒化処理方法を提供する。

Description

方向性電磁鋼板の窒化処理方法および窒化処理装置
 本発明は、方向性電磁鋼板に対して窒化処理を施すのに好適な方向性電磁鋼板の窒化処理方法および窒化処理装置に関するものである。
 方向性電磁鋼板は、変圧器や発電機の鉄心材料として用いられる軟磁性材料で、その磁化特性に優れていること、特に鉄損が低いことが求められている。この鋼板は、鉄の磁化容易軸である<001>方位が鋼板の圧延方向に高度に揃った集合組織を有している。そして、かような集合組織は、方向性電磁鋼板の製造工程中、二次再結晶焼鈍の際にゴス(Goss)方位と称される(110)〔001〕方位の結晶粒を優先的に巨大成長させる、いわゆる二次再結晶を通じて形成される。
 従来、このような方向性電磁鋼板は、4.5mass%以下のSiと、MnS,MnSe,AlNなどのインヒビター成分を含有するスラブを、1300℃以上に加熱して、インヒビター成分を一旦固溶させたのち、熱間圧延し、必要に応じて熱延板焼鈍を施したのち、1回または中間焼鈍を挟む2回以上の冷間圧延によって最終板厚とし、ついで湿潤水素雰囲気中で一次再結晶焼鈍を施して、一次再結晶および脱炭を行い、ついでマグネシア(MgO)を主剤とする焼鈍分離剤を塗布してから、二次再結晶およびインヒビター成分の純化のために1200℃で5h程度の最終仕上焼鈍を行うことによって製造されてきた(例えば、特許文献1、特許文献2、特許文献3)。
 しかしながら、スラブの高温加熱は、加熱を実現する上で設備コストが嵩むだけでなく、熱延時に生成するスケール量も増大するため歩留りが低下し、さらには設備のメンテナンスが煩雑になる等の問題があり、近年の製造コスト低減の要求に応えることができないという問題があった。
 このため、スラブにインヒビター成分を含有させずに二次再結晶を発現させる技術について、種々開発が進められてきた。例えば、スラブにインヒビター成分を含有させない場合であっても、一次再結晶焼鈍後、二次再結晶完了前に、地鉄中のS量を増加させることによって、安定して二次再結晶を発現させることができる技術(「増硫法」)が提案されている(特許文献4)。
 また、脱炭焼鈍の前または後に、ガス窒化を施すことにより、スラブにインヒビター成分を含有させない場合であっても、一次再結晶焼鈍後、二次再結晶完了前にインヒビターを強化し、安定して二次再結晶を発現させることができる技術(特許文献5)や、窒化ゾーンの前に鋼板表面の酸化層に還元作用を与えるための還元帯を設置する技術(特許文献6)が提案されている。
 さらに、このようなガス窒化工程においてストリップ全体にわたり均一に窒化するために、ノズルまたはスプレーで供給する窒化ガスを鋼板中央部と鋼板両端部で分割して調整する方法が提案されている(特許文献7)。
米国特許第1965559号明細書 特公昭40-15644号公報 特公昭51-13469号公報 特許4321120号公報 特許2771634号公報 特開平03-122227号公報 特許3940205号公報
 しかしながら、上掲した特許文献4に開示された技術では、コイル加熱時の温度や雰囲気ムラにより、コイル内での増硫量が変化して二次再結晶挙動に差が生じる結果、磁気特性にバラツキが生じる場合があった。
 また、特許文献5~7に開示された技術では、窒化性ガスを鋼板に吹付けて窒化する方法であるため、炉内温度の時間的・位置的な不均一や熱による配管中での窒化性ガスの分解量の違いなどにより、窒化増量がストリップの部所によって異なる場合があり、結果的に二次再結晶が不均一となり磁気特性の悪化につながる場合があった。
 本発明は、上記の現状に鑑み開発されたもので、方向性電磁鋼板の製造に際し、スラブにインヒビター成分を含有させない場合であっても、二次再結晶前に適切な窒化処理を施して、インヒビター形成元素をストリップの全長・全幅にわたって均一に分散させることにより、バラツキのない優れた磁気特性を得る上で極めて有用な方向性電磁鋼板の窒化処理方法を、その実施に用いて好適な窒化処理装置と共に提供することを目的とする。
 さて、発明者らは、上記の課題を解決すべく鋭意研究を重ねた。
 その結果、ストリップ(鋼板)に対して窒化を行う場合、
(1) 気相からの反応による窒素添加では、処理時の温度や表面の反応性などに大きく影響を受けるため、バラツキの発生が避けられない、
(2) この点、窒化処理自体を液相からの反応とする、具体的には溶融塩中で行うことにより、バラツキを生じさせる原因となる上述した因子の影響を最小限に止めることができ、その結果、優れた磁気特性が全ストリップ内で安定して得られる
との知見を得た。
 なお、この溶融塩を用いた窒化処理は、自動車部品などの表層硬化のためにバッチ処理で利用されている。しかしながら、方向性電磁鋼板は、それらの部品の表層硬化に比べて必要窒化量は著しく少なく、また最適窒化量の範囲は極めて狭いために、浸漬時間を高精度で制御する必要がある。
 浸漬時間の精密制御としては、本来、バッチ処理の方が有利であるが、方向性電磁鋼板の場合、窒化処理を、総重量が数トンから数十トンに及ぶストリップに対して連続的に行う必要がある。また、ストリップを連続して通板させる場合には、ストリップの厚さや必要窒化量によって窒化量を変更させたり、通板中に通板速度を変更させる必要が生じるため、それらに対する対応が必要となる。
 発明者らは、このような溶融塩浴処理を連続したストリップの処理に活用する場合に問題となる、必要浸漬時間や通板速度の変化に簡便かつ的確に対応することができる方法としては、
(3) 溶融塩浴の内部に設置するシンクロールを移動可能として、溶融塩浴中におけるストリップの移動距離を調整する方法が有利である、
(4) また、溶融塩中で窒化を行う場合は、通電よって窒化量を制御することができ、しかもこの通電を利用する場合には、窒化に要する時間の短縮化を図ることができる
との知見を得た。
 本発明は、上記の知見に基づいて完成されたものである。
 すなわち、本発明の要旨構成は次のとおりである。
1.方向性電磁鋼板の製造工程中、冷間圧延後、二次再結晶焼鈍前の段階において、ストリップを溶融塩浴に浸漬させることにより、該ストリップに対し連続的に窒化処理を施す方向性電磁鋼板の窒化処理方法。
2.前記溶融塩浴の内部に、上下移動または水平移動が可能なシンクロールを設置し、このシンクロールを移動させることにより、ストリップの溶融塩浴内における浸漬時間を調整可能とする前記1に記載の方向性電磁鋼板の窒化処理方法。
3.前記ストリップの溶融塩浴浸漬に際し、溶融塩浴の温度を400~700℃、浸漬時間を5~1000sとする前記1または2に記載の方向性電磁鋼板の窒化処理方法。
4.方向性電磁鋼板の製造工程中、冷間圧延後、二次再結晶焼鈍前の段階において、ストリップを、電解質の溶融塩浴に浸漬させつつ、該ストリップと対極との間に電圧を印加して電解処理することにより、該ストリップに対し連続的に窒化処理を施す方向性電磁鋼板の窒化処理方法。
5.前記電解処理における電流密度を変更することにより、ストリップに対する窒化量を調整する前記4に記載の方向性電磁鋼板の窒化処理方法。
6.前記ストリップの溶融塩浴浸漬に際し、溶融塩浴の温度を300~700℃、浸漬時間を3~300sとする前記4または5に記載の方向性電磁鋼板の窒化処理方法。
7.前記1乃至3のいずれかに記載の方向性電磁鋼板の窒化処理方法を実施するための装置であって、溶融塩浴を保持する容器と、溶融塩浴を加熱し所定の温度に保持するための加熱・温度調整装置と、溶融塩浴内を通板するストリップを支持するシンクロールを有する方向性電磁鋼板の窒化処理装置。
8.前記7において、溶融塩浴内に配置したシンクロールを上下移動または水平移動可能として、ストリップの溶融塩浴内における浸漬距離を変更可能とした方向性電磁鋼板の窒化処理装置。
9.前記7または8において、溶融塩浴内に上下移動または水平移動が可能なシンクロールを複数個配置し、各シンクロールを移動させることによりストリップの溶融塩浴内における浸漬距離を変更可能とした方向性電磁鋼板の窒化処理装置。
10.前記7乃至9のいずれかにおいて、溶融塩浴内に上下移動または水平移動が可能なシンクロールを複数個配置すると共に、溶融塩浴外にも上下移動または水平移動が可能なデフレクターロールを複数個配置し、ストリップをこれらシンクロールとデフレクターロール間を掛け回すことにより、溶融塩浴内における浸漬距離を変更可能とした方向性電磁鋼板の窒化処理装置。
11.前記4乃至6のいずれかに記載の方向性電磁鋼板の窒化処理方法を実施するための装置であって、溶融塩浴を保持する容器と、溶融塩浴を加熱し所定の温度に保持するための加熱・温度調整装置と、溶融塩浴内を通板するストリップを支持するシンクロールと、溶融塩浴内を通板するストリップに対して電圧を印加するための電極を有する方向性電磁鋼板の窒化処理装置。
12.前記11において、上記シンクロールを、ストリップに対して電圧を印加する電極を兼ねた電極ロールとし、これに対向させて溶融塩浴内に対極を設けた方向性電磁鋼板の窒化処理装置。
13.前記11において、ストリップに対して電圧を印加する対極を、溶融塩内を通板するストリップの両側に設置した方向性電磁鋼板の窒化処理装置。
14.前記13において、ストリップへの給電を溶融塩浴外に設置した電極ロールを介して行う方向性電磁鋼板の窒化処理装置。
 本発明によれば、窒化処理のバラツキを抑えて全ストリップ内で均一な窒化量を安定して確保できるので、優れた磁気特性をストリップの全長・全幅にわたり安定して得ることができ、また必要浸漬時間や通板速度の変化に対しても、簡便かつ的確に対応することができるので、その産業的利用価値は極めて大きい。
 また、とくに通電よって窒化量を制御する場合は、生産効率に直接影響する窒化時間の短縮も可能である。
第1の実施態様の実施に用いて好適な窒化処理装置の一例(シンクロール1個)を示した図である。 第1の実施態様の実施に用いて好適な窒化処理装置の別例(シンクロール3個)を示した図である。 第1の実施態様の実施に用いて好適な窒化処理装置の別例(シンクロール4個)を示した図である。 第1の実施態様の実施に用いて好適な窒化処理装置の別例(シンクロール2個とデフレクターロール2個)を示した図である。 第2の実施態様の実施に用いて好適な窒化処理装置の一例(シンクロールが半浸漬ロール)を示した図である。 第2の実施態様の実施に用いて好適な窒化処理装置の別例(シンクロールが完全浸漬ロール)を示した図である。 第2の実施態様の実施に用いて好適な窒化処理装置の別例(溶融塩浴外に電極ロールを配置)を示した図である。
 以下、本発明を具体的に説明する。
 本発明において、ストリップを溶融塩浴に単に浸漬させて窒化処理を施す場合を第1の実施態様と、またストリップを溶融塩浴に浸漬させつつ、電解処理を行って窒化処理を施す場合を第2の実施態様と呼ぶものとし、以下、各実施態様をそれぞれ個別に説明する。
第1の実施態様
 図1に、第1の実施態様の実施に用いて好適な窒化処理装置の一例を示す。図中、符号1は溶融塩浴、2は溶融塩浴1を収容した容器、3はシンクロール、4は加熱・温度調整装置、そして5がストリップ(鋼板)である。
 本発明において、溶融塩浴(電解質の溶融塩浴)としては、シアン酸塩を主成分とする塩浴、例えばシアン酸アルカリとシアン化アルカリと炭酸アルカリの混合塩浴や、シアン酸アルカリとシアヌル酸アルカリと炭酸アルカリの混合塩浴などが有利に適合するが、これだけに限るものではなく、ストリップに対して窒化が可能な塩浴(電解質の塩浴)であればいずれもが使用可能である。
 また、容器2内の溶融塩浴1は、加熱・温度調整装置4によって所望の温度に加熱・保持することができる。なお、図1では、加熱・温度調整装置を、容器2の外側底部に設置した例を示したが、その設置位置は、この位置に限定されるものではなく、容器2の内外の適切な位置に必要な数だけ配置すれば良い。
 そして、かかる溶融塩浴1内に、シンクロール3を介してストリップ5を浸漬させることによって、安定した通板の下でストリップ5の表面に対して窒化を施すのである。
 ここに、溶融塩浴の温度は400~700℃程度、また浸漬時間は5~1000s程度とするのが好ましい。
 さらに、上記の窒化処理による窒化量は、50ppm以上3000ppm以下とすることが好ましい。というのは、窒化量が50ppm未満では、その効果は十分に得られず、一方3000ppmを超えると窒化珪素などの析出量が過多となって二次再結晶が生じ難くなるからである。好ましい窒化量は150ppm以上1000ppm以下の範囲である。
 また、本実施態様では、溶融塩浴1内に浸漬して設けたシンクロール3を少なくとも上下移動または水平移動可能(図1では上下移動)とすることにより、ストリップ5の溶融塩浴内における浸漬距離、ひいては浸漬時間を調整することができる。
 従って、通板中に通板速度の変更が必要となった場合には、シンクロールを適宜、上下方向または水平方向に移動させて、ストリップの浸漬距離を調整することにより、浸漬時間を一定に保つことができ、またストリップ毎に浸漬時間を変更することが必要となった場合においても容易に対応が可能である。
 なお、シンクロールの移動は、上下方向または水平方向に限るものではなく、斜め方向などその他の方向に移動させてもよいことは言うまでもない。
 図1は、シンクロール3を溶融塩浴1内に一個配置した場合であるが、このシンクロール3は、図2や図3に示すように、溶融塩浴内に複数個配置することもでき、かかるシンクロール3を浴内で適宜移動させることにより、通板速度を変更させる必要が生じた場合においても浸漬時間を一定とすることが可能な範囲を拡大することができ、浸漬浴の大きさを拡大することなく適切な対応が可能となり、ランニングコストの抑制が可能となる。
 また、図4は、溶融塩浴内にシンクロール3を配置すると共に、溶融塩浴外にデフレクターロール6を配置した場合であり、ストリップ5を溶融塩浴内のシンクロール3と隣接する溶融塩浴外のデフレクターロール6間を掛け回すことによっても、浸漬時間の調整が可能である。
 実際の設備では、必要な浸漬時間やその調整量などに応じて、これらの手法を適宜選択して適用すればよい。
第2の実施態様
 図5に、第2の実施態様の実施に用いて好適な窒化処理装置の一例を示す。図中、符号1は溶融塩浴、2は溶融塩浴1を収容した容器、3はシンクロール、4は加熱・温度調整装置、5はストリップ(鋼板)、そして7が対極である。
 この例では、シンクロール3を、図示したとおり、ロールの下半分が溶融塩浴1内に浸漬した半浸漬ロール3aとしている。また、この半浸漬ロール3aは、ストリップに対して電圧を印加する電極を兼ねた電極ロールとしても機能させる。
 本実施態様においても、好適な溶融塩浴は、第1の実施態様の場合と同じである。
 また、容器2内の溶融塩浴1を、加熱・温度調整装置4によって所望の温度に加熱・保持する点でも第1の実施態様の場合と同じである。
 そして、かかる溶融塩浴1内に、半浸漬ロール3aを介してストリップ5を浸漬させ、その間に半浸漬ロール3a(電極ロール)とこの半浸漬ロール3aに対向して設けた対極との間に電圧を印加して電解処理を施すことにより、安定した通板の下でかつ短時間のうちにストリップ5の表面に対して窒化を施すのである。
 なお、図5に示した窒化処理装置では、ストリップの片面のみしか窒化処理ができないので、ストリップの両面に窒化を施す場合には、もう一対の窒化処理装置が必要となる。
 ここに、溶融塩浴の温度は300~700℃程度とするのが好ましい。特に好ましくは400~600℃の範囲である。また、浸漬時間は3~300s程度とするのが好ましい。特に好ましくは3~100sの範囲である。窒化に際し、浸漬処理だけでなく、電解処理も併用するこの発明では、かような電解処理を行わない場合に比べて窒化時間を1/2程度まで短縮することが可能である。
 また、上記の窒化処理による窒化量を、50ppm以上3000ppm以下とすることが好ましいことは、第1の実施態様において説明した場合と同じである。
 さらに、本実施態様では、通板中に通板速度の変更が必要となった場合やストリップ毎に窒化量を変更することが必要となった場合には、印加電圧、すなわち電流密度を変更することにより、簡便かつ迅速な対応が可能である。
 ここに、上記した必要窒化量を得るには、通電時における電流密度は1~20A/dm2程度とすることが好ましく、この範囲内で電極寿命や窒化効率などを勘案して適宜電流密度を調整すれば良い。
 図5は、シンクロール3を半浸漬ロール3aとした場合であるが、図6は、このシンクロール3を完全浸漬ロール3bとし、この完全浸漬ロール3bを介して溶融塩内に導入・排出されるストリップ5に対し、その両側に電圧を印加する対極7を設けて、ストリップ5の両面に電解処理による窒化を施す場合である。なお、この例でも、完全浸漬ロール3bが電極ロールを兼ねている。
 この場合は、ストリップ5の両側に対極7が配置されていて、ストリップの両面を一度に均一に処理できるので、より短時間での窒化が可能となる。
 また、図7は、ストリップ5への給電を溶融塩浴外に設置した電極ロール8から行うようにしたものである。この通電方式によれば、溶融塩浴1内での電極ロール8-ストリップ5間の通電状態安定化などを考慮する必要がなくなるため、浸漬した電極ロールを用いる場合と比べて管理が容易になり、かつコストの低減も可能となる。
 なお、上記の例では、ストリップに対して窒化処理を施す場合について主に説明したが、本発明の処理方法および処理装置は、窒化処理だけでなく、浸炭・窒化処理や浸硫・窒化処理を施す場合にも適用することができる。
 また、本発明の装置は、窒化処理などを連続的に行う独立した設備としてもよいが、他の処理を施す工程ラインに取り付けても良く、連続ラインであれば効率面を含めて最適な箇所に取り付けていればよい。
 さらに、本発明において、被処理材であるストリップについては特に制限はなく、方向性電磁鋼ストリップであれば、従来から公知のストリップいずれもが適合する。
 また、本発明では、方向性電磁鋼ストリップの製造工程中、溶融塩浴を用いた窒化処理工程以外の工程については特に制限はなく、従来から公知の製造工程をいずれも適用することができる。
実施例1(第1の実施態様)
 Siを3.3質量%含有する方向性電磁鋼板用の連鋳スラブを、スラブ加熱後、熱間圧延により板厚:2.5mmの熱延板とし、ついで熱延板焼鈍後、冷間圧延により板厚:0.22mmの最終板厚とし、ついで一次再結晶焼鈍を施したストリップに対して、表1に示す条件で、溶融塩浴を用いた窒化処理を施した。
 かくして得られた窒化処理後のストリップの表裏面それぞれについて窒化量を測定し、表裏面における窒化量の差を調査した。なお、窒化量の測定は、50mm×30mmの窒化量測定用サンプルを切出し、測定面の反対側を板厚中央部まで研削・研磨したのち、化学分析により行った。
 得られた結果を表1に併記する。
Figure JPOXMLDOC01-appb-T000001
 同表に示したとおり、本発明に従い、溶融塩浴を用いて窒化処理を施した場合は、表裏面での窒化量の差が7%未満と極めて小さく、これにより窒化量のバラツキの小さなストリップが安定して得られることが分かる。
実施例2(第2の実施態様)
 Siを3.3質量%含有する方向性電磁鋼板用の連鋳スラブを、スラブ加熱後、熱間圧延により板厚:2.5mmの熱延板とし、ついで熱延板焼鈍後、冷間圧延により板厚:0.22mmの最終板厚とし、ついで一次再結晶焼鈍を施したストリップに対して、表2に示す条件で、溶融塩浴を用いた電解処理による窒化を施した。
 かくして得られた窒化処理後のストリップの表裏面それぞれについて窒化量を測定し、表裏面における窒化量の差を調査した。なお、窒化量の測定は、50mm×30mmの窒化量測定用サンプルを切出し、測定面の反対側を板厚中央部まで研削・研磨したのち、化学分析により行った。
 得られた結果を表2に併記する。
Figure JPOXMLDOC01-appb-T000002
 同表に示したとおり、本発明に従い、溶融塩浴を用いて窒化処理を施した場合は、表裏面での窒化量の差が7%未満と極めて小さく、これにより窒化量のバラツキの小さなストリップが安定して得られることが分かる。
 1 溶融塩浴
 2 容器
 3 シンクロール
 4 加熱・温度調整装置
 5 ストリップ(鋼板)
 6 デフレクターロール
 7 対極
 8 電極ロール

Claims (14)

  1.  方向性電磁鋼板の製造工程中、冷間圧延後、二次再結晶焼鈍前の段階において、ストリップを溶融塩浴に浸漬させることにより、該ストリップに対し連続的に窒化処理を施す方向性電磁鋼板の窒化処理方法。
  2.  前記溶融塩浴の内部に、上下移動または水平移動が可能なシンクロールを設置し、このシンクロールを移動させることにより、ストリップの溶融塩浴内における浸漬時間を調整可能とする請求項1に記載の方向性電磁鋼板の窒化処理方法。
  3.  前記ストリップの溶融塩浴浸漬に際し、溶融塩浴の温度を400~700℃、浸漬時間を5~1000sとする請求項1または2に記載の方向性電磁鋼板の窒化処理方法。
  4.  方向性電磁鋼板の製造工程中、冷間圧延後、二次再結晶焼鈍前の段階において、ストリップを、電解質の溶融塩浴に浸漬させつつ、該ストリップと対極との間に電圧を印加して電解処理することにより、該ストリップに対し連続的に窒化処理を施す方向性電磁鋼板の窒化処理方法。
  5.  前記電解処理における電流密度を変更することにより、ストリップに対する窒化量を調整する請求項4に記載の方向性電磁鋼板の窒化処理方法。
  6.  前記ストリップの溶融塩浴浸漬に際し、溶融塩浴の温度を300~700℃、浸漬時間を3~300sとする請求項4または5に記載の方向性電磁鋼板の窒化処理方法。
  7.  請求項1乃至3のいずれかに記載の方向性電磁鋼板の窒化処理方法を実施するための装置であって、溶融塩浴を保持する容器と、溶融塩浴を加熱し所定の温度に保持するための加熱・温度調整装置と、溶融塩浴内を通板するストリップを支持するシンクロールを有する方向性電磁鋼板の窒化処理装置。
  8.  請求項7において、溶融塩浴内に配置したシンクロールを上下移動または水平移動可能として、ストリップの溶融塩浴内における浸漬距離を変更可能とした方向性電磁鋼板の窒化処理装置。
  9.  請求項7または8において、溶融塩浴内に上下移動または水平移動が可能なシンクロールを複数個配設し、各シンクロールを移動させることによりストリップの溶融塩浴内における浸漬距離を変更可能とした方向性電磁鋼板の窒化処理装置。
  10.  請求項7乃至9のいずれかにおいて、溶融塩浴内に上下移動または水平移動が可能なシンクロールを複数個配置すると共に、溶融塩浴外にも上下移動または水平移動が可能なデフレクターロールを複数個配置し、ストリップをこれらシンクロールとデフレクターロール間を掛け回すことにより、溶融塩浴内における浸漬距離を変更可能とした方向性電磁鋼板の窒化処理装置。
  11.  請求項4乃至6のいずれかに記載の方向性電磁鋼板の窒化処理方法を実施するための装置であって、溶融塩浴を保持する容器と、溶融塩浴を加熱し所定の温度に保持するための加熱・温度調整装置と、溶融塩浴内を通板するストリップを支持するシンクロールと、溶融塩浴内を通板するストリップに対して電圧を印加するための電極を有する方向性電磁鋼板の窒化処理装置。
  12.  請求項11において、上記シンクロールを、ストリップに対して電圧を印加する電極を兼ねた電極ロールとし、これに対向させて溶融塩浴内に対極を設けた方向性電磁鋼板の窒化処理装置。
  13.  請求項11において、ストリップに対して電圧を印加する対極を、溶融塩内を通板するストリップの両側に設置した方向性電磁鋼板の窒化処理装置。
  14.  請求項13において、ストリップへの給電を溶融塩浴外に設置した電極ロールを介して行う方向性電磁鋼板の窒化処理装置。
PCT/JP2014/000818 2013-02-18 2014-02-18 方向性電磁鋼板の窒化処理方法および窒化処理装置 WO2014125840A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14750977.2A EP2957651B1 (en) 2013-02-18 2014-02-18 Method and device for nitriding grain-oriented electrical steel sheet
KR1020157024706A KR101662971B1 (ko) 2013-02-18 2014-02-18 방향성 전기 강판의 질화 처리 방법 및 질화 처리 장치
US14/764,650 US10214793B2 (en) 2013-02-18 2014-02-18 Method and device for nitriding grain-oriented electrical steel sheet
RU2015139583A RU2620403C2 (ru) 2013-02-18 2014-02-18 Способ и устройство для азотирования текстурированного листа из электротехнической стали
CN201480009184.6A CN104995327B (zh) 2013-02-18 2014-02-18 方向性电磁钢板的氮化处理方法及氮化处理装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013029380A JP5942887B2 (ja) 2013-02-18 2013-02-18 方向性電磁鋼板の窒化処理方法および窒化処理装置
JP2013-029380 2013-02-18
JP2013-029358 2013-02-18
JP2013029358A JP5942885B2 (ja) 2013-02-18 2013-02-18 方向性電磁鋼板の窒化処理方法および窒化処理装置

Publications (2)

Publication Number Publication Date
WO2014125840A1 true WO2014125840A1 (ja) 2014-08-21
WO2014125840A8 WO2014125840A8 (ja) 2015-08-06

Family

ID=51353851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000818 WO2014125840A1 (ja) 2013-02-18 2014-02-18 方向性電磁鋼板の窒化処理方法および窒化処理装置

Country Status (6)

Country Link
US (1) US10214793B2 (ja)
EP (1) EP2957651B1 (ja)
KR (1) KR101662971B1 (ja)
CN (1) CN104995327B (ja)
RU (1) RU2620403C2 (ja)
WO (1) WO2014125840A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104775089A (zh) * 2015-03-12 2015-07-15 常州大学 一种施加磁场快速盐浴氮化的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111321369A (zh) * 2020-03-05 2020-06-23 马鞍山钢铁股份有限公司 用于取向硅钢生产的离子氮化装置及其离子氮化方法
CN111500975B (zh) * 2020-05-29 2023-11-17 江苏奕华新材料科技有限公司 一种减震器储油缸表面处理方法
CN111500976B (zh) * 2020-05-29 2023-08-22 江苏奕华新材料科技有限公司 一种用于氮碳氧共渗技术的渗氮剂及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1965559A (en) 1933-08-07 1934-07-03 Cold Metal Process Co Electrical sheet and method and apparatus for its manufacture and test
JPS5113469B2 (ja) 1972-10-13 1976-04-28
JPH03122227A (ja) 1989-10-05 1991-05-24 Nippon Steel Corp 方向性電磁鋼板の脱炭連続焼鈍炉
JPH03277726A (ja) * 1990-03-28 1991-12-09 Nippon Stainless Steel Co Ltd 鋼帯の連続塩浴槽
JPH09118964A (ja) * 1995-05-16 1997-05-06 Armco Inc 高い体積抵抗率を有する粒子方向性珪素鋼およびその製造法
JP2771634B2 (ja) 1989-10-05 1998-07-02 新日本製鐵株式会社 方向性電磁鋼板の脱炭連続焼鈍炉
JP2004232005A (ja) * 2003-01-29 2004-08-19 Japan Science & Technology Agency 鋼材の電気化学的表面窒化処理法
JP2005314775A (ja) * 2004-04-30 2005-11-10 Iox:Kk 溶融塩中での金属窒化物薄膜形成法
JP3940205B2 (ja) 1997-06-30 2007-07-04 新日本製鐵株式会社 長手・幅方向偏差に小さい方向性電磁鋼板の窒化処理方法とそのための装置
JP2009052104A (ja) * 2007-08-28 2009-03-12 Doshisha 溶融塩電気化学プロセスを用いた表面窒化処理方法
JP4321120B2 (ja) 2003-05-29 2009-08-26 Jfeスチール株式会社 磁気特性に優れた方向性電磁鋼板の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3087505A (en) * 1960-12-15 1963-04-30 Allegheny Ludlum Steel Pickling apparatus
US3174491A (en) * 1963-10-23 1965-03-23 Kolene Corp Molten salt spray apparatus for descaling stainless steel
AT329358B (de) 1974-06-04 1976-05-10 Voest Ag Schwingmuhle zum zerkleinern von mahlgut
US4119109A (en) * 1977-02-17 1978-10-10 Allegheny Ludlum Industries, Inc. Apparatus for treating strip
DE4208577A1 (de) * 1992-03-13 1993-09-16 Mannesmann Ag Verfahren zum mehrlagigen beschichten von strangfoermigem gut
JP3277726B2 (ja) * 1994-10-18 2002-04-22 ソニー株式会社 2段階エピタキシャル成長方法
US5804053A (en) * 1995-12-07 1998-09-08 Eltech Systems Corporation Continuously electroplated foam of improved weight distribution
IT1316029B1 (it) 2000-12-18 2003-03-26 Acciai Speciali Terni Spa Processo per la produzione di acciaio magnetico a grano orientato.
JP3748425B2 (ja) * 2002-09-04 2006-02-22 パーカー熱処理工業株式会社 耐食性を強化された金属部材の塩浴窒化方法
JP4015644B2 (ja) 2004-05-31 2007-11-28 株式会社ソニー・コンピュータエンタテインメント 画像処理装置及び画像処理方法
KR101651797B1 (ko) * 2012-12-28 2016-08-26 제이에프이 스틸 가부시키가이샤 방향성 전기 강판의 제조 방법

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1965559A (en) 1933-08-07 1934-07-03 Cold Metal Process Co Electrical sheet and method and apparatus for its manufacture and test
JPS5113469B2 (ja) 1972-10-13 1976-04-28
JPH03122227A (ja) 1989-10-05 1991-05-24 Nippon Steel Corp 方向性電磁鋼板の脱炭連続焼鈍炉
JP2771634B2 (ja) 1989-10-05 1998-07-02 新日本製鐵株式会社 方向性電磁鋼板の脱炭連続焼鈍炉
JPH03277726A (ja) * 1990-03-28 1991-12-09 Nippon Stainless Steel Co Ltd 鋼帯の連続塩浴槽
JPH09118964A (ja) * 1995-05-16 1997-05-06 Armco Inc 高い体積抵抗率を有する粒子方向性珪素鋼およびその製造法
JP3940205B2 (ja) 1997-06-30 2007-07-04 新日本製鐵株式会社 長手・幅方向偏差に小さい方向性電磁鋼板の窒化処理方法とそのための装置
JP2004232005A (ja) * 2003-01-29 2004-08-19 Japan Science & Technology Agency 鋼材の電気化学的表面窒化処理法
JP4321120B2 (ja) 2003-05-29 2009-08-26 Jfeスチール株式会社 磁気特性に優れた方向性電磁鋼板の製造方法
JP2005314775A (ja) * 2004-04-30 2005-11-10 Iox:Kk 溶融塩中での金属窒化物薄膜形成法
JP2009052104A (ja) * 2007-08-28 2009-03-12 Doshisha 溶融塩電気化学プロセスを用いた表面窒化処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"The Surface Finishing Society of Japan", HYOMEN GIJUTSU BINRAN, 27 February 1998 (1998-02-27), pages 890 - 891, XP055216792 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104775089A (zh) * 2015-03-12 2015-07-15 常州大学 一种施加磁场快速盐浴氮化的方法

Also Published As

Publication number Publication date
US10214793B2 (en) 2019-02-26
EP2957651B1 (en) 2019-03-13
US20150368732A1 (en) 2015-12-24
CN104995327A (zh) 2015-10-21
KR101662971B1 (ko) 2016-10-05
EP2957651A1 (en) 2015-12-23
RU2015139583A (ru) 2017-03-23
KR20150119124A (ko) 2015-10-23
WO2014125840A8 (ja) 2015-08-06
EP2957651A4 (en) 2016-03-16
CN104995327B (zh) 2018-04-03
RU2620403C2 (ru) 2017-05-25

Similar Documents

Publication Publication Date Title
TWI592503B (zh) 無方向性電磁鋼板的製造方法
KR20190071745A (ko) 전자 강판 제조용의 열연 강판 및 그의 제조 방법
WO2018117671A1 (ko) 방향성 전기강판의 제조방법
WO2014125840A1 (ja) 方向性電磁鋼板の窒化処理方法および窒化処理装置
EP2957652A1 (en) Apparatus and method for nitriding grain-oriented electrical steel sheet
JP6252833B2 (ja) マルテンサイト系ステンレス鋼鋼帯の製造方法
CN108779509B (zh) 取向性电磁钢板的制造方法及生产设备线
US20140255720A1 (en) Ultrathin electromagnetic steel sheet
EP3859019A1 (en) Grain-oriented electrical steel sheet and method for manufacturing same
KR100779579B1 (ko) 철손이 낮고 자속밀도가 높은 무방향성 전기강판의제조방법
CN107460292A (zh) 一种提高低温高磁感取向硅钢边部性能的加工方法
WO2013147155A1 (ja) 炭素工具鋼鋼帯の製造方法
JP7106910B2 (ja) 方向性電磁鋼板の製造方法
KR20150108385A (ko) 방향성 전기 강판의 질화 처리 설비 및 질화 처리 방법
CN113165033A (zh) 无取向性电磁钢板的制造方法
JP5942885B2 (ja) 方向性電磁鋼板の窒化処理方法および窒化処理装置
JP6094504B2 (ja) 方向性電磁鋼板の竪型窒化処理設備および窒化処理方法
JP5942887B2 (ja) 方向性電磁鋼板の窒化処理方法および窒化処理装置
JP6137490B2 (ja) 一次再結晶集合組織の予測方法および方向性電磁鋼板の製造方法
KR20180072106A (ko) 방향성 전기강판의 제조방법
KR100530069B1 (ko) 응력제거소둔 후 철손이 낮고 자속밀도가 높은 무방향성전기강판의 제조방법
JP2019002039A (ja) レーザー磁区制御用方向性電磁鋼板とその製造方法
KR100721819B1 (ko) 철손이 낮고 자속밀도가 높은 방향성 전기강판 제조방법
JP4211540B2 (ja) 方向性電磁鋼板の連続式熱間圧延設備列
KR20150074862A (ko) 무방향성 전기강판 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14750977

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14764650

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014750977

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157024706

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015139583

Country of ref document: RU

Kind code of ref document: A