WO2018117671A1 - 방향성 전기강판의 제조방법 - Google Patents

방향성 전기강판의 제조방법 Download PDF

Info

Publication number
WO2018117671A1
WO2018117671A1 PCT/KR2017/015203 KR2017015203W WO2018117671A1 WO 2018117671 A1 WO2018117671 A1 WO 2018117671A1 KR 2017015203 W KR2017015203 W KR 2017015203W WO 2018117671 A1 WO2018117671 A1 WO 2018117671A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot
annealing
rolled sheet
rolling
grain
Prior art date
Application number
PCT/KR2017/015203
Other languages
English (en)
French (fr)
Inventor
고경준
주형돈
이상우
양일남
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to CN201780080244.7A priority Critical patent/CN110114478B/zh
Priority to US16/471,293 priority patent/US20200032363A1/en
Publication of WO2018117671A1 publication Critical patent/WO2018117671A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the present invention relates to a method for producing a grain-oriented electrical steel sheet. More specifically, the present invention relates to a method for manufacturing a grain-oriented electrical steel sheet which can achieve productivity and magnetic property improvement simultaneously.
  • Directional electrical steel is used as the core material for stationary equipment such as transformers, motors, generators and other electronic devices.
  • Final products of oriented electrical steel sheets have an aggregate structure (aka goth structure) with the grain orientation oriented in the ⁇ 110 ⁇ ⁇ 001> direction, and have extremely good magnetic properties in the rolling direction, so that transformers, motors, generators and other It can be used as an iron core material for electronic equipment, low iron loss to reduce energy loss, high magnetic flux density for miniaturization of generator.
  • Iron loss of oriented electrical steel is divided into hysteresis loss and eddy current loss.
  • it is necessary to reduce the plate thickness or increase the specific resistivity.
  • the production of oriented electrical steel products containing high Si is a direction to overcome for the development of the highest standard products.
  • the slab low-heat oriented electrical steel sheet requires an optimal rolling reduction ratio for securing magnetic properties compared to high temperature heating method, and for this purpose, the thickness of hot rolled sheet must be thickened to increase the breaking frequency during cold rolling.
  • the high Si-containing material has increased brittleness, inferior to hot rolling, and therefore, a technology for reducing breakage during cold rolling is required to produce high Si-containing oriented electrical steel sheet products by low temperature heating method.
  • High Si-containing Various methods have been tried to improve the rolling properties of materials and to improve industrial productivity.
  • one of the methods of improving the cold rolling property, the method of improving the quality of the rolling edge, and the trimming of the processed edge after trimming the rolling edge can reduce the occurrence of edge crack.
  • the microstructure before interrolling of a grain-oriented electrical steel sheet is often filled with a fillite bainite ferrite phase.
  • decarburization of the surface, especially the edge part occurs locally, resulting in a ferrite single phase in which no transformation phase such as pearlite, bainite, or martensite exists, and grain growth occurs depending on the annealing temperature.
  • the edge portion where heating is concentrated when the temperature is increased in order to raise the plate temperature to a high temperature in the heating table during the annealing of the hot rolled sheet all become a ferrite phase by local decarburization, and the grain growth occurs actively, resulting in nonuniformity of coarse grains.
  • the crack ini ti ion resistance is excellent, and when the coarse grains exist at the edge, the frequency of edge cracking increases locally, and the crack length formed during rolling It is likely to grow and lead to breakage.
  • the magnetization is secured by controlling the heat treatment temperature in order to coarsen the fine precipitates causing the nonuniformity to coarse precipitate.
  • it is essential to control fine precipitates by annealing the hot rolled sheet at a sufficiently high temperature.
  • the hot rolled sheet annealing silver should be lowered.
  • a grain-oriented electrical steel sheet More specifically, as a high Si-containing oriented electrical steel sheet, to provide a method for producing a grain-oriented electrical steel sheet that can achieve both the cold rolling productivity and the improvement of magnetic properties.
  • the slab may further comprise 0.03 to 0.15 wt%, P for 0.01 to 0.05 wt% and Cr for 0.02 to 0.15 wt%, respectively, alone or in combination of one or more of Sb and Sn.
  • the slab may further comprise 0.01 to 0.2% by weight of Cu and 0.01 to 0.05% by weight of Mo.
  • the elongation of the hot rolled sheet may be 20% or more.
  • the slab may be heated to 1050 to 120CTC.
  • the temperature conditions at the time of hot-rolled sheet annealing are precisely controlled, and the productivity is excellent, and the magnetism and productivity of the final grain-oriented electrical steel sheet are excellent.
  • FIG. 1 is an RD cross-sectional photograph of the edge portion after hot-rolled sheet annealing in the invention.
  • first, second, and third are used to describe various parts, components, regions, layers, and / or sections, but are not limited to these. These terms are any part, component. Only yarns are used to distinguish an area, layer or section from other parts, components, areas, layers or sections. Accordingly, the first portion, component, region, layer or section described below may be referred to as the second portion, component, region, layer or section within the scope of the present invention.
  • % means weight% and lppm is 0.0001 weight%.
  • the meaning of further including an additional element means to include a residual amount of iron (Fe) by an additional amount of the additional element.
  • the slab is heated.
  • the slab is Si: 3.2 to 4.0%, C: 0.03 to 0.09 weight%, A1: 0.015 to 0.040%, Mn: 0.04 to 0.15%, N: 0.001 to 0.005%, S: 0.01% or less (excluding 0% And the balance include Fe and other unavoidable impurities.
  • Si increases the resistivity of oriented electrical steel sheets Core loss (core l oss), that is, lowers iron loss.
  • Core loss core l oss
  • the effect of lowering iron loss due to the reduction of B. resistance is deteriorated, and the brittleness of steel is increased and the toughness decreases when excessively contained. Therefore, rolling is difficult due to plate breakage during the rolling process, load is generated in the cold rolling operation, the plate temperature required for pass aging during cold rolling becomes unstable, and secondary recrystallization is unstable.
  • the temperature conditions at the time of annealing the hot-rolled sheet simultaneously with the contents of Mn and S in the slab are precisely controlled, so that the productivity is excellent even if a relatively large amount of S i is contained.
  • Carbon (C) is an element that induces austenite phase formation.
  • C content increases, ferrite-austenite phase transformation is activated during the hot rolling process, and the elongated hot-rolled strip structure formed during the hot rolling process increases, resulting in a hot rolled sheet. Ferrite grain growth is suppressed during the annealing process.
  • the stretched hot-rolled band structure which is higher in strength than the ferrite tissue, increases, and the microstructure of the hot-rolled-annealed tissue, which is the cold-rolled starting tissue, is improved, resulting in an improvement in the texture after the hot rolling. .
  • Aluminum (A 1) binds with N and precipitates as A 1N, but forms fine nitrides (A l, Si, Mn) N and A1N in the annealing that simultaneously perform decarburization and nitriding, thereby restraining strong grain growth. Do it. More than a certain amount of hired A1 is needed. If the content is too small, the number and volume fraction of precipitates formed are low, so that the effect of inhibiting grain growth If it is not sufficient, if the content is too high, the precipitate grows coarse and the grain growth inhibiting effect is lowered. Therefore, the content of A1 can be adjusted in the above-described range.
  • Manganese (Mn) has the effect of reducing the iron loss by increasing the specific resistance and reducing the eddy current loss in the same way as Si, as well as reacting with S present in the steel to form a Mn-based compound or reacting with the aforementioned A1 and nitrogen ions It forms a (Al, Si, Mn) N-type nitride, thereby forming a grain growth inhibitor.
  • Mn Manganese
  • fine MnS may be unevenly deposited during hot rolling, resulting in inferior magnetic properties. If the content is too high, the austenite phase transformation rate during secondary recrystallization annealing may increase, which may severely damage the goth aggregate, leading to rapid magnetic characteristics. Therefore, the content of Mn can be adjusted to the above range.
  • Nitrogen (N) is an element that reacts with U or the like to form A 1N microprecipitates, prevents grain migration, suppresses grain growth, and refines grain size. If the fine A1N is properly distributed, as described above, it may be helpful to secure an appropriate primary recrystallized grain size by appropriately finely structured after cold rolling, but when the content is excessive, the primary recrystallized grain becomes excessively fine. As a result, the grains become uneven and, as a result, the driving force causing grain growth in the second recrystallization due to the fine grains increases, so that grains having an orientation other than Goth can be grown.
  • N is determined to be less than 0.005% by weight. In the case of performing a nitriding treatment that increases the amount of nitrogen between the hot rolling and the secondary recrystallization annealing, it is sufficient that N of the slab is contained in the above-described range.
  • S is an element that has high solubility temperature and high segregation during hot rolling, and it is desirable not to contain sulfur as much as possible. It is a kind of impurity.
  • the content of S is preferably limited to 0.010% or less, and more preferably 0.006% or less. The lower limit of S may be 0.001 weight%.
  • MnS precipitates are fine and appropriate amount precipitates after hot rolling, and then the precipitates are precipitated for inventory even at a temperature in the range of 900 to 980 ° C of the hot-rolled sheet annealing temperature of the present invention. Control may be possible. As a result, it is possible to reduce the occurrence of judgment during inter-rolling of high Si-containing materials, improve the primary and secondary recrystallized grain size uniformity, and have excellent magnetic properties and uniform product characteristics.
  • Phosphorus (P), tin (Sn), and antimony (Sb) may have a secondary role in inhibiting grain growth due to segregation at grain boundaries and improve the primary recrystallization texture. It is a valid element because it is effective.
  • P shows the effect at the addition amount of 0.01% by weight or more, and when it exceeds 0.05% by weight, brittleness is strong, it is difficult to hot rolling.
  • Sn and Sb have an effect when the sum is more than 0.03% by weight, when the content exceeds 0.15% by weight, the grain boundary segregation effect is too strong, the surface oxide layer formation during the decarburization annealing is difficult to secure a good surface, and the decarburization reaction is not uniform. As a result, the primary recrystallized grains are nonuniform, resulting in unstable final magnetic properties. In addition, in terms of mechanical properties, brittleness is increased due to excessive segregation at the grain boundaries, which may cause inferior rolling properties. Therefore, one or more of Sb and Sn may each contain 0.03 to 0.15% by weight alone or in total. That is, it may contain 0.03 to 0.15% by weight of Sb alone, or 0.03 to 0.15% by weight of Sn alone, or 0.03 to 0.15% by weight of Sb and Sn. Cr: 0.02-0.15 wt%
  • Cr is a element that promotes oxidation formation. Adding an appropriate amount of creme further suppresses the formation of dense oxide layers in the surface layer portion and helps to form a fine oxide layer in the depth direction. With addition of Sb and Sn, addition of Cr content in an appropriate range makes it easier to form primary recrystallization having excellent uniformity. By adding Cr, decarburization and sedimentation are delayed due to the increase of Sb and Sn content, and primary recrystallized grains are overcome, thereby forming primary recrystallized grains having excellent uniformity and improving magnetic properties. When the Cr content is added in the above-mentioned range according to the Sb and Sn content, the inner oxide layer is formed deeper and the deposition and decarburization rate is faster.
  • Copper (Cu) combines with S to precipitate CuS, which is mainly mixed with MnS to form a (Mn, Cu) S form, which plays a role of inhibiting grain growth.
  • Cu like Mo, causes the formation of many Goss particles in the surface of the hot-rolled surface, which reduces the grain size after the secondary recrystallization and decreases the eddy current loss, thereby reducing the iron loss of the final product.
  • the Goss particles in the orientation grow a lot, 'the magnetic flux density also increases.
  • Cu is added, if too little is added, the effect is not divided. If the content is too high, the precipitate grows coarse and the grain growth inhibiting effect is lowered.
  • Molybdenum is known to cause secondary recrystallization because Goss particles which cause secondary recrystallization in oriented electrical steel sheets remain during the hot rolling and remain on the surface of the specimen even after hot rolling and primary recrystallization heat treatment. If Mo is added during hot rolling of the grain-oriented electrical steel sheet, Many Goss particles with the correct orientation are formed, and many particles remain after the first recrystallization heat treatment, thereby increasing the number of Goss particles that will cause secondary recrystallization. Therefore, after the second recrystallization, the grain size decreases and the eddy current loss decreases, thereby reducing the iron loss of the final product, and the magnetic flux density also increases because many Goss particles with the correct orientation are grown.
  • Mo is a very effective grain growth inhibiting segregation element because its size is relatively large and its melting point is 2623, which is very high.
  • the content of Mo is too small, there is an effect of improving the magnetic properties, but the effect is not only small, but also the effect of improving the density of goth aggregate tissue is small, and rather the effect of compensating the grain growth inhibition by the particles present in the matrix is small. Magnetic enhancement effect is insufficient.
  • the content is too high, the grain growth inhibitory force is increased so that the grain size of the primary recrystallized microstructure must be reduced in order to increase the grain growth driving force. Therefore, decarbonization annealing should be performed at a low temperature. It cannot be controlled so that a good surface cannot be secured. Therefore, when Mo is further included, it can be added in the above-mentioned range.
  • Nickel (Ni) is an element that improves the final magnetic flux density by supplementing the saturation magnetic flux density which is inferior due to the decrease of magnetic anisotropy due to the increase of Si content.
  • Ni like C, is an austenite forming element that activates austenite phase transformation in the hot rolling and heat treatment processes to bring about a microstructure, and in particular, promotes the formation of goth grains in the sub-surface layer. It increases the goth fraction in the grains, improves the uniformity of the size of the primary recrystallized grains, increases the magnetic flux density of the final product, and lowers the lower limit of the C content according to the Si content by adding Ni. Play a role. When the amount of Ni is added below the lower limit, the effect is insignificant. When the amount of Ni is added above the upper limit, the effect of addition is not large, resulting in cost increase due to the addition of expensive alloy. Therefore, when Ni is further included, it can add in the range mentioned above.
  • Titanium (Ti) is a strong Ni t r i de forming element, which becomes TiN in the thermoelectric step to lower the N content, and finely precipitates to make the grain size uneven and to make the secondary recrystallization unstable, so it is limited to 0.005% by weight or less.
  • the slabs of this composition are heated.
  • the slab can be heated to 120 ° C or less, more specifically, at a low temperature of 1150 ° C or less, so that the precipitates can be partially solutioned.
  • the furnace can be repaired and the life of the furnace can be shortened.
  • heating the slab to a temperature of 1050-1200 ° C prevents the growth of the slab columnar tissues and prevents the growth of the slab in the subsequent hot rolling process. Cracks can be prevented from occurring in the width direction, thereby improving the error rate.
  • the slab is hot rolled to produce a hot rolled plate.
  • the hot rolling temperature is not limited, and in one embodiment, the hot rolling may be terminated at 950 ° C or less. After cooling by water it can be wound up to 6 (xrc or less. By hot rolling it can be produced in a hot rolled sheet of 2.0 to 3.5mm thickness.
  • the slab structure, columnar and equiaxed structure are elongated in the hot rolling direction to be non-uniform .
  • coarse precipitates and carbides existing in the slab are non-uniformly present in the grain and grain boundaries of the hot rolled microstructure.
  • Such non-uniform and coarse microstructures, precipitates, carbides, etc. ' reduce the rolling properties of the material during the post rolling process, and further causes plate breaks found during rolling. Therefore, it is important to perform annealing heat treatment of the hot rolled sheet so that the hot rolled material has a uniform microstructure and a precipitate having a fine and uniform distribution.
  • Hot Rolled Annealing Step The first ramp up step and the second ramp up before reaching the crack temperature may comprise a step.
  • the first temperature increase step is a step of heating up the hot rolled sheet to 750 to 850 ° C.
  • the second temperature increase step means a step of raising the hot rolled plate completed the step to the crack temperature of the cracking step.
  • the first temperature rising step is a step of raising the hot rolled plate after the hot rolling process to 750 to 850 ° C.
  • Secondary temperature raising step is a step of raising the temperature to a first elevated temperature to complete the step of hot-rolled sheet that is, 750 to 850 ° C
  • the temperature increase rate () of the first temperature increase step may be 5 to 45 ' C / second. If the temperature rise rate ( ⁇ ) of the first temperature increase stage is too fast, the number of edge cracks in the edge of the edge plate may increase rapidly.
  • the temperature increase rate t 2 of the second temperature increase step may be 1 to 6 ° C./sec.
  • the cracking temperature may be 900 to 980 ° C
  • the annealing time that is, the ashing time may be 30 to 300 seconds.
  • the precisely controlled cracking temperature and annealing time can improve the rolling property in the rolling process, and also improve the magnetism of the final grain-oriented electrical steel sheet.
  • Cooling speed is too slow. Carbide precipitates and the primary recrystallized complex is inferior, which adversely affects magnetism. As early as possible, stress may remain in the material, such as the shape of the plate being reversed during the engraving process, and a very large transformation state such as martensite or retained austenite may remain, resulting in inferior rolling properties during cold rolling.
  • the hot rolled sheet in which hot-rolled sheet annealing is completed has high elongation, and the rolling property in a cold rolling process improves.
  • the elongation means the elongation obtained when the hot rolled sheet is subjected to a tensile test after processing the tensile test piece according to J IS13B standard.
  • Hot rolling is performed by using reverse rolling or tandem rolling mill to produce cold rolled plates with a thickness of 0.1mm to 0.35mm by single rolling / multiple cold rolling or multiple rollings including intermediate annealing. It can manufacture. Also, During cold rolling, warm rolling can be carried out to maintain the temperature of the steel sheet at 100 ° C. or higher. In addition, the final rolling rate through inter rolling can be 50 to 95%. As described above in an embodiment of the present invention, since the hardness of the hot rolled sheet after the step of annealing the hot rolled sheet is low and the work hardening index is low, the number of edge cracks formed at the end portion in the thickness direction of the rolled sheet in the roll rolling step. May decrease.
  • the edge crack refers to a crack having a depth of 5 mm or more existing at an end (edge portion) in the thickness direction of the rolling plate after rolling. Specifically, edge cracks may occur at four or less per 50 cm in the lengthwise direction of the insulation plate.
  • the primary rolled sheet is subjected to primary recrystallization annealing.
  • a first recrystallization occurs in which a goth grain nucleus is formed.
  • decarburization and sedimentation of the steel sheet may be performed.
  • Primary recrystallization annealing may be performed under a mixed gas atmosphere of steam hydrogen and ammonia for decarburization and sedimentation.
  • it can be annealed at a temperature of 8 (xrc to 9 (xrc and dew point temperature of 5o ° C to 70 ° C.
  • the recrystallized grains grow coarse and the crystal growth driving force is reduced. It does not form a stable secondary recrystallization, and the annealing time is not a big problem in achieving the effect of the present invention, but in view of productivity, it is usually preferable to treat it within 5 minutes.
  • Nitrogen ions are introduced into the steel sheet using ammonia gas for nitriding to form tin oxides (Al, Si, Mn) N and A1N, which are then subjected to decarburization and recrystallization, followed by immersion, or simultaneously with decarburization. Any method of simultaneously performing the immersion treatment or the immersion treatment and then the decarbonization annealing so that the treatment can be performed together does not have any problem in achieving the effect of the present invention.
  • the cold-rolled sheet on which primary recrystallization annealing is completed is subjected to secondary recrystallization annealing.
  • secondary recrystallization annealing a ⁇ 110 ⁇ ⁇ 001> texture is formed in which the ⁇ 110 ⁇ plane of the steel sheet is parallel to the rolling surface and the ⁇ 001> direction is parallel to the rolling direction.
  • the first recrystallization annealing is completed .
  • secondary recrystallization annealing can be carried out.
  • the annealing separator is not particularly limited, 3 ⁇ 40 The annealing separator which contains as a main component can be used.
  • the second recrystallization annealing step ⁇ 110 ⁇ ⁇ 001> texture is formed by the secondary recrystallization, and the insulating property is imparted by the formation of the glass film by the reaction of MgO and the oxide layer on the surface formed through the first recrystallization annealing heat treatment. Impurities that impair the properties are removed.
  • the secondary recrystallization is well developed by protecting the nitride, which is a particle growth inhibitor, by adsorbing as a mixed gas of nitrogen and hydrogen in the elevated temperature range before the second recrystallization occurs, and after the second recrystallization is completed. Either method using a 100% hydrogen atmosphere or a mixed atmosphere of nitrogen and hydrogen has no problem in achieving the effect of the present invention, and is maintained for a long time to remove impurities.
  • the alloy component of the grain-oriented electrical steel sheet means a base steel sheet excluding a coating layer such as an insulating coating.
  • the slabs composed of the impurities of Table 1 and Table 2 and the impurities unavoidably introduced with the balance Fe were heated at 1180 ° C. for 210 minutes and then hot rolled to a thickness of 3.2 m.
  • the hot rolled sheet was annealed at the temperature and time conditions shown in Table 3 below, and after quenching to 760 ° C., it was immersed in water and pickled.
  • the hot rolled annealing plate was processed to J IS-13B standard and subjected to tensile test to measure elongation. The results are summarized in Table 3. When the elongation is more than 20%, excellent, less than 20% was marked as bad.
  • 1 is an RD cross-sectional photograph of the edge portion after hot-rolled sheet annealing in the invention material
  • Figure 2 is a RD cross-sectional photograph of the edge portion after the hot rolled sheet annealing in Comparative Material 4.
  • the hot-rolled annealing plate was once rolled into steel at a thickness of 0.23 kPa. ⁇ The first rolled plate is maintained at a temperature of about 860 ° C for 180 seconds in a humid atmosphere of mixed hydrogen, nitrogen, and ammonia, and contains primary decarburization and nitriding treatment so that the carbon content is below 50 ⁇ ⁇ and the nitrogen content is 200 ppm. Recrystallization annealing was performed.
  • MgO an annealing separator
  • Iron loss and magnetic flux density were measured by single sheet measurement, iron loss until magnetized to 1.7 Tesla at 50Hz, and the magnitude of magnetic flux density (Tesla) induced under the magnetic field of 800A / m.
  • the slab consisting of the components of Table 4 and the impurities Fe and inevitably infiltrate was heated at 1180 ° C. for 210 minutes and then hot rolled to a thickness of 2.3 m.
  • the hot rolled sheet was annealed at the temperature and time conditions shown in Table 5 below, and was quenched by quenching in boiling water at 100 ° C. to 300 ° C. at 300 ° C. when cooling temperature reached 800 ° C.
  • the elongation was measured by performing a tensile test after processing to 13B standard, and the results are summarized in Table 5. When the elongation is 20% or more, excellent ⁇ less than 20% was marked as bad.
  • the hot-rolled annealing plate was rolled to a thickness of 0.23 mm.
  • the first rolled plate is maintained at a temperature of about 860 ° C for 180 seconds in a humid atmosphere of mixed hydrogen and nitrogen and ammonia, and the primary recrystallization including simultaneous decarburization and nitriding treatment is carried out so that the carbon content is 50ppm or less and the nitrogen content is 200ppm. Annealed.
  • MgO an annealing separator
  • Equation 1 and hot-rolled sheet annealing temperature of the present application As shown in Tables 4 and 5, Equation 1 and hot-rolled sheet annealing temperature of the present application and When all of the time is satisfied, it can be confirmed that the magnetism is excellent and the rolling characteristics are excellent. On the other hand, when some of the formula 1 and the hot-rolled sheet annealing temperature and time of the present application is not satisfied, it can be seen that the magnetism is degraded or the rolling characteristics are deteriorated to form a large number of edge cracks.

Abstract

본 발명의 일 실시예에 의한 방향성 전기강판의 제조방법은 중량 %로, Si: 3.2 내지 4.0%, C: 0.03 내지 0.09 중량 %, A1: 0.015 내지 0.040%, Mn: 0.04 내지 0.15%, N: 0.001 내지 0.005%, S: 0.01% 이하 (0%를 제외함) 및 잔부는 Fe 및 기타 불가피한 불순물을 포함하고, 하기 식 1을 만족하는 슬라브를 가열하는 단계; 슬라브를 열간압연하여 열연판을 제조하는 단계; 열연판을 900 내지 980°C의 균열 온도에서 30 내지 300초 동안 열연판 소둔하는 단계; 열연판 소둔이 완료된 열연판을 넁간압연하여 넁연판을 제조하는 단계; 냉연판을 1차 재결정 소둔하는 단계; 및 1차 재결정 소둔이 완료된 냉연판을 2차 재결정 소둔하는 단계를 포함한다. [식 1]. [Mn] X [S] < 0.0004 (단 식 1에서, [Mn] 및 [S]는 각각 슬라브 내의 Mn 및 S의 함량 (중량%) 이다.

Description

【명세서】
【발명의 명칭】
방향성 전기강판의 제조방법
【기술분야】
방향성 전기강판의 제조방법에 관한 것이다. 더욱 구체적으로 생산성과 자기적 특성 향상을 동시에 달성할 수 있는 방향성 전기강판의 제조방법에 관한 것이다.
【발명의 배경이 되는 기술】
방향성 전기강판은 변압기, 전동기, 발전기 및 기타 전자기기 등 정지 기기의 철심 재료로 사용된다. 방향성 전기강판 최종 제품은 결정립의 방위가 {110}<001>방향으로 배향된 집합조직 (일명 , 고스 조직 )올 가짐으로, 압연방향으로 극히 우수한 자기적 특성을 갖기 때문에 변압기, 전동기, 발전기 및 기타 전자기기 등의 철심 재료로 사용될수 있고, 에너지 손실을 줄이기 위해서는 철손이 낮은것, 발전기기의 소형화를 위해서는 자속밀도가 높은 것이 요구된다.
방향성 전기강판의 철손은 이력손, 와전류손으로 나뉘고 이중 와전류손을 감소하기 위해서는 판두께를 줄이거나 고유비저항을 늘리는 것이 필요하다. 고유비저항을 늘리는 구체적인 방법 중 하나로 특히 고 Si 함유하는 방향성 전기강판 제품올 무리 없이 생산하는 것은 최고급규격 제품 개발을 위한 극복해야 할 방향이다.
일반적으로 방향성 전기강판의 Si함량을 증가시킬수록 제품의 고유비저항이 증가하여 철손이 낮아지므로, 고급 규격의 제품을 생산할 수 있으나, 압연 중 파단 발생으로 인한 실수율 저하 등의 생산성의 문제를 극복해야 한다.
특히 , 슬라브 저은 가열법의 방향성 전기강판은 자성 확보를 위한 최적 압하율이 고온 가열법 대비 높은 넁간압하율이 필요하고, 이를 위해 열연판 두께를 두핍게 하여야만 하여 냉간압연 중 파단 빈도가 증가하게 된다. 게다가, 고 Si함유재는 취성이 증가하여 넁간압연성이 열위하여 저온가열법의 고 Si함유 방향성 전기강판 제품 생산을 위해서는 냉간압연 중 파단 발생을 저감하는 기술이 더욱 필요하다. 이를 위하여 고 Si함유하는 소재의 넁간 압연성을 높이고, 공업 생산성을 향상시키기 위해서 여러 방법을 시도하고 있다 .
기존에 이를 해결하기 위한 냉간압연성 향상 방법 중 하나로, 압연 엣지 (edge) 부위의 품질을 향상시키는 방법, 압연 edge부 트리밍후 가공면이 깨끗하게 가공되어 edge crack의 발생을 감소시키는 방법이 있올수 있다. 고온에서 트리밍을 하는 방법, 열간압연에서 엣 '지부 불균일을 감소시키는 방법이 있다.
또한, 2패스 압연 개시시 압연 권취중 파단이 많이 발생하므로,
2패스 압연 개시시 연성을 확보하는 1패스 넁간압연율을 최적화하는 방법을 제안하였다. 하지만, 소재 본연의 특성을 개선하는 방법이 아니여서 그 개선에 한계가 있다. 기존의 방법들을 적용하더라도, 고 Si강판이 가지는 본래의 특성에서 기인하는 엣지 크랙 (edge crack) 발생에 의한 파단을 근본적으로 해결할 수는 없다.
방향성 전기강판의 넁간압연전 미세조직은 필라이트 베이나이트 페라이트 상이 흔재되어 있다. 열연판 소둔 이후 표면 특히 엣지 부의 탈탄이 국부 발생하여 펄라이트 또는 베이나이트, 마르텐사이트 와 같은 변태상이 존재하지 않는 페라이트 단상이 되고, 소둔 온도에 따라 입성장이 일어난다.
열연판 소둔시 가열대에서 판온을 고온으로 올리기 위해 온도 증가시 가열이 집중되는 엣지 부분은 특히 국부적으로 탈탄에 의해 모두 페라이트 상이되고, 입성장이 활발히 일어나 결정립이 조대화되는 불균일 현상이 발생한다. 일반적으로 조직이 미세한 경우, 크랙 발생 저항도 (Crack ini t i at ion res i stance)가 우수하며, 엣지 부분에 조대립이 존재시 국부적으로 edge crack 발생 빈도가 증가하고, 압연중 형성되는 크랙 길이도 커지고, 판파단으로 이어질 가능성이 크다.
한편, 냉간압연 이전에 석출물이 미세하고 불균일하게 존재하고 있는 경우, 이후 공정에서 결정립 불균일을 야기하고, 최종적으로 불완전한 2차 재결정 또는 불균일한 2차 재결정을 형성하여 제품 특성을 열위하게 만든다. 따라서, 불균일을 야기하는 미세 석출물을 최대한 고용하여 조대하게 석출시키기 위해 열처리 온도를 제어하여 자성을 확보하고 있다. 즉, 전기강판 제품의 자성의 확보를 위해서는 충분히 높은 온도의 열연판 소둔을 통하여 미세 석출물 제어가 필수적이다. 반대로 냉간압연시 판파단을 유발하는 edge crack을 저감하여 생산성을 확보하기 위해서는 열연판 소둔 은도를 하향하여야 하는 상반되는 관계에 놓이게 된다.
【발명의 내용】
【해결하고자 하는 과제]
본 발명의 일 실시예에서는 방향성 전기강판의 제조방법을 제공하고자 한다. 더욱 구체적으로 고 Si 함유 방향성 전기강판으로서, 냉간압연 생산성과 자기적 특성 향상을 동시에 달성할 수 있는 방향성 전기강판의 제조방법을 제공하고자 한다 .
【과제의 해결 수단】
본 발명의 일 실시예에 의한 방향성 전기강판의 제조방법은 중량 %로, Si: 3.2 내지 4.0%, C: 0.03 내지 0.09 중량 ¾>, A1: 0.015 내지 0.040%, Mn: 0.04 내지 0.15%, N: 0.001 내지 0.005%, S: 0.01% 이하 (0%를 제외함) 및 잔부는 Fe 및 기타 불가피한 불순물을 포함하고, 하기 식 1을 만족하는 슬라브를 가열하는 단계; 슬라브를 열간압연하여 열연판을 제조하는 단계; 열연판을 900 내지 980°C의 균열 온도에서 30 내지 300초 동안 열연판 소둔하는 단계; 열연판 소둔이 완료된 열연판을 냉간압연하여 넁연판올 제조하는 단계; 냉연판을 1차 재결정 소둔하는 단계; 및 1차 재결정 소둔이 완료된 냉연판을 2차 재결정 소둔하는 단계를 포함한다.
[식 1]
[Mn] X [S] < 0.0004
(단 식 1에서, [Mn] 및 [S]는 각각 슬라브 내의 Mn 및 S의 함량 (중량 %) 이다.)
슬라브는 Sb 및 Sn 중 1종 이상을 각각 단독 또는 합량으로 0.03 내지 0.15 중량 %, P를 0.01 내지 0.05 중량 % 및 Cr을 0.02 내지 0.15 중량 % 더 포함할 수 있다.
슬라브는 Cu를 0.01 내지 0.2 중량 % 및 Mo를 0.01 내지 0.05 중량 % 더 포함할 수 있다. ,
열연판 소둔하는 단계 이후, 700 내지 850°C의 시작온도에서부터 3oo°c까지 urc/초 내지 3(xrc/초의 냉각 속도로 넁각할 수 있다.
열연판 소둔하는 단계 이후, 열연판의 연신율이 20% 이상일 수 있다. 슬라브를 가열하는 단계에서 1050 내지 120CTC로 가열할 수 있다.
【발명의 효과】
본 발명의 일 실시예에 의한 방향성 전기강판은 슬라브 내의 Mn 및
S의 함량과 동시에 열연판 소둔시의 온도 조건이 정밀하게 제어되어, 생산성이 우수하고 동시에, 최종 제조된 방향성 전기강판의 자성 및 생산성이 우수하다.
【도면의 간단한 설명】
도 1은 발명재 1에서 열연판 소둔 후 엣지부의 RD 단면 사진이다.
도 2는 비교재 4에서 열연판 소둔 후 엣지부의 RD 단면 사진이다.
【발명을 실시하기 위한 구체적인 내용】
제 1, 제 2 및 제 3 등의 용어들은 다양한 부분, 성분, 영역, 층 및 /또는 섹션들을 설명하기 위해 사용되나 이들에 한정되지 않는다. 이들 용어들은 어느 부분, 성분. 영역, 층 또는 섹션을 다른 부분, 성분, 영역, 층 또는 섹션과 구별하기 위해사만 사용된다. 따라서, 이하에서 서술하는 제 1 부분, 성분, 영역, 층 또는 섹션은 본 발명의 범위를 벗어나지 않는 범위 내에서 제 2 부분, 성분, 영역, 충 또는 섹션으로 언급될 수 있다.
여기서 사용되는 전문 용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 명세서에서 사용되는 "포함하는" 의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및 /또는 성분을 구체화하며, 다른 특성, 영역, 정수, 단계, 동작, 요소 및 /또는 성분의 존재나 부가를 제외시키는 것은 아니다.
어느 부분이 다른 부분의 "위에' 1 또는 "상에" 있다고 언급하는 경우, 이는 바로 다른 부분의 위에 또는 상에 있을 수 있거나 그 사이에 다른 부분이 수반될 수 있다. 대조적으로 어느 부분이 다른 부분의 "바로 위에" 있다고 언급하는 경우, 그 사이에 다른 부분이 개재되지 않는다.
다르게 정의하지는 않았지만, 여기에 사용되는 기술용어 및 과학용어를 포함하는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 의미와 동일한 의미를 가진다. 보통 사용되는 사전에 정의된 용어들은 관련기술문헌과 현재 개시된 내용에 부합하는 의미를 가지는 것으로 추가 해석되고, 정의되지 않는 한 이상적이거나 매우 공식적인 의미로 해석되지 않는다.
또한, 특별히 언급하지 않는 한 %는 중량 %를 의미하며, lppm 은 0.0001중량 %이다.
본 발명의 일 실시예에서 추가 원소를 더 포함하는 것의 의미는 추가 원소의 추가량 만큼 잔부인 철 (Fe)을 대체하여 포함하는 것을 의미한다. 이하, 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
본 발명의 일 실시예에 의한 방향성 전기강판의 제조방법은 중량 %로, Si : 3.2 내지 4.0%, C : 0.03 내지 0.09 중량 %, A1: 0.015 내지 0.040%, Mn : 0.04 내지 0. 15% , N : 0.001 내지 0.005% , S : 0.01% 이하 (0%를 제외함) 및 잔부는 Fe 및 기타 불가피한 불순물을 포함하고, 하기 식 1을 만족하는 슬라브를 가열하는 단계; 슬라브를 열간압연하여 열연판을 제조하는 단계; 열연판을 900 내지 980°C의 균열 온도에서 30 내지 300초 동안 열연판 소둔하는 단계 ; 열연판 소둔이 완료된 열연판을 넁간압연하여 넁연판을 제조하는 단계; 넁연판을 1차 재결정 소둔하는 단계; 및 1차 재결정 소둔이 완료된 냉연판을 2차 재결정 소둔하는 단계를 포함한다.
이하에서는 각 단계별로 상세히 설명한다 .
먼저, 슬라브를 가열한다.
슬라브는 Si : 3.2 내지 4.0%, C: 0.03 내지 0.09 중량 % , A1 : 0.015 내지 0.040% , Mn : 0.04 내지 0. 15%, N : 0.001 내지 0.005% , S : 0.01% 이하 (0%를 제외함) 및 잔부는 Fe 및 기타 불가피한 불순물을 포함한다.
이하에서는 슬라브의 각 성분에 대해 설명한다.
Si : 3.2 내지 4.0 중량 %
실리콘 (Si )은 방향성 전기강판 소재의 비저항을 증가시켜 철심손실 (core l oss ) 즉, 철손을 낮추는 역할을 한다, Si 함량이 너무 작은 경우 비.저항이 감소하여 철손을 낮아지는 효과가 열화되며, 과잉 함유시에는 강의 취성이 증가하고, 인성이 감소하여 압연 과정중 판파단 발생으로 압연이 어렵고, 냉간압연 조업에 부하가 생기고, 넁간압연 중 패스에이징에 필요한 판온에 미달하게 되고 2차재결정 형성이 불안정해진다. 본 발명의 일 실시예에서는 슬라브 내의 Mn 및 S의 함량과 동시에 열연판 소둔시의 온도 조건이 정밀하게 제어되어, S i를 비교적 다량 함유하더라도 생산성이 우수하다.
0:0.03 내지 0.09 중량
탄소 (C)은 오스테나이트상 형성을 유도하는 원소로서 C 함량의 증가에 따라 열간 압연 공정 중 페라이트-오스테나이트 상변태가 활성화되고, 열연 공정 중 형성되는 길게 연신된 열연띠 조직이 증가하여, 열연판 소둔 공정 중 페라이트 입성장이 억제된다. 또한 C함량이 증가함에 따라 페라이트 조직에 비해 강도가 높은 연신된 열연띠 조직 증가되며 냉연 시작 조직인 열연관 소둔 조직의 초기 입자의 미세화에 의해 넁간압연 이후 집합조직이 개선 특히, 고스 분율이 증가하게 된다. 이는 열연판 소둔 후 강판내 존재하는 잔류 C에 의해 넁간압연중 패스에이징 효과가 커져서, 1차 재결정립 내의 고스 분율을 증가시키기 때문이다ᅳ 따라서 C함량이 높을수록 이로우나, 이후 1차 재결정 소둔 과정에서,. 탈탄시 탈탄 시간이 길어지고, 생산성을 손상시키며, 가열 초기의 탈탄이 충분치 않으면 1차 재결정 결정립을 불균일 하게 만들어 2차 재결정을 불안정하게 한다. 따라서 슬라브 내의 탄소함량을 전술한 범위로 제한한다. 한편, 방향성 전기강판 제조 과정에서 1차 재결정 소둔 등의 공정 내에 탈탄되어, 최종 제조되는 방향성 전기강판은 탄소를 0 .005 중량 % 이하로 포함할 수 있다.
A 1: 0 .015 내지 0.040 중량 %
알루미늄 (A 1 )은 N과 결합하여 A 1N으로 석출하지만, 탈탄과 질화를 동시에 행하는 소둔에서 미세한 석출물인 (A l , Si , Mn)N 및 A1N 형태의 질화물을 형성하게 되어 강력한 결정립 성장 억제 역할을 한다. 필요 이상의 고용된 A1이 일정량 이상 필요하다. 그 함량이 너무 적으면 형성되는 석출물의 개수와 부피 분율이 낮아서 결정립 성장 억제 효과가 충분하지 않고, 함량이 너무 높게 되면 석출물이 조대하게 성장하여 결정립 성장 억제 효과가 떨어지게 된다. 따라서 A1의 함량을 전술한 범위로 조절할 수 있다.
Mn : 0 .04 내지 0. 15 중량
망간 (Mn)은 Si와 동일하게 비저항을 증가시켜 와전류손을 감소시킴으로써 철손을 감소시키는 효과가 있을 뿐만 아니라, 강중에 존재하는 S와 반웅하여 Mn계 화합물을 형성하거나 전술한 A1 및 질소이온과 반웅하여 (Al , Si , Mn)N형태의 질화물을 형성함으로써 결정립 성장 억제제를 형성하는 역할을 한다ᅳ Mn이 너무 적은 경우에는 열연중 미세한 MnS가 불균일하게 석출하여 자성 특성을 열위하게 할 수 있다. 그 함량이 너무 많으면 2차재결정 소둔중 오스테나이트 상변태율이 증가하여 고스집합조직이 심각하게 훼손되어 자기적 특성이 급격히 될 수 있다. 따라서 Mn의 함량을 전술한 범위로 조절할 수 있다.
N : 0 .001 내지 0.005 중량 %
질소 (N)은 U 등과 반웅하여 A 1N 미세석출물을 형성하고, 입계의 이동을 막아 결정립 성장을 억제하여, 결정립경을 미세화시키는 원소이다. 이들 미세 A1N이 적절히 분포될 경우에는 상술한 바와 같이 냉간압연이후 조직을 적절히 미세하게 하여 적절한 1차 재결정 입도를 확보하는데 도움이 될 수 있으나, 그 함량이 과도하면 1차 재결정립이 과도하게 미세화되고, 불균일하게 되어 , 그 결과 미세한 결정립으로 인해 2차 재결정시 결정립 성장을 초래하는 구동력이 커져서 고스 이외의 방위를 가지는 결정립까지 성장할 수 있으므로 바람직하지 않다. 그리고 N은 너무 많이 함유되면 열연과정 중 석출한 A 1N의 미세석출물의 양이 많아져 불균일을 초래하고, 더욱 흑독한 열연판 소둔 제어가 요구되어 된다. 그러므로 본 특허에서는 N은 0 .005 중량 % 이하로 정한다. 넁간압연과 2차 재결정 소둔 사이에 질소량을 증가시키는 질화 처리를 실시하는 경우, 슬라브의 N은 전술한 범위로 함유되는 것으로도 충분하다.
S : 0. 010 중량 % 이하
ᅵ 황 (S)는 열간압연시 고용온도가 높고 편석이 심한 원소로서 가능한한 함유되지 않도록 하는 것이 바람직하지만, 제강시 함유되는 불가피한 불순물의 일종이다. 또한 S는 MnS를 형성하여 1차 재결정립 크기에 영향을 주므로 S의 함량은 0.010%이하, 보다 바람직하게는 0.006% 이하로 제한하는 것이 좋다. S의 하한은 0.001 중량 %가 될 수 있다.
Mn, S함량을 하기 식 1을 만족하도록 함유하였을 때 열간 압연 이후 MnS 석출물이 미세하고 적당량이 석출되어 이후 본 발명의 열연판 소둔 온도 900 내지 980°C 범위의 온도에서도 석출물이 재고용 석출되어 균일 분포 제어가 가능할 수 있다. 결과적으로 고 Si 함유재의 넁간압연 중 판단 발생도 저감할수 있고, 1차 및 2차 재결정립 크기 균일성이 개선되면서 자성이 우수하며 제품 특성이 균일하게 된다.
[식 1]
[Mn] X [S] < 0.0004
(단 식 1에서, [Mn] 및 [S]는 각각 슬라브 내의 Mn 및 S의 함량 (중량 ¾ 이다.)
Sn, Sb, P
인 (P), 주석 (Sn), 안티몬 (Sb)는 결정립계에 편석하여 결정립 성장을 억제하는 보조적인 역할이 가능하며, 1차 재결정 집합조직을 개선하는 효과가 있다ᅳ 자속밀도를 안정하게 형성하는 효과가 있기 때문에 유효한 원소이다.
P는 첨가량이 0.01 중량 % 이상에서 그 효과를 보이고, 0.05 중량 %를 넘으면 취성이 강하여 넁간압연이 어려워 진다.
Sn 및 Sb는 그합이 0.03 중량 % 이상에서 그 효과를 보이고, 0.15 중량 %를 초과하면 입계 편석 효과가 너무 강하고, 탈탄 소둔 중 표면 산화층 형성을 억제하여 양호한 표면을 확보하기 어렵고, 탈탄 반웅이 균일하지 못하여 1차 재결정립이 불균일하여 최종 자성 특성이 안정적이지 못한다. 또한, 기계적 특성 측면에서 입계에 과잉 편석으로 인해 취성이 증가하여, 압연특성 열위를 야기할 수 있다. 따라서 Sb 및 Sn 중 1종 이상을 각각 단독 또는 합량으로 0.03 내지 0.15 중량 % 포함할 수 있다. 즉, Sb 만을 단독으로 0.03 내지 0.15 중량 % 포함하거나, Sn만을 단독으로 0.03 내지 0.15 중량 % 포함하거나, Sb 및 Sn을 동시에 포함할 시, 그 합량으로 0.03 내지 0.15 중량 % 포함할 수 있다. Cr : 0 .02 내지 0. 15 중량 %
크름 (Cr )은 산화 형성을 촉진하는 원소이다. 크름을 적정량 더 첨가하면, 표층부의 치밀한 산화층 형성을 억제하며 깊이 방향으로 미세한 산화층이 형성되는 것을 '돕는다. Sb와 Sn의 첨가와 함께 적정 범위의 Cr함량 첨가로 균일성이 우수한 1차 재결정을 형성시키기가 더욱 용이하게 된다. Cr을 첨가함으로써 Sb , Sn함량 상향에 따른 탈탄 및 침질이 지연되어 1차 재결정립이 불균일해지는 현상을 극복함으로서 균일성이 우수한 1차 재결정립을 형성하고, 자성를 상향시켜주는 효과를 보이는 원소이다. Sb와 Sn함량에 따라 Cr함량을 상기 제안한 범위로 첨가하면 내부 산화층이 더 깊게 형성되고, 침질 및 탈탄 속도가 빠르게 되므로, Sb , Sn의 첨가로 인한 치밀하고 얇은 산화층 형성 때문에 동시탈탄 침질 공정에서 1차 재결정립의 크기 조절 및 균일성 확보가 어려운 점을 극복할 수 있게 한다. Cr 함량을 하한치에 미달하는 경우, 효과가 미약하고, 상한치를 초과하는 경우, 산화층이 과하게 형성되어 그 효과가 감소하며, 고가의 합금첨가에 따른 원가상승이 유발되므로 바람직하지 않다.
Cu : 0 .01 내지 0 .2 중량 %
구리 (Cu)는 S과 결합하여 CuS으로 석출되는데 , 주로 MnS와 흔합하여 (Mn , Cu)S 형태를 형성하게 되어 결정립 성장 억제 역할을 한다. 또한 Cu는 Mo와 마찬가지로 열간압연 표면부의 조직에 정확한 .방위의 Goss입자가 많이 형성되게 하여, 2차 재결정 후 결정립 크기가 감소하게 되고 와전류손이 작아지기 때문에 최종제품의 철손이 감소하게 되고, 정확한 방위의 Goss입자들이 많이 성장하기 때문에' 자속밀도 또한 높아지게 된다. Cu가 첨가되는 경우, 너무 적게 첨가되면 그 효과가 층분하지 않고, 함량이 너무 많으면 석출물이 조대하게 성장하여 결정립 성장 억제 효과가 떨어지게 된다.
Mo : 0. 01 내지 0.05 중량 %
몰리브덴 (Mo)는 방향성 전기강판에서 2차 재결정을 일으키는 Goss입자들은 열간압연 시 생성되어 넁간압연 및 1차 재결정 열처리 후에도 시편 표면부에 남게 되어 2차 재결정을 일으킨다고 알려져 있다. 방향성 전기강판의 열간압연 시 Mo가 첨가되게 되면 열간압연 표면부의 조직에 정확한 방위의 Goss입자가 많이 형성되고, 1차 재결정 열처리 후에도 그 입자들이 많이 남게 되어 2차 재결정을 일으킬 Goss입자들이 증가하게 된다. 따라서, 2차 재결정 후 결정립 크기가 감소하게 되고 와전류손이 작아지기 때문에 최종제품의 철손이 감소하게 되고, 정확한 방위의 Goss입자들이 많이 성장하기 때문에 자속밀도 또한 높아지게 된다.
또한, Mo는 Sn과 마찬가지로 결정립계에 편석되어 결정립 성장을 억제하는 중요한 역할을 하며, 2차 재결정이 고온에서 일어날수 있도록 안정적으로 제어해주는 역할을 하기 때문에 더 정확한 방위의 Goss입자들을 성장시키는 역할을 하여 자속밀도를 높여주게 된다. Mo는 그 원자의 크기가 상대적으로 크고 녹는점이 2623 로 매우 높기 때문에 철에서의 확산 속도가 느려서 고온까지 그 편석효과를 잘 유지시킬 수 있기 때문에 매우 효과적인 결정립 성장 억제 편석원소이다.
Mo의 함량이 너무 적을 경우 자기적 특성 향상 효과는 있으나 그 효과가 미미할 뿐만 아니라, 고스집합조직의 집적도가 향상되는 효과가 적고 오히려 기지내에 존재하는 입자에 의한 결정립 성장 억제력을 보상해주는 효과가 적기 때문에 자성향상 효과가 미비하다 . 한편 그 함량이 너무 많을 경우 결정립 성장 억제력이 너무 증가하여 상대적으로 결정립 성장 구동력을 증가시키기 위해 1차 재결정 미세조직의 결정립 크기를 감소시켜야 하기 때문에 탈탄소둔을 낮은 온도에서 실시해야 하며, 이로 인해 적절한 산화층으로 제어할 수 없어서 양호한 표면을 확보할 수가 없다. 따라서, Mo를 더 포함하는 경우, 전술한 범위로 첨가할 수 있다.
Ni: 0.03 내지 0. 1 증량 %
니켈 (Ni )은 Si함량 상향에 따른 자기이방성 감소로 열위해지는 포화 자속밀도를 보완하여 최종 자속밀도를 상향시켜주는 효과를 보이는 원소이다. Ni은 C과 마찬가지로 오스테나이트 형성 원소로 열간압연, 열연 후 열처리 공정의 오스테나이트 상변태를 활성화 하여, 조직 미세화효과를 가져오며, 특히, 서브 표층부의 고스 결정립 형성을 촉진하는 효과가 있어, 1차 재결정립에서의 고스 분율을 늘리고, 1차 재결정립의 크기의 균일성이 좋아짐으로, 최종 제품의 자속밀도를 상향 시키는 효과를 주고, 또한 Ni을 추가 첨가하므로서 Si함량에 따른 C함량의 하한을 낮춰주는 역할을 한다. Ni 첨가량 하한치 미만으로 첨가할 경우 그 효과가 미약하고, 상한치를 초과하는 경우, 그 첨가 효과가 크지 않으며, 고가의 합금첨가에 따른 원가상승이 유발된다. 따라서, Ni를 더 포함하는 경우, 전술한 범위로 첨가할 수 있다.
Ti : 0.005 중량 % 이하
티타늄 (Ti )는 강력한 Ni t r i de 형성 원소로 열연전단계에서 TiN가 되어 N함량을 낮게 되고, 미세 석출하여 결정립경을 불균일하게 하여, 2차 재결정을 불안정하게 하므로 0.005 중량 % 이하로 제한 한다.
이러한 조성의 슬라브를 가열한다. 슬라브의 가열은 120( C이하, 보다 구체적으로는 1150°C 이하의 저온으로 실시하여 석출물을 부분 용체화 할 수 있다. 슬라브 가열은도가 높아지면 강판 제조비용이 상승되며, 슬라브의 표면부 용융으로 가열로를 보수하고 가열로 수명이 단축될 수 있다ᅳ 아울러, 슬라브를 1050 내지 1200°C의 온도로 가열하게 되면 슬라브의 주상정조직이 조대하게 성장되는 것이 방지되어 후속 열간압연 공정에서 판의 폭 방향으로 크랙이 발생되는 것을 막을 수 있어 실수율을 향상시키게 된다.
다음으로, 슬라브를 열간압연하여 열연판을 제조한다. 열간 압연 온도는 제한되지 않으며, 일 실시예로 950 °C 이하에서 열연을 종료할 수 있다. 이후 수냉하여 하여 6(xrc 이하에서 권취할 수 있다. 열간 압연에 의하여 2.0 내지 3.5mm 두께의 열연판으로 제조할 수 있다.
열간압연이 완료된 열연판내에는 슬라브 조직인 주상정 조직과 등축정 조직이 열간압연 방향으로 길게 연신되어 불균일하게 존재하게.되며, 동시에 슬라브내 존재하였던 조대한 석출물과 탄화물들이 열간압연 미세조직의 입내 및 입계에 불균일하게 존재한다. 이러한 불균일하고 조대한 미세조직, 석출물 및 탄화물 등은 후속공정인 넁간압연 작업중 소재의 압연성을 '저하시키고 나아가 압연중 찾은 판파단을 야기하게 된다. 따라서 열간압연이 완료된 소재는 균일한 미세조직과 미세하고 균일한 분포의 석출물을 갖도록 열연판 소둔 열처리를 행하는 것이 중요하다.
다음으로, 열연판을 열연판 소둔한다. 900 내지 980 °C의 균열 은도에서 30 내지 300초 동안 소둔할 수 있다. 열연판 소둔하는 단계는 균열 온도 도달 전 1차 승온 단계 및 2차 승은 단계를 포함할 수 있다.
이 때, 1차 승온 단계는 열연판을 750 내지 850 °C까지 승온하는 단계이고, 2차 승온 단계는 1차 승은 단계를 완료한 열연판을 균열 단계의 균열 온도까지 승온하는 단계를 의미한다 . 구체적으로 1차 승온 단계는 열간 압연 공정을 마친 열연판을 750 내지 850 °C까지 승은하는 단계이다.
2차 승온 단계는 1차 승온 단계를 완료한 열연판 즉, 750 내지 850 °C까지 승온된 열연판을 균열 단계의 균열 온도까지 승온하는 단계이다. 1차 승온 단계의 승온 속도 ( )는 5 내지 45'C /초일 수 있다. 1차 승온 단계의 승온 속도 (^)가 너무 빠른 경우, 넁연판 edge부의 edge crack발생수가 급격히 증가할 수 있다. 2차 승온 단계의 승온 속도 ( t2)는 1 내지 6°C /초일 수 있다.
2차 승온 단계의 승온 속도 ( t2) 너무 빠른 경우, 넁연판 edge부의 edge crack발생수가 급격히 증가할 수 있다.
균열온도는 900 내지 980°C가 될 수 있으며, 소둔 시간, 즉 재로시간은 30 내지 300초가 될 수 있다. 정밀하게 제어된 균열온도 및 소둔 시간을 통해 넁간 압연 공정에서의 압연성을 향상시킬 수 있으며, 아울러 최종 제조된 방향성 전기강판의 자성도 향상된다.
열연판 소둔하는 단계 이후, 700 내지 850 °C의 시작온도에서부터
30(rC까지 10°C /초 내지 300 °C /초의 넁각 속도로 냉각할 수 있다. 넁각속도가 너무 느리면 탄화물이 석출하여 1차 재결정 잡합조직이 열위해져서 자성에 악영향을 주고, 넁각속도가 너무 빠르면 넁각 과정 중 판 형상이 뒤를리는 등 소재 내부에 응력이 잔존할수 있고, 마르텐사이트 또는 잔류 오스테나이트와 같은 매우 경한 변태상이 다량 남아 냉간압연시 압연특성이 열위해질 수 있다.
이렇게 열연판 소둔이 완료된 열연판은 연신율이 높아 냉간 압연 공정에서의 압연성이 향상된다. 이 때 연신율이란, 열연판을 J IS13B 규격으로 인장시편 가공 후 인장 시험 시 얻어지는 연신율을 의미한다.
다음으로, 열연판을 넁간압연하여 넁연판을 제조한다. 넁간압연은 리버스 (Reverse) 압연기 혹은 탠덤 (Tandom) 압연기를 이용하여 1회의 넁간압연/ 다수회의 냉간압연, 또는 중간소둔을 포함하는 다수회의 넁간압연법으로 0. 15mm 내지 0.35mm 두께의 냉연판을 제조할 수 있다. 또한, 냉간압연 중에 강판의 온도를 100 °C 이상으로 유지하는 온간 압연을 실시할 수 있다. 또한, 넁간압연을 통한 최종 압하율은 50 내지 95%가 될 수 있다. 본 발명의 일 실시예에서 전술하였듯이, 열연판 소둔하는 단계 이후의 열연판의 경도가 낮고, 가공경화지수가 낮기 때문에, 넁간 압연 단계에서 넁연판의 두께 방향으로의 단부에 형성되는 edge crack 발생수가 감소할 수 있다. 본 발명의 일 실시예에서 엣지 크랙이란 넁간압연후 넁연판의 두께 방향으로의 단부 (엣지부)에 존재하는 5隱이상의 깊이를 갖는 크랙 (crack)을 의미한다. 구체적으로 넁연판 길이 방향으로 50cm 당 4개 이하로 엣지 크랙이 발생할 수 있다.
다음으로, 넁간압연 된 넁연판을 1차 재결정 소둔한다. 1차 재결정 소둔 단계에서 고스 결정립의 핵이 생성되는 1차 재결정이 일어난다. 1차 재결정 소둔 과정에서 강판의 탈탄 및 침질이 이루어질 수 있다. 탈탄 및 침질을 위하여 수증기 수소 및 암모니아의 흔합 가스 분위기 하에서 1차 재결정 소둔 할 수 있다. 탈탄을 위해 8(xrc 내지 9(xrc의 온도 및 5o°c 내지 70 °C의 이슬점 온도에서 소둔할 수 있다. 900 °C를 초과하여 가열하게 되면 , 재결정립들이 조대하게 성장하여 결정성장 구동력이 떨어져서 안정된 2차 재결정이 형성되지 않는다. 그리고 소둔시간은 본 발명의 효과를 발휘하는데 크게 문제가 되지 않지만 생산성을 감안하여 통상 5분 이내에서 처리하는 것이 바람직하다.
질화를 위해 암모니아 가스를 사용하여 강판에 질소이온을 도입하여 주석출물인 (Al , Si , Mn)N 및 A1N둥의 질화물을 형성하는데 있어, 탈탄 및 재결정을 마치고 침질 처리하거나, 혹은 탈탄과 동시에 침질 처리를 같이 할 수 있도록 동시에 침질 처리를 행하거나, 혹은 침질 처리를 우선 행한 후 탈탄소둔을 행하는 방법 어느 것이나 본 발명의 효과를 발휘하는데 문제가 없다.
다음으로, 1차 재결정 소둔이 완료된 냉연판을 2차 재결정 소둔한다. 2차 재결정 소둔을 통해 강판의 { 110}면이 압연면에 평행하고, <001>방향이 압연방향에 평행한 { 110}<001> 집합조직이 형성되도록 한다. 이 때, 1차 재결정 소둔이 완료된. 냉연판에 소둔 분리제를 도포한 후, 2차 재결정 소둔할 수 있다. 이 때, 소둔 분리제는 특별히 제한하지 아니하며, ¾0를 주 성분으로 포함하는 소둔 분리제를 사용할 수 있다.
2차 재결정 소둔 단계에서 2차 재결정에 의한 { 110 }<001> 집합조직이 형성되고, 1차 재결정 소둔 열처리를 통해 형성된 표면의 산화층과 MgO의 반웅에 의한 유리질 피막형성으로 절연성이 부여되고, 자기특성을 해치는 불순물이 제거된다. 2차 재결정 소둔 단계는 2차 재결정이 일어나기 전의 승온 구간에서는 질소와 수소의 흔합 가스로 유자하여 입자성장 억제제인 질화물을 보호함으로써 2차 재결정이 잘 발달할 수 있도록 하고, 2차 재결정이 완료된 후에는 100% 수소분위기를 사용하거나 혹은 질소와 수소의 흔합분위기를 사용하는 방법 어느 것이나 본 발명의 효과를 발휘하는데 문제가 없으며, 장시간 유지하여 불순물을 제거한다.
이후, 필요에 따라, 방향성 전기강판의 표면에 절연피막을 형성하거나, 자구 미세화 처리를 할 수 있다. 본 발명의 일 실시예에서 방향성 전기강판의 합금 성분은 절연피막 등의 코팅층을 제외한 소지강판을 의미한다 .
이하에서는 실시예를 통하여 본 발명을 좀더 상세하게 설명한다. 그러나 이러한 실시예는 단지 본 발명을 예시하기 위한 것이며, 본 발명이 여기에 한정되는 것은 아니다.
실시예 1
하기 표 1 및 표 2의 성분 및 잔부 Fe와 블가피하게 흔입되는 불순물로 이루어진 슬라브를 1180 °C에서 210분 동안 가열하고 이어 2 .3m 두께로 열간압연 하였다.
이 열연판을 하기 표 3에 기재된 온도 및 시간 조건으로 열연판 소둔하고, 760 °C까지 노냉 후 물에 급넁하고 산세하였다. 열연판소둔판은 J IS— 13B규격으로 가공하여 인장시험을 실시하여 연신율을 측정하였고, 그 결과를 표 3에 정리하였다. 연신율이 20% 이상인 경우, 우수, 20% 미만인 경우 불량으로 표시하였다. 도 1은 발명재 1에서 열연판 소둔 후 엣지부의 RD 단면 사진이고, 도 2는 비교재 4에서 열연판 소둔 후 엣지부의 RD 단면 사진이다. 도 1 및 도 2에서 나타나듯이, 적절한 열연판 소둔 온도로 소둔한 경우, 결정립이 균일하게 생성된 것을 확인할 수 있다. 반면, 비교재 4는 결정립이 불균일하게 생성된 것을 확인할 수 있다. 열연소둔판을 0.23瞧 두께로 1회 강 넁간 압연하였다. 넁간압연된 판은 약 860°C의 온도로 습한 수소와 질소 및 암모니아 흔합가스분위기 속에서 180초간 유지하여 탄소함량이 50ρ τι이하, 질소함량이 200ppm이 되도록 동시 탈탄, 질화 처리를 포함하는 1차 재결정 소둔을 하였다.
이 강판에 소둔분리제인 MgO를 도포하여 코일상으로 최종소둔하였다. 최종소둔은 1200°C 까지는 25 부피 % 질소 및 75 부피 % 수소의 흔합분위기로 하였고, 1200°C 도달후에는 100 부피 ¾> 수소분위기에서 10시간이상 유지후 노넁하였다.
철손 및 자속밀도는 single sheet 측정법을 이용하여 측정하였고, 50Hz에서 1.7Tesla로 자화될 때까지의 철손을 측정하였고, 800A/m의 자기장 하에서 유도되는 자속밀도의 크기 (Tesla)를 측정하였다.
【표 1】
Figure imgf000017_0002
【표 2]
Figure imgf000017_0001
발명재 1 0.06 0 0.02 0.05 0 0 발명재 2 0.06 0 0.02 0.05 0 0 발명재 3 0.06 0 0.02 0.05 0 0 발명재 4 0.06 0 0.02 0.05 0 0 발명재 5 0.06 0 0.02 0.05 0.05 0 발명재 6 0.06 0 0.02 0.05 0.2 0 발명재 7 0.05 0.04 0.02 0.05 0 0 발명재 8 0.06 0.02 0.02 0.05 0 0 발명재 9 0.06 0 0.02 0.05 0.2 0.03 비교재 1 0.06 0 0.02 0.05 0 0 비교재 2 0.06 0 0.02 0.05 0 0 비교재 3 0.06 0 0.02 0.05 0 0 비교재 4 0.06 0 0.02 0:05 0 0 비교재 5 0.06 0 0.02 0.05 0 0 비교재 6 0.08 0.1 0.02 0.05 0 0
【표 3】
Figure imgf000018_0001
발명재 1.93
950 180 o人
ᄀ Γ 0.763 -
6 6
발명재 1.94
950 180 o入
丁丁 0.738 ― 7 4
발명재 1.94
980 180 Ό人
ᄀ Γ 0.76 - 8 1
발명재 1.94
980 180 o人
ᄀ " Γ 0.78 - 9 4
비교재 1.90 자성
1000 180 o人
" Γ 0.894
1 2 불균일 비교재 1.89 자성
. 950 180 o入
" Γ 0.895
2 9 불균일 비교재 1.90 엣지크택
880 180 분리 = 0.879 3 3 다수 발생 비교재 1.90 엣지크랙
1050 180 불량 0.874 4 6 다수 발생 비교재 1.89 자성
980 20 ο入
ᄀ Γ 0.879
5 8 불균일 자성 비교재 1.90
1000 180 0.89 불균일 /표 6 5
면 불량 표 1 내지 표 3에 나타나듯이 , 본원의 식 1 및 열연판 소둔 은도 및 시간을 모두 만족한 경우, 자성이 우수하고, 압연 특성이 우수함을 확인할 수 있다. 반면, 본원의 식 1 및 열연판 소둔 온도 및 시간 중 일부를 만족하지 못한 경우 자성이 열화되거나, 압연 특성이 열화되어 엣지 크랙이 다수 형성되는 것을 확인할 수 있다.
실시예 2
하기 표 4의 성분 및 잔부 Fe와 불가피하게 흔입되는 불순물로 이루어진 슬라브를 1180°C에서 210분 동안 가열하고 이어 2.3m 두께로 열간압연 하였다. 이 열연판을 하기 표 5에 기재된 온도 및 시간 조건으로 열연판 소둔하고, 공넁하여 냉각시작 온도 800°C 도달 시 300°C까지 100 °c 끓는 물에 담금질로 3(rc /초의 조건으로 넁각하였다. 열연판소둔판은 jis-
13B규격으로 가공하여 인장시험을 실시하여 연신율을 측정하였고, 그 결과를 표 5에 정리하였다. 연신율이 20% 이상인 경우, 우수ᅳ 20% 미만인 경우 불량으로 표시하였다.
열연소둔판을 0 .23mm 두께로 넁간 압연하였다. 넁간압연된 판은 약 860 °C의 온도로 습한 수소와 질소 및 암모니아 흔합가스분위기 속에서 180초간 유지하여 탄소함량이 50ppm이하, 질소함량이 200ppm이 되도록 동시 탈탄, 질화 처리를 포함하는 1차 재결정 소둔을 하였다.
이 강판에 소둔분리제인 MgO를 도포하여 코일상으로 최종소둔하였다. 최종소둔은 1200 °C 까지는 25 부피 % 질소 및 75 부피 ¾> 수소의 흔합분위기로 하였고, 1200 °C 도달후에는 100 부피 % 수소분위기에서 10시간이상 유지후 노냉하였다.
【표 4】
Figure imgf000020_0001
【표 5】
Figure imgf000020_0002
표 4 및 표 5에 나타나듯이, 본원의 식 1 및 열연판 소둔 온도 및 시간을 모두 만족한 경우, 자성이 우수하고, 압연 특성이 우수함을 확인할 수 있다. 반면, 본원의 식 1 및 열연판 소둔 온도 및 시간 중 일부를 만족하지 못한 경우 자성이 열화되거나, 압연 특성이 열화되어 엣지 크랙이 다수 형성되는 것을 확인할 수 있다.
본 발명은 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한디- .

Claims

【청구범위】 【청구항 1】 중량 %로, Si: 3.2 내지 4.0%, C: 0.03 내지 0.09 증량 %, A1: 0.015 내지 0.040%, Mn: 0.04 내지 0.15%, N: 0.001 내지 0.005%, S: 0.01% 이하 를 제외함) 및 잔부는 Fe 및 기타 불가피한 불순물을 포함하고, 하기 식 1을 만족하는 슬라브를.가열하는 단계; 상기 슬라브를 열간압연하여 열연판을 제조하는 단계; 상기 열연판을 900 내지 98CTC의 균열 온도에서 30 내지 300초 동안 열연판 소둔하는 단계 ; ' 열연판 소둔이 완료된 열연판을 넁간압연하여 넁연판을 제조하는 단계; 상기 넁연판을 1차 재결정 소둔하는 단계; 및 1차 재결정 소둔이 완료된 넁연판을 2차 재결정 소둔하는 단계를 포함하는 방향성 전기강판의 제조 방법ᅳ
[식 1]
[Mn] [S] < 0.0004
(단 식 1에서, [Mn] 및 [S]는 각각 술라브 내의 Mn 및 S의 함량 (중량^ 이다.)
【청구항 2
제 1항에 있어서,
상기 슬라브는 Sb 및 Sn 중 1종 이상을 각각 단독 또는 합량으로 0.03 내지 0.15 중량 P를 0.01 내지 0.05 중량 % 및 Cr을 0.02 내지 0.15 중량 % 더 포함하는 방향성 전기강판의 제조 방법 .
【청구항 3】
제 1항에 있어서,
상기 슬라브는 Cu를 0.01 내지 0.2 중량 % 및 Mo를 0.01 내지 0.05 중량 % 더 포함하는 방향성 전기강판의 제조 방법 .
【청구항 4】
제 1항에 있어서,
상기 열연판 소둔하는 단계 이후, 700 내지 850°C의 시작온도에서부터 300°C까지 10°C/초 내지 300°C/초의 냉각 속도로 넁각하는 단계를 더 포함하는 방향성 전기강판의 제조 방법 .
【청구항 5】
제 1항에 있어서,
상기 열연판 소둔하는 단계 이후, 상기 열연판의 연신율이 20% 이상인 방향성 전기강판의 제조 방법 .
【청구항 6]
저 U항에 있어서,
상기 슬라브를 가열하는 단계에서 1050 내지 1200°C로 가열하는 방향성 전기강판의 제조 방법 .
PCT/KR2017/015203 2016-12-23 2017-12-21 방향성 전기강판의 제조방법 WO2018117671A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780080244.7A CN110114478B (zh) 2016-12-23 2017-12-21 取向电工钢板的制造方法
US16/471,293 US20200032363A1 (en) 2016-12-23 2017-12-21 Method for producing grain-oriented electrical steel sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0178541 2016-12-23
KR1020160178541A KR101899453B1 (ko) 2016-12-23 2016-12-23 방향성 전기강판의 제조방법

Publications (1)

Publication Number Publication Date
WO2018117671A1 true WO2018117671A1 (ko) 2018-06-28

Family

ID=62626857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/015203 WO2018117671A1 (ko) 2016-12-23 2017-12-21 방향성 전기강판의 제조방법

Country Status (4)

Country Link
US (1) US20200032363A1 (ko)
KR (1) KR101899453B1 (ko)
CN (1) CN110114478B (ko)
WO (1) WO2018117671A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3859019A4 (en) * 2018-09-27 2021-11-24 Posco GRAIN ORIENTED ELECTRIC STEEL SHEET AND METHOD FOR MANUFACTURING THEREOF
EP3889297A4 (en) * 2018-11-30 2022-03-30 Posco GRAIN ORIENTED ELECTRICAL STEEL SHEET AND METHOD OF MAKING IT
EP4079910A4 (en) * 2019-12-20 2023-07-26 Posco GRAIN ORIENTED ELECTRICAL STEEL SHEET AND METHOD FOR PRODUCTION THEREOF

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6947147B2 (ja) * 2018-11-01 2021-10-13 Jfeスチール株式会社 方向性電磁鋼板の製造方法
KR20240035911A (ko) * 2019-04-23 2024-03-18 제이에프이 스틸 가부시키가이샤 방향성 전자 강판의 제조 방법
JP6813143B1 (ja) * 2019-04-23 2021-01-13 Jfeスチール株式会社 方向性電磁鋼板の製造方法
KR102305718B1 (ko) * 2019-12-18 2021-09-27 주식회사 포스코 방향성 전기강판 및 그 제조방법
KR102468077B1 (ko) * 2020-12-21 2022-11-16 주식회사 포스코 방향성 전기강판 및 그의 제조방법
JPWO2023074908A1 (ko) * 2021-10-29 2023-05-04

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000042706A (ko) * 1998-12-26 2000-07-15 이구택 슬라브 저온 가열에 의한 방향성 전기강판의 제조방법
KR20130071968A (ko) * 2011-12-21 2013-07-01 주식회사 포스코 방향성 전기강판 및 그 제조방법
KR20150074933A (ko) * 2013-12-24 2015-07-02 주식회사 포스코 방향성 전기강판 및 이의 제조방법
JP5793305B2 (ja) * 2007-12-28 2015-10-14 ポスコ 磁気特性に優れた方向性電磁鋼板及びその製造方法
KR20160078173A (ko) * 2014-12-24 2016-07-04 주식회사 포스코 방향성 전기강판 및 그 제조방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101275198B (zh) * 2007-03-27 2010-09-29 宝山钢铁股份有限公司 一种表面状态良好的中牌号无取向电工钢的制造方法
WO2013089297A1 (ko) * 2011-12-16 2013-06-20 주식회사 포스코 자성이 우수한 방향성 전기강판의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000042706A (ko) * 1998-12-26 2000-07-15 이구택 슬라브 저온 가열에 의한 방향성 전기강판의 제조방법
JP5793305B2 (ja) * 2007-12-28 2015-10-14 ポスコ 磁気特性に優れた方向性電磁鋼板及びその製造方法
KR20130071968A (ko) * 2011-12-21 2013-07-01 주식회사 포스코 방향성 전기강판 및 그 제조방법
KR20150074933A (ko) * 2013-12-24 2015-07-02 주식회사 포스코 방향성 전기강판 및 이의 제조방법
KR20160078173A (ko) * 2014-12-24 2016-07-04 주식회사 포스코 방향성 전기강판 및 그 제조방법

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3859019A4 (en) * 2018-09-27 2021-11-24 Posco GRAIN ORIENTED ELECTRIC STEEL SHEET AND METHOD FOR MANUFACTURING THEREOF
US11603572B2 (en) 2018-09-27 2023-03-14 Posco Co., Ltd Grain-oriented electrical steel sheet and method for manufacturing same
EP3889297A4 (en) * 2018-11-30 2022-03-30 Posco GRAIN ORIENTED ELECTRICAL STEEL SHEET AND METHOD OF MAKING IT
EP4079910A4 (en) * 2019-12-20 2023-07-26 Posco GRAIN ORIENTED ELECTRICAL STEEL SHEET AND METHOD FOR PRODUCTION THEREOF

Also Published As

Publication number Publication date
CN110114478B (zh) 2021-05-25
US20200032363A1 (en) 2020-01-30
CN110114478A (zh) 2019-08-09
KR101899453B1 (ko) 2018-09-17
KR20180074455A (ko) 2018-07-03

Similar Documents

Publication Publication Date Title
WO2018117671A1 (ko) 방향성 전기강판의 제조방법
RU2686424C1 (ru) Способ получения листа неориентированной электротехнической стали, имеющего превосходные магнитные свойства
CN108431267B (zh) 取向电工钢板及其制备方法
WO2018117639A1 (ko) 방향성 전기장판 및 그의 제조방법
KR102080166B1 (ko) 방향성 전기강판 및 그의 제조방법
CN113166836B (zh) 取向电工钢板及其制造方法
WO2017111509A1 (ko) 방향성 전기강판 및 그 제조방법
JP2019119933A (ja) 低鉄損方向性電磁鋼板とその製造方法
JP6160649B2 (ja) 方向性電磁鋼板の製造方法
KR101667617B1 (ko) 방향성 전기강판 및 그 제조방법
KR102088405B1 (ko) 방향성 전기강판 제조방법
CN111417737B (zh) 低铁损取向性电磁钢板及其制造方法
JP3928275B2 (ja) 電磁鋼板
KR101937925B1 (ko) 방향성 전기강판의 제조방법
KR101869455B1 (ko) 방향성 전기강판 및 이의 제조방법
KR102020276B1 (ko) 방향성 전기강판 및 그의 제조방법
US20240035108A1 (en) Grain oriented electrical steel sheet and method for manufacturing same
JP2012162773A (ja) 方向性電磁鋼板の製造方法
KR101919530B1 (ko) 방향성 전기강판의 제조방법
KR101351959B1 (ko) 생산성이 우수한 방향성 전기강판 제조방법 및 그 방법에 의해 제조된 방향성 전기강판
CN114829657A (zh) 取向电工钢板及其制造方法
JPS6256205B2 (ko)
KR100841771B1 (ko) 자성이 우수한 방향성 전기강판의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17882605

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17882605

Country of ref document: EP

Kind code of ref document: A1